Chondroitinase ABC Digestion of the Perineuronal Net Sprouting in the Cuneate Nucleus after Cervical Spinal

Journal of Neuroscience 26, 4406-4414

DOI: 10.1523/jneurosci.5467-05.2006

Citation Report

#	ARTICLE	IF	CITATIONS
1	The Role of Inhibitory Molecules in Limiting Axonal Regeneration in the Mammalian Spinal Cord. , 0, , 1-50.		0
2	Glial inhibition of CNS axon regeneration. Nature Reviews Neuroscience, 2006, 7, 617-627.	10.2	1,329
3	Spinal cord repair strategies: why do they work?. Nature Reviews Neuroscience, 2006, 7, 644-653.	10.2	309
4	Chondroitinase ABC Promotes Sprouting of Intact and Injured Spinal Systems after Spinal Cord Injury. Journal of Neuroscience, 2006, 26, 10856-10867.	3.6	363
5	Combining an Autologous Peripheral Nervous System "Bridge" and Matrix Modification by Chondroitinase Allows Robust, Functional Regeneration beyond a Hemisection Lesion of the Adult Rat Spinal Cord. Journal of Neuroscience, 2006, 26, 7405-7415.	3.6	284
6	Electrical Stimulation of Spared Corticospinal Axons Augments Connections with Ipsilateral Spinal Motor Circuits after Injury. Journal of Neuroscience, 2007, 27, 13793-13801.	3.6	175
7	Overcoming Chondroitin Sulphate Proteoglycan Inhibition of Axon Growth in the Injured Brain: Lessons from Chondroitinase ABC. Current Pharmaceutical Design, 2007, 13, 2485-2492.	1.9	19
8	Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair. Brain, 2007, 130, 926-939.	7.6	152
9	Repair in the central nervous system. Journal of Bone and Joint Surgery: British Volume, 2007, 89-B, 1413-1420.	3.4	19
10	Introduction: The Use of Animal Research in Developing Treatments for Human Motor Disorders: Brain-Computer Interfaces and the Regeneration of Damaged Brain Circuits. ILAR Journal, 2007, 48, 313-316.	1.8	1
11	Regulation of intrinsic neuronal properties for axon growth and regeneration. Progress in Neurobiology, 2007, 81, 1-28.	5.7	134
12	Purkinje cell axon collaterals terminate on Cat-301+ neurons in Macaca monkey cerebellum. Neuroscience, 2007, 149, 834-844.	2.3	28
13	Spinally upregulated noggin suppresses axonal and dendritic plasticity following dorsal rhizotomy. Experimental Neurology, 2007, 204, 366-379.	4.1	18
14	How does chondroitinase promote functional recovery in the damaged CNS?. Experimental Neurology, 2007, 206, 159-171.	4.1	118
15	Loss and spontaneous recovery of forelimb evoked potentials in both the adult rat cuneate nucleus and somatosensory cortex following contusive cervical spinal cord injury. Experimental Neurology, 2007, 207, 238-247.	4.1	31
16	GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord. Molecular and Cellular Neurosciences, 2007, 36, 185-194.	2.2	55
17	Rat Models of Traumatic Spinal Cord Injury to Assess Motor Recovery. ILAR Journal, 2007, 48, 385-395.	1.8	111
18	Combinatorial treatments for promoting axon regeneration in the CNS: Strategies for overcoming inhibitory signals and activating neurons' intrinsic growth state. Developmental Neurobiology, 2007, 67, 1148-1165.	3.0	96

ITATION REDO

#	Article	IF	CITATIONS
19	Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. Journal of Comparative Neurology, 2007, 501, 83-94.	1.6	147
20	The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Research Reviews, 2007, 54, 1-18.	9.0	498
21	The role of extracellular matrix in CNS regeneration. Current Opinion in Neurobiology, 2007, 17, 120-127.	4.2	432
22	Chondroitin Sulfate Proteoglycans in Spinal Cord Contusion Injury and the Effects of Chondroitinase Treatment. Journal of Neurotrauma, 2007, 24, 1743-1760.	3.4	45
23	The effect of vestibular nerve section on the expression of the hyaluronan in the frog, Rana esculenta. Brain Structure and Function, 2007, 212, 321-334.	2.3	7
24	Spatiotemporal distribution of proteoglycans in the developing rat's barrel field and the effects of early deafferentation. Journal of Comparative Neurology, 2008, 510, 145-157.	1.6	10
25	Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascinâ€R in the rat spinal cord. European Journal of Neuroscience, 2008, 27, 1373-1390.	2.6	166
26	Effects of surgical induction of endometriosis on response properties of preoptic area neurons in rats. Brain Research, 2008, 1246, 101-110.	2.2	2
27	The Somatosensory Thalamus and Associated Pathways. , 2008, , 117-141.		6
28	Axonal growth therapeutics: regeneration or sprouting or plasticity?. Trends in Neurosciences, 2008, 31, 215-220.	8.6	178
29	Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Experimental Neurology, 2008, 209, 426-445.	4.1	160
30	CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Experimental Neurology, 2008, 209, 294-301.	4.1	880
31	Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord. Experimental Neurology, 2008, 209, 407-416.	4.1	169
32	Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Experimental Neurology, 2008, 210, 331-338.	4.1	93
33	Convergence of nociceptive information in the forebrain of female rats: Reproductive organ response variations with stage of estrus. Experimental Neurology, 2008, 210, 375-387.	4.1	19
34	Intraspinal microinjection of chondroitinase ABC following injury promotes axonal regeneration out of a peripheral nerve graft bridge. Experimental Neurology, 2008, 211, 315-319.	4.1	56
35	A novel diketopiperazine stimulates sprouting of spinally projecting axons. Experimental Neurology, 2008, 214, 331-340.	4.1	4
36	Plastic responses to spinal cord injury. Behavioural Brain Research, 2008, 192, 114-123.	2.2	15

