Root Structure and Functioning for Efficient Acquisition Morphological and Physiological Traits

Annals of Botany 98, 693-713 DOI: 10.1093/aob/mcl114

Citation Report

#	Article	IF	CITATIONS
1	A Neural Basis for Expert Object Recognition. Psychological Science, 2001, 12, 43-47.	1.8	429
2	Specialized 'dauciform' roots of Cyperaceae are structurally distinct, but functionally analogous with 'cluster' roots. Plant, Cell and Environment, 2006, 29, 1989-1999.	2.8	109
3	Genomic and Genetic Control of Phosphate Stress in Legumes. Plant Physiology, 2007, 144, 594-603.	2.3	74
4	Sucrose transport in the phloem: integrating root responses to phosphorus starvation. Journal of Experimental Botany, 2007, 59, 93-109.	2.4	394
5	Phosphate transport by proteoid roots of Hakea sericea. Plant Science, 2007, 173, 550-558.	1.7	23
6	Determinate Root Growth and Meristem Maintenance in Angiosperms. Annals of Botany, 2007, 101, 319-340.	1.4	84
7	Plant Growth Modelling and Applications: The Increasing Importance of Plant Architecture in Growth Models. Annals of Botany, 2007, 101, 1053-1063.	1.4	220
8	Carboxylate composition of root exudates does not relate consistently to a crop species' ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytologist, 2007, 173, 181-190.	3.5	175
9	The role of microRNAs in sensing nutrient stress. Plant, Cell and Environment, 2007, 30, 323-332.	2.8	216
10	<i>Banksia</i> species (Proteaceae) from severely phosphorusâ€impoverished soils exhibit extreme efficiency in the use and reâ€mobilization of phosphorus. Plant, Cell and Environment, 2007, 30, 1557-1565.	2.8	144
11	Does phenotypic plasticity in carboxylate exudation differ among rare and widespread Banksia species (Proteaceae)?. New Phytologist, 2007, 173, 592-599.	3.5	29
12	CASIROZ: Root Parameters and Types of Ectomycorrhiza of Young Beech Plants Exposed to Different Ozone and Light Regimes. Plant Biology, 2007, 9, 298-308.	1.8	29
13	Growth, P uptake and rhizosphere properties of wheat and canola genotypes in an alkaline soil with low P availability. Biology and Fertility of Soils, 2007, 44, 143-153.	2.3	45
14	Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology, 2007, 65, 547-570.	2.0	315
15	Do oaks have different strategies for uptake of N, K and P depending on soil depth?. Plant and Soil, 2007, 297, 119-125.	1.8	28
16	Phosphorus acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum) Tj ETQq1 1	. 0.784314	rgBT /Overlo
17	Emergent macrophytes in phosphorus limited marshes: do phosphorus usage strategies change after nutrient addition?. Plant and Soil, 2008, 313, 141-153.	1.8	30
18	Intraspecific Variations of Phosphorus Absorption and Remobilization, P Forms, and Their Internal Buffering in <i>Brassica</i> Cultivars Exposed to a P‣tressed Environment. Journal of Integrative Plant Biology, 2008, 50, 703-716.	4.1	34

