Bile salt biotransformations by human intestinal bacter

Journal of Lipid Research 47, 241-259 DOI: 10.1194/jlr.r500013-jlr200

Citation Report

#	Article	IF	CITATIONS
1	Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria. Lipids, 2006, 41, 835-843.	0.7	78
2	Deoxycholate induces mitochondrial oxidative stress and activates NF-ÂB through multiple mechanisms in HCT-116 colon epithelial cells. Carcinogenesis, 2007, 28, 215-222.	1.3	141

 $_{3}$ Isolation and chemical synthesis of a major, novel biliary bile acid in the common wombat (Vombatus) Tj ETQq0 0 0.rgBT /Overlock 10 Tr

4	Human cecal bile acids: concentration and spectrum. American Journal of Physiology - Renal Physiology, 2007, 293, G256-G263.	1.6	214
5	Biochemical and Genetic Investigation of Initial Reactions in Aerobic Degradation of the Bile Acid Cholate in <i>Pseudomonas</i> sp. Strain Chol1. Journal of Bacteriology, 2007, 189, 7165-7173.	1.0	48
6	A topâ€down systems biology view of microbiomeâ€mammalian metabolic interactions in a mouse model. Molecular Systems Biology, 2007, 3, 112.	3.2	420
9	Review article: the function and regulation of proteins involved in bile salt biosynthesis and transport. Alimentary Pharmacology and Therapeutics, 2007, 26, 149-160.	1.9	111
10	Atherogenic diet causes lethal ileo-ceco-colitis in cyclooxygenase-2 deficient mice. Prostaglandins and Other Lipid Mediators, 2007, 84, 98-107.	1.0	8
11	Bile Acids: Chemistry, Pathochemistry, Biology, Pathobiology, and Therapeutics. Cellular and Molecular Life Sciences, 2008, 65, 2461-2483.	2.4	684
12	Bacterial-dependent up-regulation of intestinal bile acid binding protein and transport is FXR-mediated following ileo-cecal resection. Surgery, 2008, 144, 174-181.	1.0	26
13	The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biology, 2008, 6, e280.	2.6	2,013
14	Clostridium scindens baiCD and baiH genes encode stereo-specific 7α/7β-hydroxy-3-oxo-Δ4-cholenoic acid oxidoreductasesâ~†. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 16-25.	1.2	72
15	<i>Lactobacillus rhamnosus</i> LC705 Together with <i>Propionibacterium freudenreichii</i> ssp <i>shermanii</i> JS Administered in Capsules Is Ineffective in Lowering Serum Lipids. Journal of the American College of Nutrition, 2008, 27, 441-447.	1.1	66
16	Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive bacteria. Microbiology (United Kingdom), 2008, 154, 2492-2500.	0.7	39
17	Bile Salts and Glycine as Cogerminants for <i>Clostridium difficile</i> Spores. Journal of Bacteriology, 2008, 190, 2505-2512.	1.0	612
18	Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13580-13585.	3.3	797
19	Identification of Human Hepatic Cytochrome P450 Enzymes Involved in the Biotransformation of Cholic and Chenodeoxycholic Acid. Drug Metabolism and Disposition, 2008, 36, 1983-1991.	1.7	41
20	Functional Analysis of Four Bile Salt Hydrolase and Penicillin Acylase Family Members in <i>Lactobacillus plantarum</i> WCFS1. Applied and Environmental Microbiology, 2008, 74, 4719-4726.	1.4	173

#	Article	IF	CITATIONS
21	Proton Pump Inhibitors and the Risk of Colorectal Cancer. American Journal of Gastroenterology, 2008, 103, 966-973.	0.2	65
22	Prebiotics and Reduction of Risk of Carcinogenesis. , 2008, , 295-328.		6
24	Intestinal bile acid physiology and pathophysiology. World Journal of Gastroenterology, 2008, 14, 5630.	1.4	129
25	The Human Microbiome and Infectious Diseases: Beyond Koch. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-2.	0.6	11
26	Insights into the Roles of Gut Microbes in Obesity. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-9.	0.6	34
27	Modulation of Bile Acid Metabolism by 1α-Hydroxyvitamin D3Administration in Mice. Drug Metabolism and Disposition, 2009, 37, 2037-2044.	1.7	49
28	Vitamin D ₃ Modulates the Expression of Bile Acid Regulatory Genes and Represses Inflammation in Bile Duct-Ligated Mice. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 564-570.	1.3	78
29	Chenodeoxycholate Is an Inhibitor of <i>Clostridium difficile</i> Spore Germination. Journal of Bacteriology, 2009, 191, 1115-1117.	1.0	178
30	Allelic Variation of Bile Salt Hydrolase Genes in <i>Lactobacillus salivarius</i> Does Not Determine Bile Resistance Levels. Journal of Bacteriology, 2009, 191, 5743-5757.	1.0	78
31	A new, major C27 biliary bile acid in the Red-winged tinamou (Rhynchotus) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 3 2.0	82 Td (rufes
32	Nitric Oxide Production by the Human Intestinal Microbiota by Dissimilatory Nitrate Reduction to Ammonium. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-10.	3.0	45
33	Intestinal flora induces the expression of Cyp3a in the mouse liver. Xenobiotica, 2009, 39, 323-334.	0.5	81
34	Effect of bile salts on the DNA and membrane integrity of enteric bacteria. Journal of Medical Microbiology, 2009, 58, 1533-1541.	0.7	234
35	Administration of Ampicillin Elevates Hepatic Primary Bile Acid Synthesis through Suppression of Ileal Fibroblast Growth Factor 15 Expression. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 1079-1085.	1.3	60
36	Molecular cloning and characterization of bile salt hydrolase inLactobacillus casei Zhang. Annals of Microbiology, 2009, 59, 721-726.	1.1	15
37	Characterization of the Contents of Ascending Colon to Which Drugs are Exposed After Oral Administration to Healthy Adults. Pharmaceutical Research, 2009, 26, 2141-2151.	1.7	118
38	Effect of prebiotics on bacteriocin production and cholesterol lowering activity of Pediococcus acidilactici LAB 5. World Journal of Microbiology and Biotechnology, 2009, 25, 1837-1847.	1.7	50
39	Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by <i>Bacteroides intestinalis</i> AM-1 isolated from human feces. FEMS Microbiology Letters, 2009, 293, 263-270.	0.7	83

#	Article	IF	Citations
40	Diet-Induced Metabolic Improvements in a Hamster Model of Hypercholesterolemia Are Strongly Linked to Alterations of the Gut Microbiota. Applied and Environmental Microbiology, 2009, 75, 4175-4184.	1.4	299
41	Characterization of Enantiomeric Bile Acid-induced Apoptosis in Colon Cancer Cell Lines. Journal of Biological Chemistry, 2009, 284, 3354-3364.	1.6	61
42	Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiological Reviews, 2009, 89, 147-191.	13.1	1,309
43	Discovery of 6α-Ethyl-23(<i>S</i>)-methylcholic Acid (<i>S</i> -EMCA, INT-777) as a Potent and Selective Agonist for the TGR5 Receptor, a Novel Target for Diabesity. Journal of Medicinal Chemistry, 2009, 52, 7958-7961.	2.9	220
44	A potential role of GW4064 to inhibit gut bacterial overgrowth by activating FXR in suppression of ethanol-induced liver injury. Bioscience Hypotheses, 2009, 2, 27-30.	0.2	2
45	Bile acids as regulatory molecules. Journal of Lipid Research, 2009, 50, 1509-1520.	2.0	564
46	Patterns and Scales in Gastrointestinal Microbial Ecology. Gastroenterology, 2009, 136, 1989-2002.	0.6	84
47	Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3698-3703.	3.3	2,198
48	Bile acids: Chemistry, physiology, and pathophysiology. World Journal of Gastroenterology, 2009, 15, 804.	1.4	427
50	Significance of Serum Bile Acids in Small Bowel Allograft Rejection in Pigs. Transplantation, 2009, 87, 24-28.	0.5	6
51	High performance liquid chromatography–tandem mass spectrometry for the determination of bile acid concentrations in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 51-60.	1.2	90
52	Diversity of bile salt hydrolase activities in different lactobacilli toward human bile salts. Annals of Microbiology, 2010, 60, 81-88.	1.1	44
53	Probiotic Bile Salt Hydrolase: Current Developments and Perspectives. Applied Biochemistry and Biotechnology, 2010, 162, 166-180.	1.4	118
54	Isolation and characterization of a bile acid inducible 7α-dehydroxylating operon in Clostridium hylemonae TN271. Anaerobe, 2010, 16, 137-146.	1.0	107
55	Role of Fiber in Cardiovascular Diseases: A Review. Comprehensive Reviews in Food Science and Food Safety, 2010, 9, 240-258.	5.9	160
56	Bile salt deconjugation and cholesterol removal from media by <i>Lactobacillus</i> strains used as probiotics in chickens. Journal of the Science of Food and Agriculture, 2010, 90, 65-69.	1.7	49
57	Probiotics and Prebiotics in Metabolic Disorders and Obesity. , 2010, , 237-258.		3
58	Role of Bacteria in Oncogenesis. Clinical Microbiology Reviews, 2010, 23, 837-857.	5.7	149

#	Article	IF	CITATIONS
59	Bile salts of vertebrates: structural variation and possible evolutionary significance. Journal of Lipid Research, 2010, 51, 226-246.	2.0	322
60	Urinary metabolomics in Fxr-null mice reveals activated adaptive metabolic pathways upon bile acid challenge. Journal of Lipid Research, 2010, 51, 1063-1074.	2.0	41
61	Metabolism of Bile Salts in Mice Influences Spore Germination in Clostridium difficile. PLoS ONE, 2010, 5, e8740.	1.1	165
62	Crohn's disease as an immunodeficiency. Expert Review of Clinical Immunology, 2010, 6, 585-596.	1.3	22
63	Intestinal Detoxification Limits the Activation of Hepatic Pregnane X Receptor by Lithocholic Acid. Drug Metabolism and Disposition, 2010, 38, 143-149.	1.7	24
64	Inhibiting the Initiation of <i>Clostridium difficile</i> Spore Germination using Analogs of Chenodeoxycholic Acid, a Bile Acid. Journal of Bacteriology, 2010, 192, 4983-4990.	1.0	290
65	Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. Journal of Applied Physiology, 2010, 109, 663-668.	1.2	33
66	Metabolic profiling in colorectal cancer reveals signature metabolic shifts during tumorigenesis. Molecular and Cellular Proteomics, 2010, , .	2.5	79
67	Bile acids: short and long term effects in the intestine. Scandinavian Journal of Gastroenterology, 2010, 45, 645-664.	0.6	110
68	DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology (United Kingdom), 2010, 156, 1609-1618.	0.7	102
69	Response of Helicobacter hepaticus to Bovine Bile. Journal of Proteome Research, 2010, 9, 1374-1384.	1.8	6
70	Metabolomics: towards understanding host–microbe interactions. Future Microbiology, 2010, 5, 153-161.	1.0	48
71	The impact of glycated pea proteins on bacterial adhesion. Food Research International, 2010, 43, 1566-1576.	2.9	20
72	Getting the mOST from OST: Role of organic solute transporter, OSTα-OSTβ, in bile acid and steroid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 994-1004.	1.2	68
73	Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacological Research, 2010, 61, 219-225.	3.1	543
75	Characterisation and response of intestinal microflora and mucins to manno-oligosaccharide and antibiotic supplementation in broiler chickens. British Poultry Science, 2010, 51, 368-380.	0.8	53
76	Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food and Function, 2010, 1, 149.	2.1	388
77	Gut microbiota in obesity and metabolic disorders. Proceedings of the Nutrition Society, 2010, 69, 434-441.	0.4	221

#	Article	IF	CITATIONS
78	Ecology and Physiology of the Intestinal Tract. Current Topics in Microbiology and Immunology, 2011, 358, 247-272.	0.7	46
79	The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer?. American Journal of Physiology - Renal Physiology, 2011, 301, G401-G424.	1.6	201
80	Metabolomics of Fecal Extracts Detects Altered Metabolic Activity of Gut Microbiota in Ulcerative Colitis and Irritable Bowel Syndrome. Journal of Proteome Research, 2011, 10, 4208-4218.	1.8	299
81	Bile Acid Is a Host Factor That Regulates the Composition of the Cecal Microbiota in Rats. Gastroenterology, 2011, 141, 1773-1781.	0.6	738
82	New Health Potentials of Orally Consumed Probiotic Microorganisms. Microbiology Monographs, 2011, , 167-189.	0.3	1
83	Effects of Konjac Glucomannan on Putative Risk Factors for Colon Carcinogenesis in Rats Fed a High-Fat Diet. Journal of Agricultural and Food Chemistry, 2011, 59, 989-994.	2.4	45
85	Microbial Induction of Immunity, Inflammation, and Cancer. Frontiers in Physiology, 2011, 1, 168.	1.3	97
87	Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer. Critical Reviews in Microbiology, 2011, 37, 1-14.	2.7	99
88	Hydroxysteroid dehydrogenase transformations of 5β-scymnol and identification of oxoscymnol transformation products by liquid chromatography–tandem mass spectroscopy. Steroids, 2011, 76, 163-168.	0.8	2
89	Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends in Microbiology, 2011, 19, 85-94.	3.5	319
90	Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4554-4561.	3.3	1,912
91	Short communication: A sensitive method for qualitative screening of bile salt hydrolase-active lactobacilli based on thin-layer chromatography. Journal of Dairy Science, 2011, 94, 1732-1737.	1.4	15
92	Ecdysterone and its Activity on some Degenerative Diseases. Natural Product Communications, 2011, 6, 1934578X1100600.	0.2	12
93	Potentials and Limitations of Bile Acids and Probiotics in Diabetes Mellitus. , 2011, , .		5
94	Effect of Antibiotic Growth Promoters on Intestinal Microbiota in Food Animals: A Novel Model for Studying the Relationship between Gut Microbiota and Human Obesity?. Frontiers in Microbiology, 2011, 2, 53.	1.5	34
95	Hepatic reduction of the secondary bile acid 7-oxolithocholic acid is mediated by 11β-hydroxysteroid dehydrogenase 1. Biochemical Journal, 2011, 436, 621-629.	1.7	45
96	Enteric Microbiome Metabolites Correlate with Response to Simvastatin Treatment. PLoS ONE, 2011, 6, e25482.	1.1	172
97	Review article: colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2011, 34, 497-508.	1.9	98

#	Article	IF	CITATIONS
98	The novel <i>Listeria monocytogenes</i> bile sensor BrtA controls expression of the cholic acid efflux pump MdrT. Molecular Microbiology, 2011, 81, 129-142.	1.2	65
99	Preconditioning with cobalt protoporphyrin protects human gastric mucosal cells from deoxycholateâ€induced apoptosis. Wound Repair and Regeneration, 2011, 19, 241-249.	1.5	2
100	Identification of a thiolase gene essential for β-oxidation of the acyl side chain of the steroid compound cholate in Pseudomonas sp. strain Chol1. FEMS Microbiology Letters, 2011, 318, 123-130.	0.7	16
101	All 4 Bile Salt Hydrolase Proteins Are Responsible for the Hydrolysis Activity in <i>Lactobacillus plantarum</i> STâ€III. Journal of Food Science, 2011, 76, M622-8.	1.5	61
102	Interactions Between Gut Microbiota and Host Metabolism Predisposing to Obesity and Diabetes. Annual Review of Medicine, 2011, 62, 361-380.	5.0	515
103	Effects of Feeding Potato Pulp on Cholesterol Metabolism and Its Association with Cecal Conditions in Rats. Plant Foods for Human Nutrition, 2011, 66, 401-407.	1.4	9
104	Bacterial degradation of bile salts. Applied Microbiology and Biotechnology, 2011, 89, 903-915.	1.7	108
105	Determination of bile acids in pig liver, pig kidney and bovine liver by gas chromatography-chemical ionization tandem mass spectrometry with total ion chromatograms and extraction ion chromatograms. Journal of Chromatography A, 2011, 1218, 524-533.	1.8	31
106	Bacterial biofilms associated with food particles in the human large bowel. Molecular Nutrition and Food Research, 2011, 55, 969-978.	1.5	29
107	Bile UPLCâ€MS fingerprinting and bile acid fluxes during human liver transplantation. Electrophoresis, 2011, 32, 2063-2070.	1.3	38
108	Biocatalytic process optimization based on mechanistic modeling of cholic acid oxidation with cofactor regeneration. Biotechnology and Bioengineering, 2011, 108, 1307-1317.	1.7	21
109	Enterobacteria Modulate Intestinal Bile Acid Transport and Homeostasis through Apical Sodium-Dependent Bile Acid Transporter (SLC10A2) Expression. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 188-196.	1.3	43
110	Investigation of the Mechanisms by Which <i>Listeria monocytogenes</i> Grows in Porcine Gallbladder Bile. Infection and Immunity, 2011, 79, 369-379.	1.0	63
111	Modification of an <i>in vitro</i> model simulating the whole digestive process to investigate cellular endpoints of chemoprevention. British Journal of Nutrition, 2011, 105, 678-687.	1.2	15
112	Effects of conjugated and unconjugated bile acids on the activity of theVibrio choleraeporin OmpT. Molecular Membrane Biology, 2011, 28, 69-78.	2.0	7
113	A homozygous nonsense mutation (c.214C->A) in the biliverdin reductase alpha gene (BLVRA) results in accumulation of biliverdin during episodes of cholestasis. Journal of Medical Genetics, 2011, 48, 219-225.	1.5	45
114	AKR1B7 Is Induced by the Farnesoid X Receptor and Metabolizes Bile Acids. Journal of Biological Chemistry, 2011, 286, 2425-2432.	1.6	33
115	Progesterone Analogs Influence Germination of Clostridium sordellii and Clostridium difficile Spores In Vitro. Journal of Bacteriology, 2011, 193, 2776-2783.	1.0	34

#	Article	IF	CITATIONS
116	Stress Responses of Bifidobacteria. , 2011, , 323-347.		3
117	The Bile Acid Derivatives Lithocholic Acid Acetate and Lithocholic Acid Propionate are Functionally Selective Vitamin D Receptor Ligands. , 2011, , 1509-1524.		4
118	Dysbiosis modulates capacity for bile acid modification in the gut microbiomes of patients with inflammatory bowel disease: a mechanism and marker of disease?: Figure 1. Gut, 2012, 61, 1642-1643.	6.1	54
119	Controlled Gene Expression in Bifidobacteria by Use of a Bile-Responsive Element. Applied and Environmental Microbiology, 2012, 78, 581-585.	1.4	17
120	Vitamin D Receptor Polymorphisms Predispose to Primary Biliary Cirrhosis and Severity of the Disease in Polish Population. Gastroenterology Research and Practice, 2012, 2012, 1-8.	0.7	24
121	Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. Journal of Lipid Research, 2012, 53, 66-76.	2.0	96
122	Is bile acid a determinant of the gut microbiota on a high-fat diet?. Gut Microbes, 2012, 3, 455-459.	4.3	170
123	Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. Journal of Lipid Research, 2012, 53, 1723-1737.	2.0	241
124	454 Pyrosequencing Reveals a Shift in Fecal Microbiota of Healthy Adult Men Consuming Polydextrose or Soluble Corn Fiber. Journal of Nutrition, 2012, 142, 1259-1265.	1.3	226
125	Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioengineered, 2012, 3, 13-31.	1.4	27
126	Bile Formation and the Enterohepatic Circulation. , 2012, , 1461-1484.		14
127	Nuclear Receptor Control of Enterohepatic Circulation. , 2012, 2, 2811-2828.		71
128	Identification and Characterization of the LysR-Type Transcriptional Regulator HsdR for Steroid-Inducible Expression of the 31±-Hydroxysteroid Dehydrogenase/Carbonyl Reductase Gene in Comamonas testosteroni. Applied and Environmental Microbiology, 2012, 78, 941-950.	1.4	16
129	Microbiote intestinal et lipides : impact sur la santé humaine. Oleagineux Corps Gras Lipides, 2012, 19, 223-227.	0.2	0
130	Exploitation of a Laccase/Meldola's Blue System for NAD ⁺ Regeneration in Preparative Scale Hydroxysteroid Dehydrogenaseâ€Catalyzed Oxidations. Advanced Synthesis and Catalysis, 2012, 354, 2821-2828.	2.1	34
131	Draft Genome Sequence of Turicella otitidis ATCC 51513, Isolated from Middle Ear Fluid from a Child with Otitis Media. Journal of Bacteriology, 2012, 194, 5968-5969.	1.0	15
132	The Microbiota and Its Metabolites in Colonic Mucosal Health and Cancer Risk. Nutrition in Clinical Practice, 2012, 27, 624-635.	1.1	100
133	Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends in Microbiology, 2012, 20, 313-319.	3.5	213

#	Article	IF	CITATIONS
134	Cloning, expression and characterization of a novel short-chain dehydrogenase/reductase (SDRx) in Comamonas testosteroni. Journal of Steroid Biochemistry and Molecular Biology, 2012, 129, 15-21.	1.2	12
135	Impaired Generation of 12-Hydroxylated Bile Acids Links Hepatic Insulin Signaling with Dyslipidemia. Cell Metabolism, 2012, 15, 65-74.	7.2	103
136	Specific bile acids inhibit hepatic fatty acid uptake in mice. Hepatology, 2012, 56, 1300-1310.	3.6	62
137	Effects of human and porcine bile on the proteome of Helicobacter hepaticus. Proteome Science, 2012, 10, 27.	0.7	10
138	The importance of the gut microbiota after bariatric surgery. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 590-598.	8.2	216
139	Molecular basis of early stages of <i>Clostridium difficile</i> infection: germination and colonization. Future Microbiology, 2012, 7, 933-943.	1.0	35
140	Association Between Low Colonic Short-Chain Fatty Acids and High Bile Acids in High Colon Cancer Risk Populations. Nutrition and Cancer, 2012, 64, 34-40.	0.9	118
141	Probiotics—Interactions with Bile Acids and Impact on Cholesterol Metabolism. Applied Biochemistry and Biotechnology, 2012, 168, 1880-1895.	1.4	75
142	Probiotics: a potential role in the prevention of gestational diabetes?. Acta Diabetologica, 2012, 49, 1-13.	1.2	33
143	In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 71±- and 71²-hydroxysteroid dehydrogenases from Clostridium absonum. Applied Microbiology and Biotechnology, 2012, 95, 1221-1233.	1.7	58
144	Dysfunction of Organic Anion Transporting Polypeptide 1a1 Alters Intestinal Bacteria and Bile Acid Metabolism in Mice. PLoS ONE, 2012, 7, e34522.	1.1	32
145	Impairment of Bilirubin Clearance and Intestinal Interleukin-6 Expression in Bile Duct-Ligated Vitamin D Receptor Null Mice. PLoS ONE, 2012, 7, e51664.	1.1	11
147	Probiotics - What They Are, Their Benefits and Challenges. , 2012, , .		3
148	Inhibition of butyrate uptake by the primary bile salt chenodeoxycholic acid in intestinal epithelial cells. Journal of Cellular Biochemistry, 2012, 113, 2937-2947.	1.2	21
149	Novel whole-cell biocatalysts with recombinant hydroxysteroid dehydrogenases for the asymmetric reduction of dehydrocholic acid. Applied Microbiology and Biotechnology, 2012, 95, 1457-1468.	1.7	19
150	Host-Gut Microbiota Metabolic Interactions. Science, 2012, 336, 1262-1267.	6.0	3,693
151	Anisotropic nutrient transport in threeâ€dimensional single species bacterial biofilms. Biotechnology and Bioengineering, 2012, 109, 1280-1292.	1.7	13
152	Synthesis of the 3-sulfates of S-acyl glutathione conjugated bile acids and their biotransformation by a rat liver cytosolic fraction. Chemistry and Physics of Lipids, 2012, 165, 261-269.	1.5	2

#	Article	IF	CITATIONS
153	Effects of dietary broccoli fibre and corn oil on serum lipids, faecal bile acid excretion and hepatic gene expression in rats. Food Chemistry, 2012, 131, 1272-1278.	4.2	23
154	A combination of calcium phosphate and probiotics beneficially influences intestinal lactobacilli and cholesterol metabolism in humans. Clinical Nutrition, 2012, 31, 230-237.	2.3	35
155	Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin–glucan fiber improves host metabolic alterations induced by high-fat diet in mice. Journal of Nutritional Biochemistry, 2012, 23, 51-59.	1.9	215
156	Increase in fecal primary bile acids and dysbiosis in patients with diarrheaâ€predominant irritable bowel syndrome. Neurogastroenterology and Motility, 2012, 24, 513.	1.6	209
157	Obesity and its associated disease: a role for microbiota?. Neurogastroenterology and Motility, 2012, 24, 305-311.	1.6	65
158	Comparative genomics reveals evidence of marine adaptation in Salinispora species. BMC Genomics, 2012, 13, 86.	1.2	67
159	Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. British Journal of Nutrition, 2013, 109, 802-809.	1.2	197
160	Farnesoid X receptor alpha: a molecular link between bile acids and steroid signaling?. Cellular and Molecular Life Sciences, 2013, 70, 4511-4526.	2.4	25
161	Molecular cloning, characterization and heterologous expression of bile salt hydrolase (Bsh) from Lactobacillus fermentum NCDO394. Molecular Biology Reports, 2013, 40, 5057-5066.	1.0	28
162	Metabolite Profiles During Oral Glucose Challenge. Diabetes, 2013, 62, 2689-2698.	0.3	127
163	Transport and biological activities of bile acids. International Journal of Biochemistry and Cell Biology, 2013, 45, 1389-1398.	1.2	92
164	Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. Journal of Hepatology, 2013, 58, 949-955.	1.8	613
165	Organic anion-transporting polypeptide 1a4 (Oatp1a4) is important for secondary bile acid metabolism. Biochemical Pharmacology, 2013, 86, 437-445.	2.0	20
166	In Vitro Evaluation of the Probiotic Potential of Halotolerant Lactobacilli Isolated from a Ripened Tropical Mexican Cheese. Probiotics and Antimicrobial Proteins, 2013, 5, 239-251.	1.9	35
167	Active hexose-correlated compound and Bifidobacterium longum BB536 exert symbiotic effects in experimental colitis. European Journal of Nutrition, 2013, 52, 457-466.	1.8	18
168	Response of Intestinal Microbiota to Antibiotic Growth Promoters in Chickens. Foodborne Pathogens and Disease, 2013, 10, 331-337.	0.8	83
169	Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice. Toxicology and Applied Pharmacology, 2013, 273, 680-690.	1.3	45
170	Microbiota in health and irritable bowel syndrome: current knowledge, perspectives and therapeutic options. Scandinavian Journal of Gastroenterology, 2013, 48, 995-1009.	0.6	60

#	Article	IF	CITATIONS
171	Function of the microbiota. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 5-16.	1.0	81
172	Ursodeoxycholic and deoxycholic acids: A good and a bad bile acid for intestinal calcium absorption. Archives of Biochemistry and Biophysics, 2013, 540, 19-25.	1.4	21
173	Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterology, 2013, 13, 175.	0.8	122
174	Gas and the Microbiome. Current Gastroenterology Reports, 2013, 15, 356.	1.1	74
175	Emerging Aspects of Food and Nutrition on Gut Microbiota. Journal of Agricultural and Food Chemistry, 2013, 61, 9559-9574.	2.4	40
176	Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nature Communications, 2013, 4, 2384.	5.8	549
177	Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. FEMS Microbiology Ecology, 2013, 84, 532-541.	1.3	118
178	Need for Prospective Cohort Studies to Establish Human Gut Microbiome Contributions to Disease Risk. Journal of the National Cancer Institute, 2013, 105, 1850-1851.	3.0	11
179	Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate-producing bacterium from the mouse intestine. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 4606-4612.	0.8	95
180	Evidence for Contributions of Gut Microbiota to Colorectal Carcinogenesis. Current Nutrition Reports, 2013, 2, 10-18.	2.1	9
181	Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway. Applied Microbiology and Biotechnology, 2013, 97, 891-904.	1.7	31
182	Gut and Root Microbiota Commonalities. Applied and Environmental Microbiology, 2013, 79, 2-9.	1.4	92
183	Obese Humans With Nonalcoholic Fatty Liver Disease Display Alterations in Fecal Microbiota and Volatile Organic Compounds. Clinical Gastroenterology and Hepatology, 2013, 11, 876-878.	2.4	10
184	Dose-dependent antiinflammatory effect of ursodeoxycholic acid in experimental colitis. International Immunopharmacology, 2013, 15, 372-380.	1.7	76
185	Cholesterol reducing and bile-acid binding properties of taioba (Xanthosoma sagittifolium) leaf in rats fed a high-fat diet. Food Research International, 2013, 51, 886-891.	2.9	20
186	Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut, 2013, 62, 531-539.	6.1	663
187	Bowel Functions, Fecal Unconjugated Primary and Secondary Bile Acids, and Colonic Transit in Patients With Irritable Bowel Syndrome. Clinical Gastroenterology and Hepatology, 2013, 11, 1270-1275.e1.	2.4	132
188	Bile acids: From digestion to cancers. Biochimie, 2013, 95, 504-517.	1.3	88

#	Article	IF	CITATIONS
190	Developments in understanding bile acid metabolism. Expert Review of Endocrinology and Metabolism, 2013, 8, 59-69.	1.2	3
191	Molecular cloning, characterization and comparison of bile salt hydrolases from <i>Lactobacillus johnsonii</i> PF01. Journal of Applied Microbiology, 2013, 114, 121-133.	1.4	61
192	Intestinal Microbes, Diet, and Colorectal Cancer. Current Colorectal Cancer Reports, 2013, 9, 95-105.	1.0	14
193	Pleiotropic Roles of Bile Acids in Metabolism. Cell Metabolism, 2013, 17, 657-669.	7.2	889
194	Chronic Ethanol Consumption Alters Mammalian Gastrointestinal Content Metabolites. Journal of Proteome Research, 2013, 12, 3297-3306.	1.8	116
195	Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. FASEB Journal, 2013, 27, 3583-3593.	0.2	162
196	Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metabolism, 2013, 17, 225-235.	7.2	1,671
197	Modeling <i>in vitro</i> cholesterol reduction in relation to growth of probiotic <i>Lactobacillus casei</i> . Microbiology and Immunology, 2013, 57, 100-110.	0.7	18
198	Commensal bacteria at the interface of host metabolism and the immune system. Nature Immunology, 2013, 14, 676-684.	7.0	758
199	Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 2013, 499, 97-101.	13.7	1,774
199 200		13.7	1,774 20
	Nature, 2013, 499, 97-101. Phenolics in Human Nutrition: Importance of the Intestinal Microbiome for Isoflavone and Lignan	13.7	
200	Nature, 2013, 499, 97-101. Phenolics in Human Nutrition: Importance of the Intestinal Microbiome for Isoflavone and Lignan Bioavailability. , 2013, , 2433-2463. Hypocholesterolaemic action of Lactobacillus casei F0822 in rats fed aÂcholesterol-enriched diet.		20
200 201	Nature, 2013, 499, 97-101. Phenolics in Human Nutrition: Importance of the Intestinal Microbiome for Isoflavone and Lignan Bioavailability., 2013, , 2433-2463. Hypocholesterolaemic action of Lactobacillus casei F0822 in rats fed aÂcholesterol-enriched diet. International Dairy Journal, 2013, 32, 144-149.	1.5	20 23
200 201 202	 Nature, 2013, 499, 97-101. Phenolics in Human Nutrition: Importance of the Intestinal Microbiome for Isoflavone and Lignan Bioavailability., 2013, 2433-2463. Hypocholesterolaemic action of Lactobacillus casei F0822 in rats fed aÂcholesterol-enriched diet. International Dairy Journal, 2013, 32, 144-149. Fusobacterium Is Associated with Colorectal Adenomas. PLoS ONE, 2013, 8, e53653. The solute carrier family 10 (SLC10): Beyond bile acid transport. Molecular Aspects of Medicine, 2013, 8 	1.5	20 23 459
200 201 202 203	Nature, 2013, 499, 97-101. Phenolics in Human Nutrition: Importance of the Intestinal Microbiome for Isoflavone and Lignan Bioavailability., 2013, 2433-2463. Hypocholesterolaemic action of Lactobacillus casei F0822 in rats fed aÂcholesterol-enriched diet. International Dairy Journal, 2013, 32, 144-149. Fusobacterium Is Associated with Colorectal Adenomas. PLoS ONE, 2013, 8, e53653. The solute carrier family 10 (SLC10): Beyond bile acid transport. Molecular Aspects of Medicine, 2013, 34, 252-269. Host–microbe interactions: the difficult yet peaceful coexistence of the microbiota and the intestinal	1.5 1.1 2.7	20 23 459 145
200 201 202 203 204	Nature, 2013, 499, 97-101. Phenolics in Human Nutrition: Importance of the Intestinal Microbiome for Isoflavone and Lignan Bioavailability., 2013,, 2433-2463. Hypocholesterolaemic action of Lactobacillus casei F0822 in rats fed aÂcholesterol-enriched diet. International Dairy Journal, 2013, 32, 144-149. Fusobacterium Is Associated with Colorectal Adenomas. PLoS ONE, 2013, 8, e53653. The solute carrier family 10 (SLC10): Beyond bile acid transport. Molecular Aspects of Medicine, 2013, 34, 252-269. Hostâ€"microbe interactions: the difficult yet peaceful coexistence of the microbiota and the intestinal muccosa. British Journal of Nutrition, 2013, 109, S12-S20. Quantitative Genetic Background of the Host Influences Gut Microbiomes in Chickens. Scientific	1.5 1.1 2.7 1.2	20 23 459 145 31

#	Article	IF	CITATIONS
208	Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. Journal of Lipid Research, 2013, 54, 2437-2449.	2.0	210
209	Parvibacter caecicola gen. nov., sp. nov., a bacterium of the family Coriobacteriaceae isolated from the caecum of a mouse. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2642-2648.	0.8	32
210	Bile Acid Recognition by the Clostridium difficile Germinant Receptor, CspC, Is Important for Establishing Infection. PLoS Pathogens, 2013, 9, e1003356.	2.1	242
211	Laxative treatment with polyethylene glycol decreases microbial primary bile salt dehydroxylation and lipid metabolism in the intestine of rats. American Journal of Physiology - Renal Physiology, 2013, 305, G474-G482.	1.6	10
212	The Essential Function of Genes for a Hydratase and an Aldehyde Dehydrogenase for Growth of Pseudomonas sp. Strain Chol1 with the Steroid Compound Cholate Indicates an Aldolytic Reaction Step for Deacetylation of the Side Chain. Journal of Bacteriology, 2013, 195, 3371-3380.	1.0	33
213	Microbial Biotransformations of Bile Acids as Detected by Electrospray Mass Spectrometry. Advances in Nutrition, 2013, 4, 29-35.	2.9	21
214	Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. Journal of Lipid Research, 2013, 54, 3062-3069.	2.0	110
215	Intestinal <i>Methanobrevibacter smithii</i> but not total bacteria is related to dietâ€induced weight gain in rats. Obesity, 2013, 21, 748-754.	1.5	53
216	In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. American Journal of Clinical Nutrition, 2013, 97, 295-309.	2.2	312
217	Cirrhosis, bile acids and gut microbiota. Gut Microbes, 2013, 4, 382-387.	4.3	276
217 218	Cirrhosis, bile acids and gut microbiota. Gut Microbes, 2013, 4, 382-387. Higher Fecal Bile Acid Hydrophobicity Is Associated with Exacerbation of Dextran Sodium Sulfate Colitis in Mice. Journal of Nutrition, 2013, 143, 1691-1697.	4.3 1.3	276 29
	Higher Fecal Bile Acid Hydrophobicity Is Associated with Exacerbation of Dextran Sodium Sulfate		
218	Higher Fecal Bile Acid Hydrophobicity Is Associated with Exacerbation of Dextran Sodium Sulfate Colitis in Mice. Journal of Nutrition, 2013, 143, 1691-1697. Microbiotas from UC patients display altered metabolism and reduced ability of LAB to colonize	1.3	29
218 219	 Higher Fecal Bile Acid Hydrophobicity Is Associated with Exacerbation of Dextran Sodium Sulfate Colitis in Mice. Journal of Nutrition, 2013, 143, 1691-1697. Microbiotas from UC patients display altered metabolism and reduced ability of LAB to colonize mucus. Scientific Reports, 2013, 3, 1110. Different Diets Cause Alterations in the Enteric Environment and Trigger Changes in the Expression of Hepatic Cytochrome P450 3A, a Drug-Metabolizing Enzyme. Biological and Pharmaceutical Bulletin, 	1.3 1.6	29 34
218 219 220	 Higher Fecal Bile Acid Hydrophobicity Is Associated with Exacerbation of Dextran Sodium Sulfate Colitis in Mice. Journal of Nutrition, 2013, 143, 1691-1697. Microbiotas from UC patients display altered metabolism and reduced ability of LAB to colonize mucus. Scientific Reports, 2013, 3, 1110. Different Diets Cause Alterations in the Enteric Environment and Trigger Changes in the Expression of Hepatic Cytochrome P450 3A, a Drug-Metabolizing Enzyme. Biological and Pharmaceutical Bulletin, 2013, 36, 624-634. 	1.3 1.6 0.6	29 34 9
218 219 220 221	 Higher Fecal Bile Acid Hydrophobicity Is Associated with Exacerbation of Dextran Sodium Sulfate Colitis in Mice. Journal of Nutrition, 2013, 143, 1691-1697. Microbiotas from UC patients display altered metabolism and reduced ability of LAB to colonize mucus. Scientific Reports, 2013, 3, 1110. Different Diets Cause Alterations in the Enteric Environment and Trigger Changes in the Expression of Hepatic Cytochrome P450 3A, a Drug-Metabolizing Enzyme. Biological and Pharmaceutical Bulletin, 2013, 36, 624-634. Bile Salt Inhibition of Host Cell Damage by Clostridium Difficile Toxins. PLoS ONE, 2013, 8, e79631. 	1.3 1.6 0.6	29 34 9 23
218 219 220 221 222	 Higher Fecal Bile Acid Hydrophobicity Is Associated with Exacerbation of Dextran Sodium Sulfate Colitis in Mice. Journal of Nutrition, 2013, 143, 1691-1697. Microbiotas from UC patients display altered metabolism and reduced ability of LAB to colonize mucus. Scientific Reports, 2013, 3, 1110. Different Diets Cause Alterations in the Enteric Environment and Trigger Changes in the Expression of Hepatic Cytochrome P450 3A, a Drug-Metabolizing Enzyme. Biological and Pharmaceutical Bulletin, 2013, 36, 624-634. Bile Salt Inhibition of Host Cell Damage by Clostridium Difficile Toxins. PLoS ONE, 2013, 8, e79631. Polydextrose in Lipid Metabolism., 2013, 	1.3 1.6 0.6 1.1	29 34 9 23 2