#	Article	IF	CITATIONS
37	Adaptive changes in the injured spinal cord and their role in promoting functional recovery. Neurological Research, 2008, 30, 17-27.	1.3	65
38	Chondroitinase ABC-Mediated Plasticity of Spinal Sensory Function. Journal of Neuroscience, 2008, 28, 11998-12009.	3.6	102
39	The Yellow Fluorescent Protein (YFP-H) Mouse Reveals Neuroprotection as a Novel Mechanism Underlying Chondroitinase ABC-Mediated Repair after Spinal Cord Injury. Journal of Neuroscience, 2008, 28, 14107-14120.	3.6	100
40	Mechanisms Regulating Interpretation of Guidance Cues During Development, Maturation, and Following Injury. Reviews in the Neurosciences, 2008, 19, 213-26.	2.9	2
41	Identification of penile inputs to the rat gracile nucleus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1015-R1023.	1.8	6
42	Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: a preliminary Phase I clinical study. Journal of Neurosurgery: Spine, 2008, 8, 208-214.	1.7	58
43	Effects of 17β-Estradiol on Responses of Viscerosomatic Convergent Thalamic Neurons in the Ovariectomized Female Rat. Journal of Neurophysiology, 2009, 102, 1062-1074.	1.8	19
44	Shedding light on restoring respiratory function after spinal cord injury. Frontiers in Molecular Neuroscience, 2009, 2, 18.	2.9	15
45	Molecular control of brain plasticity and repair. Progress in Brain Research, 2009, 175, 501-509.	1.4	90
46	PTPσ Is a Receptor for Chondroitin Sulfate Proteoglycan, an Inhibitor of Neural Regeneration. Science, 2009, 326, 592-596.	12.6	586
47	Glial Response and Myelin Clearance in Areas of Wallerian Degeneration after Spinal Cord Hemisection in the Monkey <i>Macaca Fascicularis</i> . Journal of Neurotrauma, 2009, 26, 2083-2096.	3.4	19
48	Overcoming Macrophage-Mediated Axonal Dieback Following CNS Injury. Journal of Neuroscience, 2009, 29, 9967-9976.	3.6	196
49	Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. Journal of Comparative Neurology, 2009, 513, 151-163.	1.6	146
50	Role of Cerebral Cortex Plasticity in the Recovery of Swallowing Function Following Dysphagic Stroke. Dysphagia, 2009, 24, 83-90.	1.8	71
51	Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nature Neuroscience, 2009, 12, 1145-1151.	14.8	414
52	Plasticity during stroke recovery: from synapse to behaviour. Nature Reviews Neuroscience, 2009, 10, 861-872.	10.2	1,509
53	Parvalbuminâ€containing neurons, perineuronal nets and experienceâ€dependent plasticity in murine barrel cortex. European Journal of Neuroscience, 2009, 30, 2053-2063.	2.6	89
54	Transgenic inhibition of astroglial NFâ€̂PB leads to increased axonal sparing and sprouting following spinal cord injury. Journal of Neurochemistry, 2009, 110, 765-778.	3.9	106

#	Article	IF	CITATIONS
55	Environmental enrichment promotes fiber sprouting after deafferentation of the superior colliculus in the adult rat brain. Experimental Neurology, 2009, 216, 515-519.	4.1	14
56	Administration of Chondroitinase ABC Rostral or Caudal to a Spinal Cord Injury Site Promotes Anatomical but Not Functional Plasticity. Journal of Neurotrauma, 2009, 26, 2323-2333.	3.4	81
57	Axon Regeneration in the Peripheral and Central Nervous Systems. Results and Problems in Cell Differentiation, 2009, 48, 305-360.	0.7	241
58	Pericontusion Axon Sprouting Is Spatially and Temporally Consistent With a Growth-Permissive Environment After Traumatic Brain Injury. Journal of Neuropathology and Experimental Neurology, 2010, 69, 139-154.	1.7	63
59	<i>In vitro</i> modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. Journal of Neurochemistry, 2010, 114, 1447-1459.	3.9	127
60	Chondroitinase ABC Enhances Pericontusion Axonal Sprouting But Does Not Confer Robust Improvements in Behavioral Recovery. Journal of Neurotrauma, 2010, 27, 1971-1982.	3.4	51
61	Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain, 2010, 133, 2331-2347.	7.6	411
62	<i>N</i> -Acetylglucosamine 6- <i>O</i> -Sulfotransferase-1-Deficient Mice Show Better Functional Recovery after Spinal Cord Injury. Journal of Neuroscience, 2010, 30, 5937-5947.	3.6	70
63	Activity-dependent remodeling of chondroitin sulfate proteoglycans extracellular matrix in the hypothalamo–neurohypophysial system. Neuroscience, 2010, 166, 1068-1082.	2.3	32
64	The potentiation of peripheral nerve sheaths in regeneration and repair. Experimental Neurology, 2010, 223, 102-111.	4.1	73
65	Synergistic Effects of Transplanted Adult Neural Stem/Progenitor Cells, Chondroitinase, and Growth Factors Promote Functional Repair and Plasticity of the Chronically Injured Spinal Cord. Journal of Neuroscience, 2010, 30, 1657-1676.	3.6	328
66	Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3340-3345.	7.1	281
67	Grafted Neural Progenitors Integrate and Restore Synaptic Connectivity across the Injured Spinal Cord. Journal of Neuroscience, 2011, 31, 4675-4686.	3.6	194
68	Functional regeneration of respiratory pathways after spinal cord injury. Nature, 2011, 475, 196-200.	27.8	344
69	A Systematic Review of Directly Applied Biologic Therapies for Acute Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1589-1610.	3.4	104
70	Spinal cord injury and plasticity: Opportunities and challenges. Brain Research Bulletin, 2011, 84, 337-342.	3.0	60
71	Injured mice at the gym: Review, results and considerations for combining chondroitinase and locomotor exercise to enhance recovery after spinal cord injury. Brain Research Bulletin, 2011, 84, 317-326.	3.0	31
72	Manipulating the glial scar: Chondroitinase ABC as a therapy for spinal cord injury. Brain Research Bulletin, 2011, 84, 306-316.	3.0	257