ITATION REDOD

	CITAT	ION REPORT	
#	Article	IF	CITATIONS
19	A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 2008, 454, 327-330.	13.7	648
20	Genetic Variability in Phosphorus Acquisition and Utilization Efficiency from Sparingly Soluble P‣ources by <i>Brassica</i> Cultivars under P‣tress Environment. Journal of Agronomy and Crop Science, 2008, 194, 380-392.	1.7	54
21	Bioengineering plant resistance to abiotic stresses by the global calcium signal system. Biotechnology Advances, 2008, 26, 503-510.	6.0	54
22	Root branching responses to phosphate and nitrate. Current Opinion in Plant Biology, 2008, 11, 82-87.	3.5	153
24	Roots, Nitrogen Transformations, and Ecosystem Services. Annual Review of Plant Biology, 2008, 59, 341-363.	8.6	267
25	Phosphorus nutrition of terrestrial plants. Plant Ecophysiology, 2008, , 51-81.	1.5	146
26	Root strategies for phosphorus acquisition. Plant Ecophysiology, 2008, , 83-116.	1.5	161
27	Plants without arbuscular mycorrhizae. Plant Ecophysiology, 2008, , 117-142.	1.5	20
28	Soil and fertilizer phosphorus in relation to crop nutrition. Plant Ecophysiology, 2008, , 177-223.	1.5	70
29	Mineral Nutrition. , 2008, , 255-320.		27
30	Phosphorus toxicity in the Proteaceae: A problem in post-agricultural lands. Scientia Horticulturae, 2008, 117, 357-365.	1.7	56
31	Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution, 2008, 23, 95-103.	4.2	1,092
32	Water relations and mineral nutrition of closely related woody plant species on desert dunes and interdunes. Australian Journal of Botany, 2008, 56, 27.	0.3	48
33	The Ecophysiology of Plant-Phosphorus Interactions. Plant Ecophysiology, 2008, , .	1.5	52
34	Root Morphology, Proton Release, and Carboxylate Exudation in Lupin in Response to Phosphorus Deficiency. Journal of Plant Nutrition, 2008, 31, 557-570.	0.9	21
35	Frankia Nodulation, Mycorrhization and Interactions Between Frankia and Mycorrhizal Fungi in Casuarina Plants. , 2008, , 767-781.		7
36	Genetic diversity ofBrassicacultivars in relation to phosphorus uptake and utilization efficiency under P-stress environment. Archives of Agronomy and Soil Science, 2008, 54, 93-108.	1.3	5
37	Is there a critical level of shoot phosphorus concentration for cluster-root formation in Lupinus albus?. Functional Plant Biology, 2008, 35, 328.	1.1	47

#	Article	IF	CITATIONS
38	Genetic Variations ofBrassicaCultivars for P Acquisition in a P Stress Environment and Comparison of P Sources for Sustainable Crop Management. Communications in Soil Science and Plant Analysis, 2009, 40, 3023-3045.	0.6	1
39	Putting the P in Ptilotus: a phosphorus-accumulating herb native to Australia. Annals of Botany, 2009, 103, 901-911.	1.4	42
40	Novel approaches in plant breeding for rhizosphere-related traits. Plant and Soil, 2009, 321, 409-430.	1.8	233
41	Shovel roots: a unique stress-avoiding developmental strategy of the legume plant Hedysarum coronarium L Plant and Soil, 2009, 322, 25-37.	1.8	9
42	Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 2009, 320, 37-77.	1.8	1,114
43	Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and Soil, 2009, 321, 117-152.	1.8	950
44	Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil, 2009, 321, 83-115.	1.8	509
45	Specialised root adaptations display cell-specific developmental and physiological diversity. Plant and Soil, 2009, 322, 39-47.	1.8	9
46	Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs. Plant and Soil, 2009, 322, 17-24.	1.8	65
47	Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 2009, 321, 305-339.	1.8	1,391
48	Growth of axile and lateral roots of maize: I development of a phenotying platform. Plant and Soil, 2009, 325, 335-349.	1.8	135
49	Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water deficit. Acta Physiologiae Plantarum, 2009, 31, 711-721.	1.0	62
50	Stress Response Versus Stress Tolerance: A Transcriptome Analysis of Two Rice Lines Contrasting in Tolerance to Phosphorus Deficiency. Rice, 2009, 2, 167-185.	1.7	66
51	Root Proliferation, Proton Efflux, and Acid Phosphatase Activity in Common Bean (Phaseolus) Tj ETQq1 1 0.7843	14 _{rg} BT /C	Verlock 10 T
52	Plant behavioural ecology: dynamic plasticity in secondary metabolites. Plant, Cell and Environment, 2009, 32, 641-653.	2.8	151
53	3D reconstruction and dynamic modeling of root architecture <i>in situ</i> and its application to crop phosphorus research. Plant Journal, 2009, 60, 1096-1108.	2.8	141
54	Despite high uptake efficiency, nonâ€mycorrhizal <i>Rumex acetosella</i> increases available phosphorous in the rhizosphere soil, whereas <i>Viscaria vulgaris</i> , <i>Plantago lanceolata</i> and <i>Achillea millefolium</i> does not. Nordic Journal of Botany, 2009, 27, 444-448.	0.2	1
55	Nutrient limitation along eutrophic rivers? Roles of N, P and K input in a speciesâ€rich floodplain hay meadow. Applied Vegetation Science, 2009, 12, 362-375.	0.9	6