#	Article	IF	CITATIONS
226	The Effects of Diet and the Microbiome on Reproduction and Longevity: A Comparative Review Across 5 Continents. Journal of Nutrition & Food Sciences, 2014, 05, .	1.0	19
227	The involvement of endoplasmic reticulum stress in bile acid-induced hepatocellular injury. Journal of Clinical Biochemistry and Nutrition, 2014, 54, 129-135.	0.6	43
228	Elevated Deoxycholic Acid and Idiopathic Recurrent Acute Pancreatitis: A Case Report with 48 Months of Follow-up. Global Advances in Health and Medicine, 2014, 3, 70-72.	0.7	5
229	Three Measurable and Modifiable Enteric Microbial Biotransformations Relevant to Cancer Prevention and Treatment. Global Advances in Health and Medicine, 2014, 3, 33-43.	0.7	19
230	The Mechanism of Enterohepatic Circulation in the Formation of Gallstone Disease. Journal of Membrane Biology, 2014, 247, 1067-1082.	1.0	56
231	Metagenomics and novel gene discovery. Virulence, 2014, 5, 399-412.	1.8	103
232	Intestinal GPS: bile and bicarbonate control cyclic di-GMP to provide <i>Vibrio cholerae</i> spatial cues within the small intestine. Gut Microbes, 2014, 5, 775-780.	4.3	16
233	Investigations of Novel Unsaturated Bile Salts of Male Sea Lamprey as Potential Chemical Cues. Journal of Chemical Ecology, 2014, 40, 1152-1160.	0.9	15
234	<i>Lactobacillus acidophilus</i> NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice. Gut Microbes, 2014, 5, 296-495.	4.3	19
235	Intestinal microbiota in metabolic diseases. Gut Microbes, 2014, 5, 544-551.	4.3	170
236			
230	Microbial and metabolic interactions between the gastrointestinal tract and <i>Clostridium difficile</i> infection. Gut Microbes, 2014, 5, 86-95.	4.3	71
238	Microbial and metabolic interactions between the gastrointestinal tract and <i>Clostridium difficile </i> infection. Gut Microbes, 2014, 5, 86-95. Bacterial Bile Metabolising Gene Abundance in Crohn's, Ulcerative Colitis and Type 2 Diabetes Metagenomes. PLoS ONE, 2014, 9, e115175.	4.3 1.1	71 118
	difficileinfection. Gut Microbes, 2014, 5, 86-95. Bacterial Bile Metabolising Gene Abundance in Crohn's, Ulcerative Colitis and Type 2 Diabetes		
238	 difficilei>infection. Gut Microbes, 2014, 5, 86-95. Bacterial Bile Metabolising Gene Abundance in Crohn's, Ulcerative Colitis and Type 2 Diabetes Metagenomes. PLoS ONE, 2014, 9, e115175. Metabonomic Phenotyping for the Gut Microbiota and Mammal Interactions. Advanced Topics in 	1.1	118
238 239	 difficile i>infection. Gut Microbes, 2014, 5, 86-95. Bacterial Bile Metabolising Gene Abundance in Crohn's, Ulcerative Colitis and Type 2 Diabetes Metagenomes. PLoS ONE, 2014, 9, e115175. Metabonomic Phenotyping for the Gut Microbiota and Mammal Interactions. Advanced Topics in Science and Technology in China, 2014, , 189-201. The role of bile acids in functional GI disorders. Neurogastroenterology and Motility, 2014, 26, 	1.1 0.0	118 O
238 239 240	 difficile i>infection. Gut Microbes, 2014, 5, 86-95. Bacterial Bile Metabolising Gene Abundance in Crohn's, Ulcerative Colitis and Type 2 Diabetes Metagenomes. PLoS ONE, 2014, 9, e115175. Metabonomic Phenotyping for the Gut Microbiota and Mammal Interactions. Advanced Topics in Science and Technology in China, 2014, , 189-201. The role of bile acids in functional GI disorders. Neurogastroenterology and Motility, 2014, 26, 1057-1069. 	1.1 0.0 1.6	118 O 55
238 239 240 241	 difficile i>infection. Gut Microbes, 2014, 5, 86-95. Bacterial Bile Metabolising Gene Abundance in Crohn's, Ulcerative Colitis and Type 2 Diabetes Metagenomes. PLoS ONE, 2014, 9, e115175. Metabonomic Phenotyping for the Gut Microbiota and Mammal Interactions. Advanced Topics in Science and Technology in China, 2014, , 189-201. The role of bile acids in functional GI disorders. Neurogastroenterology and Motility, 2014, 26, 1057-1069. A prospective study of serum metabolites and colorectal cancer risk. Cancer, 2014, 120, 3049-3057. Advances in understanding of bile acid diarrhea. Expert Review of Gastroenterology and Hepatology, 	1.1 0.0 1.6 2.0	118 0 55 91

#	Article	IF	CITATIONS
245	Functional gene arrays-based analysis of fecal microbiomes in patients with liver cirrhosis. BMC Genomics, 2014, 15, 753.	1.2	36
246	The effect of Lactobacillus rhamnosus hsryfm 1301 on the intestinal microbiota of a hyperlipidemic rat model. BMC Complementary and Alternative Medicine, 2014, 14, 386.	3.7	67
247	Bile acids and the gut microbiome. Current Opinion in Gastroenterology, 2014, 30, 332-338.	1.0	990
248	Alterations in the Intestinal Microbiome (Dysbiosis) as a Predictor of Relapse After Infliximab Withdrawal in Crohn's Disease. Inflammatory Bowel Diseases, 2014, 20, 1.	0.9	160
249	The Gut Microbiota and Effects on Metabolism. , 2014, , 508-526.		4
250	Role of Microbiota and Innate Immunity in Recurrent <i>Clostridium difficile</i> Infection. Journal of Immunology Research, 2014, 2014, 1-8.	0.9	43
251	Anoxic Androgen Degradation by the Denitrifying Bacterium Sterolibacterium denitrificans via the 2,3-seco Pathway. Applied and Environmental Microbiology, 2014, 80, 3442-3452.	1.4	39
252	Cloning, expression and characterization of a putative 7alpha-hydroxysteroid dehydrogenase in Comamonas testosteroni. Microbiological Research, 2014, 169, 148-154.	2.5	15
253	Bile acid receptors as targets for drug development. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 55-67.	8.2	565
254	Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice. Toxicology and Applied Pharmacology, 2014, 277, 138-145.	1.3	115
255	Fecal and urinary NMR-based metabolomics unveil an aging signature in mice. Experimental Gerontology, 2014, 49, 5-11.	1.2	62
256	5β-Reduced steroids and human Δ4-3-ketosteroid 5β-reductase (AKR1D1). Steroids, 2014, 83, 17-26.	0.8	37
257	Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1610-9.	3.3	99
258	Bile acids are nutrient signaling hormones. Steroids, 2014, 86, 62-68.	0.8	223
259	Evidence of distinct pathways for bacterial degradation of the steroid compound cholate suggests the potential for metabolic interactions by interspecies crossâ€feeding. Environmental Microbiology, 2014, 16, 1424-1440.	1.8	28
260	The Role of Canalicular ABC Transporters in Cholestasis. Drug Metabolism and Disposition, 2014, 42, 546-560.	1.7	65
261	Drug-Induced Perturbations of the Bile Acid Pool, Cholestasis, and Hepatotoxicity: Mechanistic Considerations beyond the Direct Inhibition of the Bile Salt Export Pump. Drug Metabolism and Disposition, 2014, 42, 566-574.	1.7	90
262	Low Dose of Oleanolic Acid Protects against Lithocholic Acid–Induced Cholestasis in Mice: Potential Involvement of Nuclear Factor-E2-Related Factor 2-Mediated Upregulation of Multidrug Resistance-Associated Proteins. Drug Metabolism and Disposition, 2014, 42, 844-852.	1.7	69

#	Article	IF	CITATIONS
263	A singleâ€component multidrug transporter of the major facilitator superfamily is part of a network that protects <scp><i>E</i></scp> <i>scherichia coli</i> from bile salt stress. Molecular Microbiology, 2014, 92, 872-884.	1.2	45
264	Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505, 559-563.	13.7	7,592
265	Gastrointestinal cancers: Influence of gut microbiota, probiotics and prebiotics. Cancer Letters, 2014, 345, 258-270.	3.2	128
266	Impact of Diet on Human Intestinal Microbiota and Health. Annual Review of Food Science and Technology, 2014, 5, 239-262.	5.1	173
267	Determination of bile acids by hollow fibre liquid-phase microextraction coupled with gas chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 944, 69-74.	1.2	12
268	Bile Acid Signaling in Metabolic Disease and Drug Therapy. Pharmacological Reviews, 2014, 66, 948-983.	7.1	680
269	Microbial Bile Acid Metabolic Clusters: The Bouncers at the Bar. Cell Host and Microbe, 2014, 16, 551-552.	5.1	10
270	Les relations entre microbiote intestinal et lipides. Cahiers De Nutrition Et De Dietetique, 2014, 49, 213-217.	0.2	0
271	FXR: the key to benefits in bariatric surgery?. Nature Medicine, 2014, 20, 337-338.	15.2	33
272	Study of the Catabolism of Thyme Phenols Combining in Vitro Fermentation and Human Intervention. Journal of Agricultural and Food Chemistry, 2014, 62, 10954-10961.	2.4	29
273	Microbiota transplantation restores normal fecal bile acid composition in recurrent <i>Clostridium difficile</i> infection. American Journal of Physiology - Renal Physiology, 2014, 306, G310-G319.	1.6	341
274	Monoculture parameters successfully predict coculture growth kinetics of Bacteroides thetaiotaomicron and two Bifidobacterium strains. International Journal of Food Microbiology, 2014, 191, 172-181.	2.1	17
275	<i>Clostridium difficile</i> infection: molecular pathogenesis and novel therapeutics. Expert Review of Anti-Infective Therapy, 2014, 12, 131-150.	2.0	99
276	The cross talk between microbiota and the immune system: metabolites take center stage. Current Opinion in Immunology, 2014, 30, 54-62.	2.4	159
277	Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. Journal of Lipid Research, 2014, 55, 1553-1595.	2.0	275
278	The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 2014, 12, 661-672.	13.6	2,007
279	Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources. Aquaculture, 2014, 434, 449-455.	1.7	163
280	Gut microbiota and obesity: Role in aetiology and potential therapeutic target. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 585-597.	1.0	92

#	Article	IF	CITATIONS
281	Differential Regulation of EGFR–MAPK Signaling by Deoxycholic Acid (DCA) and Ursodeoxycholic Acid (UDCA) in Colon Cancer. Digestive Diseases and Sciences, 2014, 59, 2367-2380.	1.1	51
282	Microbes, Microbiota, and Colon Cancer. Cell Host and Microbe, 2014, 15, 317-328.	5.1	659
283	Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere, 2014, 112, 1-8.	4.2	101
284	The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert Opinion on Biological Therapy, 2014, 14, 467-482.	1.4	116
285	Colonic inflammation and secondary bile acids in alcoholic cirrhosis. American Journal of Physiology - Renal Physiology, 2014, 306, G929-G937.	1.6	151
286	Bile acid-controlled transgene expression in mammalian cells and mice. Metabolic Engineering, 2014, 21, 81-90.	3.6	21
287	Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. Journal of Nutritional Biochemistry, 2014, 25, 270-280.	1.9	130
288	Microbiota Modification with Probiotics Induces Hepatic Bile Acid Synthesis via Downregulation of the Fxr-Fgf15 Axis in Mice. Cell Reports, 2014, 7, 12-18.	2.9	283
289	N-Methyltaurine N-acyl amidated bile acids and deoxycholic acid in the bile of angelfish (Pomacanthidae): A novel bile acid profile in Perciform fish. Steroids, 2014, 80, 15-23.	0.8	6
290	Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice. Journal of Experimental Medicine, 2014, 211, 457-472.	4.2	71
291	Distinct signatures of host–microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet. ISME Journal, 2014, 8, 2380-2396.	4.4	106
292	The bile acid TGR5 membrane receptor: From basic research to clinical application. Digestive and Liver Disease, 2014, 46, 302-312.	0.4	340
293	Ecology and characteristics of methanogenic archaea in animals and humans. Critical Reviews in Microbiology, 2014, 40, 97-116.	2.7	61
294	Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Frontiers in Genetics, 2014, 5, 86.	1.1	72
295	Deoxycholic Acid Is Involved in the Proliferation and Migration of Vascular Smooth Muscle Cells. Journal of Nutritional Science and Vitaminology, 2014, 60, 450-454.	0.2	10
296	Characterization of the bile and gall bladder microbiota of healthy pigs. MicrobiologyOpen, 2014, 3, 937-949.	1.2	46
297	Butyrylated starch intake can prevent red meat-induced O ⁶ -methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. British Journal of Nutrition, 2015, 114, 220-230.	1.2	115
298	Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice. Physiological Reports, 2015, 3, e12402.	0.7	21

mucosal defence?. Alimentary Pharmacology and Therapeutics, 2015, 42, 802-817.307The Intestinal Microbiome in Bariatric Surgery Patients. European Eating Disorders Review, 2015, 23, 2.3 34308Crossâ€talk between bile acids and gastrointestinal tract for progression and development of cancer309Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.310The Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds. Gastroenterology311Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection.312Colonization Resistance of the Gut Microbiota against Clostridium difficile. Antibiotics, 2015, 4,	#	Article	IF	CITATIONS
Medicine, 2015, 7, 195-219. 6.0 6.0 6.0 6.0 301 Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Alimentary Pharmacology 1.9 167 302 Escherichia coli Nissle 1917 enhances bioavailability of serotonin in gut tissues through modulation 1.6 74 303 The impact of oral consumption of Lactobacillus plantarum P-8 on faecal bacteria revealed by 1.0 26 304 Interactions between the intestinal microbiota and bile acids in gallstones patients. Environmental 1.0 142 305 Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds 1.5 95 306 Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds 1.5 95 306 Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds 1.5 95 306 Functional defence?. Alimentary Pharmacology and Therapeutics, 2015, 42, 802-817. 1.9 106 307 The Intestinal Microbiome in Barlatric Surgery Patients. European Eating Disorders Review, 2015, 23, 446-503. 2.3 34 308 Cross&Ctalk between bile acids and gastrointestinal tract for progression and development of cancer 1.5 41	299	<i>Carassius auratus</i> Induced by Pentachlorophenol Exposure. Environmental Science & amp;	4.6	107
301and Therapeutics, 2015, 42, 1051-1063.15167302Escherichia coli Nissile 1917 enhances bioavailability of serotonin in gut tissues through modulation of synthesis and clearance. Scientific Reports, 2015, 5, 17324.1674303The impact of oral consumption of Lactobacillus plantarum P-8 on faecal bacteria revealed by pyrosequencing. Beneficial Microbes, 2015, 6, 405-413.1026304Interactions between the intestinal microbiota and bile acids in gallstones patients. Environmental Microbiology Reports, 2015, 7, 874-880.10142305Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds in healthy adult men. Molecular Nutrition and Food Research, 2015, 59, 1614-1628.1.595306Systematic review: bile acids and intestinal inflammationa€kuminal aggressors or regulators of mucosal defence?. Allmentary Pharmacology and Therapeutics, 2015, 42, 802-817.1.9106307The Intestinal Microbiome in Bariatric Surgery Patients. European Eating Disorders Review, 2015, 23, 496-503.2.334308Crossa@Ctalk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications. IUBMB Life, 2015, 67, 514-523.1.541309Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.3.1113310The Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds. Gastroenterology Research and Practice, 2015, 2015, 1-6.53311Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection.1.553 </td <td>300</td> <td></td> <td>6.6</td> <td>80</td>	300		6.6	80
302of synthesis and clearance. Scientific Reports, 2015, 5, 17324.1.81.91.9303The impact of oral consumption of Lactobacillus plantarum P-8 on faecal bacteria revealed by pyrosequencing. Beneficial Microbes, 2015, 6, 405-413.1.026304Interactions between the intestinal microbiota and bile acids in gallstones patients. Environmental Microbiology Reports, 2015, 7, 874-880.1.0142305Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds in healthy adult men. Molecular Nutrition and Food Research, 2015, 59, 1614-1628.1.595306Systematic review: bile acids and intestinal inflammation&Luminal aggressors or regulators of mucosal defence?. Alimentary Pharmacology and Therapeutics, 2015, 42, 802-817.1.9106307The Intestinal Microbiome in Bariatric Surgery Patients. European Eating Disorders Review, 2015, 23, and ts therapeutic implications. IUBMB Life, 2015, 67, 514-523.1.541309Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.3.1113310The Interplay of the Cut Microbiome, Bile Acids, and Volatile Organic Compounds. Gastroenterology Research and Practice, 2015, 2015, 1-6.0.772311Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection. Antibiotics, 2015, 4, 230-253.1.560	301		1.9	167
303pyrosequencing. Beneficial Microbes, 2015, 6, 405-413.1026304Interactions between the intestinal microbiota and bile acids in gallstones patients. Environmental1.0142305Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds1.595306Systematic review: bile acids and intestinal inflammationåCkuminal aggressors or regulators of mucosal defence?. Alimentary Pharmacology and Therapeutics, 2015, 42, 802-817.1.9106307The Intestinal Microbiome in Bariatric Surgery Patients. European Eating Disorders Review, 2015, 23, 496-503.2.334308CrossåCtalk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications. IUBMB Life, 2015, 67, 514-523.1.1113309Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.3.1113310The Interplay of the Cut Microbione, Bile Acids, and Volatile Organic Compounds. Gastroenterology Artibiotics, 2015, 4, 230-253.0.772311Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection. Artibiotics, 2015, 4, 230-253.1.563312Colonization Resistance of the Gut Microbiota against Clostridium difficile. Antibiotics, 2015, 4, 1560	302	Escherichia coli Nissle 1917 enhances bioavailability of serotonin in gut tissues through modulation of synthesis and clearance. Scientific Reports, 2015, 5, 17324.	1.6	74
304Microbiology Reports, 2015, 7, 874-880.10142305Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds in healthy adult men. Molecular Nutrition and Food Research, 2015, 59, 1614-1628.1.595306Systematic review: bile acids and intestinal inflammationâc/Luminal aggressors or regulators of mucosal defence?. Alimentary Pharmacology and Therapeutics, 2015, 42, 802-817.1.9106307The Intestinal Microbiome in Bariatric Surgery Patients. European Eating Disorders Review, 2015, 23, 496-503.2.334308Crossâctalk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications. IUBMB Life, 2015, 67, 514-523.1.541309Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.3.1113310The Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds. Gastroenterology Research and Practice, 2015, 2015, 1-6.0.772311Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection. Artibiotics, 2015, 4, 230-253.1.560	303		1.0	26
305in healthy adult men. Molecular Nutrition and Food Research, 2015, 59, 1614-1628.1.395306Systematic review: bile acids and intestinal inflammationâ&Luminal aggressors or regulators of mucosal defence?. Alimentary Pharmacology and Therapeutics, 2015, 42, 802-817.1.9106307The Intestinal Microbiome in Bariatric Surgery Patients. European Eating Disorders Review, 2015, 23, 496-503.2.334308Crossâ@talk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications. IUBMB Life, 2015, 67, 514-523.1.541309Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.3.1113310The Interplay of the Cut Microbiome, Bile Acids, and Volatile Organic Compounds. Gastroenterology Research and Practice, 2015, 2015, 1-6.0.772311Antimicrobial Use, Human Cut Microbiota and Clostridium difficile Colonization and Infection. Artibiotics, 2015, 4, 230-253.1.560	304		1.0	142
306mucosal defence?. Alimentary Pharmacology and Therapeutics, 2015, 42, 802-817.1.9106307The Intestinal Microbiome in Bariatric Surgery Patients. European Eating Disorders Review, 2015, 23, 496-503.2.334308Crossâ€talk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications. IUBMB Life, 2015, 67, 514-523.1.541309Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.3.1113310The Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds. Gastroenterology Research and Practice, 2015, 2015, 1-6.0.772311Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection. Antibiotics, 2015, 4, 230-253.1.553	305	Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds in healthy adult men. Molecular Nutrition and Food Research, 2015, 59, 1614-1628.	1.5	95
307496-503.2.334308Crossâ€ŧalk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications. IUBMB Life, 2015, 67, 514-523.1.541309Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.3.1113310The Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds. Gastroenterology Research and Practice, 2015, 2015, 1-6.0.772311Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection. Antibiotics, 2015, 4, 230-253.1.553312Colonization Resistance of the Gut Microbiota against Clostridium difficile. Antibiotics, 2015, 4, 1.51.560	306		1.9	106
308and its therapeutic implications. IUBMB Life, 2015, 67, 514-523.1.541309Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.3.1113310The Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds. Gastroenterology0.772311Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection.1.553312Colonization Resistance of the Gut Microbiota against Clostridium difficile. Antibiotics, 2015, 4,1.560	307		2.3	34
310The Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds. Gastroenterology Research and Practice, 2015, 2015, 1-6.0.772311Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection. Antibiotics, 2015, 4, 230-253.1.553312Colonization Resistance of the Gut Microbiota against Clostridium difficile. Antibiotics, 2015, 4, 1.51.560	308		1.5	41
310Research and Practice, 2015, 2015, 1-6.0.772311Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection. Antibiotics, 2015, 4, 230-253.1.553312Colonization Resistance of the Gut Microbiota against Clostridium difficile. Antibiotics, 2015, 4, 1.51.560	309	Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.	3.1	113
Antibiotics, 2015, 4, 230-253. Colonization Resistance of the Gut Microbiota against Clostridium difficile. Antibiotics, 2015, 4,	310	The Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds. Gastroenterology Research and Practice, 2015, 2015, 1-6.	0.7	72
	311		1.5	53
337-357.	312	Colonization Resistance of the Gut Microbiota against Clostridium difficile. Antibiotics, 2015, 4, 337-357.	1.5	60
An Integrated Outlook on the Metagenome and Metabolome of Intestinal Diseases. Diseases (Basel,) Tj ETQq0 0 0 rgBT /Overloc	313	An Integrated Outlook on the Metagenome and Metabolome of Intestinal Diseases. Diseases (Basel,) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Ti
The Gut Microbiota as a Therapeutic Target in IBD and Metabolic Disease: A Role for the Bile Acid Receptors FXR and TGR5. Microorganisms, 2015, 3, 641-666.	314	The Gut Microbiota as a Therapeutic Target in IBD and Metabolic Disease: A Role for the Bile Acid Receptors FXR and TGR5. Microorganisms, 2015, 3, 641-666.	1.6	61

315Gut Microbiota and Host Reaction in Liver Diseases. Microorganisms, 2015, 3, 759-791.1.647316The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients, 2015, 7, 17-44.1.71,108

#	Article	IF	CITATIONS
317	Metabolomic insights into the intricate gut microbial–host interaction in the development of obesity and type 2 diabetes. Frontiers in Microbiology, 2015, 6, 1151.	1.5	108
318	Obesity-Driven Gut Microbiota Inflammatory Pathways to Metabolic Syndrome. Frontiers in Physiology, 2015, 6, 341.	1.3	31
319	Analysis of the Serum Bile Acid Composition for Differential Diagnosis in Patients with Liver Disease. Gastroenterology Research and Practice, 2015, 2015, 1-10.	0.7	45
320	Explanation of colon cancer pathophysiology through analyzing the disrupted homeostasis of bile acids. African Health Sciences, 2015, 14, 925.	0.3	7
321	Bile Acid Diarrhea: Prevalence, Pathogenesis, and Therapy. Gut and Liver, 2015, 9, 332-9.	1.4	171
322	Gut microbiota and host metabolism in liver cirrhosis. World Journal of Gastroenterology, 2015, 21, 11597.	1.4	97
323	Temporal changes in bile acid levels and 12α-hydroxylation after Roux-en-Y gastric bypass surgery in type 2 diabetes. International Journal of Obesity, 2015, 39, 806-813.	1.6	79
324	Staphylococcus aureus MnhF Mediates Cholate Efflux and Facilitates Survival under Human Colonic Conditions. Infection and Immunity, 2015, 83, 2350-2357.	1.0	17
325	Regioselective Versatility of Monooxygenase Reactions Catalyzed by CYP2B6 and CYP3A4: Examples with Single Substrates. Advances in Experimental Medicine and Biology, 2015, 851, 131-149.	0.8	4
326	Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. Advances in Pharmacology, 2015, 74, 263-302.	1.2	210
327	Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and chance of nutrition, 2015, 113, S6-S17.	1.2	156
328	Intestinal transport and metabolism of bile acids. Journal of Lipid Research, 2015, 56, 1085-1099.	2.0	380
329	Gut Microbiota, Cirrhosis, and Alcohol Regulate Bile Acid Metabolism in the Gut. Digestive Diseases, 2015, 33, 338-345.	0.8	90
330	New insight into the gut microbiome through metagenomics. Advances in Genomics and Genetics, 0, , 77.	0.8	10
331	Pathogenesis of Clostridium difficile Infection and Its Potential Role in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 1957-1966.	0.9	34
332	Gut Microbiome Diversity among Cheyenne and Arapaho Individuals from Western Oklahoma. Current Biology, 2015, 25, 3161-3169.	1.8	69
333	From Hype to Hope: The Gut Microbiota in Enteric Infectious Disease. Cell, 2015, 163, 1326-1332.	13.5	156
334	The Role of Integrated Omics in Elucidating the Gut Microbiota Health Potentials. Microbiology Monographs, 2015, , 73-100.	0.3	2

	Ст	TATION REPORT	
#	Article	IF	CITATIONS
335	Therapy of Primary Sclerosing Cholangitis - Today and Tomorrow. Digestive Diseases, 2015, 33, 149-16	53. 0.8	31
336	The microbiome and its pharmacological targets: therapeutic avenues in cardiometabolic diseases. Current Opinion in Pharmacology, 2015, 25, 36-44.	1.7	22
337	Dysfunctional Families: Clostridium scindens and Secondary Bile Acids Inhibit the Growth of Clostridium difficile. Cell Metabolism, 2015, 21, 9-10.	7.2	29
338	Hydrophobicity Is the Governing Factor in the Interaction of Human Serum Albumin with Bile Salts. Langmuir, 2015, 31, 1095-1104.	1.6	80
339	Gut microbial metabolism and colon cancer: Can manipulations of the microbiota be useful in the management of gastrointestinal health?. BioEssays, 2015, 37, 403-412.	1.2	43
340	Infection with <i><scp>H</scp>elicobacter bilis</i> but not <i><scp>H</scp>elicobacter hepaticus</i> was Associated with Extrahepatic Cholangiocarcinoma. Helicobacter, 2015, 20, 223-230.	1.6	33
341	Probiotics and the BSH-related cholesterol lowering mechanism: a Jekyll and Hyde scenario. Critical Reviews in Biotechnology, 2015, 35, 392-401.	5.1	66
342	The small intestinal mucosa acts as a rutin reservoir to extend flavonoid anti-inflammatory activity in experimental ileitis and colitis. Journal of Functional Foods, 2015, 13, 117-125.	1.6	21
343	Two-step enzymatic synthesis of ursodeoxycholic acid with a new 7β-hydroxysteroid dehydrogenase from Ruminococcus torques. Process Biochemistry, 2015, 50, 598-604.	1.8	58
344	FXR Agonists as Therapeutic Agents for Non-alcoholic Fatty Liver Disease. Current Atherosclerosis Reports, 2015, 17, 500.	2.0	96
345	<i>Fusobacterium</i> and <i>Escherichia</i> : models of colorectal cancer driven by microbiota and the utility of microbiota in colorectal cancer screening. Expert Review of Gastroenterology and Hepatology, 2015, 9, 651-657.	1.4	35
346	Obesity and the microbiome. Expert Review of Gastroenterology and Hepatology, 2015, 9, 1087-1099	. 1.4	127
347	Proton Pump Inhibitors: The Culprit for Barrettââ,¬â"¢s Esophagus?. Frontiers in Oncology, 2014, 4, 3	373. 1.3	14
348	Gut permeability, its interaction with gut microflora and effects on metabolic health are mediated by the lymphatics system, liver and bile acid. Future Microbiology, 2015, 10, 1339-1353.	1.0	39
349	Evaluation of an optimal preparation of human standardized fecal inocula for in vitro fermentation studies. Journal of Microbiological Methods, 2015, 117, 78-84.	0.7	59
350	Cross-talk between bile acids and intestinal microbiota in host metabolism and health. Journal of Zhejiang University: Science B, 2015, 16, 436-446.	1.3	91
351	Dynamic changes of the luminal and mucosa-associated gut microbiota during and after antibiotic therapy with paromomycin. Gut Microbes, 2015, 6, 243-254.	4.3	82
352	A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nature Chemical Biology, 2015, 11, 685-690.	3.9	304

#	Article	IF	CITATIONS
353	Small molecules from the human microbiota. Science, 2015, 349, 1254766.	6.0	592
354	Role of Microbiota in Regulating Host Lipid Metabolism and Disease Risk. Molecular and Integrative Toxicology, 2015, , 235-260.	0.5	1
355	Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4. Journal of Hepatology, 2015, 63, 697-704.	1.8	94
356	Deep Metabotyping of the Murine Gastrointestinal Tract for the Visualization of Digestion and Microbial Metabolism. Journal of Proteome Research, 2015, 14, 2267-2277.	1.8	8
357	Multiple Roles for Enterococcus faecalis Glycosyltransferases in Biofilm-Associated Antibiotic Resistance, Cell Envelope Integrity, and Conjugative Transfer. Antimicrobial Agents and Chemotherapy, 2015, 59, 4094-4105.	1.4	130
358	Molecular assessment of differences in the duodenal microbiome in subjects with irritable bowel syndrome. Scandinavian Journal of Gastroenterology, 2015, 50, 1076-1087.	0.6	85
359	The gut microbiome in cardio-metabolic health. Genome Medicine, 2015, 7, 33.	3.6	92
360	The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. Acta Pharmaceutica Sinica B, 2015, 5, 99-105.	5.7	153
361	Importance and Roles of Fiber in the Diet. , 2015, , 193-218.		2
362	Role of farnesoid X receptor and bile acids in alcoholic liver disease. Acta Pharmaceutica Sinica B, 2015, 5, 158-167.	5.7	72
363	Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharmaceutica Sinica B, 2015, 5, 135-144.	5.7	264
364	Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe, 2015, 34, 106-115.	1.0	101
365	Bile acids as metabolic regulators. Current Opinion in Gastroenterology, 2015, 31, 159-165.	1.0	226
366	Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Current Obesity Reports, 2015, 4, 250-261.	3.5	154
367	Tanshinone IIA exerts protective effects in a LCA-induced cholestatic liver model associated with participation of pregnane X receptor. Journal of Ethnopharmacology, 2015, 164, 357-367.	2.0	39
368	Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut. Ecotoxicology, 2015, 24, 2125-2132.	1.1	46
369	Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination. Journal of Bacteriology, 2015, 197, 2276-2283.	1.0	85
370	Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut. MBio, 2015, 6, e00687-15.	1.8	101

#	Article	IF	CITATIONS
371	Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework. Gut Microbes, 2015, 6, 120-130.	4.3	97
372	Formulations of deoxycholic for therapy: a patent review (2011 – 2014). Expert Opinion on Therapeutic Patents, 2015, 25, 1423-1440.	2.4	11
373	Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders. Trends in Molecular Medicine, 2015, 21, 702-714.	3.5	368
374	Interactions Between the Gastrointestinal Microbiome and <i>Clostridium difficile</i> . Annual Review of Microbiology, 2015, 69, 445-461.	2.9	256
375	The impact of dietary fibres on the physiological processes governing small intestinal digestive processes. Bioactive Carbohydrates and Dietary Fibre, 2015, 6, 117-132.	1.5	29
376	Implications of microbiota and bile acid in liver injury and regeneration. Journal of Hepatology, 2015, 63, 1502-1510.	1.8	110
377	Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis. Digestive Diseases and Sciences, 2015, 60, 3318-3328.	1.1	251
378	Early Increases in Bile Acids Post Roux-en-Y Gastric Bypass Are Driven by Insulin-Sensitizing, Secondary Bile Acids. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1225-E1233.	1.8	101
379	Bile acids: emerging role in management of liver diseases. Hepatology International, 2015, 9, 527-533.	1.9	38
380	Role of the Gut Microbiome in Obesity and Diabetes Mellitus. Nutrition in Clinical Practice, 2015, 30, 787-797.	1.1	187
381	Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice. Drug Metabolism and Disposition, 2015, 43, 1544-1556.	1.7	75
382	Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids. Drug Metabolism and Disposition, 2015, 43, 1505-1521.	1.7	156
383	Humanized microbiota mice as a model of recurrent Clostridium difficile disease. Microbiome, 2015, 3, 35.	4.9	68
384	Bile Acid Profiling and Quantification in Biofluids Using Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. Analytical Chemistry, 2015, 87, 9662-9670.	3.2	166
385	Lipid signalling couples translational surveillance to systemic detoxification in Caenorhabditis elegans. Nature Cell Biology, 2015, 17, 1294-1303.	4.6	22
386	Cellular and molecular mechanisms of probiotics effects on colorectal cancer. Journal of Functional Foods, 2015, 18, 463-472.	1.6	35
387	The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circulation Research, 2015, 117, 817-824.	2.0	534
388	Dynamics and Establishment of Clostridium difficile Infection in the Murine Gastrointestinal Tract. Infection and Immunity, 2015, 83, 934-941.	1.0	140

#	Article	IF	CITATIONS
389	Nuclear bile acid signaling through the farnesoid X receptor. Cellular and Molecular Life Sciences, 2015, 72, 1631-1650.	2.4	92
390	Microbiome and cancer. Seminars in Immunopathology, 2015, 37, 65-72.	2.8	56
391	Role of farnesoid X receptor in inflammation and resolution. Inflammation Research, 2015, 64, 9-20.	1.6	57
392	Toward the comprehensive understanding of the gut ecosystem via metabolomics-based integrated omics approach. Seminars in Immunopathology, 2015, 37, 5-16.	2.8	46
393	An <i>in vitro</i> culture model to study the dynamics of colonic microbiota in Syrian golden hamsters and their susceptibility to infection with <i>Clostridium difficile</i> . ISME Journal, 2015, 9, 321-332.	4.4	17
394	Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature, 2015, 517, 205-208.	13.7	1,506
395	11β-Hydroxysteroid dehydrogenase 1: Regeneration of active glucocorticoids is only part of the story. Journal of Steroid Biochemistry and Molecular Biology, 2015, 151, 85-92.	1.2	42
396	The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Molecular Immunology, 2015, 63, 193-202.	1.0	72
397	The effect of Lactobacillus paracasei subsp. paracasei L. casei W8® on blood levels of triacylglycerol is independent of colonisation. Beneficial Microbes, 2015, 6, 263-269.	1.0	16
398	The gut microbiota: a key regulator of metabolic diseases. BMB Reports, 2016, 49, 536-541.	1.1	46
399	Biochemical Markers of In Vivo Hepatotoxicity. , 2016, 06, .		6
400	Metabolic derivatives of alcohol and the molecular culprits of fibro-hepatocarcinogenesis: Allies or enemies?. World Journal of Gastroenterology, 2016, 22, 50.	1.4	16
401	The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. Gastroenterology Research and Practice, 2016, 2016, 1-13.	0.7	142
402	Metabolism of bile acids in the post-prandial state. Essays in Biochemistry, 2016, 60, 409-418.	2.1	9
403	Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World Journal of Gastroenterology, 2016, 22, 8698.	1.4	84
404	Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model. Frontiers in Cellular and Infection Microbiology, 2016, 6, 191.	1.8	151
405	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	2.2	93
406	Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Frontiers in Microbiology, 2016, 7, 1144.	1.5	290