#	Article	IF	CITATIONS
73	Delayed treatment with Chondroitinase ABC reverses chronic atrophy of rubrospinal neurons following spinal cord injury. Experimental Neurology, 2011, 228, 149-156.	4.1	47
74	Chondroitin Sulfates in Axon Regeneration and Plasticity. Trends in Glycoscience and Glycotechnology, 2011, 23, 201-211.	0.1	3
75	Disturbance of perineuronal nets in the perilesional area after photothrombosis is not associated with neuronal death. Experimental Neurology, 2011, 231, 113-126.	4.1	44
76	IT Delivery of ChABC Modulates NG2 and Promotes GAP-43 Axonal Regrowth After Spinal Cord Injury. Cellular and Molecular Neurobiology, 2011, 31, 1129-1139.	3.3	20
77	Plasticity After Spinal Cord Injury: Relevance to Recovery and Approaches to Facilitate It. Neurotherapeutics, 2011, 8, 283-293.	4.4	118
78	Pioneering studies on the mechanisms of axonal regeneration. Developmental Neurobiology, 2011, 71, 785-789.	3.0	2
79	Extracellular matrix and perineuronal nets in CNS repair. Developmental Neurobiology, 2011, 71, 1073-1089.	3.0	327
80	Keratan Sulfate Restricts Neural Plasticity after Spinal Cord Injury. Journal of Neuroscience, 2011, 31, 17091-17102.	3.6	85
81	Chondroitinase Combined with Rehabilitation Promotes Recovery of Forelimb Function in Rats with Chronic Spinal Cord Injury. Journal of Neuroscience, 2011, 31, 9332-9344.	3.6	185
82	Transplantation of Schwann Cells Differentiated from Adipose-Derived Stem Cells Modifies Reactive Gliosis after Contusion Brain Injury in Rats. Journal of International Medical Research, 2011, 39, 1344-1357.	1.0	10
83	Combination therapies. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 617-636.	1.8	20
84	Defeating inhibition of regeneration by scar and myelin components. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 503-522.	1.8	104
85	Intracerebral chondroitinase ABC and heparan sulfate proteoglycan glypican improve outcome from chronic stroke in rats. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9155-9160.	7.1	87
86	Chondroitinase ABC promotes selective reactivation of somatosensory cortex in squirrel monkeys after a cervical dorsal column lesion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2595-2600.	7.1	104
87	Delayed Applications of L1 and Chondroitinase ABC Promote Recovery after Spinal Cord Injury. Journal of Neurotrauma, 2012, 29, 1850-1863.	3.4	48
88	Gene therapy, neurotrophic factors and spinal cord regeneration. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 563-574.	1.8	22
89	Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats. Brain, 2012, 135, 1210-1223.	7.6	105
90	Adequate Time Window and Environmental Factors Supporting Retinal Graft Cell Survival in rd Mice. Cell Medicine, 2012, 4, 45-54.	5.0	16

#	Article	IF	CITATIONS
91	Promotion of Neuronal Recovery Following Experimental SCI via Direct Inhibition of Glial Scar Formation. Neurosurgery, 2012, 70, N10-N11.	1.1	4
92	Systemic administration of a deoxyribozyme to xylosyltransferase-1 mRNA promotes recovery after a spinal cord contusion injury. Experimental Neurology, 2012, 237, 170-179.	4.1	9
93	Chondroitinase ABC promotes plasticity of spinal reflexes following peripheral nerve injury. Experimental Neurology, 2012, 238, 64-78.	4.1	15
94	Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment. Neuroscience, 2012, 217, 6-18.	2.3	52
95	Effect of unilateral labyrinthectomy on the molecular composition of perineuronal nets in the lateral vestibular nucleus of the rat. Neuroscience Letters, 2012, 513, 1-5.	2.1	21
96	Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments. Biochemical and Biophysical Research Communications, 2012, 420, 616-622.	2.1	16
97	Chondroitinase <scp>ABC</scp> promotes compensatory sprouting of the intact corticospinal tract and recovery of forelimb function following unilateral pyramidotomy in adult mice. European Journal of Neuroscience, 2012, 36, 3665-3678.	2.6	86
98	Frontiers Of Spinal Cord And Spine Repair: Experimental Approaches for Repair of Spinal Cord Injury. Advances in Experimental Medicine and Biology, 2012, 760, 1-15.	1.6	18
99	Reactive Astrogliosis after Spinal Cord Injury—Beneficial and Detrimental Effects. Molecular Neurobiology, 2012, 46, 251-264.	4.0	285
100	The challenges of long-distance axon regeneration in the injured CNS. Progress in Brain Research, 2012, 201, 253-294.	1.4	39
101	Models of CNS injury in the nonhuman primate: A new era for treatment strategies. Translational Neuroscience, 2012, 3, .	1.4	15
102	NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nature Neuroscience, 2012, 15, 703-712.	14.8	392
103	The perineuronal net and the control of CNS plasticity. Cell and Tissue Research, 2012, 349, 147-160.	2.9	304
104	Chondroitin sulphate proteoglycans: Key modulators of spinal cord and brain plasticity. Experimental Neurology, 2012, 235, 5-17.	4.1	92
105	Training and anti-CSPG combination therapy for spinal cord injury. Experimental Neurology, 2012, 235, 26-32.	4.1	60
106	Treatments to restore respiratory function after spinal cord injury and their implications for regeneration, plasticity and adaptation. Experimental Neurology, 2012, 235, 18-25.	4.1	28
107	Cutaneous and electrically evoked glutamate signaling in the adult rat somatosensory system. Journal of Neuroscience Methods, 2012, 208, 146-154.	2.5	18
108	Comparison of sensory neuron growth cone and filopodial responses to structurally diverse aggrecan variants, in vitro. Experimental Neurology, 2013, 247, 143-157.	4.1	19