~			_	
C 17	ΓΛΤΙ	ON	REP	ODT
	IAL		IV L P	

#	Article	IF	CITATIONS
56	Mobilization and Acquisition of Sparingly Soluble Pâ€Sources by <i>Brassica</i> Cultivars under Pâ€Starved Environment I. Differential Growth Response, Pâ€Efficiency Characteristics and Pâ€Remobilization. Journal of Integrative Plant Biology, 2009, 51, 1008-1023.	4.1	15
57	Maintenance costs of serotiny do not explain weak serotiny. Austral Ecology, 2009, 34, 653-662.	0.7	27
58	Compared Phosphorus Efficiency in Soybean, Sunflower and Maize. Journal of Plant Nutrition, 2009, 32, 2027-2043.	0.9	26
59	Darwin as a plant scientist: a Southern Hemisphere perspective. Trends in Plant Science, 2009, 14, 421-435.	4.3	12
60	A physiological mechanism for the formation of root casts. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274, 125-133.	1.0	66
61	Inorganic phosphorus fractions in the rhizosphere of xerophytic shrubs in the Alxa Desert. Journal of Arid Environments, 2009, 73, 55-61.	1.2	28
62	Below and aboveground responses to lupines and litter mulch in a California grassland restored with native bunchgrasses. Applied Soil Ecology, 2009, 42, 124-133.	2.1	7
63	Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 221-225.	3.3	199
64	Cover crops alter phosphorus soil fractions and organic matter accumulation in a Peruvian cacao agroforestry system. Agroforestry Systems, 2010, 80, 447-455.	0.9	8
65	Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecology, 2010, 207, 233-244.	0.7	125
66	Variation in seedling growth of 11 perennial legumes in response to phosphorus supply. Plant and Soil, 2010, 328, 133-143.	1.8	86
67	A comparative study on plant growth and root plasticity responses of two Brachiaria forage grasses grown in nutrient solution at low and high phosphorus supply. Plant and Soil, 2010, 328, 155-164.	1.8	34
68	Phosphorus accumulation in Proteaceae seeds: a synthesis. Plant and Soil, 2010, 334, 61-72.	1.8	57
69	Modelling rhizosphere transport in the presence of goethite, including competitive uptake of phosphate and arsenate. Plant and Soil, 2010, 330, 481-501.	1.8	8
70	Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant and Soil, 2010, 331, 241-255.	1.8	110
71	Does phosphate acquisition constrain legume persistence in the fynbos of the Cape Floristic Region?. Plant and Soil, 2010, 334, 33-46.	1.8	51
72	The effect of phosphorus on growth and cluster-root formation in the Chilean Proteaceae: Embothrium coccineum (R. et J. Forst.). Plant and Soil, 2010, 334, 113-121.	1.8	31
73	Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant and Soil, 2010, 334, 11-31.	1.8	323