#	Article	IF	CITATIONS
407	Deconjugated Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth. Frontiers in Microbiology, 2016, 7, 1453.	1.5	62
408	Characterization of AQPs in Mouse, Rat, and Human Colon and Their Selective Regulation by Bile Acids. Frontiers in Nutrition, 2016, 3, 46.	1.6	38
409	Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanism and Application of Metabolomics. International Journal of Molecular Sciences, 2016, 17, 300.	1.8	65
410	An Integrated Metabolomic and Microbiome Analysis Identified Specific Gut Microbiota Associated with Fecal Cholesterol and Coprostanol in Clostridium difficile Infection. PLoS ONE, 2016, 11, e0148824.	1.1	90
411	Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth. PLoS ONE, 2016, 11, e0147210.	1.1	130
412	Metabolomic Profiles of Body Mass Index in the Framingham Heart Study Reveal Distinct Cardiometabolic Phenotypes. PLoS ONE, 2016, 11, e0148361.	1.1	155
413	Unconjugated Bile Acids Influence Expression of Circadian Genes: A Potential Mechanism for Microbe-Host Crosstalk. PLoS ONE, 2016, 11, e0167319.	1.1	97
414	Evolutionary and Functional Diversification of the Vitamin D Receptor-Lithocholic Acid Partnership. PLoS ONE, 2016, 11, e0168278.	1.1	10
415	Impact of Microbes on the Pathogenesis of Primary Biliary Cirrhosis (PBC) and Primary Sclerosing Cholangitis (PSC). International Journal of Molecular Sciences, 2016, 17, 1864.	1.8	36
416	Regulation of Host Chromatin by Bacterial Metabolites. , 2016, , 423-442.		5
417	Role of bile acids in the regulation of the metabolic pathways. World Journal of Diabetes, 2016, 7, 260.	1.3	58
418	Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial. Cell Metabolism, 2016, 24, 63-74.	7.2	278
419	The role of vitamin D in reducing gastrointestinal disease risk and assessment of individual dietary intake needs: Focus on genetic and genomic technologies. Molecular Nutrition and Food Research, 2016, 60, 119-133.	1.5	17
420	Combination of soya pulp and <i>Bacillus coagulans</i> lilac-01 improves intestinal bile acid metabolism without impairing the effects of prebiotics in rats fed a cholic acid-supplemented diet. British Journal of Nutrition, 2016, 116, 603-610.	1.2	30
421	The features of mucosaâ€associated microbiota in primary sclerosing cholangitis. Alimentary Pharmacology and Therapeutics, 2016, 43, 790-801.	1.9	112
422	Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. International Journal of Cancer, 2016, 139, 1764-1775.	2.3	169
423	HORSE SPECIES SYMPOSIUM: Canine intestinal microbiology and metagenomics: From phylogeny to function1. Journal of Animal Science, 2016, 94, 2247-2261.	0.2	24
424	Surviving Between Hosts: Sporulation and Transmission. Microbiology Spectrum, 2016, 4, .	1.2	52

#	Article	IF	CITATIONS
425	Bacterial bile salt hydrolase: an intestinal microbiome target for enhanced animal health. Animal Health Research Reviews, 2016, 17, 148-158.	1.4	33
426	An unexplored pathway for degradation of cholate requires a 7αâ€hydroxysteroid dehydratase and contributes to a broad metabolic repertoire for the utilization of bile salts in <scp><i>N</i></scp> <i>>ovosphingobium</i> sp. strain <scp>C</scp> hol11. Environmental Microbiology, 2016, 18, 5187-5203.	1.8	17
427	Search and discovery of actinobacteria capable of transforming deoxycholic and cholic acids. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S157-S165.	1.8	4
429	Serum bile acids and GLP-1 decrease following telemetric induced weight loss: results of a randomized controlled trial. Scientific Reports, 2016, 6, 30173.	1.6	26
430	Faecal bile acids are natural ligands of the mouse accessory olfactory system. Nature Communications, 2016, 7, 11936.	5.8	29
431	Metabolomics of fecal samples: A practical consideration. Trends in Food Science and Technology, 2016, 57, 244-255.	7.8	58
432	Novel bile acid therapeutics for the treatment of chronic liver diseases. Therapeutic Advances in Gastroenterology, 2016, 9, 376-391.	1.4	38
433	Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 663-670.	1.2	37
434	Bile Acids Function Synergistically To Repress Invasion Gene Expression in Salmonella by Destabilizing the Invasion Regulator HilD. Infection and Immunity, 2016, 84, 2198-2208.	1.0	38
435	Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes, 2016, 7, 22-39.	4.3	697
436	Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice. American Journal of Physiology - Renal Physiology, 2016, 310, G367-G375.	1.6	85
437	<i>Clostridium difficile</i> Infection: A Model for Disruption of the Gut Microbiota Equilibrium. Digestive Diseases, 2016, 34, 217-220.	0.8	14
438	Resveratrol Attenuates Trimethylamine- <i>N</i> -Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. MBio, 2016, 7, e02210-15.	1.8	537
439	Clostridium difficile Infection in Patients with Inflammatory Bowel Disease. Current Infectious Disease Reports, 2016, 18, 19.	1.3	13
440	Influence of Roux-en-Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans. International Journal of Obesity, 2016, 40, 1260-1267.	1.6	61
441	Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Medicine, 2016, 8, 46.	3.6	402
442	Germ-free and Antibiotic-treated Mice are Highly Susceptible to Epithelial Injury in DSS Colitis. Journal of Crohn's and Colitis, 2016, 10, 1324-1335.	0.6	179
443	Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe, 2016, 41, 44-50.	1.0	124

#	Article	IF	Citations
444	In Sickness and in Health. Advances in Applied Microbiology, 2016, 96, 43-64.	1.3	20
445	Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. Clinical Microbiology Reviews, 2016, 29, 819-836.	5.7	88
447	Non-alcoholic fatty liver and the gut microbiota. Molecular Metabolism, 2016, 5, 782-794.	3.0	193
448	Effect of <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> GCL2505 on the physiological function of intestine in a rat model. Food Science and Nutrition, 2016, 4, 782-790.	1.5	20
449	The Contributing Role of Bile Acids to Metabolic Improvements After Obesity and Metabolic Surgery. Obesity Surgery, 2016, 26, 2492-2502.	1.1	22
450	Clostridium difficile colitis: pathogenesis and host defence. Nature Reviews Microbiology, 2016, 14, 609-620.	13.6	436
451	The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1210-1224.	6.0	158
452	Rifaximin Exerts Beneficial Effects Independent of its Ability to Alter Microbiota Composition. Clinical and Translational Gastroenterology, 2016, 7, e187.	1.3	75
453	Microbial regulation of GLP-1 and L-cell biology. Molecular Metabolism, 2016, 5, 753-758.	3.0	95
454	Increasing dietary oat fibre decreases the permeability of intestinal mucus. Journal of Functional Foods, 2016, 26, 418-427.	1.6	64
455	Sasa quelpaertensis leaf extract regulates microbial dysbiosis by modulating the composition and diversity of the microbiota in dextran sulfate sodium-induced colitis mice. BMC Complementary and Alternative Medicine, 2016, 16, 481.	3.7	37
456	Chemical Synthesis of Uncommon Natural Bile Acids: The 9î±-Hydroxy Derivatives of Chenodeoxycholic and Lithocholic Acids. Chemical and Pharmaceutical Bulletin, 2016, 64, 1397-1402.	0.6	2
457	Beneficial effects of voglibose administration on body weight and lipid metabolism <i>via</i> gastrointestinal bile acid modification. Endocrine Journal, 2016, 63, 691-702.	0.7	23
458	Gut Microbiota and HCC. , 2016, , 149-155.		0
459	An Intestinal Microbiota–Farnesoid X Receptor Axis Modulates Metabolic Disease. Gastroenterology, 2016, 151, 845-859.	0.6	254
460	Recurrent <i>Clostridium difficile</i> infection associates with distinct bile acid and microbiome profiles. Alimentary Pharmacology and Therapeutics, 2016, 43, 1142-1153.	1.9	151
461	Insulin Resistance, Microbiota, and Fat Distribution Changes by a New Model of Vertical Sleeve Gastrectomy in Obese Rats. Diabetes, 2016, 65, 2990-3001.	0.3	43
462	Germinants and Their Receptors in Clostridia. Journal of Bacteriology, 2016, 198, 2767-2775.	1.0	60

#	Article	IF	CITATIONS
463	Intestinal microbiota could transfer host Gut characteristics from pigs to mice. BMC Microbiology, 2016, 16, 238.	1.3	54
464	Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys. Advances in Nutrition, 2016, 7, 1111-1121.	2.9	51
465	Dose-response effect of berberine on bile acid profile and gut microbiota in mice. BMC Complementary and Alternative Medicine, 2016, 16, 394.	3.7	48
466	The Liver at the Nexus of Host-Microbial Interactions. Cell Host and Microbe, 2016, 20, 561-571.	5.1	86
467	Gut microbiota Modulated by Probiotics and Garcinia cambogia Extract Correlate with Weight Gain and Adipocyte Sizes in High Fat-Fed Mice. Scientific Reports, 2016, 6, 33566.	1.6	45
468	Metabolic pathway database for human gut microbiome . Japanese Journal of Lactic Acid Bacteria, 2016, 27, 87-92.	0.1	0
469	Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging, 2016, 4, 3-16.	0.5	150
470	Impact of high fat diets, prebiotics and probiotics on gut microbiota and immune function, with relevance to elderly populations. Nutrition and Aging (Amsterdam, Netherlands), 2016, 3, 171-192.	0.3	2
471	Using Multi-fluorinated Bile Acids and In Vivo Magnetic Resonance Imaging to Measure Bile Acid Transport. Journal of Visualized Experiments, 2016, , .	0.2	6
472	Effect of probiotic yoghurt on animal-based diet-induced change in gut microbiota: an open, randomised, parallel-group study. Beneficial Microbes, 2016, 7, 473-484.	1.0	38
473	Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection. Anaerobe, 2016, 41, 37-43.	1.0	60
474	Microbiota and pathogen â€~pas de deux': setting up and breaking down barriers to intestinal infection. Pathogens and Disease, 2016, 74, ftw051.	0.8	20
475	Bile acid sensitivity and inÂvivo virulence of clinical Clostridium difficile isolates. Anaerobe, 2016, 41, 32-36.	1.0	25
476	Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine. MSphere, 2016, 1, .	1.3	349
477	Effects of alternative plant-based feeds on hepatic and gastrointestinal histology and the gastrointestinal microbiome of sablefish (Anoplopoma fimbria). Aquaculture, 2016, 464, 683-691.	1.7	19
478	Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism, 2016, 24, 41-50.	7.2	1,734
479	Structure and functional characterization of a bile acid 7α dehydratase <scp>B</scp> ai <scp>E</scp> in secondary bile acid synthesis. Proteins: Structure, Function and Bioinformatics, 2016, 84, 316-331.	1.5	35
480	Interplay between bile acid metabolism and microbiota in irritable bowel syndrome. Neurogastroenterology and Motility, 2016, 28, 1330-1340.	1.6	103

#	Article	IF	CITATIONS
481	Farnesoid X Receptor Agonists and Other Bile Acid Signaling Strategies for Treatment of Liver Disease. Digestive Diseases, 2016, 34, 580-588.	0.8	41
482	Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nature Communications, 2016, 7, 10410.	5.8	557
483	Fecal microbiota transplantation: in perspective. Therapeutic Advances in Gastroenterology, 2016, 9, 229-239.	1.4	302
484	Bile Acid Modifications at the Microbe-Host Interface: Potential for Nutraceutical and Pharmaceutical Interventions in Host Health. Annual Review of Food Science and Technology, 2016, 7, 313-333.	5.1	161
485	Bile acids synthesis decreases after laparoscopic sleeve gastrectomy. Surgery for Obesity and Related Diseases, 2016, 12, 763-769.	1.0	25
486	Monoammonium glycyrrhizinate protects rifampicin- and isoniazid-induced hepatotoxicity via regulating the expression of transporter Mrp2, Ntcp, and Oatp1a4 in liver. Pharmaceutical Biology, 2016, 54, 931-937.	1.3	21
487	Safety evaluation of AB-LIFE® (Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food and Chemical Toxicology, 2016, 92, 117-128.	1.8	31
488	Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes, 2016, 7, 201-215.	4.3	224
489	A novel gastrointestinal microbiome modulator from soy pods reduces absorption of dietary fat in mice. Obesity, 2016, 24, 87-95.	1.5	20
490	Review article: potential mechanisms of action of rifaximin in the management of hepatic encephalopathy and other complications of cirrhosis. Alimentary Pharmacology and Therapeutics, 2016, 43, 11-26.	1.9	98
491	Diet, microbiota, and dysbiosis: a â€~recipe' for colorectal cancer. Food and Function, 2016, 7, 1731-1740.	2.1	97
492	Microbiota, immunity and the liver. Immunology Letters, 2016, 171, 36-49.	1.1	19
493	Exploring and Understanding the Biochemical Diversity of the Human Microbiota. Cell Chemical Biology, 2016, 23, 18-30.	2.5	115
494	Radical-mediated dehydrogenation of bile acids by means of hydrogen atom transfer to triplet carbonyls. Organic and Biomolecular Chemistry, 2016, 14, 2679-2683.	1.5	7
495	Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain, Behavior, and Immunity, 2016, 56, 140-155.	2.0	500
496	Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content. Plant Foods for Human Nutrition, 2016, 71, 151-157.	1.4	21
497	Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling. American Journal of Physiology - Renal Physiology, 2016, 310, G81-G92.	1.6	79
498	Role of the microbiome in the normal and aberrant glycemic response. Clinical Nutrition Experimental, 2016, 6, 59-73.	2.0	29

#	Article	IF	CITATIONS
499	Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition, 2016, 32, 620-627.	1.1	119
500	Hepatoprotective Effects of Schisandra sphenanthera Extract against Lithocholic Acid-Induced Cholestasis in Male Mice Are Associated with Activation of the Pregnane X Receptor Pathway and Promotion of Liver Regeneration. Drug Metabolism and Disposition, 2016, 44, 337-342.	1.7	45
501	Reexamining the Germination Phenotypes of Several Clostridium difficile Strains Suggests Another Role for the CspC Germinant Receptor. Journal of Bacteriology, 2016, 198, 777-786.	1.0	52
502	Influence of Gut Microbiota on Hepatic Lipogenesis and Disease Pathogenesis. , 2016, , 189-209.		1
503	Synthesis and evaluation of vitamin D receptor-mediated activities of cholesterol and vitamin D metabolites. European Journal of Medicinal Chemistry, 2016, 109, 238-246.	2.6	14
505	Deoxycholic acid transformations catalyzed by selected filamentous fungi. Steroids, 2016, 107, 20-29.	0.8	20
506	The Gut Microbiome and Cirrhosis: Basic Aspects. , 2016, , 139-168.		1
507	Anti-Outer membrane protein C antibodies in colorectal neoplasia. Folia Microbiologica, 2016, 61, 295-299.	1.1	1
508	Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. Advances in Experimental Medicine and Biology, 2016, 874, 301-336.	0.8	50
509	In vitro fermentation of nuts results in the formation of butyrate and c9,t11 conjugated linoleic acid as chemopreventive metabolites. European Journal of Nutrition, 2016, 55, 2063-2073.	1.8	34
510	Two different methods for screening of bile salt hydrolase activity in Lactobacillus strains. Czech Journal of Food Sciences, 2015, 33, 13-18.	0.6	19
511	TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut, 2017, 66, 226-234.	6.1	182
512	Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunology, 2017, 10, 104-116.	2.7	310
513	The interrelationship between bile acid and vitamin A homeostasis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 496-512.	1.2	57
514	Microbiome-Modulated Metabolites at the Interface of Host Immunity. Journal of Immunology, 2017, 198, 572-580.	0.4	282
515	Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotics. Nutrition Research Reviews, 2017, 30, 36-49.	2.1	67
516	Neuroblastoma causes alterations of the intestinal microbiome, gut hormones, inflammatory cytokines, and bile acid composition. Pediatric Blood and Cancer, 2017, 64, e26425.	0.8	18
517	Evolutionary and ecological forces that shape the bacterial communities of the human gut. Mucosal Immunology, 2017, 10, 567-579.	2.7	24

#	Article	IF	CITATIONS
518	Gut Microbiota and Complications of Liver Disease. Gastroenterology Clinics of North America, 2017, 46, 155-169.	1.0	73
519	Detection of total bile acids in biological samples using an indirect competitive ELISA based on four monoclonal antibodies. Analytical Methods, 2017, 9, 625-633.	1.3	3
520	Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology, 2017, 152, 1679-1694.e3.	0.6	630
521	Synthesis of 1βâ€hydroxydeoxycholic acid in Hâ€2 and unlabeled forms. Journal of Labelled Compounds and Radiopharmaceuticals, 2017, 60, 221-229.	0.5	1
522	Inhibition of spore germination, growth, and toxin activity of clinically relevant C.Âdifficile strains by gut microbiota derived secondary bile acids. Anaerobe, 2017, 45, 86-100.	1.0	175
523	Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: linking gut microbiota and growth performance in chickens. Applied Microbiology and Biotechnology, 2017, 101, 4547-4559.	1.7	85
524	Disease-Associated Changes in Bile Acid Profiles and Links to Altered Gut Microbiota. Digestive Diseases, 2017, 35, 169-177.	0.8	84
525	Crosstalk between Bile Acids and Gut Microbiota and Its Impact on Farnesoid X Receptor Signalling. Digestive Diseases, 2017, 35, 246-250.	0.8	80
526	Impact of Gut Microbiota-Mediated Bile Acid Metabolism on the Solubilization Capacity of Bile Salt Micelles and Drug Solubility. Molecular Pharmaceutics, 2017, 14, 1251-1263.	2.3	54
527	The Gut Microbiome and Metabolic Health. Current Nutrition Reports, 2017, 6, 16-23.	2.1	10
528	Fasiglifam (TAK-875) alters bile acid homeostasis in rats and dogs: a potential cause of drug induced liver injury. Toxicological Sciences, 2017, 157, kfx018.	1.4	39
529	Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes. Cell Reports, 2017, 18, 1739-1750.	2.9	143
530	High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome, 2017, 5, 43.	4.9	132
531	Nuclear Receptor Regulation. , 2017, , 43-59.		0
532	The influence of diet on the grass carp intestinal microbiota and bile acids. Aquaculture Research, 2017, 48, 4934-4944.	0.9	26
533	Synthesis and Biological Evaluation of Bile Acid Analogues Inhibitory to <i>Clostridium difficile</i> Spore Germination. Journal of Medicinal Chemistry, 2017, 60, 3451-3471.	2.9	35
534	Physical Chemistry of Bile. Ultrasound Quarterly, 2017, 33, 229-236.	0.3	5
535	Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS–based metabolomics approach. Kidney International, 2017, 92, 634-645.	2.6	173

#	Article	IF	Citations
536	Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents. Journal of Lipid Research, 2017, 58, 1143-1152.	2.0	91
537	Bile acids and bariatric surgery. Molecular Aspects of Medicine, 2017, 56, 75-89.	2.7	99
538	Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats. Scientific Reports, 2017, 7, 826.	1.6	43
539	Ethnicity influences gut metabolites and microbiota of the tribes of Assam, India. Metabolomics, 2017, 13, 1.	1.4	7
540	Bile acids as global regulators of hepatic nutrient metabolism. Liver Research, 2017, 1, 10-16.	0.5	23
541	Molecular cloning, expression and characterization of bile salt hydrolase from Lactobacillus rhamnosus E9 strain. Food Biotechnology, 2017, 31, 128-140.	0.6	11
542	Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation. Advances in Nutrition, 2017, 8, 484-494.	2.9	269
543	Antibiotic resistance and tolerance to simulated gastrointestinal conditions of eight hemolytic Bacillus pumilus isolated from pulque, a traditional Mexican beverage. Food Science and Biotechnology, 2017, 26, 447-452.	1.2	3
544	Structure of NADP ⁺ -bound 7β-hydroxysteroid dehydrogenase reveals two cofactor-binding modes. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 246-252.	0.4	9
545	Chemoproteomic Profiling of Bile Acid Interacting Proteins. ACS Central Science, 2017, 3, 501-509.	5.3	62
546	Bile acids and colon cancer: Is FXR the solution of the conundrum?. Molecular Aspects of Medicine, 2017, 56, 66-74.	2.7	69
547	High Throughput and Quantitative Measurement of Microbial Metabolome by Gas Chromatography/Mass Spectrometry Using Automated Alkyl Chloroformate Derivatization. Analytical Chemistry, 2017, 89, 5565-5577.	3.2	117
548	Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metabolism, 2017, 26, 110-130.	7.2	572
549	Human Microbiome: Implications on Health and Disease. , 2017, , 153-168.		1
550	Glucocorticoids and gut bacteria: "The GALF Hypothesis―in the metagenomic era. Steroids, 2017, 125, 1-13.	0.8	47
551	Bile acids and male fertility: From mouse to human?. Molecular Aspects of Medicine, 2017, 56, 101-109.	2.7	18
552	Bile Acid-Induced Liver Injury in Cholestasis. , 2017, , 143-172.		5
553	Interactions between gut bacteria and bile in health and disease. Molecular Aspects of Medicine, 2017, 56, 54-65.	2.7	341

ARTICLE IF CITATIONS # Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized 554 1.0 47 clinical trial. Surgery for Obesity and Related Diseases, 2017, 13, 1544-1553. The Yin and Yang of bile acid action on tight junctions in a model colonic epithelium. Physiological Reports, 2017, 5, e13294. Microbiome and NAFLD: potential influence of aerobic fitness and lifestyle modification. Physiological 556 1.0 31 Genomics, 2017, 49, 385-399. Dynamics of Bile Acid Profiles, GLP-1, and FGF19 After Laparoscopic Gastric Banding. Journal of Clinical 1.8 24 Endocrinology and Metabolism, 2017, 102, 2974-2984. Analysis of Shigella flexneri Resistance, Biofilm Formation, and Transcriptional Profile in Response to 558 1.0 65 Bile Salts. Infection and Immunity, 2017, 85, . Interactions between Kluyveromyces marxianus from cheese origin and the intestinal symbiont Bacteroides thetaiotaomicron: Impressive antioxidative effects. LWT - Food Science and Technology, 2.5 2017, 81, 281-290. Irinotecan-induced bile acid malabsorption is associated with down-regulation of ileal Asbt (Slc10a2) 560 1.9 9 in mice. European Journal of Pharmaceutical Sciences, 2017, 102, 220-229. Identification and characterization of a 20Î²-HSDH from the anaerobic gut bacterium Butyricicoccus 561 2.0 29 desmolans ATCC 43058. Journal of Lipid Research, 2017, 58, 916-925. Antibiotic-induced Elevations of Plasma Bile Acids in Rats Independent of Bsep Inhibition. 562 1.4 13 Toxicological Sciences, 2017, 157, kfx015. A three-stage continuous culture approach to study the impact of probiotics, prebiotics and fat intake on faecal microbiota relevant to an over 60 s population. Journal of Functional Foods, 2017, 32, 1.6 238-247. Raspberry pomace alters cecal microbial activity and reduces secondary bile acids in rats fed a high-fat 21 564 1.9 diet. Journal of Nutritional Biochemistry, 2017, 46, 13-20. Bile Acid Administration Elicits an Intestinal Antimicrobial Program and Reduces the Bacterial Burden 1.0 in Two Mouse Models of Enteric Infection. Infection and Immunity, 2017, 85, . Mechanisms of cross-talk between the diet, the intestinal microbiome, and the undernourished host. 566 4.3 43 Gut Microbes, 2017, 8, 98-112. Metabolic effects of <i><scp>L</scp>actobacillus reuteri</i><scp>DSM</scp> 17938 in people with type 2 diabetes: <scp>A</scp> randomized controlled trial. Diabetes, Obesity and Metabolism, 2017, 19, 2.2 199 Cloning, expression, and biochemical characterization of a novel NADP + -dependent 71±-hydroxysteroid dehydrogenase from Clostridium difficile and its application for the oxidation of bile acids. Enzyme 568 29 1.6 and Microbial Technology, 2017, 99, 16-24. Environmental Enteric Dysfunction and the Fecal Microbiota in Malawian Children. American Journal of Tropical Medicine and Hygiene, 2017, 96, 473-476. 570 Linking dietary patterns with gut microbial composition and function. Gut Microbes, 2017, 8, 113-129. 4.3 137 Disruption of the Prostaglandin Metabolome and Characterization of the Pharmaceutical Exposome 571 in Fish Exposed to Wastewater Treatment Works Effluent As Revealed by Nanoflow-Nanospray Mass 4.6 Spectrometry-Based Metabolomics. Environmental Science & amp; Technology, 2017, 51, 616-624.

#	Article	IF	CITATIONS
572	Enteroendocrine Cells: Metabolic Relays between Microbes and Their Host. Endocrine Development, 2017, 32, 139-164.	1.3	30
573	Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium difficile. Journal of Microbiology, 2017, 55, 892-899.	1.3	46
575	Functional Changes in the Gut Microbiome Contribute to Transforming Growth Factor Î ² -Deficient Colon Cancer. MSystems, 2017, 2, .	1.7	48
576	Effects of microencapsulated <i>Lactobacillus plantarum</i> LIP-1 on the gut microbiota of hyperlipidaemic rats. British Journal of Nutrition, 2017, 118, 481-492.	1.2	79
577	<i>In Vitro</i> Assessment of Bioactivities of <i>Lactobacillus</i> Strains as Potential Probiotics for Humans and Chickens. Journal of Food Science, 2017, 82, 2734-2745.	1.5	13
578	Determination of Bile Acids in Rat Cecal Contents by LC–MS. Chromatographia, 2017, 80, 1733-1739.	0.7	1
579	Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Analytica Chimica Acta, 2017, 987, 72-80.	2.6	58
580	The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunological Reviews, 2017, 279, 90-105.	2.8	490
581	Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews, 2017, 279, 70-89.	2.8	1,015
582	Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunological Reviews, 2017, 279, 8-22.	2.8	101
583	Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunological Reviews, 2017, 279, 23-35.	2.8	73
584	Mathematical Modeling of the Effects of Nutrient Competition and Bile Acid Metabolism by the Gut Microbiota on Colonization Resistance Against Clostridium difficile. Association for Women in Mathematics Series, 2017, , 137-161.	0.1	4
585	Dose-related liver injury of Geniposide associated with the alteration in bile acid synthesis and transportation. Scientific Reports, 2017, 7, 8938.	1.6	41
586	Isolation of six novel 7-oxo- or urso-type secondary bile acid-producing bacteria from rat cecal contents. Journal of Bioscience and Bioengineering, 2017, 124, 514-522.	1.1	22
587	Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmunity Reviews, 2017, 16, 885-896.	2.5	158
588	Dysregulated microbiota-gut-brain axis. Nutrition and Food Science, 2017, 47, 648-658.	0.4	4
589	Lowered fasting chenodeoxycholic acid correlated with the decrease of fibroblast growth factor 19 in Chinese subjects with impaired fasting glucose. Scientific Reports, 2017, 7, 6042.	1.6	8
590	<i>In Vitro</i> Bile Acid Binding Capacities of Red Leaf Lettuce and Cruciferous Vegetables. Journal of Agricultural and Food Chemistry, 2017, 65, 8054-8062.	2.4	17

ARTICLE IF CITATIONS Does Modification of the Large Intestinal Microbiome Contribute to the Anti-inflammatory Activity of 591 0.1 6 Fermentable Fiber?. Current Developments in Nutrition, 2017, 2, cdn.117.001180. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic 5.8 312 treatment. Nature Communications, 2017, 8, 1785. Contemporary Applications of Fecal Microbiota Transplantation to Treat Intestinal Diseases in 593 1.5 37 Humans. Archives of Medical Research, 2017, 48, 766-773. Bile Acid Recognition by Mouse Ileal Bile Acid Binding Protein. ACS Chemical Biology, 2017, 12, 3049-3056. Evaluating the contribution of gut microbiome to the variance of porcine serum glucose and lipid 596 1.6 15 concentration. Scientific Reports, 2017, 7, 14928. Influence of Bile Acids on Colorectal Cancer Risk: Potential Mechanisms Mediated by Diet-Gut 2.1 99 Microbiota Interactions. Current Nutrition Reports, 2017, 6, 315-322. The influence of the commensal microbiota on distal tumor-promoting inflammation. Seminars in 598 2.7 24 Immunology, 2017, 32, 62-73. Western Diet–Induced Dysbiosis in Farnesoid X Receptor Knockout Mice Causes Persistent Hepatic 599 1.9 90 Inflammation after Antibiotic Treatment. American Journal of Pathology, 2017, 187, 1800-1813. Correlation Between Bile Reflux Gastritis and Biliary Excreted Contrast Media in the Stomach. Journal 600 0.5 11 of Computer Assisted Tomography, 2017, 41, 696-701. Alteration of gut microbiota in association with cholesterol gallstone formation in mice. BMC 0.8 Gastroenterology, 2017, 17, 74. Determinants of postprandial plasma bile acid kinetics in human volunteers. American Journal of 602 1.6 38 Physiology - Renal Physiology, 2017, 313, G300-G312. Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria. Analytical and Bioanalytical Chemistry, 2017, 409, 1231-1245. Environmental spread of microbes impacts the development of metabolic phenotypes in mice 604 4.4 63 transplanted with microbial communities from humans. ISME Journal, 2017, 11, 676-690. Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational 5.7 Design of Combination Microbial Therapies. Clinical Microbiology Reviews, 2017, 30, 191-231. Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor. 606 0.4 25 Toxicology Letters, 2017, 265, 86-96. Spatial Microbial Composition Along the Gastrointestinal Tract of Captive Attwater's Prairie Chicken. 1.4 Microbial Ecology, 2017, 73, 966-977. Molecular features of bile salt hydrolases and relevance in human health. Biochimica Et Biophysica 608 1.1 60 Acta - General Subjects, 2017, 1861, 2981-2991. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Applied 609 Microbiology and Biotechnology, 2017, 101, 47-64.

#	Article	IF	CITATIONS
610	Gut Microbiota, Bacterial Translocation, and Interactions with Diet: Pathophysiological Links between Major Depressive Disorder and Non-Communicable Medical Comorbidities. Psychotherapy and Psychosomatics, 2017, 86, 31-46.	4.0	176
611	Colonic Transit and Bile Acid Synthesis or Excretion in PatientsÂWith Irritable Bowel Syndrome–Diarrhea Without BileÂAcid Malabsorption. Clinical Gastroenterology and Hepatology, 2017, 15, 720-727.e1.	2.4	43
612	Emerging Concepts Linking Obesity with the Hallmarks of Cancer. Trends in Endocrinology and Metabolism, 2017, 28, 46-62.	3.1	106
613	Irritable bowel syndrome and diet. Gastroenterology Report, 2017, 5, 11-19.	0.6	37
614	The Microbiome in Primary Sclerosing Cholangitis: Current Evidence and Potential Concepts. Seminars in Liver Disease, 2017, 37, 314-331.	1.8	52
615	Dissecting Target Toxic Tissue and Tissue Specific Responses of Irinotecan in Rats Using Metabolomics Approach. Frontiers in Pharmacology, 2017, 8, 122.	1.6	12
616	Bile Acid Metabolism During Development. , 2017, , 913-929.e4.		4
617	Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice. Nutrients, 2017, 9, 560.	1.7	104
618	Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice. Nutrients, 2017, 9, 756.	1.7	62
619	Parenteral Nutrition-Associated Liver Disease: The Role of the Gut Microbiota. Nutrients, 2017, 9, 987.	1.7	54
620	Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Frontiers in Medicine, 2017, 4, 163.	1.2	289
621	Studying the Differences of Bacterial Metabolome and Microbiome in the Colon between Landrace and Meihua Piglets. Frontiers in Microbiology, 2017, 8, 1812.	1.5	26
622	The Gut-Brain Axis in Healthy Females: Lack of Significant Association between Microbial Composition and Diversity with Psychiatric Measures. PLoS ONE, 2017, 12, e0170208.	1.1	41
623	Regulation of Ca2+-Sensitive K+ Channels by Cholesterol and Bile Acids via Distinct Channel Subunits and Sites. Current Topics in Membranes, 2017, 80, 53-93.	0.5	10
624	Fecal Microbiota Transplantation and Its Potential Therapeutic Uses in Gastrointestinal Disorders. İstanbul Kuzey Klinikleri, 2017, 5, 79-88.	0.1	16
625	Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions. Environmental Health Perspectives, 2017, 125, 198-206.	2.8	96
626	Gut Microbial Metabolism in Health and Disease. , 2017, , 835-856.		0
627	Bile Acid Physiology. Annals of Hepatology, 2017, 16, S4-S14.	0.6	306

#	Article	IF	CITATIONS
628	Cross-Talk Between Bile Acids and Gastro-Intestinal and Thermogenic Hormones: Clues from Bariatric Surgery. Annals of Hepatology, 2017, 16, S68-S82.	0.6	16
629	Bile Acids and Cancer: Direct and Environmental-Dependent Effects. Annals of Hepatology, 2017, 16, S87-S105.	0.6	76
630	Rethinking the bile acid/gut microbiome axis in cancer. Oncotarget, 2017, 8, 115736-115747.	0.8	34
631	Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver Research, 2018, 2, 43-51.	0.5	64
632	Probiotics, bile acids and gastrointestinal carcinogenesis. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 205-205.	8.2	7
633	Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis: a role for bifidobacteria and lactobacilli?. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 205-205.	8.2	68
634	The role of bacteria in the inflammatory bowel disease development: a narrative review. Apmis, 2018, 126, 275-283.	0.9	49
635	Dietary lipid levels could improve growth and intestinal microbiota of juvenile swimming crab, Portunus trituberculatus. Aquaculture, 2018, 490, 208-216.	1.7	65
636	Treatment of recurrent Clostridium difficile colitis: a narrative review. Gastroenterology Report, 2018, 6, 21-28.	0.6	45
637	Metformin impacts cecal bile acid profiles in mice. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1083, 35-43.	1.2	8
638	Gut : liver : brain axis: the microbial challenge in the hepatic encephalopathy. Food and Functic 1373-1388.	n, 2018, 9 2.1	' 55
639	Alterations in gut microbial function following liver transplant. Liver Transplantation, 2018, 24, 752-761.	1.3	63
640	Metabolism of hydrogen gases and bile acids in the gut microbiome. FEBS Letters, 2018, 592, 2070-2082.	1.3	83
641	Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe, 2018, 53, 64-73.	1.0	144
642	Microbiome-mediated bile acid modification: Role in intestinal drug absorption and metabolism. Pharmacological Research, 2018, 133, 170-186.	3.1	66
643	Antibioticâ€Associated Disruption of Microbiota Composition and Function in Cirrhosis Is Restored by Fecal Transplant. Hepatology, 2018, 68, 1549-1558.	3.6	108
644	Deciphering Human Gut Microbiota–Nutrient Interactions: A Role for Biochemistry. Biochemistry, 2018, 57, 2567-2577.	1.2	19
645	Plasma bile acid changes in type 2 diabetes correlated with insulin secretion in twoâ€step hyperglycemic clamp. Journal of Diabetes, 2018, 10, 874-885.	0.8	16

#	Article	IF	CITATIONS
646	Bile acid oxidation by <i>Eggerthella lenta</i> strains C592 and DSM 2243 ^T . Gut Microbes, 2018, 9, 1-17.	4.3	48
647	Effect of Saccharomyces boulardii and Bacillus subtilis B10 on gut microbiota modulation in broilers. Animal Nutrition, 2018, 4, 358-366.	2.1	26
648	Colesevelam attenuates cholestatic liver and bile duct injury in <i>Mdr2^{â^'/â^'}</i> mice by modulating composition, signalling and excretion of faecal bile acids. Gut, 2018, 67, 1683-1691.	6.1	53
649	The Brain-Gut-Microbiome Axis. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 133-148.	2.3	735
650	Dietary supplementation with flaxseed meal and oat hulls modulates intestinal histomorphometric characteristics, digesta- and mucosa-associated microbiota in pigs. Scientific Reports, 2018, 8, 5880.	1.6	30
651	Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 958-974.	0.5	122
652	Lipoteichoic acids are embedded in cell walls during logarithmic phase, but exposed on membrane vesicles in <i>Lactobacillus gasseri</i> JCM 1131 ^T . Beneficial Microbes, 2018, 9, 653-662.	1.0	16
653	The family Coriobacteriaceae is a potential contributor to the beneficial effects of Roux-en-Y gastric bypass on type 2 diabetes. Surgery for Obesity and Related Diseases, 2018, 14, 584-593.	1.0	71
654	MALDI Mass Spectral Imaging of Bile Acids Observed as Deprotonated Molecules and Proton-Bound Dimers from Mouse Liver Sections. Journal of the American Society for Mass Spectrometry, 2018, 29, 711-722.	1.2	14
655	Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice. Gastroenterology, 2018, 154, 1751-1763.e2.	0.6	68
657	Altered Microbiota and Their Metabolism in Host Metabolic Diseases. , 2018, , 129-165.		1
658	A new method for the in vitro determination of the bile tolerance of potentially probiotic lactobacilli. Applied Microbiology and Biotechnology, 2018, 102, 1903-1910.	1.7	20
659	Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocrine Reviews, 2018, 39, 133-153.	8.9	207
660	Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Scientific Reports, 2018, 8, 1253.	1.6	73
661	Strategy for an Association Study of the Intestinal Microbiome and Brain Metabolome Across the Lifespan of Rats. Analytical Chemistry, 2018, 90, 2475-2483.	3.2	32
662	Stress Responses of Bifidobacteria: Oxygen and Bile Acid as the Stressors. , 2018, , 131-143.		11
663	Dysbiosis Signatures of Gut Microbiota Along the Sequence from Healthy, Young Patients to Those with Overweight and Obesity. Obesity, 2018, 26, 351-361.	1.5	155
664	Modulation of gut microbiota and gut-generated metabolites by bitter melon results in improvement in the metabolic status in high fat diet-induced obese rats. Journal of Functional Foods, 2018, 41, 127-134.	1.6	62