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
109	Targeting the neural extracellular matrix in neurological disorders. Neuroscience, 2013,	253, 194-213.	2.3	198
110	Conditional <i>Sox9</i> ablation reduces chondroitin sulfate proteoglycan levels and ir motor function following spinal cord injury. Glia, 2013, 61, 164-177.	nproves	4.9	70
111	Perineuronal and perisynaptic extracellular matrix in the human spinal cord. Neuroscien 168-184.	ce, 2013, 238,	2.3	40
112	Nerve Regeneration Restores Supraspinal Control of Bladder Function after Complete S Injury. Journal of Neuroscience, 2013, 33, 10591-10606.	pinal Cord	3.6	97
113	Convergence and cross talk in urogenital neural circuitries. Journal of Neurophysiology, 1997-2005.	2013, 110,	1.8	10
114	Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neura Nature Communications, 2013, 4, 2740.	l injury.	12.8	91
115	Chondroitinase Enhances Cortical Map Plasticity and Increases Functionally Active Sprc after Brain Injury. Journal of Neurotrauma, 2013, 30, 1257-1269.	outing Axons	3.4	35
116	The Transcriptional Response of Neurotrophins and Their Tyrosine Kinase Receptors in L Sensorimotor Circuits to Spinal Cord Contusion is Affected by Injury Severity and Surviv Frontiers in Physiology, 2012, 3, 478.	umbar val Time.	2.8	13
117	Examination of the Combined Effects of Chondroitinase ABC, Growth Factors and Loco Training following Compressive Spinal Cord Injury on Neuroanatomical Plasticity and Ki PLoS ONE, 2014, 9, e111072.	motor nematics.	2.5	51
118	The reactivation of somatosensory cortex and behavioral recovery after sensory loss in primates. Frontiers in Systems Neuroscience, 2014, 8, 84.	mature	2.5	32
121	Large-Scale Chondroitin Sulfate Proteoglycan Digestion with Chondroitinase Gene Ther Reduced Pathology and Modulates Macrophage Phenotype following Spinal Cord Cont Journal of Neuroscience, 2014, 34, 4822-4836.	apy Leads to usion Injury.	3.6	200
122	Spinal Cord Injury and the Neuron-Intrinsic Regeneration-Associated Gene Program. Nei Medicine, 2014, 16, 799-813.	uroMolecular	3.4	39
123	MEK inhibition reduces glial scar formation and promotes the recovery of sensorimotor rats following spinal cord injury. Experimental and Therapeutic Medicine, 2014, 7, 66-72		1.8	32
124	Spinal Cord Injury and Regeneration: A Critical Evaluation of Current and Future Therap Strategies. , 2014, , 593-638.	eutic		1
125	Neural ECM proteases in learning and synaptic plasticity. Progress in Brain Research, 20)14, 214, 135-157.	1.4	63
126	The challenges of respiratory motor system recovery following cervical spinal cord injuring in Brain Research, 2014, 212, 173-220.	y. Progress	1.4	21
127	Thinking outside the brain: Structural plasticity in the spinal cord promotes recovery fro stroke. Experimental Neurology, 2014, 254, 195-199.	om cortical	4.1	16
128	Review: Manipulating the extracellular matrix and its role in brain and spinal cord plastic repair. Neuropathology and Applied Neurobiology, 2014, 40, 26-59.	city and	3.2	121

#	Article	IF	CITATIONS
129	Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats. Brain Research, 2014, 1543, 324-333.	2.2	38
130	Contrasting the Glial Response to Axon Injury in the Central and Peripheral Nervous Systems. Developmental Cell, 2014, 28, 7-17.	7.0	193
131	Astrocytic and Vascular Remodeling in the Injured Adult Rat Spinal Cord after Chondroitinase ABC Treatment. Journal of Neurotrauma, 2014, 31, 803-818.	3.4	29
132	Cortical reorganization after spinal cord injury: Always for good?. Neuroscience, 2014, 283, 78-94.	2.3	100
133	Effect of Spinal Manipulation Thrust Duration on Trunk Mechanical Activation Thresholds of Nociceptive-Specific Lateral Thalamic Neurons. Journal of Manipulative and Physiological Therapeutics, 2014, 37, 552-560.	0.9	10
134	Pleiotropic molecules in axon regeneration and neuroinflammation. Experimental Neurology, 2014, 258, 17-23.	4.1	24
135	Chemistry and Function of Glycosaminoglycans in the Nervous System. Advances in Neurobiology, 2014, 9, 89-115.	1.8	18
136	Glycobiology of the Nervous System. Advances in Neurobiology, 2014, , .	1.8	9
137	Sulfated glycans in network rewiring and plasticity after neuronal injuries. Neuroscience Research, 2014, 78, 50-54.	1.9	27
138	The Therapeutic Effects of Human Adipose-Derived Stem Cells in a Rat Cervical Spinal Cord Injury Model. Stem Cells and Development, 2014, 23, 1659-1674.	2.1	38
139	Effect of Spinal Manipulation Thrust Magnitude on Trunk Mechanical Activation Thresholds of Lateral Thalamic Neurons. Journal of Manipulative and Physiological Therapeutics, 2014, 37, 277-286.	0.9	15
140	Spinal Cord Regeneration. Cell Transplantation, 2014, 23, 573-611.	2.5	89
141	Effects of an Immunomodulatory Therapy and Chondroitinase After Spinal Cord Hemisection Injury. Neurosurgery, 2014, 75, 461-471.	1.1	16
142	Enhanced regeneration and functional recovery after spinal root avulsion by manipulation of the proteoglycan receptor PTPIf. Scientific Reports, 2015, 5, 14923.	3.3	35
143	Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury. Scientific Reports, 2015, 5, 16795.	3.3	63
144	Chondroitin Sulfate Induces Depression of Synaptic Transmission and Modulation of Neuronal Plasticity in Rat Hippocampal Slices. Neural Plasticity, 2015, 2015, 1-12.	2.2	7
145	Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System. PLoS ONE, 2015, 10, e0142740.	2.5	19
146	Chondroitin Sulfate Proteoglycans Negatively Modulate Spinal Cord Neural Precursor Cells by Signaling Through LAR and RPTPIf and Modulation of the Rho/ROCK Pathway. Stem Cells, 2015, 33, 2550-2563.	3.2	59