#	Article	IF	CITATIONS
74	Time-dependent, species-specific effects of N:P stoichiometry on grassland plant growth. Plant and Soil, 2010, 334, 99-112.	1.8	43
75	Phosphate as a limiting resource: introduction. Plant and Soil, 2010, 334, 1-10.	1.8	49
76	Phosphorus availability for three crop species as a function of soil type and fertilizer history. Plant and Soil, 2010, 337, 497-510.	1.8	20
77	Analysis of the response of two tall fescue cultivars of different origin to P deficiency. Environmental and Experimental Botany, 2010, 69, 250-258.	2.0	7
78	Phosphorus supply drives nonlinear responses of cottonwood (<i>Populus deltoides</i>) to increases in CO ₂ concentration from glacial to future concentrations. New Phytologist, 2010, 187, 438-448.	3.5	50
79	Increased N affects P uptake of eight grassland species: the role of root surface phosphatase activity. Oikos, 2010, 119, 1665-1673.	1.2	96
80	Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region. Functional Ecology, 2010, 24, 485-492.	1.7	138
81	Root Characteristics of Two Soybean Cultivars Grown in Fumigated Fields in Iowa. Crop Science, 2010, 50, 2037-2045.	0.8	0
82	PREVENTION AND AMELIORATION OF PHOSPHORUS TOXICITY IN PROTEACEAE GROWN ON PREVIOUSLY FERTILISED LAND. Acta Horticulturae, 2010, , 37-46.	0.1	1
83	Multiple adaptive responses of Australian native perennial legumes with pasture potential to grow in phosphorus- and moisture-limited environments. Annals of Botany, 2010, 105, 755-767.	1.4	76
84	Quantitative Trait Loci, Epigenetics, Sugars, and MicroRNAs: Quaternaries in Phosphate Acquisition and Use. Plant Physiology, 2010, 154, 582-588.	2.3	50
85	Localized application of soil organic matter shifts distribution of cluster roots of white lupin in the soil profile due to localized release of phosphorus. Annals of Botany, 2010, 105, 585-593.	1.4	30
86	Improvement of Phosphate Solubilization and <i>Medicago</i> Plant Yield by an Indole-3-Acetic Acid-Overproducing Strain of <i>Sinorhizobium meliloti</i> . Applied and Environmental Microbiology, 2010, 76, 4626-4632.	1.4	129
87	IsEmpodisma minusthe ecosystem engineer of the FBT (fen–bog transition zone) in New Zealand?. Journal of the Royal Society of New Zealand, 2010, 40, 181-207.	1.0	17
88	Molecular analysis of SCARECROW genes expressed in white lupin cluster roots. Journal of Experimental Botany, 2010, 61, 1351-1363.	2.4	38
89	Roles of MicroRNAs in Plant Abiotic Stress. , 2010, , 357-372.		3
90	Growth Behavior, Nitrogen-Form Effects on Phosphorus Acquisition, and Phosphorus–Zinc Interactions inBrassicaCultivars under Phosphorus-Stress Environment. Communications in Soil Science and Plant Analysis, 2010, 41, 2022-2045.	0.6	7
91	Channel-Like Characteristics of the Low-Affinity Barley Phosphate Transporter PHT1;6 When Expressed in <i>Xenopus</i> Oocytes. Plant Physiology, 2010, 152, 1431-1441.	2.3	82

		CITATION R	Report	
#	Article		IF	CITATIONS
92	Phosphorus, Plant Biodiversity and Climate Change. Sustainable Agriculture Reviews, 2	2010, , 147-169.	0.6	7
93	Phosphorus: Plant Strategies to Cope with its Scarcity. Plant Cell Monographs, 2010, ,	173-198.	0.4	22
94	Regulation of phosphate starvation responses in higher plants. Annals of Botany, 2010), 105, 513-526.	1.4	142
95	Impact of severe forest dieback caused by Phytophthora cinnamomi on macrofungal d northern jarrah forest of Western Australia. Forest Ecology and Management, 2010, 2!	iversity in the 59, 1033-1040.	1.4	23
96	Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops I 117, 169-176.	Research, 2010,	2.3	299
97	The roots of a new green revolution. Trends in Plant Science, 2010, 15, 600-607.		4.3	390
98	Transgenic Plants for Abiotic Stress Resistance. , 2010, , 67-132.			90
99	Evolution of tree nutrition. Tree Physiology, 2010, 30, 1050-1071.		1.4	38
100	Photosynthetic responses of cottonwood seedlings grown in glacial through future at [CO2] vary with phosphorus supply. Tree Physiology, 2010, 30, 1361-1372.	nospheric	1.4	54
101	Hydrocarbon Phytoremediation in the Family <i>Fabacea</i> —A Review. International Phytoremediation, 2011, 13, 317-332.	Journal of	1.7	56
102	New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Ca Canadian Journal of Microbiology, 2011, 57, 21-28.	aledonia.	0.8	44
103	Phosphorus Dynamics: From Soil to Plant. Plant Physiology, 2011, 156, 997-1005.		2.3	1,127
105	Sensing and Signaling of PO 4 3â ^{~,} Signaling and Communication in Plants, 2011, , 19	1-224.	0.5	1
106	Phosphorus in Action. Soil Biology, 2011, , .		0.6	74
107	Root morphological plasticity and biomass production of two Chinese fir clones with h phosphorus efficiency under low phosphorus stress. Canadian Journal of Forest Resear 228-234.		0.8	50
108	A fresh framework for the ecology of arid Australia. Journal of Arid Environments, 2011	, 75, 313-329.	1.2	286
109	Growth, root morphology and boron uptake by citrus rootstock seedlings differing in boron-deficiency responses. Scientia Horticulturae, 2011, 129, 426-432.		1.7	45
110	Changes in phosphorus fractions in the rhizosphere of some crop species under glassh conditions. Journal of Plant Nutrition and Soil Science, 2011, 174, 899-907.	ouse	1.1	7