#	Article	IF	CITATIONS
665	The gut microbiota as a novel regulator of cardiovascular function and disease. Journal of Nutritional Biochemistry, 2018, 56, 1-15.	1.9	122
666	Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnology Advances, 2018, 36, 682-690.	6.0	67
667	On the Evolution of Bile Salts and the Farnesoid X Receptor in Vertebrates. Physiological and Biochemical Zoology, 2018, 91, 797-813.	0.6	12
668	Walnut Consumption Alters the Gastrointestinal Microbiota, Microbially Derived Secondary Bile Acids, and Health Markers in Healthy Adults: A Randomized Controlled Trial. Journal of Nutrition, 2018, 148, 861-867.	1.3	118
669	Detection of Gut Dysbiosis due to Reduced Clostridium Subcluster XIVa Using the Fecal or Serum Bile Acid Profile. Inflammatory Bowel Diseases, 2018, 24, 1035-1044.	0.9	40
670	Bile Acids and the Gut Microbiome as Potential Targets for NAFLD Treatment. Journal of Pediatric Gastroenterology and Nutrition, 2018, 67, 3-5.	0.9	12
671	Cholecystectomy and risk of metabolic syndrome. European Journal of Internal Medicine, 2018, 53, 3-11.	1.0	39
672	Functional microbiomics: Evaluation of gut microbiota-bile acid metabolism interactions in health and disease. Methods, 2018, 149, 49-58.	1.9	76
673	Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in <i>db/db</i> Mice. Diabetes, 2018, 67, 1867-1879.	0.3	243
674	Traditional kefir reduces weight gain and improves plasma and liver lipid profiles more successfully than a commercial equivalent in a mouse model of obesity. Journal of Functional Foods, 2018, 46, 29-37.	1.6	47
675	Integrative metabolic and microbial profiling on patients with Spleen-yang-deficiency syndrome. Scientific Reports, 2018, 8, 6619.	1.6	73
676	Beyond Structure: Defining the Function of the Gut Using Omic Approaches for Rational Design of Personalized Therapeutics. MSystems, 2018, 3, .	1.7	7
677	Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria. Applied and Environmental Microbiology, 2018, 84, .	1.4	58
678	Two dedicated class C radical S-adenosylmethionine methyltransferases concertedly catalyse the synthesis of 7,8-dimethylmenaquinone. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 300-308.	0.5	17
679	Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 2018, 57, 1-24.	1.8	1,608
680	Microbial metabolites and graft versus host disease. American Journal of Transplantation, 2018, 18, 23-29.	2.6	40
681	The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology, 2018, 67, 534-548.	3.6	266
682	A Novel Steroid-Coenzyme A Ligase from Novosphingobium sp. Strain Chol11 Is Essential for an Alternative Degradation Pathway for Bile Salts. Applied and Environmental Microbiology, 2018, 84, .	1.4	7

#	Article	IF	CITATIONS
683	Impacts of the Human Gut Microbiome on Therapeutics. Annual Review of Pharmacology and Toxicology, 2018, 58, 253-270.	4.2	74
684	Farnesoid X receptor: A "homeostat―for hepatic nutrient metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 45-59.	1.8	73
685	Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 111-128.	8.2	1,100
686	Control of <i>Clostridium difficile</i> Infection by Defined Microbial Communities. Microbiology Spectrum, 2017, 5, .	1.2	26
687	Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. European Journal of Nutrition, 2018, 57, 861-876.	1.8	102
688	Microbiota, Liver Diseases, and Alcohol. Microbiology Spectrum, 2017, 5, .	1.2	18
689	A review of metabolic potential of human gut microbiome in human nutrition. Archives of Microbiology, 2018, 200, 203-217.	1.0	206
690	Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination. Anaerobe, 2018, 49, 41-47.	1.0	53
691	Identification of a gene encoding a flavoprotein involved in bile acid metabolism by the human gut bacterium Clostridium scindens ATCC 35704. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 276-283.	1.2	25
692	Low dietary fiber intake increases <i>Collinsella</i> abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes, 2018, 9, 189-201.	4.3	233
693	Reciprocal interactions between bile acids and gut microbiota in human liver diseases. Hepatology Research, 2018, 48, 15-27.	1.8	37
694	The gut microbiota, bile acids and their correlation in primary sclerosing cholangitis associated with inflammatory bowel disease. United European Gastroenterology Journal, 2018, 6, 112-122.	1.6	81
695	Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology, 2018, 67, 2150-2166.	3.6	189
696	Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut, 2018, 67, 1881-1891.	6.1	438
697	Research on Lipid-lowing Capability of Three Edible Streptococcus from Yogurt in Vitro. IOP Conference Series: Materials Science and Engineering, 2018, 392, 052027.	0.3	0
698	Xenobiotic and endobiotic handling by the mucosal immune system. Current Opinion in Gastroenterology, 2018, 34, 404-412.	1.0	6
699	Adipose Organ Development and Remodeling. , 2018, 8, 1357-1431.		127
700	Intestinal Microbiome and the Liver. , 2018, , 37-65.e6.		0

#	Article	IF	CITATIONS
701	Therapeutic Roles of Bile Acid Signaling in Chronic Liver Diseases. Journal of Clinical and Translational Hepatology, 2018, 6, 1-6.	0.7	13
702	Co-immobilised 7α- and 7β-HSDH as recyclable biocatalyst: high-performance production of TUDCA from waste chicken bile. RSC Advances, 2018, 8, 34192-34201.	1.7	9
703	Post-hepatectomy liver regeneration in the context of bile acid homeostasis and the gut-liver signaling axis. Journal of Clinical and Translational Research, 2018, 4, 1-46.	0.3	25
704	Gut Microbiota, Short-Chain Fatty Acids, and Herbal Medicines. Frontiers in Pharmacology, 2018, 9, 1354.	1.6	233
705	The gut microbiota and cardiovascular health benefits: A focus on wholegrain oats. Nutrition Bulletin, 2018, 43, 358-373.	0.8	17
706	Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Frontiers in Pharmacology, 2018, 9, 1283.	1.6	159
707	Biotransformation by the Gut Microbiome. , 2018, , 59-73.		0
708	Electrochemical Oxidation of Primary Bile Acids: A Tool for Simulating Their Oxidative Metabolism?. International Journal of Molecular Sciences, 2018, 19, 2491.	1.8	1
709	Microbiome modulates intestinal homeostasis against inflammatory diseases. Veterinary Immunology and Immunopathology, 2018, 205, 97-105.	0.5	25
710	Inhibitory Effect of Ursodeoxycholic Acid on Clostridium difficile Germination Is Insufficient to Prevent Colitis: A Study in Hamsters and Humans. Frontiers in Microbiology, 2018, 9, 2849.	1.5	11
711	Biological Activities of Lactose-Based Prebiotics and Symbiosis with Probiotics on Controlling Osteoporosis, Blood-Lipid and Glucose Levels. Medicina (Lithuania), 2018, 54, 98.	0.8	29
712	Roles of the inflammasome in the gut‑liver axis (Review). Molecular Medicine Reports, 2019, 19, 3-14.	1.1	17
713	Administration of antibiotics contributes to cholestasis in pediatric patients with intestinal failure via the alteration of FXR signaling. Experimental and Molecular Medicine, 2018, 50, 1-14.	3.2	32
714	Overview of Bile Acids Signaling and Perspective on the Signal of Ursodeoxycholic Acid, the Most Hydrophilic Bile Acid, in the Heart. Biomolecules, 2018, 8, 159.	1.8	72
715	Weight-Independent Mechanisms of Glucose Control After Roux-en-Y Gastric Bypass. Frontiers in Endocrinology, 2018, 9, 530.	1.5	40
716	Differences in the Gut Microbiota Establishment and Metabolome Characteristics Between Low- and Normal-Birth-Weight Piglets During Early-Life. Frontiers in Microbiology, 2018, 9, 1798.	1.5	74
717	Exploring Effects of Chitosan Oligosaccharides on Mice Gut Microbiota in in vitro Fermentation and Animal Model. Frontiers in Microbiology, 2018, 9, 2388.	1.5	42
718	The "Gut Feeling― Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics, 2018, 15, 109-125.	2.1	117

#	Article	IF	CITATIONS
719	Bile Acid G Protein-Coupled Membrane Receptor TGR5 Modulates Aquaporin 2–Mediated Water Homeostasis. Journal of the American Society of Nephrology: JASN, 2018, 29, 2658-2670.	3.0	38
720	Bile acids and their effects on diabetes. Frontiers of Medicine, 2018, 12, 608-623.	1.5	40
721	Secondary Unconjugated Bile Acids Induce Hepatic Stellate Cell Activation. International Journal of Molecular Sciences, 2018, 19, 3043.	1.8	18
722	Modulation of gut microbiome in nonalcoholic fatty liver disease: pro-, pre-, syn-, and antibiotics. Journal of Microbiology, 2018, 56, 855-867.	1.3	28
723	Microbiota and infection prevention: making space for probiotics in healthcare. Gastrointestinal Nursing, 2018, 16, 28-34.	0.0	0
724	Bile Salt Hydrolase and Sâ€Layer Protein are the Key Factors Affecting the Hypocholesterolemic Activity of <i>Lactobacillus casei</i> â€Fermented Milk in Hamsters. Molecular Nutrition and Food Research, 2018, 62, e1800728.	1.5	21
725	Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of obese postmenopausal women. Journal of Translational Medicine, 2018, 16, 244.	1.8	78
726	Dietary Bile Salt Types Influence the Composition of Biliary Bile Acids and Gut Microbiota in Grass Carp. Frontiers in Microbiology, 2018, 9, 2209.	1.5	31
727	Elobixibat for the treatment of constipation. Expert Review of Gastroenterology and Hepatology, 2018, 12, 951-960.	1.4	28
728	Antimicrobial promotion of pig growth is associated with tissue-specific remodeling of bile acid signature and signaling. Scientific Reports, 2018, 8, 13671.	1.6	18
729	Sex differences in lipid metabolism are affected by presence of the gut microbiota. Scientific Reports, 2018, 8, 13426.	1.6	68
730	Gut Microbiota Modulates Interactions Between Polychlorinated Biphenyls and Bile Acid Homeostasis. Toxicological Sciences, 2018, 166, 269-287.	1.4	34
731	Microbiota, Liver Diseases, and Alcohol. , 2018, , 187-212.		2
732	Control of <i>Clostridium difficile</i> Infection by Defined Microbial Communities. , 0, , 267-289.		1
733	Bile Acid Metabolism in Liver Pathobiology. Gene Expression, 2018, 18, 71-87.	0.5	308
734	Bile Salt-induced Biofilm Formation in Enteric Pathogens: Techniques for Identification and Quantification. Journal of Visualized Experiments, 2018, , .	0.2	9
735	Metabolic Footprinting of Fermented Milk Consumption in Serum of Healthy Men. Journal of Nutrition, 2018, 148, 851-860.	1.3	43
736	Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 2018, 360, .	6.0	931

#	Article	IF	CITATIONS
737	Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut microbiota-dependent manner. Biochemical and Biophysical Research Communications, 2018, 501, 955-961.	1.0	56
738	PBDEs Altered Gut Microbiome and Bile Acid Homeostasis in Male C57BL/6 Mice. Drug Metabolism and Disposition, 2018, 46, 1226-1240.	1.7	63
739	Infant colic: mechanisms and management. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 479-496.	8.2	81
740	BaiCD gene cluster abundance is negatively correlated with Clostridium difficile infection. PLoS ONE, 2018, 13, e0196977.	1.1	34
741	An Overview of the Roles of the Gut Microbiome in Obesity and Diabetes. , 2018, , 65-91.		4
742	Hamsters Are a Better Model System than Rats for Evaluating the Hypocholesterolemic Efficacy of Potential Probiotic Strains. Molecular Nutrition and Food Research, 2018, 62, e1800170.	1.5	5
743	Diet Effects on Gut Microbiome Composition, Function, and Host Physiology. , 2018, , 755-766.		1
744	Asynchronous rhythms of circulating conjugated and unconjugated bile acids in the modulation of human metabolism. Journal of Internal Medicine, 2018, 284, 546-559.	2.7	26
745	Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 51-66.	3.3	241
746	β-Klotho deficiency shifts the gut-liver bile acid axis and induces hepatic alterations in mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E833-E847.	1.8	13
747	Bile acid profiles within the enterohepatic circulation in a diabetic rat model after bariatric surgeries. American Journal of Physiology - Renal Physiology, 2018, 314, G537-G546.	1.6	12
748	Detection technologies and metabolic profiling of bile acids: a comprehensive review. Lipids in Health and Disease, 2018, 17, 121.	1.2	51
749	Intestinal Microbiome in Health and Disease: Introduction. , 2018, , 1-3.		2
750	Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. British Journal of Nutrition, 2018, 120, 711-720.	1.2	46
751	Protein fermentation in the gut; implications for intestinal dysfunction in humans, pigs, and poultry. American Journal of Physiology - Renal Physiology, 2018, 315, G159-G170.	1.6	92
752	Cholesterol: A Gatekeeper of Male Fertility?. Frontiers in Endocrinology, 2018, 9, 369.	1.5	46
753	Changes in the faecal bile acid profile in dogs fed dry food vs high content of beef: a pilot study. Acta Veterinaria Scandinavica, 2018, 60, 29.	0.5	26
754	A Controlled Fermented Samjunghwan Herbal Formula Ameliorates Non-alcoholic Hepatosteatosis in HepG2 Cells and OLETF Rats. Frontiers in Pharmacology, 2018, 9, 596.	1.6	14

	CITATION R	EPORT	
#	Article	IF	Citations
755	Spexin Acts as Novel Regulator for Bile Acid Synthesis. Frontiers in Physiology, 2018, 9, 378.	1.3	26
756	Splenectomy Leads to Amelioration of Altered Gut Microbiota and Metabolome in Liver Cirrhosis Patients. Frontiers in Microbiology, 2018, 9, 963.	1.5	38
757	Composition and Function of the Gut Microbiome. , 2018, , 5-30.		5
758	Bile Acids Activated Receptors Regulate Innate Immunity. Frontiers in Immunology, 2018, 9, 1853.	2.2	334
759	Microbiome and Diseases: Metabolic Disorders. , 2018, , 251-277.		3
760	The effects of a wool hydrolysate on short-chain fatty acid production and fecal microbial composition in the domestic cat (Felis catus). Food and Function, 2018, 9, 4107-4121.	2.1	9
761	NorUDCA promotes degradation of α1-antitrypsin mutant Z protein by inducing autophagy through AMPK/ULK1 pathway. PLoS ONE, 2018, 13, e0200897.	1.1	27
762	The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome, 2018, 6, 134.	4.9	169
763	Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile Infection. Frontiers in Cellular and Infection Microbiology, 2018, 8, 29.	1.8	102
764	Bile-Salt-Hydrolases from the Probiotic Strain Lactobacillus johnsonii La1 Mediate Anti-giardial Activity in Vitro and in Vivo. Frontiers in Microbiology, 2017, 8, 2707.	1.5	48
765	Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential. Frontiers in Microbiology, 2018, 9, 242.	1.5	27
766	Molecular Cloning and Characterization of Bile Salt Hydrolase fromLactobacillus gasseriATCC 33323 Strain. Food Biotechnology, 2018, 32, 95-111.	0.6	3
767	The Role of the Gut Microbiome in Nonalcoholic Fatty Liver Disease. Medical Sciences (Basel,) Tj ETQq0 0 0 rgBT	Oyerlock	10 Tf 50 262
768	Pharmabiotic Manipulation of the Microbiota in Gastrointestinal Disorders: A Clinical Perspective. Journal of Neurogastroenterology and Motility, 2018, 24, 355-366.	0.8	13
769	Lithocholic Acid Is a Vitamin D Receptor Ligand That Acts Preferentially in the Ileum. International Journal of Molecular Sciences, 2018, 19, 1975.	1.8	41
770	A selective gut bacterial bile salt hydrolase alters host metabolism. ELife, 2018, 7, .	2.8	177
771	Microbiome-related metabolite changes in gut tissue, cecum content and feces of rats treated with antibiotics. Toxicology and Applied Pharmacology, 2018, 355, 198-210.	1.3	31
772	Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. ELife, 2018, 7, .	2.8	93

#	Article	IF	CITATIONS
773	Microbial markers in colorectal cancer detection and/or prognosis. World Journal of Gastroenterology, 2018, 24, 2327-2347.	1.4	84
774	Microbiome and Cardiovascular Disease in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 1598-1604.	2.2	47
775	Fructo-oligosaccharides and glucose homeostasis: a systematic review and meta-analysis in animal models. Nutrition and Metabolism, 2018, 15, 9.	1.3	36
776	The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. International Urology and Nephrology, 2018, 50, 1453-1466.	0.6	105
777	Association analysis of dietary habits with gut microbiota of a native Chinese community. Experimental and Therapeutic Medicine, 2018, 16, 856-866.	0.8	19
778	Temporal Regulation of the Bacterial Metabolite Deoxycholate during Colonic Repair Is Critical for Crypt Regeneration. Cell Host and Microbe, 2018, 24, 353-363.e5.	5.1	46
779	Bile acid metabolites in early pregnancy and risk of gestational diabetes in Chinese women: A nested case-control study. EBioMedicine, 2018, 35, 317-324.	2.7	48
780	Gut Microbiota and Relevant Metabolites Analysis in Alcohol Dependent Mice. Frontiers in Microbiology, 2018, 9, 1874.	1.5	46
781	Impact of lincosamides antibiotics on the composition of the rat gut microbiota and the metabolite profile of plasma and feces. Toxicology Letters, 2018, 296, 139-151.	0.4	20
782	Role of gut microbiota in chronic lowâ€grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obesity Reviews, 2018, 19, 1719-1734.	3.1	169
783	Structural and Functional Alterations in the Microbial Community and Immunological Consequences in a Mouse Model of Antibiotic-Induced Dysbiosis. Frontiers in Microbiology, 2018, 9, 1948.	1.5	62
784	Antibiotic-induced alterations in taurocholic acid levels promote gastrointestinal colonization of Candida albicans. FEMS Microbiology Letters, 2018, 365, .	0.7	16
785	Bile Acid-Derived Vitamin D Receptor Ligands. , 2018, , 629-646.		1
786	Plasma metabolomic analysis in mature female common bottlenose dolphins: profiling the characteristics of metabolites after overnight fasting by comparison with data in beagle dogs. Scientific Reports, 2018, 8, 12030.	1.6	16
787	Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. Journal of Autoimmunity, 2018, 92, 12-34.	3.0	232
788	The <i>Lactobacillus</i> Bile Salt Hydrolase Repertoire Reveals Niche-Specific Adaptation. MSphere, 2018, 3, .	1.3	91
789	Barley β-glucan increases fecal bile acid excretion and short chain fatty acid levels in mildly hypercholesterolemic individuals. Food and Function, 2018, 9, 3092-3096.	2.1	53
790	Bile Formation and the Enterohepatic Circulation. , 2018, , 931-956.		21

#	Article	IF	CITATIONS
791	Analysis of human C24 bile acids metabolome in serum and urine based on enzyme digestion of conjugated bile acids and LC-MS determination of unconjugated bile acids. Analytical and Bioanalytical Chemistry, 2018, 410, 5287-5300.	1.9	28
792	Gut Microbiota Influence Lipid and Glucose Metabolism, Energy Homeostasis and Inflammation Through Effects on Bile Acid Metabolism. , 2018, , 107-134.		2
793	Intestinal-Based Diseases and Peripheral Infection Risk Associated with Gut Dysbiosis: Therapeutic use of Pre- and Probiotics and Fecal Microbiota Transplantation. , 2018, , 197-288.		0
794	The membrane phospholipid cardiolipin plays a pivotal role in bile acid adaptation by Lactobacillus gasseri JCM1131T. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 403-412.	1.2	6
795	The gut microbiome in obesity. Journal of the Formosan Medical Association, 2019, 118, S3-S9.	0.8	173
796	Animal models to study bile acid metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 895-911.	1.8	141
797	Magnesium lithospermate B improves the gut microbiome and bile acid metabolic profiles in a mouse model of diabetic nephropathy. Acta Pharmacologica Sinica, 2019, 40, 507-513.	2.8	33
798	A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiology, 2019, 77, 118-129.	2.1	56
799	Diversity of Bacteria Exhibiting Bile Acid-inducible 7α-dehydroxylation Genes in the Human Gut. Computational and Structural Biotechnology Journal, 2019, 17, 1016-1019.	1.9	84
800	Steroids originating from bacterial bile acid degradation affect Caenorhabditis elegans and indicate potential risks for the fauna of manured soils. Scientific Reports, 2019, 9, 11120.	1.6	17
801	Targeting the gutâ€skin axis—Probiotics as new tools for skin disorder management?. Experimental Dermatology, 2019, 28, 1210-1218.	1.4	88
802	Serum Bile Acids Profiling in Inflammatory Bowel Disease Patients Treated with Anti-TNFs. Cells, 2019, 8, 817.	1.8	14
803	The influence of the microbiota on immune development, chronic inflammation, and cancer in the context of aging. Microbial Cell, 2019, 6, 324-334.	1.4	46
804	Dietâ€derived microbial metabolites in health and disease. Nutrition Bulletin, 2019, 44, 216-227.	0.8	36
805	Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nature Reviews Endocrinology, 2019, 15, 569-589.	4.3	391
806	The acidic pathway of bile acid synthesis: Not just an alternative pathway. Liver Research, 2019, 3, 88-98.	0.5	88
807	The human gut microbiome – a new and exciting avenue in cardiovascular drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 1037-1052.	2.5	10
808	Role of Bile Acids in Dysbiosis and Treatment of Nonalcoholic Fatty Liver Disease. Mediators of Inflammation, 2019, 2019, 1-13.	1.4	35

#	Article	IF	CITATIONS
809	Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes, 2019, 10, 512.	1.0	56
810	GPBAR1 Functions as Gatekeeper for Liver NKT Cells and provides Counterregulatory Signals in Mouse Models of Immune-Mediated Hepatitis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 447-473.	2.3	37
811	Genomic Comparison of Lactobacillus helveticus Strains Highlights Probiotic Potential. Frontiers in Microbiology, 2019, 10, 1380.	1.5	50
812	Microbial metabolite deoxycholic acid shapes microbiota against Campylobacter jejuni chicken colonization. PLoS ONE, 2019, 14, e0214705.	1.1	23
813	The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: A review. Trends in Food Science and Technology, 2019, 91, 426-435.	7.8	33
814	Alteration in bile acids profile in Large White pigs during chronic heat exposure. Journal of Thermal Biology, 2019, 84, 375-383.	1.1	14
815	Bridging intestinal immunity and gut microbiota by metabolites. Cellular and Molecular Life Sciences, 2019, 76, 3917-3937.	2.4	176
816	Acute Changes of Bile Acids and FGF19 After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass. Obesity Surgery, 2019, 29, 3605-3621.	1.1	24
817	In Vitro Interactions of Dietary Fibre Enriched Food Ingredients with Primary and Secondary Bile Acids. Nutrients, 2019, 11, 1424.	1.7	45
818	Gut Microbiome Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation. Microorganisms, 2019, 7, 456.	1.6	56
819	Capsaicin Improves Glucose Tolerance and Insulin Sensitivity Through Modulation of the Gut Microbiotaâ€Bile Acidâ€FXR Axis in Type 2 Diabetic <i>db/db</i> Mice. Molecular Nutrition and Food Research, 2019, 63, e1900608.	1.5	52
820	Bile acids in glucose metabolism and insulin signalling — mechanisms and research needs. Nature Reviews Endocrinology, 2019, 15, 701-712.	4.3	184
821	Microbial metabolite deoxycholic acid controls Clostridium perfringens-induced chicken necrotic enteritis through attenuating inflammatory cyclooxygenase signaling. Scientific Reports, 2019, 9, 14541.	1.6	26
822	Effects of Nicotinamide Riboside on Endocrine Pancreatic Function and Incretin Hormones in Nondiabetic Men With Obesity. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5703-5714.	1.8	57
823	Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Applied Microbiology and Biotechnology, 2019, 103, 9217-9228.	1.7	42
824	Dietary wood pulp-derived sterols modulation of cholesterol metabolism and gut microbiota in high-fat-diet-fed hamsters. Food and Function, 2019, 10, 775-785.	2.1	48
825	Microbiote intestinal, lipides alimentaires et maladies métaboliques. Cahiers De Nutrition Et De Dietetique, 2019, 54, 347-353.	0.2	0
826	Altered microbiota, fecal lactate, and fecal bile acids in dogs with gastrointestinal disease. PLoS ONE, 2019, 14, e0224454.	1.1	61

#	Article	IF	CITATIONS
827	Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nature Communications, 2019, 10, 4971.	5.8	418
828	Potential Role of Gut Microbiota in Induction and Regulation of Innate Immune Memory. Frontiers in Immunology, 2019, 10, 2441.	2.2	136
829	Longâ€ŧerm impact of tylosin on fecal microbiota and fecal bile acids of healthy dogs. Journal of Veterinary Internal Medicine, 2019, 33, 2605-2617.	0.6	67
830	Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far?. Diseases (Basel, Switzerland), 2019, 7, 58.	1.0	84
831	The Cholesterol-Lowering Effect of Oats and Oat Beta Glucan: Modes of Action and Potential Role of Bile Acids and the Microbiome. Frontiers in Nutrition, 2019, 6, 171.	1.6	104
832	Pursuing Human-Relevant Gut Microbiota-Immune Interactions. Immunity, 2019, 51, 225-239.	6.6	105
833	A Reasonable Diet Promotes Balance of Intestinal Microbiota: Prevention of Precolorectal Cancer. BioMed Research International, 2019, 2019, 1-10.	0.9	37
834	Gut Microbiome and Response to Cardiovascular Drugs. Circulation Genomic and Precision Medicine, 2019, 12, 421-429.	1.6	74
835	Genetic determinants of gut microbiota composition and bile acid profiles in mice. PLoS Genetics, 2019, 15, e1008073.	1.5	75
836	Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell, 2019, 178, 1313-1328.e13.	13.5	402
837	Promotion and induction of liver cancer by gut microbiome-mediated modulation of bile acids. PLoS Pathogens, 2019, 15, e1007954.	2.1	37
838	Wheat Gluten Regulates Cholesterol Metabolism by Modulating Gut Microbiota in Hamsters with Hyperlipidemia. Journal of Oleo Science, 2019, 68, 909-922.	0.6	11
839	Norovirus encounters in the gut: multifaceted interactions and disease outcomes. Mucosal Immunology, 2019, 12, 1259-1267.	2.7	26
840	Regulation of bile acid metabolism-related signaling pathways by gut microbiota in diseases. Journal of Zhejiang University: Science B, 2019, 20, 781-792.	1.3	31
841	Diet–microbiota interactions and personalized nutrition. Nature Reviews Microbiology, 2019, 17, 742-753.	13.6	514
842	Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients, 2019, 11, 2231.	1.7	227
843	Dramatic Remodeling of the Gut Microbiome Around Parturition and Its Relationship With Host Serum Metabolic Changes in Sows. Frontiers in Microbiology, 2019, 10, 2123.	1.5	22
844	Microbiome dysbiosis and alcoholic liver disease. Liver Research, 2019, 3, 218-226.	0.5	28

#	Article	IF	CITATIONS
845	An in vitro model maintaining taxon-specific functional activities of the gut microbiome. Nature Communications, 2019, 10, 4146.	5.8	70
846	Interplay between the human gut microbiome and host metabolism. Nature Communications, 2019, 10, 4505.	5.8	450
847	Metabolic functions of the human gut microbiota: the role of metalloenzymes. Natural Product Reports, 2019, 36, 593-625.	5.2	59
848	The role of chronic kidney disease-associated dysbiosis in cardiovascular disease. Experimental Biology and Medicine, 2019, 244, 514-525.	1.1	18
849	The application of omics techniques to understand the role of the gut microbiota in inflammatory bowel disease. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481882225.	1.4	49
850	In vitro assessment of pediococci- and lactobacilli-induced cholesterol-lowering effect using digitally enhanced high-performance thin-layer chromatography and confocal microscopy. Analytical and Bioanalytical Chemistry, 2019, 411, 1181-1192.	1.9	7
851	Bacterial Metabolism of Steroids. , 2019, , 315-336.		4
852	An Integrated Approach to Recognize Potential Protective Effects of Culinary Herbs Against Chronic Diseases. Journal of Healthcare Informatics Research, 2019, 3, 184-199.	5.3	5
853	Role for diet in normal gut barrier function: developing guidance within the framework of food-labeling regulations. American Journal of Physiology - Renal Physiology, 2019, 317, G17-G39.	1.6	60
854	The Intervention Effect of Traditional Chinese Medicine on the Intestinal Flora and Its Metabolites in Glycolipid Metabolic Disorders. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-13.	0.5	23
855	The path toward using microbial metabolites as therapies. EBioMedicine, 2019, 44, 747-754.	2.7	67
856	Save your gut save your age: The role of the microbiome in stem cell ageing. Journal of Cellular and Molecular Medicine, 2019, 23, 4866-4875.	1.6	22
857	Gut microbiota determines the prevention effects of <i>Luffa cylindrica</i> (L.) Roem supplementation against obesity and associated metabolic disorders induced by highâ€fat diet. FASEB Journal, 2019, 33, 10339-10352.	0.2	47
858	Bile salt deconjugation activity of Propionibacterium strains and their cholesterol coâ€precipitation abilities. International Journal of Dairy Technology, 2019, 72, 551-558.	1.3	3
859	The PPAR–microbiota–metabolic organ trilogy to fineâ€ŧune physiology. FASEB Journal, 2019, 33, 9706-9730.	0.2	46
860	The Role of the Human Microbiome in Chemical Toxicity. International Journal of Toxicology, 2019, 38, 251-264.	0.6	34
861	Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability. Molecular Carcinogenesis, 2019, 58, 1531-1550.	1.3	41
862	Asparagine 79 is an important amino acid for catalytic activity and substrate specificity of bile salt hydrolase (BSH). Molecular Biology Reports, 2019, 46, 4361-4368.	1.0	3

#	Article	IF	CITATIONS
863	Cryopreservation of the human gut microbiota: Current state and perspectives. International Journal of Medical Microbiology, 2019, 309, 259-269.	1.5	11
864	Childhood growth and neurocognition are associated with distinct sets of metabolites. EBioMedicine, 2019, 44, 597-606.	2.7	27
865	Signaling from Intestine to the Host: How Bile Acids Regulate Intestinal and Liver Immunity. Handbook of Experimental Pharmacology, 2019, 256, 95-108.	0.9	29
866	Gut Microbiota Plays a Central Role to Modulate the Plasma and Fecal Metabolomes in Response to Angiotensin II. Hypertension, 2019, 74, 184-193.	1.3	70
867	Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	272
868	Fecal Microbial Communities in a Large Representative Cohort of California Dairy Cows. Frontiers in Microbiology, 2019, 10, 1093.	1.5	60
869	Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. American Journal of Pathology, 2019, 189, 1300-1310.	1.9	31
870	A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. Npj Biofilms and Microbiomes, 2019, 5, 14.	2.9	85
871	Metabolic Profiling in IBD. , 2019, , 303-312.		0
872	The Ser/Thr Kinase PrkC Participates in Cell Wall Homeostasis and Antimicrobial Resistance in Clostridium difficile. Infection and Immunity, 2019, 87, .	1.0	28
873	Metabolomics analysis of herb-partitioned moxibustion treatment on rats with diarrhea-predominant irritable bowel syndrome. Chinese Medicine, 2019, 14, 18.	1.6	19
874	Isotopic dilution method for bile acid profiling reveals new sulfate glycine-conjugated dihydroxy bile acids and glucuronide bile acids in serum. Journal of Pharmaceutical and Biomedical Analysis, 2019, 173, 1-17.	1.4	14
875	Probiotics: current landscape and future horizons. Future Science OA, 2019, 5, FSO391.	0.9	52
876	Interactions of bile acids and the gut microbiota: learning from the differences in <i>Clostridium difficile</i> infection between children and adults. Physiological Genomics, 2019, 51, 218-223.	1.0	16
877	Bile acid signaling in renal water regulation. American Journal of Physiology - Renal Physiology, 2019, 317, F73-F76.	1.3	12
878	Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome, 2019, 7, 75.	4.9	215
879	Bile-ology: from bench to bedside. Journal of Zhejiang University: Science B, 2019, 20, 414-427.	1.3	13
880	Synthetic gutomics: Deciphering the microbial code for futuristic diagnosis and personalized medicine. Methods in Microbiology, 2019, 46, 197-225.	0.4	9

#	Article	IF	Citations
881	Interactions between noroviruses, the host, and the microbiota. Current Opinion in Virology, 2019, 37, 1-9.	2.6	28
882	High-fat diet reduces the level of secretory immunoglobulin A coating of commensal gut microbiota. Bioscience of Microbiota, Food and Health, 2019, 38, 55-64.	0.8	27
883	Role of Bile Acids in Bariatric Surgery. Frontiers in Physiology, 2019, 10, 374.	1.3	49
884	The role of gut microbiota in liver disease development and treatment. Liver Research, 2019, 3, 3-18.	0.5	35
885	Chemoproteomic Profiling of Gut Microbiota-Associated Bile Salt Hydrolase Activity. ACS Central Science, 2019, 5, 867-873.	5.3	54
886	The potential of nanoflow liquid chromatography-nano electrospray ionisation-mass spectrometry for global profiling the faecal metabolome. Journal of Chromatography A, 2019, 1600, 127-136.	1.8	18
887	Screening for Cholesterol-Lowering Probiotics from Lactic Acid Bacteria Isolated from Corn Silage Based on Three Hypothesized Pathways. International Journal of Molecular Sciences, 2019, 20, 2073.	1.8	37
888	Preclinical evaluation of the maximum tolerated dose and toxicokinetics of enteric-coated lantibiotic OG253 capsules. Toxicology and Applied Pharmacology, 2019, 374, 32-40.	1.3	6
889	The Autotransporter IcsA Promotes Shigella flexneri Biofilm Formation in the Presence of Bile Salts. Infection and Immunity, 2019, 87, .	1.0	23
890	Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicology Letters, 2019, 312, 72-97.	0.4	106
891	Applications of "Omics―Technologies to Study Gut Health in Poultry. , 2019, , 211-234.		2
892	Interactions Between Food and Gut Microbiota: Impact on Human Health. Annual Review of Food Science and Technology, 2019, 10, 389-408.	5.1	52
893	LC-MSMS characterisations of scymnol and oxoscymnol biotransformations in incubation mixtures of rat liver microsomes. Biochimie, 2019, 160, 130-140.	1.3	1
894	Microbiota Diversity in Human Colorectal Cancer Tissues Is Associated with Clinicopathological Features. Nutrition and Cancer, 2019, 71, 214-222.	0.9	21
895	Saccharomyces boulardii CNCM I-745 Modulates the Fecal Bile Acids Metabolism During Antimicrobial Therapy in Healthy Volunteers. Frontiers in Microbiology, 2019, 10, 336.	1.5	18
896	In Vitro Methods to Study Colon Release: State of the Art and An Outlook on New Strategies for Better In-Vitro Biorelevant Release Media. Pharmaceutics, 2019, 11, 95.	2.0	38
897	Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut–liver axis. Proceedings of the Nutrition Society, 2019, 78, 319-328.	0.4	84
898	Alterations of Bile Acids and Gut Microbiota in Obesity Induced by High Fat Diet in Rat Model. Journal of Agricultural and Food Chemistry, 2019, 67, 3624-3632.	2.4	159

#	Article	IF	CITATIONS
899	Bile salt hydrolases: Gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathogens, 2019, 15, e1007581.	2.1	163
901	Alteration of Bile Acid Metabolism by a High-Fat Diet Is Associated with Plasma Transaminase Activities and Glucose Intolerance in Rats. Journal of Nutritional Science and Vitaminology, 2019, 65, 45-51.	0.2	30
902	Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis. Molecular Carcinogenesis, 2019, 58, 1155-1167.	1.3	81
903	Gastrointestinal Tract: Microbial Metabolism of Steroids. , 2019, , 1-11.		2
904	Mining the microbiota for microbial and metabolite-based immunotherapies. Nature Reviews Immunology, 2019, 19, 305-323.	10.6	211
905	Determination of free and conjugated bile acids in serum of Apoe(â^'/â^') mice fed different lingonberry fractions by UHPLC-MS. Scientific Reports, 2019, 9, 3800.	1.6	24
906	Undernutrition Shapes the Gut Microbiota and Bile Acid Profile in Association with Altered Gut-Liver FXR Signaling in Weaning Pigs. Journal of Agricultural and Food Chemistry, 2019, 67, 3691-3701.	2.4	36
907	Intestinal Bacteria Interplay With Bile and Cholesterol Metabolism: Implications on Host Physiology. Frontiers in Physiology, 2019, 10, 185.	1.3	171
908	Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. International Journal of Molecular Sciences, 2019, 20, 1214.	1.8	270
909	Establishment of Listeria monocytogenes in the Gastrointestinal Tract. Microorganisms, 2019, 7, 75.	1.6	33
910	The influence of the host microbiome on 3,4-methylenedioxymethamphetamine (MDMA)-induced hyperthermia and vice versa. Scientific Reports, 2019, 9, 4313.	1.6	19
911	Anatomy and Physiology of the Small Intestine. , 2019, , 817-841.		23
912	Construction of R16F and D19L mutations in the loop I of bile salt hydrolase (BSH) enzyme from <i>Lactobacillus plantarum</i> B14 and structural and functional analysis of the mutant BSHs. Food Biotechnology, 2019, 33, 125-141.	0.6	3
913	Anatomy and physiology of the nutritional system. Molecular Aspects of Medicine, 2019, 68, 101-107.	2.7	21
914	Stereoselective Oxidation Kinetics of Deoxycholate in Recombinant and Microsomal CYP3A Enzymes: Deoxycholate 19-Hydroxylation Is an In Vitro Marker of CYP3A7 Activity. Drug Metabolism and Disposition, 2019, 47, 574-581.	1.7	17
915	Microbiome—Microbial Metabolome—Cancer Cell Interactions in Breast Cancer—Familiar, but Unexplored. Cells, 2019, 8, 293.	1.8	123
916	Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunology, 2019, 12, 851-861.	2.7	192
917	Microbial Metabolites in Cancer Promotion or Prevention. Current Cancer Research, 2019, , 317-346.	0.2	4