#	Article	IF	CITATIONS
147	Spinal Cord Regeneration. , 2015, , 383-399.		5
148	Conditions Affecting Accuracy of Peripheral Nerve Reinnervation and Functional Recovery. , 2015, , 117-128.		1
149	Axon Regeneration in the Lamprey Spinal Cord. , 2015, , 57-70.		2
150	Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Experimental Neurology, 2015, 269, 169-187.	4.1	137
151	The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Progress in Brain Research, 2015, 218, 213-226.	1.4	122
152	The hyaluronan and proteoglycan link proteins: Organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity. Experimental Neurology, 2015, 274, 134-144.	4.1	96
153	Central Nervous System Regenerative Failure: Role of Oligodendrocytes, Astrocytes, and Microglia. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020602.	5.5	258
154	Modulation of the proteoglycan receptor PTPÏ f promotes recovery after spinal cord injury. Nature, 2015, 518, 404-408.	27.8	385
155	Integrity of cortical perineuronal nets influences corticospinal tract plasticity after spinal cord injury. Brain Structure and Function, 2015, 220, 1077-1091.	2.3	20
156	Activity dependent therapies modulate the spinal changes that motoneurons suffer after a peripheral nerve injury. Experimental Neurology, 2015, 263, 293-305.	4.1	37
157	Somatosensory System. , 2015, , 675-701.		12
158	Serotonergic transmission after spinal cord injury. Journal of Neural Transmission, 2015, 122, 279-295.	2.8	26
159	Caught in the Net: Perineuronal Nets and Addiction. Neural Plasticity, 2016, 2016, 1-8.	2.2	32
160	Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. Journal of Physiology, 2016, 594, 3539-3552.	2.9	71
161	"Targeting astrocytes in CNS injury and disease: A translational research approach― Progress in Neurobiology, 2016, 144, 173-187.	5.7	130
162	Canine olfactory ensheathing cells from the olfactory mucosa can be engineered to produce active chondroitinase ABC. Journal of the Neurological Sciences, 2016, 367, 311-318.	0.6	11
163	Combined treatment with chondroitinase ABC and treadmill rehabilitation for chronic severe spinal cord injury in adult rats. Neuroscience Research, 2016, 113, 37-47.	1.9	53
164	Unfolding of chondroitinase ABC Ι is dependent on thermodynamic driving force by kinetically rate constant-amplitude compensation: A stopped-flow fluorescence study. Enzyme and Microbial Technology, 2016, 93-94, 200-206.	3.2	5

#	Article	IF	CITATIONS
165	Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity. Journal of Neuroscience, 2016, 36, 11459-11468.	3.6	323
166	A new member of family 8 polysaccharide lyase chondroitin AC lyase (Ps PL8A) from Pedobacter saltans displays endo- and exo-lytic catalysis. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 215-224.	1.8	12
167	Efficacy of Human Adipose Tissue-Derived Stem Cells on Neonatal Bilirubin Encephalopathy in Rats. Neurotoxicity Research, 2016, 29, 514-524.	2.7	18
168	Mast cells promote scar remodeling and functional recovery after spinal cord injury <i>via</i> mouse mast cell protease 6. FASEB Journal, 2016, 30, 2040-2057.	0.5	26
169	Long term study of deoxyribozyme administration to XT-1 mRNA promotes corticospinal tract regeneration and improves behavioral outcome after spinal cord injury. Experimental Neurology, 2016, 276, 51-58.	4.1	2
170	Astrocytes and Microglia-Mediated Immune Response in Maladaptive Plasticity is Differently Modulated by NGF in the Ventral Horn of the Spinal Cord Following Peripheral Nerve Injury. Cellular and Molecular Neurobiology, 2016, 36, 37-46.	3.3	34
171	Combinatorial Therapies After Spinal Cord Injury: How Can Biomaterials Help?. Advanced Healthcare Materials, 2017, 6, 1601130.	7.6	135
172	Diaphragm electromyographic activity following unilateral midcervical contusion injury in rats. Journal of Neurophysiology, 2017, 117, 545-555.	1.8	37
173	Improvement of activity and stability of Chondroitinase ABC I by introducing an aromatic cluster at the surface of protein. Enzyme and Microbial Technology, 2017, 105, 38-44.	3.2	16
174	The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neuroscience Letters, 2017, 652, 56-63.	2.1	75
175	Recent advances in regenerative medicine approaches for spinal cord injuries. Current Opinion in Biomedical Engineering, 2017, 4, 40-49.	3.4	5
176	Combinatory repair strategy to promote axon regeneration and functional recovery after chronic spinal cord injury. Scientific Reports, 2017, 7, 9018.	3.3	45
177	Decreased spontaneous activity and altered evoked nociceptive response of rat thalamic submedius neurons to lumbar vertebra thrust. Experimental Brain Research, 2017, 235, 2883-2892.	1.5	10
178	Endogenous modulation of TrkB signaling by treadmill exercise after peripheral nerve injury. Neuroscience, 2017, 340, 188-200.	2.3	15
179	CSPGs inhibit axon branching by impairing mitochondriaâ€dependent regulation of actin dynamics and axonal translation. Developmental Neurobiology, 2017, 77, 454-473.	3.0	35
180	Following Spinal Cord Injury Transected Reticulospinal Tract Axons Develop New Collateral Inputs to Spinal Interneurons in Parallel with Locomotor Recovery. Neural Plasticity, 2017, 2017, 1-15.	2.2	33
181	Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury. PLoS ONE, 2017, 12, e0188967.	2.5	19
182	Diverse functions of protein tyrosine phosphatase If in the nervous and immune systems. Experimental Neurology, 2018, 302, 196-204.	4.1	23

#	Article	IF	CITATIONS
183	Second-order spinal cord pathway contributes to cortical responses after long recoveries from dorsal column injury in squirrel monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4258-4263.	7.1	18
184	Therapeutic efficacy of microtube-embedded chondroitinase ABC in a canine clinical model of spinal cord injury. Brain, 2018, 141, 1017-1027.	7.6	61
185	Respiratory dysfunction following neonatal sustained hypoxia exposure during a critical window of brain stem extracellular matrix formation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R216-R227.	1.8	10
186	Role of His-His interaction in Ser474-His475-Tyr476 sequence of chondroitinase ABC I in the enzyme activity and stability. International Journal of Biological Macromolecules, 2018, 109, 941-949.	7.5	5
187	Understanding Molecular Pathology along Injured Spinal Cord Axis: Moving Frontiers toward Effective Neuroprotection and Regeneration. , 0, , .		3
188	Modulation of Receptor Protein Tyrosine Phosphatase Sigma Increases Chondroitin Sulfate Proteoglycan Degradation through Cathepsin B Secretion to Enhance Axon Outgrowth. Journal of Neuroscience, 2018, 38, 5399-5414.	3.6	47
189	Spatial distribution affects the role of CSPGs in nerve regeneration via the actin filament-mediated pathway. Experimental Neurology, 2018, 307, 37-44.	4.1	7
190	Proteolytic Remodeling of Perineuronal Nets: Effects on Synaptic Plasticity and Neuronal Population Dynamics. Neural Plasticity, 2018, 2018, 1-13.	2.2	64
191	Now is the Critical Time for Engineered Neuroplasticity. Neurotherapeutics, 2018, 15, 628-634.	4.4	28
192	The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiological Reviews, 2018, 98, 881-917.	28.8	540
192 193	The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiological Reviews, 2018, 98, 881-917. Harnessing the Potential of Biomaterials for Brain Repair after Stroke. Frontiers in Materials, 2018, 5, .	28.8 2.4	540 31
	98, 881-917.		
193	 98, 881-917. Harnessing the Potential of Biomaterials for Brain Repair after Stroke. Frontiers in Materials, 2018, 5, . Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPÏ<i>f</i> receptors promotes a beneficial inflammatory response following spinal cord injury. Journal of Neuroinflammation, 2018, 	2.4	31
193 194	 98, 881-917. Harnessing the Potential of Biomaterials for Brain Repair after Stroke. Frontiers in Materials, 2018, 5, . Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPÏ<i>f</i> receptors promotes a beneficial inflammatory response following spinal cord injury. Journal of Neuroinflammation, 2018, 15, 90. Clycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. 	2.4 7.2	31 73
193 194 195	 98, 881-917. Harnessing the Potential of Biomaterials for Brain Repair after Stroke. Frontiers in Materials, 2018, 5, . Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPÏf receptors promotes a beneficial inflammatory response following spinal cord injury. Journal of Neuroinflammation, 2018, 15, 90. Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochemical Journal, 2018, 475, 2511-2545. Anti-Chondroitin Sulfate Proteoglycan Strategies in Spinal Cord Injury: Temporal and Spatial Considerations Explain the Balance between Neuroplasticity and Neuroprotection. Journal of 	2.4 7.2 3.7	31 73 46
193 194 195 196	 98, 881-917. Harnessing the Potential of Biomaterials for Brain Repair after Stroke. Frontiers in Materials, 2018, 5, . Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPÏ<i>f</i> receptors promotes a beneficial inflammatory response following spinal cord injury. Journal of Neuroinflammation, 2018, 15, 90. Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochemical Journal, 2018, 475, 2511-2545. Anti-Chondroitin Sulfate Proteoglycan Strategies in Spinal Cord Injury: Temporal and Spatial Considerations Explain the Balance between Neuroplasticity and Neuroprotection. Journal of Neurotrauma, 2018, 35, 1958-1969. Recovery after spinal cord injury by modulation of the proteoglycan receptor PTPÏ<i>f</i>. Experimental 	2.4 7.2 3.7 3.4	31 73 46 7
193 194 195 196 197	 98, 881-917. Harnessing the Potential of Biomaterials for Brain Repair after Stroke. Frontiers in Materials, 2018, 5, . Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPÏf receptors promotes a beneficial inflammatory response following spinal cord injury. Journal of Neuroinflammation, 2018, 15, 90. Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochemical Journal, 2018, 475, 2511-2545. Anti-Chondroitin Sulfate Proteoglycan Strategies in Spinal Cord Injury: Temporal and Spatial Considerations Explain the Balance between Neuroplasticity and Neuroprotection. Journal of Neurotrauma, 2018, 35, 1958-1969. Recovery after spinal cord injury by modulation of the proteoglycan receptor PTPÏf. Experimental Neurology, 2018, 309, 148-159. The Perineuronal â€'Safety' Net? Perineuronal Net Abnormalities in Neurological Disorders. Frontiers in 	 2.4 7.2 3.7 3.4 4.1 	 31 73 46 7 13