	CITATION	n Report	
#	ARTICLE Ablation of gut microbiota alleviates obesity-induced hepatic steatosis and glucose intolerance by	IF	CITATIONS
918	modulating bile acid metabolism in hamsters. Acta Pharmaceutica Sinica B, 2019, 9, 702-710.	5.7	121
919	Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacological Research, 2019, 142, 176-191.	3.1	244
920	Association of gut dysbiosis with intestinal metabolites in response to antibiotic treatment. Human Microbiome Journal, 2019, 11, 100054.	3.8	14
921	Role of the Microbiome in Intestinal Barrier Function and Immune Defense. , 2019, , 127-138.		3
922	The Cross Talk Between Bile Acids and Intestinal Microbiota. , 2019, , 139-145.		0
923	An extendable all-in-one injection twin derivatization LC-MS/MS strategy for the absolute quantification of multiple chemical-group-based submetabolomes. Analytica Chimica Acta, 2019, 1063, 99-109.	2.6	22
924	Clostridium scindens ATCC 35704: Integration of Nutritional Requirements, the Complete Genome Sequence, and Clobal Transcriptional Responses to Bile Acids. Applied and Environmental Microbiology, 2019, 85, .	1.4	35
925	Lactobacillus mucosae DPC 6426 as a bile-modifying and immunomodulatory microbe. BMC Microbiology, 2019, 19, 33.	1.3	27
926	Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent <i>Clostridioides difficile</i> infection. Gut, 2019, 68, 1791-1800.	6.1	182
927	A continuous fluorescence assay for simple quantification of bile salt hydrolase activity in the gut microbiome. Scientific Reports, 2019, 9, 1359.	1.6	16
928	Man and the Microbiome: A New Theory of Everything?. Annual Review of Clinical Psychology, 2019, 15, 371-398.	6.3	65
929	Relationship between remote cholecystectomy and incident Clostridioides difficile infection. Clinical Microbiology and Infection, 2019, 25, 994-999.	2.8	7
930	Intestinal Macromolecular Transport Supporting AdaptiveÂImmunity. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 729-737.	2.3	13
931	Chapter 20 Enzymes as an alternative to antibiotics: an overview. , 2019, , 351-371.		6
932	<i>Shigella flexneri</i> Adherence Factor Expression in <i>In Vivo</i> -Like Conditions. MSphere, 2019, 4, .	1.3	21
933	Circulating bile acid profiles in Japanese patients with NASH. GastroHep, 2019, 1, 302-310.	0.3	7
934	Plant-Based Diets in the Reduction of Body Fat: Physiological Effects and Biochemical Insights. Nutrients, 2019, 11, 2712.	1.7	59
936	Habitual animal fat consumption in shaping gut microbiota and microbial metabolites. Food and Function, 2019, 10, 7973-7982.	2.1	22

#	Article	IF	CITATIONS
937	Metabolic Modeling of Clostridium difficile Associated Dysbiosis of the Gut Microbiota. Processes, 2019, 7, 97.	1.3	9
938	Comprehensive and semi-quantitative analysis of carboxyl-containing metabolites related to gut microbiota on chronic kidney disease using 2-picolylamine isotopic labeling LC-MS/MS. Scientific Reports, 2019, 9, 19075.	1.6	22
939	Gut microbiome and cardiometabolic risk. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 399-406.	2.6	23
940	Enteric hyperoxaluria. Current Opinion in Nephrology and Hypertension, 2019, 28, 352-359.	1.0	21
941	Bile acid metabolites control TH17 and Treg cell differentiation. Nature, 2019, 576, 143-148.	13.7	695
942	Gut Microbiota Dysbiosis Is Associated with Altered Bile Acid Metabolism in Infantile Cholestasis. MSystems, 2019, 4, .	1.7	39
943	Effective fecal microbiota transplantation for recurrent <i>Clostridioides difficile</i> infection in humans is associated with increased signalling in the bile acid-farnesoid X receptor-fibroblast growth factor pathway. Gut Microbes, 2019, 10, 142-148.	4.3	44
944	Bile acid homeostasis in gastrointestinal and metabolic complications of cystic fibrosis. Journal of Cystic Fibrosis, 2019, 18, 313-320.	0.3	18
945	Altered Microbiome in Patients With Cirrhosis and Complications. Clinical Gastroenterology and Hepatology, 2019, 17, 307-321.	2.4	105
946	Developments in bile salt based therapies: A critical overview. Biochemical Pharmacology, 2019, 161, 1-13.	2.0	56
947	<i>In vitro</i> and <i>in vivo</i> characterization of <i>Clostridium scindens</i> bile acid transformations. Gut Microbes, 2019, 10, 481-503.	4.3	70
948	The role of the microbiome in <scp>NAFLD</scp> and <scp>NASH</scp> . EMBO Molecular Medicine, 2019, 11, .	3.3	368
949	Dietary metabolism, the gut microbiome, and heart failure. Nature Reviews Cardiology, 2019, 16, 137-154.	6.1	449
950	Clinical Application and Potential of Fecal Microbiota Transplantation. Annual Review of Medicine, 2019, 70, 335-351.	5.0	184
951	Pharmacological Activation of PXR and CAR Downregulates Distinct Bile Acid-Metabolizing Intestinal Bacteria and Alters Bile Acid Homeostasis. Toxicological Sciences, 2019, 168, 40-60.	1.4	33
952	Bile salt hydrolase activity is present in nonintestinal lactic acid bacteria at an intermediate level. Applied Microbiology and Biotechnology, 2019, 103, 893-902.	1.7	26
953	Functional roles of gut bacteria imbalance in cholangiopathies. Liver Research, 2019, 3, 40-45.	0.5	6
954	Continuum of Host-Gut Microbial Co-metabolism: Host CYP3A4/3A7 are Responsible for Tertiary Oxidations of Deoxycholate Species. Drug Metabolism and Disposition. 2019. 47, 283-294.	1.7	19

		ON REPORT	
#	Article	IF	CITATIONS
955	Impact of Gut Microbiota on Host Glycemic Control. Frontiers in Endocrinology, 2019, 10, 29.	1.5	133
956	Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease. Expert Review of Gastroenterology and Hepatology, 2019, 13, 193-204.	1.4	82
957	Bile Acid 7α-Dehydroxylating Gut Bacteria Secrete Antibiotics that Inhibit Clostridium difficile: Role of Secondary Bile Acids. Cell Chemical Biology, 2019, 26, 27-34.e4.	2.5	134
958	Obesity, diabetes, and the gut microbiome: an updated review. Expert Review of Gastroenterology and Hepatology, 2019, 13, 3-15.	1.4	139
959	Enlisting commensal microbes to resist antibiotic-resistant pathogens. Journal of Experimental Medicine, 2019, 216, 10-19.	4.2	51
960	Transcriptome analysis of grass carp provides insights into disease-related genes and novel regulation pattern of bile acid feedback in response to lithocholic acid. Aquaculture, 2019, 500, 613-621.	1.7	21
961	Influence of the Human Gut Microbiome on the Metabolic Phenotype. , 2019, , 535-560.		13
962	Altered bile acid profile associates with cognitive impairment in Alzheimer's disease—An emerging role for gut microbiome. Alzheimer's and Dementia, 2019, 15, 76-92.	0.4	396
963	Cellular Regulation of Peripheral Serotonin. , 2019, , 137-153.		3
964	Analysis of metabolome changes in the bile acid pool in feces and plasma of antibiotic-treated rats. Toxicology and Applied Pharmacology, 2019, 363, 79-87.	1.3	43
965	Headspace Gas Monitoring of Gut Microbiota Using Targeted and Globally Optimized Targeted Secondary Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2019, 91, 854-863.	3.2	20
966	Thinking Outside the Cereal Box: Noncarbohydrate Routes for Dietary Manipulation of the Gut Microbiota. Applied and Environmental Microbiology, 2019, 85, .	1.4	14
967	Gut microbiota and inflammation in chronic kidney disease and their roles in the development of cardiovascular disease. Hypertension Research, 2019, 42, 123-140.	1.5	72
968	Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. Journal of Lipid Research, 2019, 60, 323-332.	2.0	149
969	Prevention of Cell Growth by Suppression of Villin Expression in Lithocholic Acid-Stimulated HepG2 Cells. Journal of Histochemistry and Cytochemistry, 2019, 67, 129-141.	1.3	5
970	IVACAFTOR restores FGF19 regulated bile acid homeostasis in cystic fibrosis patients with an S1251N or a G551D gating mutation. Journal of Cystic Fibrosis, 2019, 18, 286-293.	0.3	26
971	Targeting the gut microbiota by dietary nutrients: A new avenue for human health. Critical Reviews in Food Science and Nutrition, 2019, 59, 181-195.	5.4	38
972	Roux-en-Y Gastric-Bypass and sleeve gastrectomy induces specific shifts of the gut microbiota without altering the metabolism of bile acids in the intestinal lumen. International Journal of Obesity, 2019, 43, 428-431.	1.6	19

#	ARTICLE	IF	CITATIONS
973	Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Critical Reviews in Food Science and Nutrition, 2020, 60, 1025-1037.	5.4	73
974	The â€~ <i>in vivo</i> lifestyle' of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice. Gut Microbes, 2020, 11, 381-404.	4.3	80
975	Microbiome and Metabolome Profiles Associated With Different Types of Short Bowel Syndrome: Implications for Treatment. Journal of Parenteral and Enteral Nutrition, 2020, 44, 105-118.	1.3	24
976	Unconjugated and secondary bile acid profiles in response to higher-fat, lower-carbohydrate diet and associated with related gut microbiota: A 6-month randomized controlled-feeding trial. Clinical Nutrition, 2020, 39, 395-404.	2.3	56
977	Comprehensive Analysis of Serum and Fecal Bile Acid Profiles and Interaction with Gut Microbiota in Primary Biliary Cholangitis. Clinical Reviews in Allergy and Immunology, 2020, 58, 25-38.	2.9	86
978	Diversification of host bile acids by members of the gut microbiota. Gut Microbes, 2020, 11, 158-171.	4.3	278
979	Gut microbial profile in biliary atresia: a caseâ€control study. Journal of Gastroenterology and Hepatology (Australia), 2020, 35, 334-342.	1.4	31
980	The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: An old story, yet mesmerizing. International Journal of Cancer, 2020, 146, 1780-1790.	2.3	74
981	Human milk and infant formula differentially alters the microbiota composition and functional gene relative abundance in the small and large intestines in weanling rats. European Journal of Nutrition, 2020, 59, 2131-2143.	1.8	7
982	Prediagnostic Plasma Bile Acid Levels and Colon Cancer Risk: A Prospective Study. Journal of the National Cancer Institute, 2020, 112, 516-524.	3.0	69
983	Metabolic Analysis of Regionally Distinct Gut Microbial Communities Using an <i>In Vitro</i> Platform. Journal of Agricultural and Food Chemistry, 2020, 68, 13056-13067.	2.4	10
984	The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease. Nutrients, 2020, 12, 79.	1.7	52
985	Naturally Occurring TPE-CA Maintains Gut Microbiota and Bile Acids Homeostasis via FXR Signaling Modulation of the Liver–Gut Axis. Frontiers in Pharmacology, 2020, 11, 12.	1.6	37
986	Relationship between bile salts, bacterial translocation, and duodenal mucosal integrity in functional dyspepsia. Neurogastroenterology and Motility, 2020, 32, e13788.	1.6	22
987	Structurally different mixed linkage β-glucan supplements differentially increase secondary bile acid excretion in hypercholesterolaemic rat faeces. Food and Function, 2020, 11, 514-523.	2.1	9
988	Mechanisms of Parenteral Nutrition–Associated Liver and Gut Injury. Nutrition in Clinical Practice, 2020, 35, 63-71.	1.1	48
989	Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2020, 199, 105567.	1.2	28
990	Microbial bile acid metabolites modulate gut RORÎ ³ +Âregulatory T cell homeostasis. Nature, 2020, 577, 410-415.	13.7	568

#	Article	IF	CITATIONS
991	Chemical Mechanisms of Colonization Resistance by the Gut Microbial Metabolome. ACS Chemical Biology, 2020, 15, 1119-1126.	1.6	15
992	Bile acid metabolism in fish: disturbances caused by fishmeal alternatives and some mitigating effects from dietary bile inclusions. Reviews in Aquaculture, 2020, 12, 1792-1817.	4.6	57
993	Bile Acids in Patients with Uncontrolled Type 2 Diabetes Mellitus – The Effect of Two Days of Oatmeal Treatment. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 624-630.	0.6	9
994	Mechanism of Asbt (<i>Slc10a2</i>)-related bile acid malabsorption in diarrhea after pelvic radiation. International Journal of Radiation Biology, 2020, 96, 510-519.	1.0	9
995	A second-generation micro/nano capsules of an endogenous primary un-metabolised bile acid, stabilized by Eudragit-alginate complex with antioxidant compounds. Saudi Pharmaceutical Journal, 2020, 28, 165-171.	1.2	17
996	The relationship between fecal bile acids and microbiome community structure in pediatric Crohn's disease. ISME Journal, 2020, 14, 702-713.	4.4	59
997	Beneficial Effects of Dietary Polyphenols on High-Fat Diet-Induced Obesity Linking with Modulation of Gut Microbiota. Journal of Agricultural and Food Chemistry, 2020, 68, 33-47.	2.4	123
998	The Role of Gut Microbiota in Host Lipid Metabolism: An Eye on Causation and Connection. Small Methods, 2020, 4, 1900604.	4.6	3
999	Quantification of bile acids: a mass spectrometry platform for studying gut microbe connection to metabolic diseases. Journal of Lipid Research, 2020, 61, 159-177.	2.0	42
1000	Benzene exposure induces gut microbiota dysbiosis and metabolic disorder in mice. Science of the Total Environment, 2020, 705, 135879.	3.9	39
1001	Expert insights: The potential role of the gut microbiomeâ€bile acidâ€brain axis in the development and progression of Alzheimer's disease and hepatic encephalopathy. Medicinal Research Reviews, 2020, 40, 1496-1507.	5.0	45
1002	Improvements in Metabolic Syndrome by Xanthohumol Derivatives Are Linked to Altered Gut Microbiota and Bile Acid Metabolism. Molecular Nutrition and Food Research, 2020, 64, e1900789.	1.5	32
1003	Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiology Ecology, 2020, 96, .	1.3	57
1004	Bile salt metabolism is not the only factor contributing to <i>Clostridioides</i> (<i>Clostridium</i>) <i>difficile</i> disease severity in the murine model of disease. Gut Microbes, 2020, 11, 481-496.	4.3	12
1005	Associations between Dietary Patterns and Bile Acids—Results from a Cross-Sectional Study in Vegans and Omnivores. Nutrients, 2020, 12, 47.	1.7	50
1006	Bile Acids and FXR: Novel Targets for Liver Diseases. Frontiers in Medicine, 2020, 7, 544.	1.2	105
1007	How strong is the evidence that gut microbiota composition can be influenced by lifestyle interventions in a cardio-protective way?. Atherosclerosis, 2020, 311, 124-142.	0.4	18
1008	Gut Microbiome Changes in Patients with Active Left-Sided Ulcerative Colitis after Fecal Microbiome Transplantation and Topical 5-aminosalicylic Acid Therapy. Cells, 2020, 9, 2283.	1.8	37

#	Article	IF	CITATIONS
1009	Gut-liver crosstalk in sepsis-induced liver injury. Critical Care, 2020, 24, 614.	2.5	79
1010	Imidacloprid disturbed the gut barrier function and interfered with bile acids metabolism in mice. Environmental Pollution, 2020, 266, 115290.	3.7	36
1011	Gut microbiota from coronary artery disease patients contributes to vascular dysfunction in mice by regulating bile acid metabolism and immune activation. Journal of Translational Medicine, 2020, 18, 382.	1.8	32
1012	Swine gut microbiota and its interaction with host nutrient metabolism. Animal Nutrition, 2020, 6, 410-420.	2.1	41
1013	Immunology: How the Microbiota Digests Bile toÂProtect against Viral Infection. Current Biology, 2020, 30, R1271-R1272.	1.8	0
1014	12α-Hydroxylated bile acid induces hepatic steatosis with dysbiosis in rats. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158811.	1.2	16
1015	Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nature Communications, 2020, 11, 5015.	5.8	184
1016	Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation. Gut Microbes, 2020, 12, 1819155.	4.3	72
1017	Bile acid composition regulates the manganese transporter Slc30a10 in intestine. Journal of Biological Chemistry, 2020, 295, 12545-12558.	1.6	18
1018	The benefit of elobixibat in chronic constipation is associated with faecal deoxycholic acid but not effects of altered microbiota. Alimentary Pharmacology and Therapeutics, 2020, 52, 821-828.	1.9	19
1019	Deep in the Bowel: Highly Interpretable Neural Encoder-Decoder Networks Predict Gut Metabolites from Gut Microbiome. BMC Genomics, 2020, 21, 256.	1.2	34
1020	The Great ESKAPE: Exploring the Crossroads of Bile and Antibiotic Resistance in Bacterial Pathogens. Infection and Immunity, 2020, 88, .	1.0	15
1021	Biogeography of microbial bile acid transformations along the murine gut. Journal of Lipid Research, 2020, 61, 1450-1463.	2.0	61
1022	The Intestinal Microbiome Restricts Alphavirus Infection and Dissemination through a Bile Acid-Type I IFN Signaling Axis. Cell, 2020, 182, 901-918.e18.	13.5	98
1023	Research Note: Evaluation of deoxycholic acid for antihistomonal activity. Poultry Science, 2020, 99, 3481-3486.	1.5	3
1024	A Revised Understanding of Clostridioides difficile Spore Germination. Trends in Microbiology, 2020, 28, 744-752.	3.5	26
1025	Bile acids regulate intestinal antigen presentation and reduce graft-versus-host disease without impairing the graft-versus-leukemia effect. Haematologica, 2021, 106, 2131-2146.	1.7	26
1026	Can You Trust Your Gut? Implicating a Disrupted Intestinal Microbiome in the Progression of NAFLD/NASH. Frontiers in Endocrinology, 2020, 11, 592157.	1.5	28

#	Article	IF	CITATIONS
1027	Comparative Review of the Responses of Listeria monocytogenes and Escherichia coli to Low pH Stress. Genes, 2020, 11, 1330.	1.0	43
1028	Gut Microbiota-Bile Acid Crosstalk in Diarrhea-Irritable Bowel Syndrome. BioMed Research International, 2020, 2020, 1-16.	0.9	42
1029	Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Medicine, 2020, 12, 102.	3.6	86
1030	The pathophysiology of bile acid diarrhoea: differences in the colonic microbiome, metabolome and bile acids. Scientific Reports, 2020, 10, 20436.	1.6	27
1031	Lithocholic bile acid induces apoptosis in human nephroblastoma cells: a non-selective treatment option. Scientific Reports, 2020, 10, 20349.	1.6	20
1032	Anti-Adipogenic Effect of Theabrownin Is Mediated by Bile Acid Alternative Synthesis via Gut Microbiota Remodeling. Metabolites, 2020, 10, 475.	1.3	31
1033	Achieving delayed release of freeze-dried probiotic strains by extrusion, spheronization and fluid bed coating - evaluated using a three-step in vitro model. International Journal of Pharmaceutics, 2020, 591, 120022.	2.6	14
1034	Human sapovirus propagation in human cell lines supplemented with bile acids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32078-32085.	3.3	22
1035	Clinical evaluation of an evidence-based method based on food characteristics to adjust pancreatic enzyme supplements dose in cystic fibrosis. Journal of Cystic Fibrosis, 2021, 20, e33-e39.	0.3	11
1036	Early Nutrition and Risk of Type 1 Diabetes: The Role of Gut Microbiota. Frontiers in Nutrition, 2020, 7, 612377.	1.6	8
1037	Recovery of gut microbiota in mice exposed to tetracycline hydrochloride and their correlation with host metabolism. Ecotoxicology, 2021, 30, 1620-1631.	1.1	6
1038	Constitutive Androstane Receptor: A Peripheral and a Neurovascular Stress or Environmental Sensor. Cells, 2020, 9, 2426.	1.8	13
1039	Pathogenicity and virulence regulation of <i>Vibrio cholerae</i> at the interface of host-gut microbiome interactions. Virulence, 2020, 11, 1582-1599.	1.8	28
1040	Ruggedness testing of liquid chromatography-tandem mass spectrometry system components using microbiome-relevant methods and matrices. Journal of Microbiological Methods, 2020, 177, 106020.	0.7	1
1041	Gut Microbiota and Liver Interaction through Immune System Cross-Talk: A Comprehensive Review at the Time of the SARS-CoV-2 Pandemic. Journal of Clinical Medicine, 2020, 9, 2488.	1.0	28
1042	MDM2-Dependent Rewiring of Metabolomic and Lipidomic Profiles in Dedifferentiated Liposarcoma Models. Cancers, 2020, 12, 2157.	1.7	9
1043	Simple Analysis of Primary and Secondary Bile Salt Hydrolysis in Mouse and Human Gut Microbiome Samples by Using Fluorogenic Substrates. ChemBioChem, 2020, 21, 3539-3543.	1.3	6
1044	Bacterial Alterations in Post-Cholecystectomy Patients Are Associated With Colorectal Cancer. Frontiers in Oncology, 2020, 10, 1418.	1.3	29

#	Article	IF	CITATIONS
1045	Autoimmune Hepatitis: Shifts in Gut Microbiota and Metabolic Pathways among Egyptian Patients. Microorganisms, 2020, 8, 1011.	1.6	31
1046	Past, Present, and Future of Gastrointestinal Microbiota Research in Cats. Frontiers in Microbiology, 2020, 11, 1661.	1.5	22
1047	A commercial grain-free diet does not decrease plasma amino acids and taurine status but increases bile acid excretion when fed to Labrador Retrievers. Translational Animal Science, 2020, 4, txaa141.	0.4	16
1048	Impact of Microbiome on Hepatic Metabolizing Enzymes and Transporters in Mice during Pregnancy. Drug Metabolism and Disposition, 2020, 48, 708-722.	1.7	6
1049	Lipid Species in the GI Tract are Increased by the Commensal Fungus Candida albicans and Decrease the Virulence of Clostridioides difficile. Journal of Fungi (Basel, Switzerland), 2020, 6, 100.	1.5	5
1050	Review of parenteral nutrition-associated liver disease. Clinical and Experimental Hepatology, 2020, 6, 65-73.	0.6	17
1051	Melatonin Alleviates Neuroinflammation and Metabolic Disorder in DSS-Induced Depression Rats. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-17.	1.9	56
1052	The role of the stem cell epigenome in normal aging and rejuvenative therapy. Human Molecular Genetics, 2020, 29, R236-R247.	1.4	4
1053	Polyphenol-induced improvements in glucose metabolism are associated with bile acid signaling to intestinal farnesoid X receptor. BMJ Open Diabetes Research and Care, 2020, 8, e001386.	1.2	21
1054	Genome-Wide Transcriptome Profiling Provides Insight on Cholesterol and Lithocholate Degradation Mechanisms in Nocardioides simplex VKM Ac-2033D. Genes, 2020, 11, 1229.	1.0	8
1055	High Rumen-Degradable Starch Diet Promotes Hepatic Lipolysis and Disrupts Enterohepatic Circulation of Bile Acids in Dairy Goats. Journal of Nutrition, 2020, 150, 2755-2763.	1.3	12
1056	The intestinal microbiome is a co-determinant of the postprandial plasma glucose response. PLoS ONE, 2020, 15, e0238648.	1.1	9
1057	Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. Journal of Clinical Medicine, 2020, 9, 2648.	1.0	93
1058	Gut microbes from the phylogenetically diverse genus <i>Eubacterium</i> and their various contributions to gut health. Gut Microbes, 2020, 12, 1802866.	4.3	238
1059	Mechanisms of Interactions between Bile Acids and Plant Compounds—A Review. International Journal of Molecular Sciences, 2020, 21, 6495.	1.8	40
1060	Understanding the mechanisms of efficacy of fecal microbiota transplant in treating recurrent <i>Clostridioides difficile</i> infection and beyond: the contribution of gut microbial-derived metabolites. Gut Microbes, 2020, 12, 1810531.	4.3	32
1061	Gut Microbiota between Environment and Genetic Background in Familial Mediterranean Fever (FMF). Genes, 2020, 11, 1041.	1.0	16
1062	Influence of Iron on the Gut Microbiota in Colorectal Cancer. Nutrients, 2020, 12, 2512.	1.7	20

ARTICLE IF CITATIONS Intestinal organoids: a model to study the role of microbiota in the colonic tumor 1063 1.0 6 microenvironment. Future Microbiology, 2020, 15, 1583-1594. Mechanisms of Colonization Resistance Against <i>Clostridioides difficile</i>. Journal of Infectious 1064 1.9 19 Diseases, 2021, 223, S194-S200. Neonatal Diet Impacts the Large Intestine Luminal Metabolome at Weaning and Post-Weaning in Piglets 1065 2.2 5 Fed Formula or Human Milk. Frontiers in Immunology, 2020, 11, 607609. The Function and Role of the Th17/Treg Cell Balance in Inflammatory Bowel Disease. Journal of 1066 0.9 140 Immunology Research, 2020, 2020, 1-8. Sphincter of Oddi laxity alters bile duct microbiota and contributes to the recurrence of 1067 0.7 14 choledocholithiasis. Annals of Translational Medicine, 2020, 8, 1383-1383. High-Fat Diets Led to OTU-Level Shifts in Fecal Samples of Healthy Adult Dogs. Frontiers in 1068 1.5 Microbiology, 2020, 11, 564160. Diet, Microbioma, and Diabetes in Aging. Current Geriatrics Reports, 2020, 9, 261-274. 1069 1.1 0 The Potential Gut Microbiota-Mediated Treatment Options for Liver Cancer. Frontiers in Oncology, 1.3 2020, 10, 524205. The microbiome: Composition and locations. Progress in Molecular Biology and Translational 1071 0.9 23 Science, 2020, 176, 1-42. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surgery and Nutrition, 2020, 9, 152-169. The Effect of Ursodeoxycholic Acid on Small Intestinal Bacterial Overgrowth in Patients with 1073 1.7 12 Functional Dyspepsia: Á Pilot Randomized Controlled Trial. Nutrients, 2020, 12, 1410. Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders. 1074 Current Opinion in Pharmacology, 2020, 53, 45-54. Gut Microbiota Dysbiosis Associated with Bile Acid Metabolism in Neonatal Cholestasis Disease. 1075 1.6 21 Scientific Reports, 2020, 10, 7686. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine, 2020, 2.7 128 55, 102766. Modulation of the human gut microbiota by phenolics and phenolic fiberâ€rich foods. Comprehensive 1077 5.9111 Reviews in Food Science and Food Safety, 2020, 19, 1268-1298. Potential Implications of Gut Microbiota in Drug Pharmacokinetics and Bioavailability. 1.2 Pharmacotherapy, 2020, 40, 704-712. Interpersonal Gut Microbiome Variation Drives Susceptibility and Resistance to Cholera Infection. 1079 13.5 108 Cell, 2020, 181, 1533-1546.e13. The health benefits, functional properties, modifications, and applications of pea (<i>Pisum) Tj ETQq1 1 0.784314 rgBT /Overlock 10 5.9 Science and Food Safety, 2020, 19, 1835-1876.

#	Article	IF	CITATIONS
1081	A high-throughput LC-MS/MS method for the measurement of the bile acid/salt content in microbiome-derived sample sets. MethodsX, 2020, 7, 100951.	0.7	3
1082	Microbiota and Lifestyle: A Special Focus on Diet. Nutrients, 2020, 12, 1776.	1.7	102
1083	A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature, 2020, 582, 566-570.	13.7	262
1084	Antibiotic-Induced Changes in Microbiome-Related Metabolites and Bile Acids in Rat Plasma. Metabolites, 2020, 10, 242.	1.3	7
1085	Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opinion on Investigational Drugs, 2020, 29, 623-632.	1.9	67
1086	Conceptualizing the Vertebrate Sterolbiome. Applied and Environmental Microbiology, 2020, 86, .	1.4	16
1087	Gut microbiota remodeling reverses aging-associated inflammation and dysregulation of systemic bile acid homeostasis in mice sex-specifically. Gut Microbes, 2020, 11, 1450-1474.	4.3	71
1088	Association between 12α-hydroxylated bile acids and hepatic steatosis in rats fed a high-fat diet. Journal of Nutritional Biochemistry, 2020, 83, 108412.	1.9	24
1089	Resveratrol enhances brown adipose tissue activity and white adipose tissue browning in part by regulating bile acid metabolism via gut microbiota remodeling. International Journal of Obesity, 2020, 44, 1678-1690.	1.6	55
1090	Hydroxysteroid Dehydrogenases: An Ongoing Story. European Journal of Organic Chemistry, 2020, 2020, 4463-4473.	1.2	22
1091	Microbiome and Cardiovascular Disease. Handbook of Experimental Pharmacology, 2020, , 1.	0.9	8
1092	A secondary bile acid from microbiota metabolism attenuates ileitis and bile acid reduction in subclinical necrotic enteritis in chickens. Journal of Animal Science and Biotechnology, 2020, 11, 37.	2.1	19
1093	Lithocholic acid increases intestinal phosphate and calcium absorption in a vitamin D receptor dependent but transcellular pathway independentÂmanner. Kidney International, 2020, 97, 1164-1180.	2.6	34
1094	Temporospatial shifts in the human gut microbiome and metabolome after gastric bypass surgery. Npj Biofilms and Microbiomes, 2020, 6, 12.	2.9	57
1095	Intestinal flora imbalance affects bile acid metabolism and is associated with gallstone formation. BMC Gastroenterology, 2020, 20, 59.	0.8	45
1096	The Response of the Gut Microbiota to Dietary Changes in the First Two Years of Life. Frontiers in Pharmacology, 2020, 11, 334.	1.6	29
1097	Isoxanthohumol, a hop-derived flavonoid, alters the metabolomics profile of mouse feces. Bioscience of Microbiota, Food and Health, 2020, 39, 100-108.	0.8	4
1098	Gut–Liver Axis and Inflammasome Activation in Cholangiocyte Pathophysiology. Cells, 2020, 9, 736.	1.8	20

#	Article	IF	CITATIONS
1099	Impact of food additives on the composition and function of gut microbiota: A review. Trends in Food Science and Technology, 2020, 99, 295-310.	7.8	94
1100	The Role of the Gut Microbiome in Energy Balance With a Focus on the Gut-Adipose Tissue Axis. Frontiers in Genetics, 2020, 11, 297.	1.1	52
1101	Role of the Microbiome in Mediating Health Effects of Dietary Components. Journal of Agricultural and Food Chemistry, 2020, 68, 12820-12835.	2.4	18
1102	Ridinilazole, a narrow spectrum antibiotic for treatment of <i>Clostridioides difficile</i> infection, enhances preservation of microbiota-dependent bile acids. American Journal of Physiology - Renal Physiology, 2020, 319, G227-G237.	1.6	29
1103	Integration of genomics, metagenomics, and metabolomics to identify interplay between susceptibility alleles and microbiota in adenoma initiation. BMC Cancer, 2020, 20, 600.	1.1	11
1104	Effect of a Flaxseed Lignan Intervention on Circulating Bile Acids in a Placebo-Controlled Randomized, Crossover Trial. Nutrients, 2020, 12, 1837.	1.7	11
1105	Microbiome. Clinics in Liver Disease, 2020, 24, 493-520.	1.0	6
1106	The influence of the gastrointestinal microbiome on infant colic. Expert Review of Gastroenterology and Hepatology, 2020, 14, 919-932.	1.4	9
1107	Exposure to chemicals formed from natural processes is ubiquitous. Toxicology Research and Application, 2020, 4, 239784732092294.	0.7	0
1108	Fucose Ameliorate Intestinal Inflammation Through Modulating the Crosstalk Between Bile Acids and Gut Microbiota in a Chronic Colitis Murine Model. Inflammatory Bowel Diseases, 2020, 26, 863-873.	0.9	34
1110	The Microbiome as a Component of the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1225, 137-153.	0.8	67
1111	Bifidobacterium longum R0175 Protects Rats against <scp>d</scp> -Galactosamine-Induced Acute Liver Failure. MSphere, 2020, 5, .	1.3	24
1112	Development of a covalent inhibitor of gut bacterial bile salt hydrolases. Nature Chemical Biology, 2020, 16, 318-326.	3.9	59
1113	16S rRNA gene sequencing reveals an altered composition of the gut microbiota in chickens infected with a nephropathogenic infectious bronchitis virus. Scientific Reports, 2020, 10, 3556.	1.6	10
1114	Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. Cell Host and Microbe, 2020, 27, 659-670.e5.	5.1	404
1116	Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 223-237.	8.2	893
1117	Housing condition-associated changes in gut microbiota further affect the host response to diet-induced nonalcoholic fatty liver. Journal of Nutritional Biochemistry, 2020, 79, 108362.	1.9	11
1118	Clostridioides difficile Spores: Bile Acid Sensors and Trojan Horses of Transmission. Clinics in Colon and Rectal Surgery, 2020, 33, 058-066.	0.5	4

#	Article	IF	CITATIONS
1119	A Physiology-Based Model of Bile Acid Distribution and Metabolism Under Healthy and Pathologic Conditions in Human Beings. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 149-170.	2.3	30
1120	Prebiotics may alter bile salt hydrolase activity: Possible implications for cholesterol metabolism. PharmaNutrition, 2020, 12, 100182.	0.8	13
1121	Self-reinoculation with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine. Microbiome, 2020, 8, 19.	4.9	71
1122	Advanced liver steatosis accompanies an increase in hepatic inflammation, colonic, secondary bile acids and Lactobacillaceae/Lachnospiraceae bacteria in C57BL/6 mice fed a high-fat diet. Journal of Nutritional Biochemistry, 2020, 78, 108336.	1.9	44
1123	Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Scientific Reports, 2020, 10, 1165.	1.6	81
1124	Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. American Journal of Physiology - Renal Physiology, 2020, 318, G554-G573.	1.6	175
1125	Microbial Metabolites and Intestinal Stem Cells Tune Intestinal Homeostasis. Proteomics, 2020, 20, e1800419.	1.3	34
1126	Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis. Journal of Hepatology, 2020, 72, 1003-1027.	1.8	123
1127	Association Between Sulfur-Metabolizing Bacterial Communities in Stool and Risk of Distal Colorectal Cancer in Men. Gastroenterology, 2020, 158, 1313-1325.	0.6	88
1128	The mutual interplay of gut microbiota, diet and human disease. FEBS Journal, 2020, 287, 833-855.	2.2	176
1129	Insights into the Role of Human Gut Microbiota in Clostridioides difficile Infection. Microorganisms, 2020, 8, 200.	1.6	40
1130	Bile Acid Changes Associated With Liver Fibrosis and Steatosis in the Mexicanâ€American Population of South Texas. Hepatology Communications, 2020, 4, 555-568.	2.0	26
1131	Oncobiosis and Microbial Metabolite Signaling in Pancreatic Adenocarcinoma. Cancers, 2020, 12, 1068.	1.7	32
1132	Alternate-day fasting alleviates diabetes-induced glycolipid metabolism disorders: roles of FGF21 and bile acids. Journal of Nutritional Biochemistry, 2020, 83, 108403.	1.9	35
1133	Ursodeoxycholic Acid (UDCA) Mitigates the Host Inflammatory Response during Clostridioides difficile Infection by Altering Gut Bile Acids. Infection and Immunity, 2020, 88, .	1.0	47
1134	Targeted bile acids and gut microbiome profiles reveal the hepato-protective effect of WZ tablet (Schisandra sphenanthera extract) against LCA-induced cholestasis. Chinese Journal of Natural Medicines, 2020, 18, 211-218.	0.7	9
1135	Microbiota and metabolites in rheumatic diseases. Autoimmunity Reviews, 2020, 19, 102530.	2.5	23
1136	Salidroside ameliorates liver metabonomics in relation to modified gut-liver FXR signaling in furan-induced mice. Food and Chemical Toxicology, 2020, 140, 111311.	1.8	13

ARTICLE IF CITATIONS $\hat{a} \in \infty$ Circadian misalignment and the gut microbiome. A bidirectional relationship triggering inflammation 1137 0.8 19 and metabolic disorders― a literature review. Sleep Medicine, 2020, 72, 93-108. Western dietâ€induced increase in colonic bile acids compromises epithelial barrier in nonalcoholic 0.2 steatohepatitis. FASEB Journal, 2020, 34, 7089-7102. Hyodeoxycholic acid (HDCA) suppresses intestinal epithelial cell proliferation through FXRâ€₽I3K/AKT 1139 pathway, accompanied by alteration of bile acids metabolism profiles induced by gut bacteria. FASEB 0.2 44 Journal, 2020, 34, 7103-7117. Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota 1140 1.8 101 and Early Events of Colorectal Cancer Pathogenesis. MBio, 2020, 11, . Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or 1141 1.7 154 Bystanders?. Nutrients, 2020, 12, 1082. Species Differences of Bile Acid Redox Metabolism: Tertiary Oxidation of Deoxycholate is Conserved in 1.7 16 Preclinical Animals. Drug Metabolism and Disposition, 2020, 48, 499-507. Influences of food ingredients on enterohepatic circulation of bile acids., 2020, , 93-102. 1143 0 Eicosapentaenoic Acid-Enriched Phosphoethanolamine Plasmalogens Alleviated Atherosclerosis by Remodeling Gut Microbiota to Regulate Bile Acid Metabolism in ĽDLR^{–/–} Mice. Journal of 1144 2.4 26 Agricultural and Food Chemistry, 2020, 68, 5339-5348. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature, 2020, 1145 13.7 440 581, 475-479. Microbiome, bile acids, and obesity: How microbially modified metabolites shape antiâ€ŧumor immunity. 1146 2.8 Immunological Reviews, 2020, 295, 220-239. From Nursery to Nursing Home: Emerging Concepts in Clostridioides difficile Pathogenesis. Infection 1147 1.0 11 and Immunity, 2020, 88, . The Route to Palatable Fecal Microbiota Transplantation. AAPS PharmSciTech, 2020, 21, 114. 1148 1.5 Human intestinal enteroids as a model of <i>Clostridioides difficile </i>-induced enteritis. American 1149 1.6 23 Journal of Physiology - Renal Physiology, 2020, 318, G870-G888. Bile Acid Profile and its Changes in Response to Cefoperazone Treatment in MR1 Deficient Mice. 1.3 Metabolites, 2020, 10, 127 Inflammation in Primary and Metastatic Liver Tumorigenesis–Under the Influence of Alcohol and 1151 1.7 15 High-Fat Diets. Nutrients, 2020, 12, 933. 2â€²-Fucosyllactose Supplementation Improves Gut-Brain Signaling and Diet-Induced Obese Phenotype and 1.7 Changes the Gut Microbiota in High Fat-Fed Mice. Nutrients, 2020, 12, 1003. Persistent Diarrhea in Patients With Crohn's Disease After Mucosal Healing Is Associated With Lower 1153 Diversity of the Intestinal Microbiome and Increased Dysbiosis. Clinical Gastroenterology and 2.4 19 Hepatology, 2021, 19, 296-304.e3. Alterations of gut microbiota and serum bile acids are associated with parenteral 1154 nutrition-associated liver disease. Journal of Pediatric Surgery, 2021, 56, 738-744.