#	Article	IF	CITATIONS
201	Quantitative changes in perineuronal nets in development and posttraumatic condition. Journal of Molecular Histology, 2019, 50, 203-216.	2.2	18
202	Differential Glycosylation Expression in Injured Rat Spinal Cord Treated with Immunosuppressive Drug Cyclosporin-A. ACS Omega, 2019, 4, 3083-3097.	3.5	14
203	Perineuronal Nets Restrict the Induction of Long-Term Depression in the Mouse Hippocampal CA1 Region. Molecular Neurobiology, 2019, 56, 6436-6450.	4.0	24
204	Recent advances in nanotherapeutic strategies for spinal cord injury repair. Advanced Drug Delivery Reviews, 2019, 148, 38-59.	13.7	74
205	Plasticity Induced Recovery of Breathing Occurs at Chronic Stages after Cervical Contusion. Journal of Neurotrauma, 2019, 36, 1985-1999.	3.4	12
206	Knockdown of Fidgetin Improves Regeneration of Injured Axons by a Microtubule-Based Mechanism. Journal of Neuroscience, 2019, 39, 2011-2024.	3.6	26
207	Substance P and pain chronicity. Cell and Tissue Research, 2019, 375, 227-241.	2.9	147
208	Distinct roles for hyaluronan in neural stem cell niches and perineuronal nets. Matrix Biology, 2019, 78-79, 272-283.	3.6	26
209	ADAMTS Proteases. Methods in Molecular Biology, 2020, , .	0.9	8
210	Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods, 2020, 171, 41-61.	3.8	37
211	The Effect of Hapln4 Link Protein Deficiency on Extracellular Space Diffusion Parameters and Perineuronal Nets in the Auditory System During Aging. Neurochemical Research, 2020, 45, 68-82.	3.3	12
212	The microtubule regulator <i>ringer</i> functions downstream from the RNA repair/splicing pathway to promote axon regeneration. Genes and Development, 2020, 34, 194-208.	5.9	13
213	Enhancing myelin repair in experimental model of multiple sclerosis using immobilized chondroitinase ABC I on porous silicon nanoparticles. International Journal of Biological Macromolecules, 2020, 146, 162-170.	7.5	16
214	A Strategy Toward Bridging a Complete Spinal Cord Lesion Using Stretch-Grown Axons. Tissue Engineering - Part A, 2020, 26, 623-635.	3.1	3
215	Single-session cortical electrical stimulation enhances the efficacy of rehabilitative motor training after spinal cord injury in rats. Experimental Neurology, 2020, 324, 113136.	4.1	21
216	Secretion of a mammalian chondroitinase ABC aids glial integration at PNS/CNS boundaries. Scientific Reports, 2020, 10, 11262.	3.3	17
217	Chronic neuronal activation increases dynamic microtubules to enhance functional axon regeneration after dorsal root crush injury. Nature Communications, 2020, 11, 6131.	12.8	30
218	EA Improves the Motor Function in Rats with Spinal Cord Injury by Inhibiting Signal Transduction of Semaphorin3A and Upregulating of the Peripheral Nerve Networks. Neural Plasticity, 2020, 2020, 1-15.	2.2	11

#	Article	IF	CITATIONS
219	The glycosyltransferase EXTL2 promotes proteoglycan deposition and injurious neuroinflammation following demyelination. Journal of Neuroinflammation, 2020, 17, 220.	7.2	18
220	Reaching and Grasping Training Improves Functional Recovery After Chronic Cervical Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2020, 14, 110.	3.7	15
221	Regulation of autophagy by inhibitory CSPG interactions with receptor PTPI f and its impact on plasticity and regeneration after spinal cord injury. Experimental Neurology, 2020, 328, 113276.	4.1	32
222	Contributions of Chondroitin Sulfate, Keratan Sulfate and N-linked Oligosaccharides to Inhibition of Neurite Outgrowth by Aggrecan. Biology, 2020, 9, 29.	2.8	20
223	Targeting chondroitinase ABC to axons enhances the ability of chondroitinase to promote neurite outgrowth and sprouting. PLoS ONE, 2020, 15, e0221851.	2.5	16
224	Cerebellar plasticity and associative memories are controlled by perineuronal nets. Proceedings of the United States of America, 2020, 117, 6855-6865.	7.1	65
225	Self-assembling peptide hydrogels for the stabilization and sustained release of active Chondroitinase ABC in vitro and in spinal cord injuries. Journal of Controlled Release, 2021, 330, 1208-1219.	9.9	50
226	Disruption of rat deep cerebellar perineuronal net alters eyeblink conditioning and neuronal electrophysiology. Neurobiology of Learning and Memory, 2021, 177, 107358.	1.9	4
227	Voluntary wheel running preserves lumbar perineuronal nets, enhances motor functions and prevents hyperreflexia after spinal cord injury. Experimental Neurology, 2021, 336, 113533.	4.1	21
228	Optic nerve regeneration screen identifies multiple genes restricting adult neural repair. Cell Reports, 2021, 34, 108777.	6.4	34
229	Multiple Particle Tracking Detects Changes in Brain Extracellular Matrix and Predicts Neurodevelopmental Age. ACS Nano, 2021, 15, 8559-8573.	14.6	10
230	Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review. Frontiers in Synaptic Neuroscience, 2021, 13, 673210.	2.5	55
231	Chondroitinase ABC/galectin-3 fusion proteins with hyaluronan-based hydrogels stabilize enzyme and provide targeted enzyme activity for neural applications. Journal of Neural Engineering, 2021, 18, 046090.	3.5	4
232	Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166117.	3.8	17
233	Anti-inflammatory protein TNFα-stimulated gene-6 (TSG-6) reduces inflammatory response after brain injury in mice. BMC Immunology, 2021, 22, 52.	2.2	8
234	Spinal Cord Repair by Means of Tissue Engineered Scaffolds. , 2013, , 485-547.		1
235	Neuroregeneration. , 2017, , 585-619.		1
237	Experimental reconstruction of the injured spinal cord. Advances and Technical Standards in Neurosurgery, 2011, , 65-95.	0.5	5