#	Article	IF	CITATIONS
1155	Analysis of bile acids in human biological samples by microcolumn separation techniques: A review. Electrophoresis, 2021, 42, 68-85.	1.3	15
1156	Pharmacokinetics of CamSA, a potential prophylactic compound against Clostridioides difficile infections. Biochemical Pharmacology, 2021, 183, 114314.	2.0	9
1157	Molecular physiology of bile acid signaling in health, disease, and aging. Physiological Reviews, 2021, 101, 683-731.	13.1	184
1158	Gut microbiota alterations are distinct for primary colorectal cancer and hepatocellular carcinoma. Protein and Cell, 2021, 12, 374-393.	4.8	50
1159	Characterization of a recombinant bile salt hydrolase (BSH) from <i>Bifidobacterium bifidum</i> for its glycine-conjugated bile salts specificity. Biocatalysis and Biotransformation, 2021, 39, 61-70.	1.1	5
1160	Microbial Metabolites, Postbiotics, and Intestinal EpithelialÂFunction. Molecular Nutrition and Food Research, 2021, 65, e2000188.	1.5	52
1161	How Microbial Food Fermentation Supports a Tolerant Gut. Molecular Nutrition and Food Research, 2021, 65, 2000036.	1.5	3
1162	Bile Acids: A Communication Channel in the Gut-Brain Axis. NeuroMolecular Medicine, 2021, 23, 99-117.	1.8	76
1163	Dietary fat, bile acid metabolism and colorectal cancer. Seminars in Cancer Biology, 2021, 73, 347-355.	4.3	106
1164	Dietary Fructose Alters the Composition, Localization, and Metabolism of Gut Microbiota in Association With Worsening Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 525-550.	2.3	58
1165	Characteristics of Contents of Lower intestine in the 65–74ÂYears of Age Range Could Impact the Performance of Safe and Efficacious Modified Release Products. Journal of Pharmaceutical Sciences, 2021, 110, 251-258.	1.6	9
1166	Chronic Liver Diseases and the Microbiome—Translating Our Knowledge of Gut Microbiota to Management of Chronic Liver Disease. Gastroenterology, 2021, 160, 556-572.	0.6	49
1167	Targeting the alternative bile acid synthetic pathway for metabolic diseases. Protein and Cell, 2021, 12, 411-425.	4.8	146
1168	Bile Acid Signaling in Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 2021, 66, 674-693.	1.1	102
1169	Citrus flavonoids and the intestinal barrier: Interactions and effects. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 225-251.	5.9	36
1170	The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharmaceutica Sinica B, 2021, 11, 1789-1812.	5.7	94
1171	Inflammatory Bowel Diseases (IBD) and the Microbiome—Searching the Crime Scene for Clues. Gastroenterology, 2021, 160, 524-537.	0.6	276
1172	Cancer and the Microbiome—Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology, 2021, 160, 600-613.	0.6	167

#	Article	IF	CITATIONS
1173	Apple polyphenols extract alleviated dextran sulfate sodiumâ€induced ulcerative colitis in <scp>C57BL</scp> /6 male mice by restoring bile acid metabolism disorder and gut microbiota dysbiosis. Phytotherapy Research, 2021, 35, 1468-1485.	2.8	35
1174	Hepatic Autophagy Deficiency Remodels Gut Microbiota for Adaptive Protection via FGF15-FGFR4 Signaling. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 973-997.	2.3	18
1175	Metabolomic Analysis in Inflammatory Bowel Disease: A Systematic Review. Journal of Crohn's and Colitis, 2021, 15, 813-826.	0.6	65
1176	Activityâ€Based Protein Profiling of Bile Salt Hydrolysis in the Human Gut Microbiome with Betaâ€Lactam or Acrylamideâ€Based Probes. ChemBioChem, 2021, 22, 1448-1455.	1.3	10
1177	In vitro digestion of salmon: Influence of processing and intestinal conditions on macronutrients digestibility. Food Chemistry, 2021, 342, 128387.	4.2	18
1178	A comprehensive review of the strategies to improve oral drug absorption with special emphasis on the cellular and molecular mechanisms. Journal of Drug Delivery Science and Technology, 2021, 61, 102178.	1.4	8
1179	Gastrointestinal stress as innate defence against microbial attack. Journal of Applied Microbiology, 2021, 130, 1035-1061.	1.4	11
1180	Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 2021, 19, 55-71.	13.6	1,960
1181	The contribution of bile acid metabolism to the pathogenesis of <i>Clostridioides difficile</i> infection. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110177.	1.4	24
1182	Monomeric bile acids modulate the ATPase activity of detergent-solubilized ABCB4/MDR3. Journal of Lipid Research, 2021, 62, 100087.	2.0	3
1183	Alterations in Bile Acid Metabolism Associated With Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2021, 27, 1525-1540.	0.9	23
1185	Berberine Prevents Disease Progression of Nonalcoholic Steatohepatitis through Modulating Multiple Pathways. Cells, 2021, 10, 210.	1.8	30
1186	The Gut Microbiome and Colorectal Cancer. Physiology in Health and Disease, 2021, , 63-96.	0.2	1
1187	Linking Gut Microbiome and Lipid Metabolism: Moving beyond Associations. Metabolites, 2021, 11, 55.	1.3	54
1188	Probiotics for Atopic Dermatitis. , 2021, , 335-362.		0
1189	Commensal Microbes and Their Metabolites: Influence on Host Pathways in Health and Cancer. Physiology in Health and Disease, 2021, , 313-327.	0.2	2
1190	Microbiome-Derived Metabolites in Allogeneic Hematopoietic Stem Cell Transplantation. International Journal of Molecular Sciences, 2021, 22, 1197.	1.8	20
1191	The Interface of <i>Vibrio cholerae</i> and the Gut Microbiome. Gut Microbes, 2021, 13, 1937015.	4.3	27

#	Article	IF	CITATIONS
1192	The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes, 2021, 13, 1-22.	4.3	99
1193	Critical roles of bile acids in regulating intestinal mucosal immune responses. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110180.	1.4	38
1194	Gut microbiota mediates the effects of curcumin on enhancing Ucp1-dependent thermogenesis and improving high-fat diet-induced obesity. Food and Function, 2021, 12, 6558-6575.	2.1	25
1195	High fat diet, gut microbiome and gastrointestinal cancer. Theranostics, 2021, 11, 5889-5910.	4.6	60
1196	Gut microbiome and its meta-omics perspectives: profound implications for cardiovascular diseases. Gut Microbes, 2021, 13, 1936379.	4.3	24
1197	The Gut Microbiome and Cancer: A Comprehensive Review of Melanoma, Lung, Head and Neck and Gastrointestinal Tumors. , 2021, , 339-339.		0
1198	Personalized nutrition for colorectal cancer. Advances in Cancer Research, 2021, 151, 109-136.	1.9	3
1199	Modulation of the Gut Microbiota-farnesoid X Receptor Axis Improves Deoxycholic Acid-induced Intestinal Inflammation in Mice. Journal of Crohn's and Colitis, 2021, 15, 1197-1210.	0.6	35
1200	Improving glucose and lipids metabolism: drug development based on bile acid related targets. Cell Stress, 2021, 5, 1-18.	1.4	8
1201	Novel FXR agonist nelumal A suppresses colitis and inflammation-related colorectal carcinogenesis. Scientific Reports, 2021, 11, 492.	1.6	18
1202	Completion of the gut microbial epi-bile acid pathway. Gut Microbes, 2021, 13, 1-20.	4.3	33
1203	Gut microbiota and their metabolites in the progression of non-alcoholic fatty liver disease. Hepatoma Research, 2021, 2021, 11.	0.6	25
1204	Regulation of Gastrointestinal Immunity by Metabolites. Nutrients, 2021, 13, 167.	1.7	26
1206	Gut Microbiota Modulation and Fecal Transplantation: An Overview on Innovative Strategies for Hepatic Encephalopathy Treatment. Journal of Clinical Medicine, 2021, 10, 330.	1.0	33
1207	Primary 12α-Hydroxylated Bile Acids Lower Hepatic Iron Concentration in Rats. Journal of Nutrition, 2021, 151, 523-530.	1.3	5
1208	Studies of xenobiotic-induced gut microbiota dysbiosis: from correlation to mechanisms. Gut Microbes, 2021, 13, 1921912.	4.3	19
1209	Microbial and metabolic features associated with outcome of infliximab therapy in pediatric Crohn's disease. Gut Microbes, 2021, 13, 1-18.	4.3	47
1210	Specific adsorption of a β-lactam antibiotic <i>in vivo</i> by an anion-exchange resin for protection of the intestinal microbiota. Biomaterials Science, 2021, 9, 7219-7227.	2.6	4

	СІТАТ	CITATION REPORT		
#	Article	IF	Citations	
1211	Gut Microbiome and Liver Cancer. Physiology in Health and Disease, 2021, , 199-255.	0.2	0	
1212	Contribution of Inhibitory Metabolites and Competition for Nutrients to Colonization Resistance against Clostridioides difficile by Commensal Clostridium. Microorganisms, 2021, 9, 371.	1.6	17	
1213	Pectin and soybean meal induce stronger inflammatory responses and dysregulation of bile acid (BA) homeostasis than cellulose and cottonseed meal, respectively, in largemouth bass (<i>Micropterus) Tj ET</i>	Qq0 0 0 rgBT /Ov	erlock 10 Tf	
	2963-2979.			
1214	Microbial Hydroxysteroid Dehydrogenases: From Alpha to Omega. Microorganisms, 2021, 9, 469.	1.6	37	
1215	Huanglian Jiedu decoction remodels the periphery microenvironment to inhibit Alzheimer's disease progression based on the "brain-gut―axis through multiple integrated omics. Alzheimer's Research and Therapy, 2021, 13, 44.	3.0	33	
1216	Western Diet Aggravated Carbon Tetrachlorideâ€Induced Chronic Liver Injury by Disturbing Gut Microbiota and Bile Acid Metabolism. Molecular Nutrition and Food Research, 2021, 65, e2000811.	1.5	10	
1217	<i>Lactobacillus</i> bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	92	
1218	A Powerful HPLC-ELSD Method for Simultaneous Determination of Fecal Bile Acids in T2DM Rats Interfered by Sanhuang Xiexin Tang. Journal of Chromatographic Science, 2021, 59, 871-876.	0.7	1	
1219	Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection. Nature Communications, 2021, 12, 755.	5.8	40	
1220	Prebiotic dietary fibre intervention improves fecal markers related to inflammation in obese patients: results from the Food4Gut randomized placebo-controlled trial. European Journal of Nutrition, 2021, 60, 3159-3170.	1.8	46	
1221	The Development of Early Life Microbiota in Human Health and Disease. Engineering, 2022, 12, 101-114.	3.2	6	
1222	Compensatory Transition of Bile Acid Metabolism from Fecal Disposition of Secondary Bile Acids to Urinary Excretion of Primary Bile Acids Underlies Rifampicin-Induced Cholestasis in Beagle Dogs. ACS Pharmacology and Translational Science, 2021, 4, 1001-1013.	2.5	7	
1223	Gut Microbiota and Its Metabolite Deoxycholic Acid Contribute to Sucralose Consumption-Induced Nonalcoholic Fatty Liver Disease. Journal of Agricultural and Food Chemistry, 2021, 69, 3982-3991.	2.4	20	
1224	Enteral nutrition modulation with n-3 PUFAs directs microbiome and lipid metabolism in mice. PLoS ONE, 2021, 16, e0248482.	1.1	8	
1225	Probiotics, Pre-biotics and Synbiotics in the Treatment of Pre-diabetes: A Systematic Review of Randomized Controlled Trials. Frontiers in Public Health, 2021, 9, 645035.	1.3	13	
1226	The Farnesoid X Receptor Agonist Tropifexor Prevents Liver Damage in Parenteral Nutritionâ€fed Neonatal Piglets. Journal of Pediatric Gastroenterology and Nutrition, 2021, 73, e11-e19.	0.9	13	
1227	The Role of Enterobacteriaceae in Gut Microbiota Dysbiosis in Inflammatory Bowel Diseases. Microorganisms, 2021, 9, 697.	1.6	116	
1228	The role of bariatric surgery in the management of nonalcoholic steatohepatitis. Current Opinion in Gastroenterology, 2021, 37, 208-215.	1.0	11	

#	Article	IF	CITATIONS
1229	Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. Cell Reports, 2021, 34, 108789.	2.9	82
1230	Microbial Metabolites in Colorectal Cancer: Basic and Clinical Implications. Metabolites, 2021, 11, 159.	1.3	23
1231	Dietary interventions to prevent high-fructose diet–associated worsening of colitis and colitis-associated tumorigenesis in mice. Carcinogenesis, 2021, 42, 842-852.	1.3	15
1232	Cecal microbial transplantation attenuates hyperthyroidâ€induced thermogenesis in Mongolian gerbils. Microbial Biotechnology, 2022, 15, 817-831.	2.0	11
1233	Substrate Inhibition of 5î²-î"4-3-Ketosteroid Dehydrogenase in Sphingobium sp. Strain Chol11 Acts as Circuit Breaker During Growth With Toxic Bile Salts. Frontiers in Microbiology, 2021, 12, 655312.	1.5	6
1234	How Changes in the Nutritional Landscape Shape Gut Immunometabolism. Nutrients, 2021, 13, 823.	1.7	14
1235	A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host and Microbe, 2021, 29, 408-424.e7.	5.1	67
1236	Bacteria in Carcinogenesis and Cancer Prevention: A Review Study. International Journal of Cancer Management, 2021, 14, .	0.2	3
1237	The Role of Immune Response and Microbiota on Campylobacteriosis. , 0, , .		1
1238	Gut Immunity and Microbiota Dysbiosis Are Associated with Altered Bile Acid Metabolism in LPS-Challenged Piglets. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	27
1240	Identification of colorectal neoplasia by using serum bile acid profile. Biomarkers, 2021, 26, 462-467.	0.9	4
1241	Interaction of Microbiome, Diet, and Hospitalizations Between Brazilian and American Patients With Cirrhosis. Clinical Gastroenterology and Hepatology, 2022, 20, 930-940.	2.4	7
1242	The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling. Molecular Medicine, 2021, 27, 33.	1.9	60
1243	Quercetin Ameliorates Gut Microbiota Dysbiosis That Drives Hypothalamic Damage and Hepatic Lipogenesis in Monosodium Clutamate-Induced Abdominal Obesity. Frontiers in Nutrition, 2021, 8, 671353.	1.6	19
1244	Gut-inhabiting Clostridia build human GPCR ligands by conjugating neurotransmitters with diet- and human-derived fatty acids. Nature Microbiology, 2021, 6, 792-805.	5.9	33
1245	Roles of bile acids in enteric virus replication. Animal Diseases, 2021, 1, 2.	0.6	8
1246	The Role of Gut Barrier Dysfunction and Microbiome Dysbiosis in Colorectal Cancer Development. Frontiers in Oncology, 2021, 11, 626349.	1.3	54
1247	Gut Dysbiosis and Its Associations with Gut Microbiota-Derived Metabolites in Dogs with Myxomatous Mitral Valve Disease. MSystems, 2021, 6, .	1.7	25

#	Article	IF	CITATIONS
1248	Gut feelings about bacterial steroid-17,20-desmolase. Molecular and Cellular Endocrinology, 2021, 525, 111174.	1.6	14
1249	Deoxycholic acid enhancement of lymphocyte migration through direct interaction with the intestinal vascular endothelium. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 2523-2530.	1.4	5
1250	Epithelial sensing of microbiota-derived signals. Genes and Immunity, 2021, 22, 237-246.	2.2	9
1251	The post-hematopoietic cell transplantation microbiome: relationships with transplant outcome and potential therapeutic targets. Haematologica, 2021, 106, 2042-2053.	1.7	8
1252	Manipulating the Microbiome: An Alternative Treatment for Bile Acid Diarrhoea. Microbiology Research, 2021, 12, 335-353.	0.8	1
1254	Bile acids and their receptors in metabolic disorders. Progress in Lipid Research, 2021, 82, 101094.	5.3	112
1255	Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome. Npj Biofilms and Microbiomes, 2021, 7, 36.	2.9	81
1256	Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101504.	2.2	16
1257	Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nature Communications, 2021, 12, 3105.	5.8	82
1259	Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Frontiers in Immunology, 2021, 12, 658354.	2.2	171
1260	Human Gut Microbiome and Liver Diseases: From Correlation to Causation. Microorganisms, 2021, 9, 1017.	1.6	16
1261	The Microbiota and the Gut–Brain Axis in Controlling Food Intake and Energy Homeostasis. International Journal of Molecular Sciences, 2021, 22, 5830.	1.8	37
1262	The Role of the Microbiome-Gut-Brain Axis in Schizophrenia and Clozapine-Induced Weight Gain. Biological Psychiatry, 2021, 89, S342.	0.7	0
1263	Assessment of Oral Vancomycin-Induced Alterations in Gut Bacterial Microbiota and Metabolome of Healthy Men. Frontiers in Cellular and Infection Microbiology, 2021, 11, 629438.	1.8	9
1264	Roles of Gut Microbial Metabolites in Diabetic Kidney Disease. Frontiers in Endocrinology, 2021, 12, 636175.	1.5	33
1265	Baitouweng Tang ameliorates DSS-induced ulcerative colitis through the regulation of the gut microbiota and bile acids via pathways involving FXR and TGR5. Biomedicine and Pharmacotherapy, 2021, 137, 111320.	2.5	36
1266	Host-microbial interactions in the metabolism of different dietary fats. Cell Metabolism, 2021, 33, 857-872.	7.2	29
1267	A nonbile acid farnesoid X receptor agonist tropifexor potently inhibits cholestatic liver injury and fibrosis by modulating the gut–liver axis. Liver International, 2021, 41, 2117-2131.	1.9	24

#	Article	IF	CITATIONS
1268	Towards screening the neurotoxicity of chemicals through feces after exposure to methylmercury or inorganic mercury in rats: A combined study using gut microbiome, metabolomics and metallomics. Journal of Hazardous Materials, 2021, 409, 124923.	6.5	30
1269	Dietary Influence on the Dynamics of the Human Gut Microbiome: Prospective Implications in Interventional Therapies. ACS Food Science & Technology, 2021, 1, 717-736.	1.3	8
1270	lle258Met mutation of Brucella melitensis 7α-hydroxysteroid dehydrogenase significantly enhances catalytic efficiency, cofactor affinity, and thermostability. Applied Microbiology and Biotechnology, 2021, 105, 3573-3586.	1.7	10
1271	Shortâ€chain fatty acids and bile acids in human faeces are associated with the intestinal cholesterol conversion status. British Journal of Pharmacology, 2021, 178, 3342-3353.	2.7	11
1272	Bile Acids Activated Receptors in Inflammatory Bowel Disease. Cells, 2021, 10, 1281.	1.8	39
1273	Bile Salt Hydrolases: At the Crossroads of Microbiota and Human Health. Microorganisms, 2021, 9, 1122.	1.6	33
1274	The many facets of bile acids in the physiology and pathophysiology of the human liver. Biological Chemistry, 2021, 402, 1047-1062.	1.2	5
1276	Factors Affecting Gut Microbiome in Daily Diet. Frontiers in Nutrition, 2021, 8, 644138.	1.6	18
1277	Gut microbiome and bile acids in obesity-related diseases. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101493.	2.2	52
1278	The Uncertain Link Between Gallstone Disease and Colorectal Cancer. Medicina Interna (Bucharest,) Tj ETQq1 1 C).784314 ı 0.1	gBT /Overloo
1279	Supplemental <i>Leuconostoc mesenteroides</i> strain NTM048 attenuates imiquimodâ€induced psoriasis in mice. Journal of Applied Microbiology, 2021, 131, 3043-3055.	1.4	7
1281	Conjugated C-6 hydroxylated bile acids in serum relate to human metabolic health and gut Clostridia species. Scientific Reports, 2021, 11, 13252.	1.6	8
1282	The Role of Microbiota in Primary Sclerosing Cholangitis and Related Biliary Malignancies. International Journal of Molecular Sciences, 2021, 22, 6975.	1.8	22
1283	The gut microbiome and type 2 diabetes status in the Multiethnic Cohort. PLoS ONE, 2021, 16, e0250855.	1.1	30
1285	Metabolomic signatures for liver tissue and cecum contents in high-fat diet-induced obese mice based on UHPLC-Q-TOF/MS. Nutrition and Metabolism, 2021, 18, 69.	1.3	24
1286	Review: microbial transformations of human bile acids. Microbiome, 2021, 9, 140.	4.9	276
1287	The Role of OmpR in Bile Tolerance and Pathogenesis of Adherent-Invasive Escherichia coli. Frontiers in Microbiology, 2021, 12, 684473.	1.5	10
1288	Gut microbiota contributes to the development of hypertension in a genetic mouse model of systemic lupus erythematosus. British Journal of Pharmacology, 2021, 178, 3708-3729.	2.7	21

#	Article	IF	CITATIONS
1289	Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Frontiers in Nutrition, 2021, 8, 693412.	1.6	32
1290	Decreased Abundance of <i>Akkermansia muciniphila</i> Leads to the Impairment of Insulin Secretion and Glucose Homeostasis in Lean Type 2 Diabetes. Advanced Science, 2021, 8, e2100536.	5.6	68
1291	Identifying a Novel Bile Salt Hydrolase from the Keystone Gut Bacterium Christensenella minuta. Microorganisms, 2021, 9, 1252.	1.6	17
1292	<i>Limosilactobacillus reuteri</i> and <i>Lacticaseibacillus rhamnosus GG</i> differentially affect gut microbes and metabolites in mice with Treg deficiency. American Journal of Physiology - Renal Physiology, 2021, 320, G969-G981.	1.6	16
1293	Integrative Analysis of Colonic Biopsies from Inflammatory Bowel Disease Patients Identifies an Interaction Between Microbial Bile Acid-inducible Gene Abundance and Human Angiopoietin-like 4 Gene Expression. Journal of Crohn's and Colitis, 2021, 15, 2078-2087.	0.6	10
1294	Structural changes in trypsin induced by the bile salts: An effect of amphiphile hydrophobicity. International Journal of Biological Macromolecules, 2021, 180, 121-128.	3.6	8
1295	12α-Hydroxylated bile acid enhances accumulation of adiponectin and immunoglobulin A in the rat ileum. Scientific Reports, 2021, 11, 12939.	1.6	7
1296	Role of bile acids in liver diseases mediated by the gut microbiome. World Journal of Gastroenterology, 2021, 27, 3010-3021.	1.4	27
1297	Identification of amyloidogenic proteins in the microbiomes of a rat Parkinson's disease model and wildâ€ŧype rats. Protein Science, 2021, 30, 1854-1870.	3.1	5
1298	Endoplasmic reticulum stress in intestinal inflammation: implications of bile acids. Proceedings of the Indian National Science Academy, 2021, 87, 275-282.	0.5	0
1299	Decreased secondary faecal bile acids in children with ulcerative colitis and <i>Clostridioides difficile</i> infection. Alimentary Pharmacology and Therapeutics, 2021, 54, 792-804.	1.9	6
1300	Shifts in gut microbiota and their metabolites induced by bariatric surgery. Impact of factors shaping gut microbiota on bariatric surgery outcomes. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 1137-1156.	2.6	17
1301	Mechanism of deoxynivalenol mediated gastrointestinal toxicity: Insights from mitochondrial dysfunction. Food and Chemical Toxicology, 2021, 153, 112214.	1.8	38
1302	Growth Performance, Biochemical Blood Indices, and Large Intestine Physiology of Rats Fed Diets with Alfalfa Protein-Xanthophyll Concentrate. Animals, 2021, 11, 2069.	1.0	2
1303	Recommendation and limitation of probiotics supplements. Current Trends in Pharmacy and Pharmaceutical Chemistry, 2021, 3, 19-22.	0.1	3
1304	The Associations between Diet and Socioeconomic Disparities and the Intestinal Microbiome in Preadolescence. Nutrients, 2021, 13, 2645.	1.7	11
1305	Bile Acids, Their Receptors, and the Gut Microbiota. Physiology, 2021, 36, 235-245.	1.6	31
1306	Dynamics of the enterohepatic circulation of bile acids in healthy humans. American Journal of Physiology - Renal Physiology, 2021, 321, G55-G66.	1.6	18

#	Article	IF	Citations
1307	Development of bile salt in pig by-products. Food and Life, 2021, 2021, 47-56.	0.3	1
1308	Direct and indirect effects of microbiota-derived metabolites on neuroinflammation in multiple sclerosis. Microbes and Infection, 2021, 23, 104814.	1.0	11
1309	Liver Bile Acid Changes in Mouse Models of Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 7451.	1.8	15
1311	A Gut-Restricted Lithocholic Acid Analog as an Inhibitor of Gut Bacterial Bile Salt Hydrolases. ACS Chemical Biology, 2021, 16, 1401-1412.	1.6	25
1312	Nutritional Interventions and the Gut Microbiome in Children. Annual Review of Nutrition, 2021, 41, 479-510.	4.3	18
1313	Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Critical Reviews in Food Science and Nutrition, 2023, 63, 261-287.	5.4	33
1314	Understanding the physiological functions of the host xenobiotic-sensing nuclear receptors PXR and CAR on the gut microbiome using genetically modified mice. Acta Pharmaceutica Sinica B, 2021, 12, 801-820.	5.7	10
1315	The emerging role of the gut microbiome in polycystic ovary syndrome. F&S Reviews, 2021, 2, 214-226.	0.7	5
1316	Role of microbiota and related metabolites in gastrointestinal tract barrier function in NAFLD. Tissue Barriers, 2021, 9, 1879719.	1.6	9
1317	The Role of Short-Chain Fatty Acids and Bile Acids in Intestinal and Liver Function, Inflammation, and Carcinogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 703218.	1.8	55
1318	Western Diet Changes Gut Microbiota and Ameliorates Liver Injury in a Mouse Model with Human‣ike Bile Acid Composition. Hepatology Communications, 2021, 5, 2052-2067.	2.0	7
1319	Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. International Journal of Molecular Sciences, 2021, 22, 9139.	1.8	18
1321	Degradation of Bile Acids by Soil and Water Bacteria. Microorganisms, 2021, 9, 1759.	1.6	15
1322	Impact of Gut Microbiota and Microbiota-Related Metabolites on Hyperlipidemia. Frontiers in Cellular and Infection Microbiology, 2021, 11, 634780.	1.8	77
1323	Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke. Nutrients, 2021, 13, 2878.	1.7	57
1324	The Interplay between Gut Microbiota and the Immune System in Liver Transplant Recipients and Its Role in Infections. Infection and Immunity, 2021, 89, e0037621.	1.0	13
1325	Bile Acid Signaling in Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2021, 22, 9096.	1.8	21
1326	Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis. Cell Death Discovery, 2021, 7, 207.	2.0	26

#	Article	IF	CITATIONS
1327	Biofilm Formation and Virulence of Shigella flexneri Are Modulated by pH of Gastrointestinal Tract. Infection and Immunity, 2021, 89, e0038721.	1.0	9
1328	The Role of Gut Microbiota in Hypertension Pathogenesis and the Efficacy of Antihypertensive Drugs. Current Hypertension Reports, 2021, 23, 40.	1.5	15
1329	Environmental enteric dysfunction induces regulatory TÂcells that inhibit local CD4+ TÂcell responses and impair oral vaccine efficacy. Immunity, 2021, 54, 1745-1757.e7.	6.6	28
1330	Dominant Bacterial Phyla from the Human Gut Show Widespread Ability To Transform and Conjugate Bile Acids. MSystems, 2021, 6, e0080521.	1.7	70
1331	Effects of bile acids on the growth performance, lipid metabolism, nonâ€specific immunity and intestinal microbiota of Pacific white shrimp (<i>Litopenaeus vannamei</i>). Aquaculture Nutrition, 2021, 27, 2029-2041.	1.1	13
1332	Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review. Nutrition Research, 2021, 95, 1-18.	1.3	22
1333	Disease-Associated Gut Microbiota Reduces the Profile of Secondary Bile Acids in Pediatric Nonalcoholic Fatty Liver Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 698852.	1.8	16
1334	Wolf in Sheep's Clothing: Clostridioides difficile Biofilm as a Reservoir for Recurrent Infections. Microorganisms, 2021, 9, 1922.	1.6	17
1335	Leaky Gut and Gut-Liver Axis in Liver Cirrhosis: Clinical Studies Update. Gut and Liver, 2021, 15, 666-676.	1.4	54
1337	Lotus seed resistant starch affects the conversion of sodium taurocholate by regulating the intestinal microbiota. International Journal of Biological Macromolecules, 2021, 186, 227-236.	3.6	12
1338	Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis. Microbiome, 2021, 9, 183.	4.9	54
1339	A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host and Microbe, 2021, 29, 1366-1377.e9.	5.1	111
1340	Bile salts promote ToxR regulon activation during growth under virulence inducing conditions Infection and Immunity, 2021, 89, e0044121.	1.0	10
1342	Targeting Gut–Liver Axis for Treatment of Liver Fibrosis and Portal Hypertension. Livers, 2021, 1, 147-179.	0.8	3
1343	Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nature Communications, 2021, 12, 5674.	5.8	95
1344	Multiplexed functional metagenomic analysis of the infant microbiome identifies effectors of NF-κB, autophagy, and cellular redox state. Cell Reports, 2021, 36, 109746.	2.9	4
1345	Bile acid dysmetabolism in the gutâ€microbiotaâ€liver axis under hepatitis C virus infection. Liver International, 2022, 42, 124-134.	1.9	11
1346	Microbiome Assisted Tumor Microenvironment: Emerging Target of Breast Cancer. Clinical Breast Cancer, 2022, 22, 200-211.	1.1	10

#	Article	IF	CITATIONS
1347	The Impact of Gut Microbiota-Derived Metabolites in Autism Spectrum Disorders. International Journal of Molecular Sciences, 2021, 22, 10052.	1.8	23
1348	Chains of evidence from correlations to causal molecules in microbiome-linked diseases. Nature Chemical Biology, 2021, 17, 1046-1056.	3.9	40
1349	Clostridioides difficile infection induces a rapid influx of bile acids into the gut during colonization of the host. Cell Reports, 2021, 36, 109683.	2.9	16
1350	Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 835-856.	8.2	183
1351	Ecdysteroid metabolism in mammals: The fate of ingested 20-hydroxyecdysone in mice and rats. Journal of Steroid Biochemistry and Molecular Biology, 2021, 212, 105896.	1.2	8
1352	Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Frontiers in Physiology, 2021, 12, 715506.	1.3	56
1353	Bile acid activated receptors: Integrating immune and metabolic regulation in non-alcoholic fatty liver disease. Liver Research, 2021, 5, 119-141.	0.5	15
1354	Comparative Analysis of Bile-Salt Degradation in <i>Sphingobium</i> sp. Strain Chol11 and Pseudomonas stutzeri Strain Chol1 Reveals Functional Diversity of Proteobacterial Steroid Degradation Enzymes and Suggests a Novel Pathway for Side Chain Degradation. Applied and Environmental Microbiology, 2021, 87, e0145321.	1.4	1
1355	Proteome, Bioinformatic, and Functional Analyses Reveal a Distinct and Conserved Metabolic Pathway for Bile Salt Degradation in the <i>Sphingomonadaceae</i> . Applied and Environmental Microbiology, 2021, 87, e0098721.	1.4	6
1356	Redox-Dependent Effects in the Physiopathological Role of Bile Acids. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	10
1357	Bile Acids as Key Modulators of the Brain-Gut-Microbiota Axis in Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 84, 461-477.	1.2	36
1358	Importance of Conjugation of the Bile Salt on the Mechanism of Lipolysis. Molecules, 2021, 26, 5764.	1.7	5
1359	Characterization of endogenous bile acid composition in individuals with cold-activated brown adipose tissue. Molecular and Cellular Endocrinology, 2021, 536, 111403.	1.6	4
1360	Listening in on the conversation between the human gut microbiome and its host. Current Opinion in Microbiology, 2021, 63, 150-157.	2.3	5
1361	Pediatric intestinal failure and the microbiome. Seminars in Perinatology, 2021, 45, 151453.	1.1	2
1362	Metabolic reprogramming and immunity in cancer. , 2022, , 137-196.		1
1363	Determination of Bile Salt Hydrolase Activity in Bifidobacteria. Methods in Molecular Biology, 2021, 2278, 149-155.	0.4	4
1364	Potential Contribution of the Intestinal Microbiome to Phenethylamine-Induced Hyperthermia. Brain, Behavior and Evolution, 2020, 95, 256-271.	0.9	5

#	Article	IF	CITATIONS
1365	Healthy Intestinal Function Relies on Coordinated Enteric Nervous System, Immune System, and Epithelium Responses. Gut Microbes, 2021, 13, 1-14.	4.3	13
1366	Gut Microbiota Dysbiosis and COVID-19: Possible Links. , 2022, , 535-544.		5
1367	Intestinal α1-2-Fucosylation Contributes to Obesity and Steatohepatitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 293-320.	2.3	14
1368	Modulation of the fecal microbiome and metabolome by resistant dextrin ameliorates hepatic steatosis and mitochondrial abnormalities in mice. Food and Function, 2021, 12, 4504-4518.	2.1	21
1369	Enriched metabolites that potentially promote age-associated diseases in subjects with an elderly-type gut microbiota. Gut Microbes, 2021, 13, 1-11.	4.3	24
1370	Depletion of gut microbiota induces skeletal muscle atrophy by FXR-FGF15/19 signalling. Annals of Medicine, 2021, 53, 508-522.	1.5	33
1371	Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genetics, 2021, 17, e1009204.	1.5	45
1372	Changes of Gut-Microbiota-Liver Axis in Hepatitis C Virus Infection. Biology, 2021, 10, 55.	1.3	16
1374	Steroid Bioconversions. Methods in Molecular Biology, 2017, 1645, 1-13.	0.4	45
1375	Anaerobic Biodegradation of Steroids. , 2017, , 1-32.		3
1376	Bacterial Metabolism of Steroids. , 2017, , 1-22.		5
1377	Gastrointestinal Tract: Microbial Metabolism of Steroids. , 2010, , 3133-3140.		4
1378	Anaerobic Degradation of Isoprene-Derived Compounds. , 2010, , 957-962.		4
1379	The Family Coriobacteriaceae. , 2014, , 201-238.		31
1380	Roles of Hepatic Drug Transporters in Drug Disposition and Liver Toxicity. Advances in Experimental Medicine and Biology, 2019, 1141, 293-340.	0.8	23
1381	Gut Microbiota and Endocrine Disorder. Advances in Experimental Medicine and Biology, 2020, 1238, 143-164.	0.8	14
1382	Bile Secretion and the Enterohepatic Circulation. , 2010, , 1075-1088.e2.		10
1383	A combination of three plasma bile acids as a putative biomarker for schizophrenia. Acta Neuropsychiatrica, 2021, 33, 51-54.	1.0	14

#	Article	IF	CITATIONS
1384	Dietary supplementation with <i>Lactobacillus plantarum</i> modified gut microbiota, bile acid profile and glucose homoeostasis in weaning piglets. British Journal of Nutrition, 2020, 124, 797-808.	1.2	16
1385	Cellular senescence in gastrointestinal diseases: from pathogenesis to therapeutics. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 81-95.	8.2	62
1386	Gut microbiota and metabolites in the pathogenesis of endocrine disease. Biochemical Society Transactions, 2020, 48, 915-931.	1.6	31
1387	Non-alcoholic fatty liver disease: a metabolic burden promoting atherosclerosis. Clinical Science, 2020, 134, 1775-1799.	1.8	25
1388	The gut bacterium <i>Extibacter muris</i> produces secondary bile acids and influences liver physiology in gnotobiotic mice. Gut Microbes, 2021, 13, 1-21.	4.3	161
1389	Gut microbiota and systemic immunity in health and disease. International Immunology, 2021, 33, 197-209.	1.8	34
1390	Intraductal Infusion of Taurocholate Followed by Distal Common Bile Duct Ligation Leads to a Severe Necrotic Model of Pancreatitis in Mice. Pancreas, 2015, 44, 493-499.	0.5	16
1391	Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. Journal of Medical Microbiology, 2016, 65, 1347-1362.	0.7	91
1392	Manual curation and reannotation of the genomes of Clostridium difficile 630Δerm and C. difficile 630. Journal of Medical Microbiology, 2017, 66, 286-293.	0.7	117
1393	Intestinal microbiota and colorectal cancer: changes in the intestinal microenvironment and their relation to the disease. Journal of Medical Microbiology, 2019, 68, 1391-1407.	0.7	30
1394	Computational genomic discovery of diverse gene clusters harbouring Fe-S flavoenzymes in anaerobic gut microbiota. Microbial Genomics, 2020, 6, .	1.0	5
1408	Surviving Between Hosts: Sporulation and Transmission. , 0, , 567-591.		5
1409	Neonatal Mouse Gut Metabolites Influence Cryptosporidium parvum Infection in Intestinal Epithelial Cells. MBio, 2020, 11, .	1.8	19
1410	Influence of gastrectomy for gastric cancer treatment on faecal microbiome and metabolome profiles. Gut, 2020, 69, 1404-1415.	6.1	84
1411	β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. JCl Insight, 2017, 2, .	2.3	41
1412	Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight, 2017, 2, .	2.3	163
1413	A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome. Journal of Clinical Investigation, 2019, 130, 438-450.	3.9	101
1414	Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. Journal of Clinical Investigation, 2015, 125, 386-402.	3.9	517