#	Article	IF	CITATIONS
238	MODIFYING THE EXTRACELLULAR MATRIX AS A TREATMENT TO IMPROVE FUNCTIONAL RECOVERY AFTER SPINAL CORD INJURY. , 2008, , 337-353.		2
239	Acquired demyelination but not genetic developmental defects in myelination leads to brain tissue stiffness changes. Brain Multiphysics, 2020, 1, 100019.	2.3	7
241	Chondroitinase and Growth Factors Enhance Activation and Oligodendrocyte Differentiation of Endogenous Neural Precursor Cells after Spinal Cord Injury. PLoS ONE, 2012, 7, e37589.	2.5	109
242	Global Analysis of Neuronal Phosphoproteome Regulation by Chondroitin Sulfate Proteoglycans. PLoS ONE, 2013, 8, e59285.	2.5	19
243	Local Delivery of High-Dose Chondroitinase ABC in the Sub-Acute Stage Promotes Axonal Outgrowth and Functional Recovery after Complete Spinal Cord Transection. PLoS ONE, 2015, 10, e0138705.	2.5	29
244	Peripheral Nerve Transplantation Combined with Acidic Fibroblast Growth Factor and Chondroitinase Induces Regeneration and Improves Urinary Function in Complete Spinal Cord Transected Adult Mice. PLoS ONE, 2015, 10, e0139335.	2.5	41
245	Perineuronal Nets Enhance the Excitability of Fast-Spiking Neurons. ENeuro, 2016, 3, ENEURO.0112-16.2016.	1.9	157
246	Proteoglycans: Road Signs for Neurite Outgrowth. Neural Regeneration Research, 2014, 9, 343.	3.0	38
247	Traffic lights for axon growth: proteoglycans and their neuronal receptors. Neural Regeneration Research, 2014, 9, 356.	3.0	19
249	Visualization of Perineuronal Nets in Central Nervous System Tissue Sections. Methods in Molecular Biology, 2020, 2043, 251-260.	0.9	2
250	Cortical and Subcortical Plasticity After Sensory Loss in the Somatosensory System of Primates. , 2020, , 399-418.		1
251	Nanofibers and Nanostructured Scaffolds for Nervous System Lesions. Neuromethods, 2021, , 61-101.	0.3	2
252	Combining chondroitinase ABC and growth factors promotes the integration of murine retinal progenitor cells transplanted into Rho(-/-) mice. Molecular Vision, 2011, 17, 1759-70.	1.1	36
253	Central nervous system regeneration. Cell, 2022, 185, 77-94.	28.9	85
254	Translational perspective. , 2022, , 537-573.		0
255	Glial-Neuronal Interactions in Pathogenesis and Treatment of Spinal Cord Injury. International Journal of Molecular Sciences, 2021, 22, 13577.	4.1	30
257	Microtubule Dynamics Following Central and Peripheral Nervous System Axotomy. ACS Chemical Neuroscience, 2022, 13, 1358-1369.	3.5	4
258	Regulation of perineuronal net components in the synaptic bouton vicinity on lumbar α-motoneurons in the rat after spinalization and locomotor training: New insights from spatio-temporal changes in gene, protein expression and WFA labeling. Experimental Neurology, 2022, 354, 114098.	4.1	4

#	ARTICLE	IF	CITATIONS
259	Emerging Therapies for Spinal Cord Injury. , 2017, , 1217-1230.e4.		0
260	The Role and Modulation of Spinal Perineuronal Nets in the Healthy and Injured Spinal Cord. Frontiers in Cellular Neuroscience, 2022, 16, .	3.7	5
262	Chondroitinase ABC Administration Facilitates Serotonergic Innervation of Motoneurons in Rats With Complete Spinal Cord Transection. Frontiers in Integrative Neuroscience, 0, 16, .	2.1	4
263	A Localized Materialsâ€Based Strategy to Nonâ€Virally Deliver Chondroitinase ABC mRNA Improves Hindlimb Function in a Rat Spinal Cord Injury Model. Advanced Healthcare Materials, 2022, 11, .	7.6	10
264	Perineuronal Nets: Subtle Structures with Large Implications. Neuroscientist, 2023, 29, 569-590.	3.5	11
266	Aberrant perineuronal nets alter spinal circuits, impair motor function, and increase plasticity. Experimental Neurology, 2022, 358, 114220.	4.1	2
267	Chemistry and Function of Glycosaminoglycans in the Nervous System. Advances in Neurobiology, 2023, , 117-162.	1.8	6
268	Behavioral regulation by perineuronal nets in the prefrontal cortex of the CNTNAP2 mouse model of autism spectrum disorder. Frontiers in Behavioral Neuroscience, 0, 17, .	2.0	4
270	Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology. Frontiers in Molecular Medicine, 0, 3, .	1.9	0
272	Recovery of Forearm and Fine Digit Function After Chronic Spinal Cord Injury by Simultaneous Blockade of Inhibitory Matrix Chondroitin Sulfate Proteoglycan Production and the Receptor PTPÏf. Journal of Neurotrauma, 2023, 40, 2500-2521.	3.4	1
273	Chondroitinase as a therapeutic enzyme: Prospects and challenges. Enzyme and Microbial Technology, 2024, 172, 110348.	3.2	0
275	A view of the genetic and proteomic profile of extracellular matrix molecules in aging and stroke. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	0
276	Perineuronal Nets in the CNS: Architects of Memory and Potential Therapeutic Target in Neuropsychiatric Disorders. International Journal of Molecular Sciences, 2024, 25, 3412.	4.1	0