#	Article	IF	CITATIONS
1415	Antibiotic effects on gut microbiota and metabolism are host dependent. Journal of Clinical Investigation, 2016, 126, 4430-4443.	3.9	130
1416	Correlation Between Indicators of Intestinal Environment and Amount of Carbon Dioxide in Gas Excreted During Defecation. Bioscience and Microflora, 2010, 29, 135-141.	0.5	2
1417	Potentials and Limitations of Bile Acids in Type 2 Diabetes Mellitus: Applications of Microencapsulation as a Novel Oral Delivery System. Journal of Endocrinology and Diabetes Mellitus, 0, , .	0.4	4
1418	Prebiotic Effects of Wheat Arabinoxylan Related to the Increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in Diet-Induced Obese Mice. PLoS ONE, 2011, 6, e20944.	1.1	383
1419	Dietary Heme Alters Microbiota and Mucosa of Mouse Colon without Functional Changes in Host-Microbe Cross-Talk. PLoS ONE, 2012, 7, e49868.	1.1	99
1420	The Effect of Dietary Prebiotics and Probiotics on Body Weight, Large Intestine Indices, and Fecal Bile Acid Profile in Wild Type and IL10â^'/â^' Mice. PLoS ONE, 2013, 8, e60270.	1.1	41
1421	Muricholic Acids Inhibit Clostridium difficile Spore Germination and Growth. PLoS ONE, 2013, 8, e73653.	1.1	64
1422	Age-Related Changes of Plasma Bile Acid Concentrations in Healthy Adults—Results from the Cross-Sectional KarMeN Study. PLoS ONE, 2016, 11, e0153959.	1.1	66
1423	Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor. PLoS ONE, 2017, 12, e0176715.	1.1	91
1424	In vivo therapeutic effect of combination treatment with metformin and Scutellaria baicalensis on maintaining bile acid homeostasis. PLoS ONE, 2017, 12, e0182467.	1.1	46
1425	Microbiota of little penguins and short-tailed shearwaters during development. PLoS ONE, 2017, 12, e0183117.	1.1	23
1426	A Gut Odyssey: The Impact of the Microbiota on Clostridium difficile Spore Formation and Germination. PLoS Pathogens, 2015, 11, e1005157.	2.1	53
1427	The changes of gut microbiota associated with age and lifestyle. Obesity and Metabolism, 2015, 12, 3-9.	0.4	2
1428	Food Additive P-80 Impacts Mouse Gut Microbiota Promoting Intestinal Inflammation, Obesity and Liver Dysfunction. SOJ Microbiology & Infectious Diseases, 2016, 4, 01-10.	0.7	60
1429	The potential role of the intestinal gut microbiota in obesity and the metabolic syndrome. Food Science and Technology Bulletin, 2009, 5, 71-92.	0.5	3
1430	Reduction of bilirubin ditaurate by the intestinal bacterium Clostridium perfringens Acta Biochimica Polonica, 2012, 59, .	0.3	14
1431	Understanding the microbiome: a primer on the role of the microbiome in colorectal neoplasia. Annals of Gastroenterology, 2020, 33, 223-236.	0.4	6
1432	The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. Current Medicinal Chemistry, 2019, 26, 3567-3583.	1.2	74

#	Article	IF	CITATIONS
1433	Colorectal Cancer Microenvironment: Among Nutrition, Gut Microbiota, Inflammation and Epigenetics. Current Pharmaceutical Design, 2012, 19, 765-778.	0.9	15
1434	A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Current Drug Metabolism, 2019, 20, 621-632.	0.7	18
1436	Vitamin D Receptor Deletion Changes Bile Acid Composition in Mice Orally Administered Chenodeoxycholic Acid. Journal of Nutritional Science and Vitaminology, 2020, 66, 370-374.	0.2	7
1437	The Microbiome and Alzheimer's Disease: Potential and Limitations of Prebiotic, Synbiotic, and Probiotic Formulations. Frontiers in Bioengineering and Biotechnology, 2020, 8, 537847.	2.0	47
1438	Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. Journal of Personalized Medicine, 2021, 11, 13.	1.1	121
1439	Bile Acid Conjugates with Anticancer Activity: Most Recent Research. Molecules, 2021, 26, 25.	1.7	20
1440	Serum bile acid profiling reflects enterohepatic detoxification state and intestinal barrier function in inflammatory bowel disease. World Journal of Gastroenterology, 2009, 15, 3134.	1.4	67
1441	Gut microbiome in primary sclerosing cholangitis: A review. World Journal of Gastroenterology, 2020, 26, 2768-2780.	1.4	75
1442	Nutrition and the gut microbiome during critical illness: A new insight of nutritional therapy. Saudi Journal of Gastroenterology, 2020, 26, 290.	0.5	14
1443	Oxic and Anoxic Metabolism of Steroids by Bacteria. Journal of Bioremediation & Biodegradation, 0, s1,	0.5	8
1444	Role of the microbiome in non-gastrointestinal cancers. World Journal of Clinical Oncology, 2016, 7, 200.	0.9	51
1445	Associations between the human intestinal microbiota, <i>Lactobacillus rhamnosus </i> GG and serum lipids indicated by integrated analysis of high-throughput profiling data. PeerJ, 2013, 1, e32.	0.9	166
1446	Genomic and functional analysis of <i>Romboutsia ilealis</i> CRIB ^T reveals adaptation to the small intestine. PeerJ, 2017, 5, e3698.	0.9	88
1447	Dietary fermented products using <i>koji</i> mold and sweet potato- <i>shochu</i> distillery by-product promotes hepatic and serum cholesterol levels and modulates gut microbiota in mice fed a high-cholesterol diet. PeerJ, 2019, 7, e7671.	0.9	10
1448	Microbiome Diagnostics and Interventions in Health and Disease. , 2021, , 157-215.		1
1449	Microbial contribution to the caloric restriction-triggered regulation of the intestinal levels of glutathione transferases, taurine, and bile acid. Gut Microbes, 2021, 13, 1992236.	4.3	7
1450	Bile Acid Receptors and the Gut–Liver Axis in Nonalcoholic Fatty Liver Disease. Cells, 2021, 10, 2806.	1.8	39
1451	Flaxseed Powder Attenuates Non-Alcoholic Steatohepatitis via Modulation of Gut Microbiota and Bile Acid Metabolism through Gut–Liver Axis. International Journal of Molecular Sciences, 2021, 22, 10858.	1.8	15

#	Article	IF	Citations
1452	Drivers of transcriptional variance in human intestinal epithelial organoids. Physiological Genomics, 2021, 53, 486-508.	1.0	17
1453	Distinct Bile Acid Profiles in Patients With Chronic Hepatitis B Virus Infection Reveal Metabolic Interplay Between Host, Virus and Gut Microbiome. Frontiers in Medicine, 2021, 8, 708495.	1.2	12
1454	Physiological properties, composition and structural profiling of porcine gastrointestinal mucus. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 156-167.	2.0	20
1455	Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathogens, 2021, 17, e1010015.	2.1	46
1456	An Integrated Bile Acids Profile Determination by UHPLC-MS/MS to Identify the Effect of Bile Acids Supplement in High Plant Protein Diet on Common Carp (Cyprinus carpio). Foods, 2021, 10, 2465.	1.9	5
1457	NLRP3 inflammasome as a novel therapeutic target for heart failure. , 2022, 26, 15-22.		3
1458	Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnology and Genetic Engineering Reviews, 2021, 37, 105-153.	2.4	18
1459	The role of gut microbiome in prevention, diagnosis and treatment of gestational diabetes mellitus. Journal of Obstetrics and Gynaecology, 2022, 42, 719-725.	0.4	5
1460	Bile acids contribute to the development of non-alcoholic steatohepatitis in mice. JHEP Reports, 2022, 4, 100387.	2.6	28
1461	Hallmarks of the human intestinal microbiome on liver maturation and function. Journal of Hepatology, 2022, 76, 694-725.	1.8	12
1462	Investigations on the Degradation of the Bile Salt Cholate via the 9,10-Seco-Pathway Reveals the Formation of a Novel Recalcitrant Steroid Compound by a Side Reaction in Sphingobium sp. Strain Chol11. Microorganisms, 2021, 9, 2146.	1.6	1
1463	Novel therapeutic targets for cholestatic and fatty liver disease. Gut, 2022, 71, 194-209.	6.1	84
1464	RNA-Seq unveiled section-specific host response to lack of gut microbiota in mouse intestine. Toxicology and Applied Pharmacology, 2021, 433, 115775.	1.3	3
1465	Mining the Microbiome and Microbiota-Derived Molecules in Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2021, 22, 11243.	1.8	6
1466	Milk Formula Diet Alters Bacterial and Host Protein Profile in Comparison to Human Milk Diet in Neonatal Piglet Model. Nutrients, 2021, 13, 3718.	1.7	2
1467	Pathophysiology of bile secretion. , 2008, , 77-96.		1
1468	Obesity and Colorectal Cancer Risk: Impact of the Gut Microbiota and Weight-Loss Diets. The Open Obesity Journal, 2010, 2, 50-62.	0.1	3
1469	Substanzen in fermentierten Lebensmitteln. , 2010, , 73-84.		0

#	Article	IF	CITATIONS
1470	Title is missing!. Japanese Journal of Lactic Acid Bacteria, 2010, 21, 87-94.	0.1	0
1471	Whole Grains and Their Constituents in the Prevention of Colon Cancer. , 2011, , 221-245.		1
1472	Bile Acid Metabolism During Development. , 2011, , 1266-1280.		0
1473	Intestinal Methanobrevibacter smithii but Not Total Bacteria Is Related to Diet-Induced Weight Gain in Rats. Obesity, 0, , .	1.5	2
1474	Pharmacogenomics and Gut Microbiota Biomarkers in Obesity. , 2013, , 575-601.		0
1475	Metagenomic Analysis of Bile Salt Hydrolases in the Human Gut Microbiome. , 2013, , 1-13.		1
1476	Role of Enterobacteria-mediated Bile Acid Signaling in Lipid Homeostasis. Oleoscience, 2014, 14, 381-385.	0.0	0
1478	Clostridium difficile Infection. , 2015, , 2744-2756.e3.		2
1479	The Impact of Infancy Antibiotic Intake on Childhood Obesity; Review of Studies. Advances in Obesity Weight Management & Control, 2015, 2, .	0.4	0
1480	Cellular Senescence as a Novel Mechanism of Chronic Inflammation and Cancer Progression. , 2016, , 187-200.		Ο
1481	Bile Acids and Metabolic Syndrome. , 2017, , 193-209.		0
1482	Soy and Soy Products, Isoflavones, Equol, and Health. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 223-253.	0.3	1
1483	Substanzen in fermentierten Lebensmitteln. , 2018, , 101-113.		0
1487	"We Are What We Eat― How Diet Impacts the Gut Microbiota in Adulthood. , 2019, , 259-283.		1
1488	Colorectal Cancer Prevention. , 2019, , 473-509.		1
1491	DISEASES OF THE LIVER AND INTESTINAL MICROBIOME. Russian Pediatric Journal, 2019, 21, 366-377.	0.0	1
1496	Gastrointestinal Tract: Microbial Metabolism of Steroids. , 2020, , 389-399.		0
1500	Screening of Yoghurt Cultures for their Potential Proteolytic, Antioxidant and Probiotic Properties. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 1811-1831.	0.0	Ο

# 1503	ARTICLE Comparative Genomic and Physiological Analysis against Clostridium scindens Reveals Eubacterium sp. c-25 as an Atypical Deoxycholic Acid Producer of the Human Gut Microbiota. Microorganisms, 2021, 9, 2254.	IF 1.6	CITATIONS
1504	Gut Microbiota Metabolism of Bile Acids Could Contribute to the Bariatric Surgery Improvements in Extreme Obesity. Metabolites, 2021, 11, 733.	1.3	10
1505	Cultivation and Genomic Characterization of the Bile Bacterial Species From Cholecystitis Patients. Frontiers in Microbiology, 2021, 12, 739621.	1.5	5
1506	Anaerobic Biodegradation of Steroids. , 2020, , 165-195.		1
1507	Review: Uremic Toxins and Gut Microbiome. , 2020, , 17-39.		0
1508	Bile Acids and Bilirubin in Liver Immunology. , 2020, , 103-124.		0
1509	Review and Commentary on the Importance of Bile Acids in the Life Cycle of <i>Clostridioides difficile</i> in Children and Adults. Journal of the Pediatric Infectious Diseases Society, 2021, 10, 659-664.	0.6	4
1510	Administration of Cholic Acid Inhibits Equol Production from Daidzein in Mice. Journal of Nutritional Science and Vitaminology, 2020, 66, 571-576.	0.2	2
1511	Probiotics and Their Metabolites Ameliorate Inflammatory Bowel Disease: A Critical Review. Infectious Microbes & Diseases, 2021, 3, 4-13.	0.5	15
1512	Role of the Gut Flora in Human Nutrition and Gut Health. , 2020, , 105-132.		0
1513	Gut microbiota: sculptors of the intestinal stem cell niche in health and inflammatory bowel disease. Gut Microbes, 2021, 13, 1990827.	4.3	32
1514	Gut microbiota interaction in host lipid metabolism. , 2020, , 321-343.		0
1518	Abnormal Bile Acid Metabolism is an Important Feature of Gut Microbiota and Fecal Metabolites in Patients with Slow Transit Constipation. SSRN Electronic Journal, 0, , .	0.4	0
1519	Role of Bile Acids and Gut Microbiota in Parenteral Nutrition Associated Injury. Journal of Human Nutrition, 2020, 4, .	0.0	4
1520	Molecular Regulation of Bile Acid Homeostasis. Drug Metabolism and Disposition, 2022, 50, 425-455.	1.7	25
1521	Implications and Management of Cirrhosisâ€Associated Immune Dysfunction Before and After Liver Transplantation. Liver Transplantation, 2022, 28, 700-716.	1.3	4
1522	Longitudinal assessment of taurine and amino acid concentrations in dogs fed a green lentil diet. Journal of Animal Science, 2021, 99, .	0.2	5
1523	Ecology and Physiology of the Intestinal Tract. Current Topics in Microbiology and Immunology, 2011, , 247-272.	0.7	0

#	Article	IF	CITATIONS
1525	Comment on: Fecal metagenomics and metabolomics reveal gut microbial changes after bariatric surgery. Surgery for Obesity and Related Diseases, 2020, 16, 1782-1783.	1.0	0
1526	Supplementation of Bile Acids and Lipase in Broiler Diets for Better Nutrient Utilization and Performance: Potential Effects and Future Implications – A Review. Annals of Animal Science, 2021, 21, 757-787.	0.6	7
1527	The microbiome in non-alcoholic fatty liver disease: associations and implications. Annals of Gastroenterology, 2014, 27, 181-183.	0.4	4
1528	Simple and rapid quantitation of 21 bile acids in rat serum and liver by UPLC-MS-MS: effect of high fat diet on glycine conjugates of rat bile acids. Nagoya Journal of Medical Science, 2013, 75, 57-71.	0.6	33
1529	The association between gut microbiota, cholesterol gallstones, and colorectal cancer. Gastroenterology and Hepatology From Bed To Bench, 2019, 12, S8-S13.	0.6	5
1530	The effect of intestinal microbiota metabolites on HT29 cell line using MTT method in patients with colorectal cancer. Gastroenterology and Hepatology From Bed To Bench, 2019, 12, S74-S79.	0.6	0
1532	Understanding the Effects of Metabolites on the Gut Microbiome and Severe Acute Pancreatitis. BioMed Research International, 2021, 2021, 1516855.	0.9	0
1533	Clostridioides difficile spore germination: initiation to DPA release. Current Opinion in Microbiology, 2022, 65, 101-107.	2.3	12
1534	Bile Acid Regulates the Colonization and Dissemination of Candida albicans from the Gastrointestinal Tract by Controlling Host Defense System and Microbiota. Journal of Fungi (Basel, Switzerland), 2021, 7, 1030.	1.5	8
1535	Microbiomes in the Intestine of Developing Pigs: Implications for Nutrition and Health. Advances in Experimental Medicine and Biology, 2022, 1354, 161-176.	0.8	4
1536	Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules, 2021, 26, 7136.	1.7	126
1537	Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules, 2021, 26, 6802.	1.7	81
1538	Safety Concerns, Regulatory Guidelines, Current Market Trends, and Future Directions toward the Use of Probiotics in Gut-Brain-Skin Axis. , 2022, , 245-268.		2
1539	High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells, 2021, 10, 3164.	1.8	199
1540	Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomedicine and Pharmacotherapy, 2022, 145, 112352.	2.5	70
1541	Effect of a High-Fat Diet on the Small-Intestinal Environment and Mucosal Integrity in the Gut-Liver Axis. Cells, 2021, 10, 3168.	1.8	23
1542	Clostridioides difficile: innovations in target discovery and potential for therapeutic success. Expert Opinion on Therapeutic Targets, 2021, , 1-15.	1.5	5
1543	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380.	13.6	165

#	Article	IF	Citations
1544	Microbial Therapeutics in Liver Disease. , 2022, , 271-285.		1
1545	Understanding the Effects of Metabolites on the Gut Microbiome and Severe Acute Pancreatitis. BioMed Research International, 2021, 2021, 1-10.	0.9	8
1548	Vegan Diet Is Associated With Favorable Effects on the Metabolic Performance of Intestinal Microbiota: A Cross-Sectional Multi-Omics Study. Frontiers in Nutrition, 2021, 8, 783302.	1.6	14
1549	Increased Microbial Diversity and Decreased Prevalence of Common Pathogens in the Gut Microbiomes of Wild Turkeys Compared to Domestic Turkeys. Applied and Environmental Microbiology, 2022, 88, AEM0142321.	1.4	8
1550	Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell, 2022, 185, 547-562.e22.	13.5	61
1551	Development of Alcoholâ€Associated Hepatitis Is Associated With Specific Changes in Gutâ€Modified Bile Acids. Hepatology Communications, 2022, 6, 1073-1089.	2.0	10
1552	Host Microbiomes in Tumor Precision Medicine: How far are we?. Current Medicinal Chemistry, 2022, 29, 3202-3230.	1.2	7
1553	The Role of FGF19 and MALRD1 in Enterohepatic Bile Acid Signaling. Frontiers in Endocrinology, 2021, 12, 799648.	1.5	9
1554	A Special Network Comprised of Macrophages, Epithelial Cells, and Gut Microbiota for Gut Homeostasis. Cells, 2022, 11, 307.	1.8	8
1555	Efficacy, Safety, Pharmacokinetics, and Microbiome Changes of Ibezapolstat in Adults with <i>Clostridioides difficile</i> Infection: A Phase 2a Multicenter Clinical Trial. Clinical Infectious Diseases, 2022, 75, 1164-1170.	2.9	17
1556	Bile acids, bile pigments and colorectal cancer risk. Current Opinion in Gastroenterology, 2022, 38, 173-178.	1.0	6
1557	Inhibiting uptake activity of organic anion transporter 2 by bile acids. Drug Metabolism and Pharmacokinetics, 2022, 43, 100448.	1.1	3
1558	Nonpharmacological Treatment Strategies for the Management of Canine Chronic Inflammatory Enteropathy—A Narrative Review. Veterinary Sciences, 2022, 9, 37.	0.6	9
1559	Defective humoral immunity disrupts bile acid homeostasis which promotes inflammatory disease of the small bowel. Nature Communications, 2022, 13, 525.	5.8	18
1560	Gut microbiome and health: mechanistic insights. Gut, 2022, 71, 1020-1032.	6.1	661
1561	The Emerging Role of Bile Acids in the Pathogenesis of Inflammatory Bowel Disease. Frontiers in Immunology, 2022, 13, 829525.	2.2	53
1562	The cholesterol lowering efficacy of Lactobacillus plantarum ECGC 13110402 in hypercholesterolemic adults: a double-blind, randomized, placebo controlled, pilot human intervention study. Journal of Functional Foods, 2022, 89, 104939.	1.6	7
1563	The role of gut microbiome in cancer genesis and cancer prevention. Health Sciences Review, 2022, 2, 100010.	0.6	16

# 1564	ARTICLE Xanthoceraside exerts anti-Alzheimer's disease effect by remodeling gut microbiota and modulating microbial-derived metabolites level in rats. Phytomedicine, 2022, 98, 153937.	IF 2.3	CITATIONS
1565	Dihydromyricetin prevents obesity <i>via</i> regulating bile acid metabolism associated with the farnesoid X receptor in <i>ob</i> /i>/ci>ob mice. Food and Function, 2022, 13, 2491-2503.	2.1	18
1566	Interplay between Dysbiosis of Gut Microbiome, Lipid Metabolism, and Tumorigenesis: Can Gut Dysbiosis Stand as a Prognostic Marker in Cancer?. Disease Markers, 2022, 2022, 1-15.	0.6	23
1567	Beyond lipids: Novel mechanisms for parenteral nutrition–associated liver disease. Nutrition in Clinical Practice, 2022, , .	1.1	3
1568	The Biology of Veganism: Plasma Metabolomics Analysis Reveals Distinct Profiles of Vegans and Non-Vegetarians in the Adventist Health Study-2 Cohort. Nutrients, 2022, 14, 709.	1.7	12
1569	Dietary supplementation with okara and Bacillus coagulans lilac-01 improves hepatic lipid accumulation induced by cholic acids in rats. Journal of Functional Foods, 2022, 90, 104991.	1.6	4
1570	Metabolic fate of tea polyphenols and their crosstalk with gut microbiota. Food Science and Human Wellness, 2022, 11, 455-466.	2.2	23
1571	Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines, 2022, 10, 83.	1.4	71
1572	Bidirectional regulation of bile acid on colorectal cancer through bile acid-gut microbiota interaction. American Journal of Translational Research (discontinued), 2021, 13, 10994-11003.	0.0	1
1573	The Water Extract of Radix Scutellariae, its Total Flavonoids and Baicalin Inhibited CYP7A1 Expression, Improved Bile Acid, and Glycolipid Metabolism in T2DM Mice. SSRN Electronic Journal, 0, , .	0.4	0
1574	Discovery and characterization of amentoflavone as a naturally occurring inhibitor against the bile salt hydrolase produced by <i>Lactobacillus salivarius</i> . Food and Function, 2022, 13, 3318-3328.	2.1	2
1575	Dynamics of Gut Microbiome, IgA Response and Plasma Metabolome in Development of Pediatric Celiac Disease. SSRN Electronic Journal, 0, , .	0.4	0
1576	BSH-TRAP: Bile salt hydrolase tagging and retrieval with activity-based probes. Methods in Enzymology, 2022, 664, 85-102.	0.4	2
1577	Biotransformation of toxic xenobiotics by human gut microbiota. , 2022, , 217-243.		0
1578	A High-Fat Diet Activates the BAs-FXR Axis and Triggers Cancer-Associated Fibroblast Properties in the Colon. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1141-1159.	2.3	15
1579	Diet-gut microbiota interactions on cardiovascular disease. Computational and Structural Biotechnology Journal, 2022, 20, 1528-1540.	1.9	34
1580	The Role of Intestinal Microbiota in Regulating the Metabolism of Bile Acids Is Conserved Across Vertebrates. Frontiers in Microbiology, 2022, 13, 824611.	1.5	3
1581	Analysis of fecal bile acids and metabolites by high resolution mass spectrometry in farm animals and correlation with microbiota. Scientific Reports, 2022, 12, 2866.	1.6	5

#	Article	IF	CITATIONS
1582	Immunoregulatory Intestinal Microbiota and COVID-19 in Patients with Type Two Diabetes: A Double-Edged Sword. Viruses, 2022, 14, 477.	1.5	18
1583	Exposure to the mycotoxin deoxynivalenol reduces the transport of conjugated bile acids by intestinal Caco-2 cells. Archives of Toxicology, 2022, 96, 1473-1482.	1.9	1
1585	New Kids on the Block: Bile Salt Conjugates of Microbial Origin. Metabolites, 2022, 12, 176.	1.3	7
1586	Personal diet–microbiota interactions and weight loss. Proceedings of the Nutrition Society, 2022, 81, 243-254.	0.4	8
1587	Synthesis and identification of lithocholic acid 3-sulfate as RORÎ ³ t ligand to inhibit Th17 cell differentiation. Journal of Leukocyte Biology, 2022, 112, 835-843.	1.5	14
1588	Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 432-450.	8.2	119
1589	Bifidobacterium Is Enriched in Gut Microbiome of Kashmiri Women with Polycystic Ovary Syndrome. Genes, 2022, 13, 379.	1.0	13
1590	Impact of elobixibat on serum and fecal bile acid levels and constipation symptoms in patients with chronic constipation. Journal of Gastroenterology and Hepatology (Australia), 2022, , .	1.4	7
1591	Dietary methionine source alters the lipidome in the small intestinal epithelium of pigs. Scientific Reports, 2022, 12, 4863.	1.6	0
1592	Food as Treatment of Inflammatory Bowel Diseases. Infection and Immunity, 2022, 90, e0058321.	1.0	8
1593	Impact of Primary and Secondary Bile Acids on <i>Clostridioides difficile</i> Infection. Polish Journal of Microbiology, 2022, 71, 11-18.	0.6	5
1594	Microbial Metabolite Regulation of Epithelial Cell-Cell Interactions and Barrier Function. Cells, 2022, 11, 944.	1.8	15
1595	Alterations in common marmoset gut microbiome associated with duodenal strictures. Scientific Reports, 2022, 12, 5277.	1.6	8
1596	RELATIONSHIP OF LEAKY GUT SYNDROME AND METABOLIC SYNDROME. Health and Society, 2022, 2, .	0.0	0
1597	Therapeutic Potential of Natural Plants Against Non-Alcoholic Fatty Liver Disease: Targeting the Interplay Between Gut Microbiota and Bile Acids. Frontiers in Cellular and Infection Microbiology, 2022, 12, 854879.	1.8	7
1598	Bile Acids and the Microbiome: Making Sense of This Dynamic Relationship in Their Role and Management in Crohn's Disease. Canadian Journal of Gastroenterology and Hepatology, 2022, 2022, 1-12.	0.8	8
1599	Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host and Microbe, 2022, 30, 289-300.	5.1	208
1600	Human gut bacteria produce ÎÞ–17-modulating bileÂacid metabolites. Nature, 2022, 603, 907-912.	13.7	210

#	Article	IF	CITATIONS
1601	Therapeutic Effects of Berberine on Liver Fibrosis are associated With Lipid Metabolism and Intestinal Flora. Frontiers in Pharmacology, 2022, 13, 814871.	1.6	11
1603	Evaluation of the Risk of Clostridium difficile Infection Using a Serum Bile Acid Profile. Metabolites, 2022, 12, 331.	1.3	1
1604	Bile acid–gut microbiota crosstalk in irritable bowel syndrome. Critical Reviews in Microbiology, 2023, 49, 350-369.	2.7	10
1605	The emerging role of bile acids as critical components in nanotechnology and bioengineering: Pharmacology, formulation optimizers and hydrogel-biomaterial applications. Biomaterials, 2022, 283, 121459.	5.7	22
1606	Dietary fat promotes antibiotic-induced Clostridioides difficile mortality in mice. Npj Biofilms and Microbiomes, 2022, 8, 15.	2.9	6
1607	Establishment of baseline profiles of 50 bile acids in preclinical toxicity species: A comprehensive assessment of translational differences and study design considerations for biomarker development. Toxicology and Applied Pharmacology, 2022, 443, 116008.	1.3	1
1608	Lotus seed resistant starch decreases the blood lipid and regulates the serum bile acids profiles in hyperlipidemic rats. Journal of Functional Foods, 2022, 92, 105040.	1.6	2
1609	Jiangzhi granule attenuates non-alcoholic steatohepatitis through modulating bile acid in mice fed high-fat vitamin D deficiency diet. Biomedicine and Pharmacotherapy, 2022, 149, 112825.	2.5	3
1610	Identification cholesterol metabolites altered before the onset of nonalcoholic steatohepatitis by targeted metabolomics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159135.	1.2	5
1611	Weight loss and high-protein, high-fiber diet consumption impact blood metabolite profiles, body composition, voluntary physical activity, fecal microbiota, and fecal metabolites of adult dogs. Journal of Animal Science, 2022, 100, .	0.2	13
1612	The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer and Metastasis Reviews, 2021, 40, 1223-1249.	2.7	14
1613	The Gut Microbiome and Hepatocellular Carcinoma: Implications for Early Diagnostic Biomarkers and Novel Therapies. Liver Cancer, 2022, 11, 113-125.	4.2	27
1614	Physiological Role of Bile Acids Modified by the Gut Microbiome. Microorganisms, 2022, 10, 68.	1.6	35
1615	Bile Acids, Gut Microbiome and the Road to Fatty Liver Disease. , 2021, 12, 2719-2730.		7
1616	Interplay between gut microbiota and bile acids in diarrhoea-predominant irritable bowel syndrome: a review. Critical Reviews in Microbiology, 2022, 48, 696-713.	2.7	10
1617	Diammonium Glycyrrhizinate Ameliorates Obesity Through Modulation of Gut Microbiota-Conjugated BAs-FXR Signaling. Frontiers in Pharmacology, 2021, 12, 796590.	1.6	12
1618	Mammalian gut metabolomes mirror microbiome composition and host phylogeny. ISME Journal, 2022, 16, 1262-1274.	4.4	12
1619	Synchronous biliary gallstones and colorectal cancer: A single center analysis. Experimental and Therapeutic Medicine, 2021, 23, 138.	0.8	1

IF CITATIONS ARTICLE The role of the colonic microbiota and bile acids in colorectal cancer. Current Opinion in 1620 1.0 5 Gastroenterology, 2022, 38, 179-188. Gut Microbiota: The Servant of Human Being and the Accessary of Tumorigenesis. Trends in Oncology, 1621 2020, 2, 37-51. The inhibition of enterocyte proliferation by lithocholic acid exacerbates necrotizing enterocolitis 1622 2.4 8 through downregulating the Wnt/ $\hat{l}^2 \hat{a} \in catenin signalling pathway. Cell Proliferation, 2022, 55, e13228.$ Key Signaling in Alcohol-Associated Liver Disease: The Role of Bile Acids. Cells, 2022, 11, 1374. 1623 1.8 Gut Microbial Community and Host Thermoregulation in Small Mammals. Frontiers in Physiology, 1624 1.33 2022, 13, 888324. Hierarchyâ€Assembled Dual Probiotics System Ameliorates Cholestatic Drugâ€Induced Liver Injury via Gutâ€Liver Axis Modulation. Advanced Science, 2022, 9, e2200986. 5.6 The role of bile acids in carcinogenesis. Cellular and Molecular Life Sciences, 2022, 79, 243. 1626 2.4 73 Maternal Dietary Betaine Prevents High-Fat Diet-Induced Metabolic Disorders and Gut Microbiota Alterations in Mouse Dams and Offspring From Young to Adult. Frontiers in Microbiology, 2022, 13, 1.5 809642. Molecular interactions between the intestinal microbiota and the host. Molecular Microbiology, 1628 1.2 19 2022, 117, 1297-1307. Bile acids, bioactive signalling molecules in interoceptive gutâ€toâ€brain communication. Journal of 1.3 Physiology, 2022, 600, 2565-2578. Lessons learned by an organic chemist entering the microbiome field. Cell Host and Microbe, 2022, 30, 1630 5.10 435-438. Ferrous Bisglycinate Supplementation Modulates Intestinal Antioxidant Capacity via the AMPK/FOXO Pathway and Reconstitutes Gut Microbiota and Bile Acid Profiles in Pigs. Journal of Agricultural and 2.4 Food Chemistry, 2022, 70, 4942-4951. 1632 Colorectal Cancer Prevention., 2008, , 291-312. 0 Capturing the environment of the Clostridioides difficile infection cycle. Nature Reviews 1684 8.2 Gastroenterology and Hepatology, 2022, 19, 508-520. New and Emerging Research on Solute Carrier and ATP Binding Cassette Transporters in Drug 1685 Discovery and Development: Outlook From the International Transporter Consortium. Clinical 2.316 Pharmacology and Therapeutics, 2022, 112, 540-561. Targeted Metabolomics Based on LC-MS/MS Revealing Alteration of Bile Acids in Male Migraine Patients. Chemical Research in Chinese Universities, 2022, 38, 809-815. Messengers From the Gut: Gut Microbiota-Derived Metabolites on Host Regulation. Frontiers in 1688 1.520 Microbiology, 2022, 13, 863407. Gut microbiome in non-alcoholic fatty liver disease associated hepatocellular carcinoma: Current 1689 knowledge and potential for therapeutics. World Journal of Gastrointestinal Oncology, 2022, 14, 947-958.

щ		IF	CITATIONS
#	ARTICLE	IF	CITATIONS
1690	Bile Acids Transporters of Enterohepatic Circulation for Targeted Drug Delivery. Molecules, 2022, 27, 2961.	1.7	17
1691	Discovery and characterization of naturally occurring chalcones as potent inhibitors of bile salt hydrolases. , 2022, 1, .		1
1692	Production of New Microbially Conjugated Bile Acids by Human Gut Microbiota. Biomolecules, 2022, 12, 687.	1.8	19
1693	The intestinal and biliary microbiome in autoimmune liver disease—current evidence and concepts. Seminars in Immunopathology, 2022, 44, 485-507.	2.8	22
1694	Relationship between gut microbiota and colorectal cancer: Probiotics as a potential strategy for prevention. Food Research International, 2022, 156, 111327.	2.9	13
1695	Immunomodulatory functions of FXR. Molecular and Cellular Endocrinology, 2022, 551, 111650.	1.6	22
1696	Taurocholic acid, a primary 12α-hydroxylated bile acid, induces leakiness in the distal small intestine in rats. Food and Chemical Toxicology, 2022, 165, 113136.	1.8	9
1697	Spermidine Ameliorates Nonalcoholic Steatohepatitis through Thyroid Hormone-Responsive Protein Signaling and the Gut Microbiota-Mediated Metabolism of Bile Acids. Journal of Agricultural and Food Chemistry, 2022, 70, 6478-6492.	2.4	9
1698	Annexin-A1 deficiency attenuates stress-induced tumor growth <i>via</i> fatty acid metabolism in mice: an Integrated multiple omics analysis on the stress- microbiome-metabolite-epigenetic-oncology (SMMEO) axis. Theranostics, 2022, 12, 3794-3817.	4.6	8
1699	Gut Microbiota Associated with Clinical Relapse in Patients with Quiescent Ulcerative Colitis. Microorganisms, 2022, 10, 1044.	1.6	1
1700	Fine scale transitions of the microbiota and metabolome along the gastrointestinal tract of herbivorous fishes. Animal Microbiome, 2022, 4, .	1.5	11
1701	Regulation of body weight: Lessons learned from bariatric surgery. Molecular Metabolism, 2023, 68, 101517.	3.0	17
1702	Multi-â€~Omics of Host-Microbiome Interactions in Short- and Long-Term Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). SSRN Electronic Journal, 0, , .	0.4	0
1705	Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection. Microbiome, 2022, 10, .	4.9	51
1706	Nonalcoholic Steatohepatitis (NASH) and Atherosclerosis: Explaining Their Pathophysiology, Association and the Role of Incretin-Based Drugs. Antioxidants, 2022, 11, 1060.	2.2	2
1707	Antarctic krill oil ameliorates liver injury in rats exposed to alcohol by regulating bile acids metabolism and gut microbiota. Journal of Nutritional Biochemistry, 2022, 107, 109061.	1.9	9
1708	Molecular Basis of Bile Acid-FXR-FGF15/19 Signaling Axis. International Journal of Molecular Sciences, 2022, 23, 6046.	1.8	44
1709	Translating Microbiome Research From and To the Clinic. Annual Review of Microbiology, 2022, 76, 435-460.	2.9	12

#	Article	IF	CITATIONS
1710	Dietary fiber-based regulation of bile salt hydrolase activity in the gut microbiota and its relevance to human disease. Gut Microbes, 2022, 14, .	4.3	12
1711	Medicinal Formula Huazhi-Rougan Attenuates Non-Alcoholic Steatohepatitis Through Enhancing Fecal Bile Acid Excretion in Mice. Frontiers in Pharmacology, 2022, 13, .	1.6	4
1713	Targeting bile acid signaling for the treatment of liver diseases: From bench to bed. Biomedicine and Pharmacotherapy, 2022, 152, 113154.	2.5	8
1715	Extraction of Bile Acids from Biological Samples and Quantification Using Ultra-High-Performance Liquid Chromatography-Orbitrap Mass Spectrometry. , 2022, , 115-127.		2
1716	Fermented Rosa Roxburghii Tratt Juice Alleviates High-Fat Diet-Induced Hyperlipidemia in Rats by Modulating Gut Microbiota and Metabolites. Frontiers in Pharmacology, 0, 13, .	1.6	14
1717	Intestinal Barrier Dysfunction in Fatty Liver Disease: Roles of Microbiota, Mucosal Immune System, and Bile Acids. Seminars in Liver Disease, 2022, 42, 122-137.	1.8	3
1718	Gut microbiota, bile acids, and nature compounds. Phytotherapy Research, 2022, 36, 3102-3119.	2.8	7
1720	Reduced Cytokine Tumour Necrosis Factor by Pharmacological Intervention in a Preclinical Study. Biomolecules, 2022, 12, 877.	1.8	2
1721	Identification and Characterization of Major Bile Acid 7α-Dehydroxylating Bacteria in the Human Gut. MSystems, 2022, 7, .	1.7	12
1722	Effects of Dietary Nutrients on Fatty Liver Disease Associated With Metabolic Dysfunction (MAFLD): Based on the Intestinal-Hepatic Axis. Frontiers in Nutrition, 0, 9, .	1.6	9
1723	Profiling gut microbiota and bile acid metabolism in critically ill children. Scientific Reports, 2022, 12,	1.6	5
1724	Gut microbiota in sarcopenia and heart failure. , 2022, 2, 35.		7
1725	Influence of high-fat diet on host animal health via bile acid metabolism and benefits of oral-fed <i>Streptococcus thermophilus</i> MN-ZLW-002. Experimental Animals, 2022, 71, 468-480.	0.7	1
1727	Imaging Clostridioides difficile Spore Germination and Germination Proteins. Journal of Bacteriology, 2022, 204, .	1.0	5
1729	Meta-Analysis of Altered Gut Microbiota Reveals Microbial and Metabolic Biomarkers for Colorectal Cancer. Microbiology Spectrum, 2022, 10, .	1.2	30
1730	Bile acid metabolism and signaling, the microbiota, and metabolic disease. , 2022, 237, 108238.		62
1731	Mechanisms for Bile Acids CDCA- and DCA-Stimulated Hepatic Spexin Expression. Cells, 2022, 11, 2159.	1.8	5
1732	The Response of Fecal Microbiota and Host Metabolome in Dairy Cows Following Rumen Fluid Transplantation. Frontiers in Microbiology, 0, 13, .	1.5	2

#	Article	IF	CITATIONS
1733	Microbial Metabolites in the Maturation and Activation of Dendritic Cells and Their Relevance for Respiratory Immunity. Frontiers in Immunology, 0, 13, .	2.2	5
1734	Proteomic response of Turicibacter bilis MMM721 to chicken bile and its bile acids. BMC Research Notes, 2022, 15, .	0.6	2
1735	A Novel NADP(H)-Dependent 7alpha-HSDH: Discovery and Construction of Substrate Selectivity Mutant by C-Terminal Truncation. Catalysts, 2022, 12, 781.	1.6	2
1736	Effect of Dietary Methylsulfonylmethane Supplementation on Growth Performance, Hair Quality, Fecal Microbiota, and Metabolome in Ragdoll Kittens. Frontiers in Microbiology, 0, 13, .	1.5	1
1737	Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism. Nature Communications, 2022, 13, .	5.8	29
1738	Câ€section increases cecal abundance of the archetypal bile acid and glucocorticoid modifying <i>Lachnoclostridium [clostridium] scindens</i> in mice. Physiological Reports, 2022, 10, .	0.7	3
1739	Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Critical Reviews in Food Science and Nutrition, 2023, 63, 11880-11924.	5.4	8
1740	Regulation of intestinal immunity by dietary fatty acids. Mucosal Immunology, 2022, 15, 846-856.	2.7	5
1741	Structure-based rational design of hydroxysteroid dehydrogenases for improving and diversifying steroid synthesis. Critical Reviews in Biotechnology, 2023, 43, 770-786.	5.1	3
1742	Polysaccharides from Lyophyllum decastes reduce obesity by altering gut microbiota and increasing energy expenditure. Carbohydrate Polymers, 2022, 295, 119862.	5.1	38
1743	Intestinal aberrant sphingolipid metabolism shapedâ€gut microbiome and bile acids metabolome in the development of hepatic steatosis. FASEB Journal, 2022, 36, .	0.2	8
1744	The Effect of Lithocholic Acid on the Gut-Liver Axis. Frontiers in Pharmacology, 0, 13, .	1.6	10
1745	Polyvinyl chloride microplastics induced gut barrier dysfunction, microbiota dysbiosis and metabolism disorder in adult mice. Ecotoxicology and Environmental Safety, 2022, 241, 113809.	2.9	25
1746	A structural metagenomics pipeline for examining the gut microbiome. Current Opinion in Structural Biology, 2022, 75, 102416.	2.6	10
1747	Host and microbial-derived metabolites for Clostridioides difficile infection: Contributions, mechanisms and potential applications. Microbiological Research, 2022, 263, 127113.	2.5	5
1750	Farnesoid X receptor activation by the novel agonist TC-100 (3α, 7α, 11β-Trihydroxy-6α-ethyl-5β-cholan-24-oic) model of obstructed bile acid flow. Biomedicine and Pharmacotherapy, 2022, 153, 113380.	Tj ETQq1 2.5	1 0.78431 <mark>4</mark> 8
1751	A meticulous study on the interaction of bile salts with star block copolymeric micelles. Journal of Molecular Liquids, 2022, 363, 119877.	2.3	6
1752	Abnormal bile acid metabolism is an important feature of gut microbiota and fecal metabolites in patients with slow transit constipation. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5

#	Article	IF	Citations
1753	A Comparison of the Impact of Restrictive Diets on the Gastrointestinal Tract of Mice. Nutrients, 2022, 14, 3120.	1.7	9
1754	Versatile Triad Alliance: Bile Acid, Taurine and Microbiota. Cells, 2022, 11, 2337.	1.8	18
1755	ç›é,å°æª—碱ç¼"è§£ä»£è°¢ç›¸å³æ€§è,,,è,ªè,ç—çš,,生物å¦é¶ç,¹å'Œæœºå^¶. Chinese Science Bulletin, 2	20024,.	0
1756	Evaluation of Intestinal Microbial Metabolites in Preterm Infants with Different Initial Feeding Methods by In Vitro Fermentation Modeling System. Microorganisms, 2022, 10, 1453.	1.6	0
1757	New Insights into Bile Acids Related Signaling Pathways in the Onset of Colorectal Cancer. Nutrients, 2022, 14, 2964.	1.7	15
1758	Interactive Relationships between Intestinal Flora and Bile Acids. International Journal of Molecular Sciences, 2022, 23, 8343.	1.8	29
1759	Better detoxifying effect of ripe forsythiae fructus over green forsythiae fructus and the potential mechanisms involving bile acids metabolism and gut microbiota. Frontiers in Pharmacology, 0, 13, .	1.6	0
1760	Therapeutic Potential of Human Microbiome-Based Short-Chain Fatty Acids and Bile Acids in Liver Disease. Livers, 2022, 2, 139-145.	0.8	6
1762	Enterohepatic Shunt-Driven Cholemia Predisposes to Liver Cancer. Gastroenterology, 2022, 163, 1658-1671.e16.	0.6	7
1763	Bile Salt Hydrolase-Competent Probiotics in the Management of IBD: Unlocking the "Bile Acid Code― Nutrients, 2022, 14, 3212.	1.7	17
1764	The Role of Gut Microbiota Modulation Strategies in Obesity: The Applications and Mechanisms. Fermentation, 2022, 8, 376.	1.4	5
1765	Gut microbiota: A new target for T2DM prevention and treatment. Frontiers in Endocrinology, 0, 13, .	1.5	29
1766	Microbial Metabolites Orchestrate a Distinct Multi-Tiered Regulatory Network in the Intestinal Epithelium That Directs P-Glycoprotein Expression. MBio, 2022, 13, .	1.8	8
1767	Targeted metabolomics reveals aberrant profiles of serum bile acids in patients with schizophrenia. , 2022, 8, .		4
1768	IL-25 ameliorates acute cholestatic liver injury via promoting hepatic bile acid secretion. Cytokine, 2022, 158, 155979.	1.4	0
1769	A novel NADP(H)-dependent 3α-HSDH from the intestinal microbiome of Ursus thibetanus. International Journal of Biological Macromolecules, 2022, 219, 159-165.	3.6	0
1770	The anti-stress effect of taurine in fish: Assessments based on repeat acute stress and animal individuality. Aquaculture, 2022, 561, 738685.	1.7	3
1771	Dietary bile acids supplementation modulates immune response, antioxidant capacity, glucose, and lipid metabolism in normal and intrauterine growth retardation piglets. Frontiers in Nutrition, 0, 9, .	1.6	6

#	Article	IF	Citations
1772	Modulatory role of gut microbiota in cholesterol and glucose metabolism: Potential implications for atherosclerotic cardiovascular disease. Atherosclerosis, 2022, 359, 1-12.	0.4	8
1773	Coupling an artificial receptor with macrophage membrane for targeted and synergistic treatment of cholestasis. , 2022, 1, 100020.		2
1774	Exogenous bile acids regulate energy metabolism and improve the health condition of farmed fish. Aquaculture, 2023, 562, 738852.	1.7	17
1775	Coupling an Artificial Receptor with Macrophage Membrane for Targeted and Synergistic Treatment of Cholestasis. SSRN Electronic Journal, 0, , .	0.4	0
1776	Succinate communicates pro-inflammatory signals to the host and regulates bile acid enterohepatic metabolism in a pig model. Food and Function, 2022, 13, 11070-11082.	2.1	5
1777	Comparative effect of ciprofloxacin and moxifloxacin on the modulation of bile acid profiles and gut microbiota in rats. Brazilian Journal of Pharmaceutical Sciences, 0, 58, .	1.2	1
1778	Myoglobin diet affected the colonic mucus layer and barrier by increasing the abundance of several beneficial gut bacteria. Food and Function, 2022, 13, 9060-9077.	2.1	3
1779	Lead and copper led to the dysregulation of bile acid homeostasis by impairing intestinal absorption in Bufo gargarizans larvae: An integrated metabolomics and transcriptomics approach. Science of the Total Environment, 2023, 855, 159031.	3.9	8
1781	Omega-3 Polyunsaturated Fatty Acids, Gut Microbiota, Microbial Metabolites, and Risk of Colorectal Adenomas. Cancers, 2022, 14, 4443.	1.7	1
1782	The gut microbiota–bile acid axis: A potential therapeutic target for liver fibrosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	11
1783	Cholecystectomy promotes the development of colorectal cancer by the alternation of bile acid metabolism and the gut microbiota. Frontiers in Medicine, 0, 9, .	1.2	4
1784	Characterization of long-chain fatty acid-linked bile acids: a major conjugation form of 3β-hydroxy bile acids in feces. Journal of Lipid Research, 2022, 63, 100275.	2.0	6
1785	Regulation of gut microbiota-bile acids axis by probiotics in inflammatory bowel disease. Frontiers in Immunology, 0, 13, .	2.2	5
1786	A Novel Gene Alignment in <i>Dorea</i> sp. AM58-8 Produces 7-Dehydroxy-3β Bile Acids from Primary Bile Acids. Biochemistry, 2022, 61, 2870-2878.	1.2	4
1787	Roles of Gut Microbiome in Bone Homeostasis and Its Relationship with Bone-Related Diseases. Biology, 2022, 11, 1402.	1.3	7
1788	Bowel habits, faecal microbiota and faecal bile acid composition of healthy adults consuming fruit pomace fibres: two-arm, randomised, double-blinded, placebo-controlled trials. British Journal of Nutrition, 2023, 130, 42-55.	1.2	2
1789	How Microbiota-Derived Metabolites Link the Gut to the Brain during Neuroinflammation. International Journal of Molecular Sciences, 2022, 23, 10128.	1.8	8
1790	Bile Acids—A Peek Into Their History and Signaling. Endocrinology, 2022, 163, .	1.4	5

	Сітат	ion Report	
#	Article	IF	CITATIONS
1791	Gut and obesity/metabolic disease: Focus on microbiota metabolites. MedComm, 2022, 3, .	3.1	15
1792	Secondary bile acids mediate high-fat diet–induced upregulation of R-spondin 3 and intestinal epithelial proliferation. JCI Insight, 2022, 7, .	2.3	7
1793	Nuciferine Protects Against High-Fat Diet-Induced Hepatic Steatosis <i>via</i> Modulation of Gut Microbiota and Bile Acid Metabolism in Rats. Journal of Agricultural and Food Chemistry, 2022, 70, 12014-12028.	2.4	27
1794	Advancing human gut microbiota research by considering gut transit time. Gut, 2023, 72, 180-191.	6.1	66
1795	c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by <i>Clostridioides difficile</i> . Science Signaling, 2022, 15, .	1.6	15
1796	Gut microbiome and microbial metabolites in NAFLD and after bariatric surgery: Correlation and causality. Frontiers in Microbiology, 0, 13, .	1.5	16
1797	Effects of longâ€ŧerm simulated microgravity on liver metabolism in rhesus macaques. FASEB Journal, 2022, 36, .	0.2	7
1798	The bridge of the gut–joint axis: Gut microbial metabolites in rheumatoid arthritis. Frontiers in Immunology, 0, 13, .	2.2	15
1799	Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis. Gut Microbes, 2022, 14, .	4.3	6
1800	The exciting and magical journey of components from compound formulae to where they fight. , 2022, 2, 240-252.		5
1801	Hyodeoxycholic Acid (HDCA) Prevents Development of Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice: Possible Role of Synergism between DSS and HDCA in Increasing Fecal Bile Acid Levels. Biological and Pharmaceutical Bulletin, 2022, 45, 1503-1509.	0.6	4
1802	Lithocholic acid promotes rosacea-like skin inflammation via G protein-coupled bile acid receptor 1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166563.	1.8	4
1803	Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nature Reviews Microbiology, 2023, 21, 236-247.	13.6	136
1804	New insights into the interplay between intestinal flora and bile acids in inflammatory bowel disease. World Journal of Clinical Cases, 0, 10, 10823-10839.	0.3	3
1805	Genome-centric investigation of bile acid metabolizing microbiota of dairy cows and associated diet-induced functional implications. ISME Journal, 2023, 17, 172-184.	4.4	16
1806	The Role of the Microbiota Gut–Liver Axis during HCV Chronic Infection: A Schematic Overview. Journal of Clinical Medicine, 2022, 11, 5936.	1.0	6
1807	Bile acids profile and redox status in healthy infants. Pediatric Research, 0, , .	1.1	0
1808	The Role of Cyclomodulins and Some Microbial Metabolites in Bacterial Microecology and Macroorganism Carcinogenesis. International Journal of Molecular Sciences, 2022, 23, 11706.	1.8	3

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
1809	The role of the gut microbiota in health and cardiovascular diseases. Molecular Biomedic	ine, 2022, 3, .	1.7	22
1810	Gut microbiota involved in desulfation of sulfated progesterone metabolites: A potential pathway of maternal bile acid homeostasis during pregnancy. Frontiers in Microbiology,	regulation 0, 13, .	1.5	1
1811	Bile Acid and Gut Microbiota in Irritable Bowel Syndrome. Journal of Neurogastroenterol Motility, 2022, 28, 549-561.	ogy and	0.8	20
1812	The critical role of gut microbiota in obesity. Frontiers in Endocrinology, 0, 13, .		1.5	38
1813	Effects of oral tauroursodeoxycholic acid and/or intestinal probiotics on serum biochemi and bile composition in patients with cholecystolithiasis. Frontiers in Pharmacology, 0, 1		1.6	2
1814	Identification of a Bile Acid-Binding Transcription Factor in <i>Clostridioides difficile</i> Chemical Proteomics. ACS Chemical Biology, 2022, 17, 3086-3099.	Using	1.6	5
1815	Diagnostic and Molecular Portraits of Microbiome and Metabolomics of Short-Chain Fat Bile acids in Liver Disease. Process Biochemistry, 2022, , .	ty Acids and	1.8	2
1816	Elevated Levels of Toxic Bile Acids in Serum of Cystic Fibrosis Patients with CFTR Mutatic Pancreatic Insufficiency. International Journal of Molecular Sciences, 2022, 23, 12436.	ons Causing	1.8	2
1817	Indole intercepts the communication between enteropathogenic <i>E. coli</i> and <i>V cholerae</i> . Gut Microbes, 2022, 14, .	ibrio	4.3	2
1818	Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature, 202	2, 611, 578-584.	13.7	50
1819	Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metabolism, 20 1700-1718.	22, 34,	7.2	118
1820	Intrauterine growth retardation affects liver bile acid metabolism in growing pigs: effects with the changes of colonic bile acid derivatives. Journal of Animal Science and Biotechn 13, .		2.1	3
1821	Atorvastatin Inhibits High-Fat Diet-Induced Lipid Metabolism Disorders in Rats by Inhibiti Reduction and Improving Metabolism. Drug Design, Development and Therapy, O, Volum		2.0	2
1822	Cholestyramine resin administration alleviated cerebral ischemic injury in obese mice by dysbiosis and modulating the bile acid profile. Experimental Neurology, 2023, 359, 1142		2.0	2
1823	Effects of palm olein and palm stearin on cecal and fecal microbiota of C57BL/6J mice ur high fat intakes. Food Chemistry, 2023, 404, 134693.	ıder low and	4.2	2
1824	Impact of intestinal dysbiosis on breast cancer metastasis and progression. Frontiers in (12, .	Oncology, 0,	1.3	3
1825	Formation of secondary allo-bile acids by novel enzymes from gut Firmicutes. Gut Microl	pes, 2022, 14, .	4.3	11
1826	Multiomics Analyses Reveal That Long-Term Intake of Hesperetin-7- <i>O</i> -glucoside N Gut Microbiota and Bile Acid Metabolism in Mice. Journal of Agricultural and Food Chem 70, 14831-14840.	lodulates the istry, 2022,	2.4	2

#	Article	IF	CITATIONS
1827	Stress Response in Bifidobacteria. Microbiology and Molecular Biology Reviews, 2022, 86, .	2.9	9
1828	The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. International Journal of Molecular Sciences, 2022, 23, 13967.	1.8	3
1830	The impact of dietary fibers on Clostridioides difficile infection in a mouse model. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5
1831	Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Critical Reviews in Microbiology, 2023, 49, 764-785.	2.7	4
1832	Multi-target regulation of intestinal microbiota by berberine to improve type 2 diabetes mellitus. Frontiers in Endocrinology, 0, 13, .	1.5	5
1833	Host's P85α genotype restructures the gut microbiota and regulates fat metabolism in gibel carp. Aquaculture, 2023, 565, 739160.	1.7	0
1834	Antibiotic-induced gut microbiota depletion exacerbates host hypercholesterolemia. Pharmacological Research, 2023, 187, 106570.	3.1	6
1835	Clostridioides difficile bile salt hydrolase activity has substrate specificity and affects biofilm formation. Npj Biofilms and Microbiomes, 2022, 8, .	2.9	5
1836	Intake of slow-digesting carbohydrates is related to changes in the microbiome and its functional pathways in growing rats with obesity induced by diet. Frontiers in Nutrition, 0, 9, .	1.6	6
1837	Role of bile acids in overweight and obese children and adolescents. Frontiers in Endocrinology, 0, 13,	1.5	4
1838	The Role of the Microbiome on the Pathogenesis and Treatment of Colorectal Cancer. Cancers, 2022, 14, 5685.	1.7	11
1839	Mikrobiom Przewodu Pokarmowego CzÅ,owieka – Wybrane Dane. Postepy Mikrobiologii, 2022, 61, 223-233.	0.1	0
1840	Implication of gut microbes and its metabolites in colorectal cancer. Journal of Cancer Research and Clinical Oncology, 2023, 149, 441-465.	1.2	9
1841	Ethnicity Associated Microbial and Metabonomic Profiling in Newly Diagnosed Ulcerative Colitis. Clinical and Experimental Gastroenterology, 0, Volume 15, 199-212.	1.0	1
1842	The bile salt deoxycholate induces Campylobacter jejuni genetic point mutations that promote increased antibiotic resistance and fitness. Frontiers in Microbiology, 0, 13, .	1.5	1
1843	Bile acids as inflammatory mediators and modulators of intestinal permeability. Frontiers in Immunology, 0, 13, .	2.2	12
1844	Impact of Fecal Microbiota Transplantation on Gut Bacterial Bile Acid Metabolism in Humans. Nutrients, 2022, 14, 5200.	1.7	9
1845	Glycocholic acid supplementation improved growth performance and alleviated tissue damage in the liver and intestine in Pelteobagrus fulvidraco fed a high-pectin diet. Fish Physiology and Biochemistry, 0, , .	0.9	2

#	Article	IF	Citations
π 1846	Effect of sphincter of Oddi dysfunction on the abundance of biliary microbiota (biliary microecology) in patients with common bile duct stones. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
1847	The Role of the Gut Microbiome in Pediatric Obesity and Bariatric Surgery. International Journal of Molecular Sciences, 2022, 23, 15421.	1.8	2
1848	Probiotic Potentials of Lactic Acid Bacteria and Yeasts from Raw Goat Milk in Nigeria. Probiotics and Antimicrobial Proteins, 2024, 16, 163-180.	1.9	6
1849	Untargeted Fecal Metabolomic Analyses across an Industrialization Gradient Reveal Shared Metabolites and Impact of Industrialization on Fecal Microbiome-Metabolome Interactions. MSystems, 2022, 7, .	1.7	2
1850	Associations of Dietary Intake with the Intestinal Microbiota and Short-Chain Fatty Acids Among Young Adults with Type 1 Diabetes and Overweight or Obesity. Journal of Nutrition, 2023, 153, 1178-1188.	1.3	4
1851	Bile acids and their receptors in regulation of gut health and diseases. Progress in Lipid Research, 2023, 89, 101210.	5.3	18
1852	Evaluation of gut dysbiosis using serum and fecal bile acid profiles. World Journal of Clinical Cases, 0, 10, 12484-12493.	0.3	0
1853	Treatment of Dyslipidemia through Targeted Therapy of Gut Microbiota. Nutrients, 2023, 15, 228.	1.7	10
1854	Effects of a milk oligosaccharide biosimilar on fecal characteristics, microbiota, and bile acid, calprotectin, and immunoglobulin concentrations of healthy adult dogs treated with metronidazole. Journal of Animal Science, 2023, 101, .	0.2	5
1855	Swainsonine Induces Liver Inflammation in Mice via Disturbance of Gut Microbiota and Bile Acid Metabolism. Journal of Agricultural and Food Chemistry, 2023, 71, 1758-1767.	2.4	1
1856	Immunometabolism and microbial metabolites at the gut barrier: Lessons for therapeutic intervention in inflammatory bowel disease. Mucosal Immunology, 2023, 16, 72-85.	2.7	5
1857	A diet supplemented with cholic acid elevates blood pressure accompanied by albuminuria in rats. Bioscience, Biotechnology and Biochemistry, 0, , .	0.6	0
1858	Microbiome, alveolar bone, and metabolites: Connecting the dots. Frontiers in Dental Medicine, 0, 3, .	0.5	0
1859	Akkermansia muciniphila protects mice against an emerging tick-borne viral pathogen. Nature Microbiology, 2023, 8, 91-106.	5.9	22
1860	Substituting meat for mycoprotein reduces genotoxicity and increases the abundance of beneficial microbes in the gut: Mycomeat, a randomised crossover control trial. European Journal of Nutrition, 2023, 62, 1479-1492.	1.8	5
1861	Human Fecal Bile Acid Analysis after Investigational Microbiota-Based Live Biotherapeutic Delivery for Recurrent Clostridioides difficile Infection. Microorganisms, 2023, 11, 135.	1.6	6
1862	Bacteroides vulgatus Ameliorates Lipid Metabolic Disorders and Modulates Gut Microbial Composition in Hyperlipidemic Rats. Microbiology Spectrum, 2023, 11, .	1.2	14
1863	The 7-α-dehydroxylation pathway: An integral component of gut bacterial bile acid metabolism and potential therapeutic target. Frontiers in Microbiology, 0, 13, .	1.5	9

#	Article	IF	CITATIONS
1864	Clostridium scindens metabolites trigger prostate cancer progression through androgen receptor signaling. Journal of Microbiology, Immunology and Infection, 2023, 56, 246-256.	1.5	2
1865	Dynamics of the gut microbiome, IgA response, and plasma metabolome in the development of pediatric celiac disease. Microbiome, 2023, 11, .	4.9	8
1866	The gut microbiota in obesity and weight management: microbes as friends or foe?. Nature Reviews Endocrinology, 2023, 19, 258-271.	4.3	38
1867	Metabolic disorder and intestinal microflora dysbiosis in chronic inflammatory demyelinating polyradiculoneuropathy. Cell and Bioscience, 2023, 13, .	2.1	3
1868	Biological tuners to reshape the bile acid pool for therapeutic purposes in non-alcoholic fatty liver disease. Clinical Science, 2023, 137, 65-85.	1.8	4
1869	Microbial Metabolite Dysbiosis and Colorectal Cancer. Gut and Liver, 2023, 17, 190-203.	1.4	7
1870	Effect of Clostridium butyricum on High-Fat Diet-Induced Intestinal Inflammation and Production of Short-Chain Fatty Acids. Digestive Diseases and Sciences, 2023, 68, 2427-2440.	1.1	6
1871	Clostridium difficile Infection Is Associated With Decreased Prostate Cancer Risk: A Retrospective Cohort Study. Cureus, 2023, , .	0.2	0
1872	Defining the Role of the Gut Microbiome in the Pathogenesis and Treatment of Lymphoid Malignancies. International Journal of Molecular Sciences, 2023, 24, 2309.	1.8	2
1873	Discovery of a Novel Class of Dual GPBAR1 Agonists–RORγt Inverse Agonists for the Treatment of IL-17-Mediated Disorders. ACS Omega, 2023, 8, 5983-5994.	1.6	2
1874	Gut Microbial Metabolites on Host Immune Responses in Health and Disease. Immune Network, 2023, 23,	1.6	8
1875	Clostridium perfringens strains proliferate to high counts in the broiler small intestinal tract, in accordance with necrotic lesion severity, and sporulate in the distal intestine. Veterinary Microbiology, 2023, 280, 109705.	0.8	2
1876	Microbiome in Behcet's syndrome. Clinical Immunology, 2023, 250, 109304.	1.4	5
1877	Cordyceps militaris polysaccharide alleviates ovalbumin-induced allergic asthma through the Nrf2/HO-1 and NF-I®B signaling pathways and regulates the gut microbiota. International Journal of Biological Macromolecules, 2023, 238, 124333.	3.6	4
1878	Ingesting a fermented milk product reduces liver triacylglycerol accumulation and normalizes gut permeability in rats even under a cholic acid-fed condition. Journal of Functional Foods, 2023, 104, 105523.	1.6	0
1880	Gut microbiota links with cognitive impairment in amyotrophic lateral sclerosis: A multi-omics study. Journal of Biomedical Research, 2023, 37, 125.	0.7	7
1881	"èf†æ±é…,â€ā,'介ã⊷ãŸè…,内ç″èŒãëå®;ä,»ã®ã,¯ãfã,¹ãf^ãf¹¼ã,¯. Kagaku To Seibutsu, 2022, 60, 79-88.	0.0	0
1882	Chromium exposure altered metabolome and microbiomeâ€associated with neurotoxicity in zebrafish. Journal of Applied Toxicology, 2023, 43, 1026-1038.	1.4	3

		CITATION REPORT		
#	Article		IF	CITATIONS
1883	Effects of Fermented Food Consumption on Non-Communicable Diseases. Foods, 202	3, 12, 687.	1.9	9
1884	Interaction between gut microbiota and sex hormones and their relation to sexual dim metabolic diseases. Biology of Sex Differences, 2023, 14, .	orphism in	1.8	15
1885	Vitamin D Receptor Mediates Attenuating Effect of Lithocholic Acid on Dextran Sulfate Induced Colitis in Mice. International Journal of Molecular Sciences, 2023, 24, 3517.	? Sodium	1.8	2
1886	Opisthorchis viverrini, Clonorchis sinensis and Opisthorchis felineus liver flukes affect r host microbiome in a species-specific manner. PLoS Neglected Tropical Diseases, 2023		1.3	6
1887	Impact of Vancomycin Treatment and Gut Microbiota on Bile Acid Metabolism and the Non-Alcoholic Steatohepatitis in Mice. International Journal of Molecular Sciences, 202		1.8	1
1888	Gut Microbiota as Well as Metabolomes of Wistar Rats Recover within Two Weeks afte Antibiotic Treatment. Microorganisms, 2023, 11, 533.	er Doripenem	1.6	Ο
1889	A Dual Coverage Monitoring of the Bile Acids Profile in the Liver–Gut Axis throughou Inflammation-Cancer Transformation Progressive: Reveal Hepatocellular Carcinoma Pat International Journal of Molecular Sciences, 2023, 24, 4258.		1.8	2
1890	Orally administered Lactiplantibacillus plantarum OLL2712 decreased intestinal perme in the ileum: Ingested lactic acid bacteria alleviated obesity-induced inflammation by co with gut microbiota. Frontiers in Immunology, 0, 14, .		2.2	5
1891	Microbiotaâ \in related metabolites fueling the understanding of ischemic heart disease.	, 2023, 2, .		3
1892	Bile Acids and Biliary Fibrosis. Cells, 2023, 12, 792.		1.8	3
1893	Chemoproteomic Approaches for Unraveling Prokaryotic Biology. Israel Journal of Cher 63, .	nistry, 2023,	1.0	2
1894	Microbiota-derived metabolites in regulating the development and physiology of Caene elegans. Frontiers in Microbiology, 0, 14, .	prhabditis	1.5	1
1895	Defecation status, intestinal microbiota, and habitual diet are associated with the fecal composition: a cross-sectional study in community-dwelling young participants. Europe Nutrition, 2023, 62, 2015-2026.		1.8	4
1897	Prolonged Antibiotic Exposure during Adolescence Dysregulates Liver Metabolism and Adiposity in Mice. American Journal of Pathology, 2023, 193, 796-812.	Promotes	1.9	3
1898	Predicting metabolomic profiles from microbial composition through neural ordinary d equations. Nature Machine Intelligence, 2023, 5, 284-293.	ifferential	8.3	5
1899	Development of the Anaerobic Microbiome in the Infant Gut. Pediatric Infectious Disea Publish Ahead of Print, .	se Journal, O,	1.1	0
1900	Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile gromurine gut. Nature Microbiology, 2023, 8, 611-628.	wth in the	5.9	35
1901	<i>Bacillus cereus</i> Alters Bile Acid Composition and Alleviates High-Carbohydrate D Hepatic Lipid Accumulation in Nile Tilapia (<i>Oreochromis niloticus</i>). Journal of Ag Food Chemistry, 2023, 71, 4825-4836.	iet-Induced ricultural and	2.4	5

#	Article	IF	CITATIONS
1902	Deregulated bile acids may drive hepatocellular carcinoma metastasis by inducing an immunosuppressive microenvironment. Frontiers in Oncology, 0, 12, .	1.3	2
1903	The analysis of gut microbiota in patients with bile acid diarrhoea treated with colesevelam. Frontiers in Microbiology, 0, 14, .	1.5	2
1904	Microbial metabolites as modulators of the infant gut microbiome and host-microbial interactions in early life. Gut Microbes, 2023, 15, .	4.3	14
1905	Metabolomics analysis reveals serum biomarkers in patients with diabetic sarcopenia. Frontiers in Endocrinology, 0, 14, .	1.5	2
1906	Staphylococcus aureus FadB is a dehydrogenase that mediates cholate resistance and survival under human colonic conditions. Microbiology (United Kingdom), 2023, 169, .	0.7	0
1907	Gut Microbiota is an Impact Factor based on the Brain-Gut Axis to Alzheimer's Disease: A Systematic Review. , 2023, 14, 964.		5
1908	Bile Acid Derivatives Effectively Prevented Highâ€Fat Dietâ€Induced Colonic Barrier Dysfunction. Molecular Nutrition and Food Research, 2023, 67, .	1.5	2
1909	Multiomics-empowered Deep Phenotyping of Ulcerative Colitis Identifies Biomarker Signatures Reporting Functional Remission States. Journal of Crohn's and Colitis, 2023, 17, 1514-1527.	0.6	4
1910	Glycoursodeoxycholic acid regulates bile acids level and alters gut microbiota and glycolipid metabolism to attenuate diabetes. Gut Microbes, 2023, 15, .	4.3	8
1911	Effects of Taurine on Gut Microbiota Homeostasis: An Evaluation Based on Two Models of Gut Dysbiosis. Biomedicines, 2023, 11, 1048.	1.4	6
1912	Gut Failure: A Review of the Pathophysiology and Therapeutic Potentials in the Gut–Heart Axis. Journal of Clinical Medicine, 2023, 12, 2567.	1.0	5
1913	Arresting microbiome development limits immune system maturation and resistance to infection in mice. Cell Host and Microbe, 2023, 31, 554-570.e7.	5.1	22
1914	Role of Microbiota-Modified Bile Acids in the Regulation of Intracellular Organelles and Neurodegenerative Diseases. Genes, 2023, 14, 825.	1.0	3
1915	Effects of OsomeFood Clean Label plant-based meals on the gut microbiome. BMC Microbiology, 2023, 23, .	1.3	0
1916	Regulation of lipid metabolism by gut microbiota in aquatic animals. Reviews in Aquaculture, 2024, 16, 34-46.	4.6	4
1917	Oral supplementation of nicotinamide riboside alters intestinal microbial composition in rats and mice, but not humans. , 2023, 9, .		5
1918	OmpC-Dependent Bile Tolerance Contributes to E. coli Colonization of the Mammalian Intestine. Microbiology Spectrum, 2023, 11, .	1.2	3
1919	Characteristics of the Gut Microbiome and Serum Metabolome in Patients with Functional Constipation. Nutrients, 2023, 15, 1779.	1.7	5

#	Article	IF	CITATIONS
1920	Effects of 60Âdays of 6° head-down bed rest on the composition and function of the human gut microbiota. IScience, 2023, 26, 106615.	1.9	2
1921	The Effect of Bioactive Aliment Compounds and Micronutrients on Non-Alcoholic Fatty Liver Disease. Antioxidants, 2023, 12, 903.	2.2	2
1922	State of the art in research on the gut-liver and gut-brain axis in poultry. Journal of Animal Science and Biotechnology, 2023, 14, .	2.1	3
1923	Drug-gut Microbiome Interaction in Atherosclerosis Therapeutics. Current Drug Metabolism, 2023, 24, 482-492.	0.7	2
1924	Probiotics Influence Gut Microbiota and Tumor Immune Microenvironment to Enhance Anti-Tumor Efficacy of Doxorubicin. Probiotics and Antimicrobial Proteins, 0, , .	1.9	2
1925	Emerging Roles of Gut Microbial Modulation of Bile Acid Composition in the Etiology of Cardiovascular Diseases. Nutrients, 2023, 15, 1850.	1.7	6
1926	Bile acid alterations associated with indolent course of inflammatory bowel disease. Scandinavian Journal of Gastroenterology, 2023, 58, 988-997.	0.6	1
1927	Ameliorating effect of probiotic on nonalcoholic fatty liver disease and lipolytic gene expression in rabbits. Scientific Reports, 2023, 13, .	1.6	3
1928	Dose–Response Efficacy and Mechanisms of Orally Administered Bifidobacterium breve CCFM683 on IMQ-Induced Psoriasis in Mice. Nutrients, 2023, 15, 1952.	1.7	6
1929	Microbiota–gut–brain axis and related therapeutics in Alzheimer's disease: prospects for multitherapy and inflammation control. Reviews in the Neurosciences, 2023, 34, 695-718.	1.4	1
1930	In Silico Analysis of Changes in Predicted Metabolic Capabilities of Intestinal Microbiota after Fecal Microbial Transplantation for Treatment of Recurrent Clostridioides difficile Infection. Microorganisms, 2023, 11, 1078.	1.6	0
1975	Human metabolome variation along the upper intestinal tract. Nature Metabolism, 2023, 5, 777-788.	5.1	28
1976	Vitamins as regulators of calcium-containing kidney stones — new perspectives on the role of the gut microbiome. Nature Reviews Urology, 2023, 20, 615-637.	1.9	4
1987	Bacteria in cancer initiation, promotion and progression. Nature Reviews Cancer, 2023, 23, 600-618.	12.8	21
2012	Therapeutic Interventions in Psycho-Neuro-Endocrino-Immunology (PNEI). , 2023, , 151-170.		0
2017	Dietary polyphenols maintain homeostasis <i>via</i> regulating bile acid metabolism: a review of possible mechanisms. Food and Function, 2023, 14, 9486-9505.	2.1	2
2059	The Microbiome, Metabolism, and Networks in Precision Nutrition. , 2024, , 91-142.		0
2077	Role of Gut Microbiome Composition in Shaping Host Immune System Development and Health. , 2023, , 39-65.		0

#	Article	IF	CITATIONS
2081	Hepatocellular Carcinoma and Human Gut Microbiome: Association with Disease and Scope for Therapeutic Intervention. , 2023, , 127-149.		0
2085	Communication with Gut Microbiota: An Emerging Strategy to Predict and Prevent Cancer. , 2023, , 471-486.		0
2114	Environmental chemical-induced adverse effects on gut microbiota and their implications for the etiopathogenesis of chronic neurological diseases. Advances in Neurotoxicology, 2024, , .	0.7	0
2129	Effects of gut bacteria and their metabolites on gut health of animals. Advances in Applied Microbiology, 2024, , .	1.3	0