#	Article	IF	CITATIONS
111	Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (<i>Hordeum vulgare</i> L.). Plant Biology, 2011, 13, 872-880.	1.8	48
112	Soil phosphorus as a control of productivity and openness in temperate interglacial forest ecosystems. Journal of Biogeography, 2011, 38, 2150-2164.	1.4	50
113	Protonâ€coupled highâ€affinity phosphate transport revealed from heterologous characterization in <i>Xenopus</i> of barleyâ€root plasma membrane transporter, HvPHT1;1. Plant, Cell and Environment, 2011, 34, 681-689.	2.8	45
114	Ecophysiological traits associated with the competitive ability of invasive Australian acacias. Diversity and Distributions, 2011, 17, 898-910.	1.9	88
115	Plant functional traits along environmental gradients in seasonally dry and fire-prone ecosystem. Journal of Vegetation Science, 2011, 22, 1009-1020.	1.1	13
116	Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant and Soil, 2011, 341, 363-382.	1.8	178
117	Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant and Soil, 2011, 344, 51-71.	1.8	131
118	Above- and below-ground interactions of grass and pasture legume species when grown together under drought and low phosphorus availability. Plant and Soil, 2011, 348, 281-297.	1.8	34
119	Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail?. Plant and Soil, 2011, 348, 29-61.	1.8	206
120	Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 2011, 349, 121-156.	1.8	678
121	Why does the musketeer approach to phosphorus acquisition from sparingly soluble forms fail: All for one, but not one for all?. Plant and Soil, 2011, 348, 81-83.	1.8	4
122	Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant and Soil, 2011, 348, 7-27.	1.8	99
123	A Stoichiometric Model of Early Plant Primary Succession. American Naturalist, 2011, 177, 233-245.	1.0	26
124	Strigolactones Are Transported through the Xylem and Play a Key Role in Shoot Architectural Response to Phosphate Deficiency in Nonarbuscular Mycorrhizal Host Arabidopsis Â. Plant Physiology, 2011, 155, 974-987.	2.3	417
125	Phosphate Utilization Efficiency Correlates with Expression of Low-Affinity Phosphate Transporters and Noncoding RNA, <i>IPS1</i> , in Barley Â. Plant Physiology, 2011, 156, 1217-1229.	2.3	105
126	Update on White Lupin Cluster Root Acclimation to Phosphorus Deficiency Update on Lupin Cluster Roots. Plant Physiology, 2011, 156, 1025-1032.	2.3	69
127	Phosphorus Nutrition of Proteaceae in Severely Phosphorus-Impoverished Soils: Are There Lessons To Be Learned for Future Crops?. Plant Physiology, 2011, 156, 1058-1066.	2.3	176
128	White Lupin Cluster Root Acclimation to Phosphorus Deficiency and Root Hair Development Involve Unique Glycerophosphodiester Phosphodiesterases Â. Plant Physiology, 2011, 156, 1131-1148.	2.3	77

#	Article	IF	CITATIONS
129	Burkholderia Species Are Major Inhabitants of White Lupin Cluster Roots. Applied and Environmental Microbiology, 2011, 77, 7715-7720.	1.4	66
130	VARIATION IN PHOSPHORUS EFFICIENCY AMONGBRASSICACULTIVARS II: CHANGES IN ROOT MORPHOLOGY AND CARBOXYLATE EXUDATION. Journal of Plant Nutrition, 2011, 34, 2127-2138.	0.9	13
131	Analyzing Lateral Root Development: How to Move Forward. Plant Cell, 2012, 24, 15-20.	3.1	125
132	DIFFERENTIAL CAPACITY OF WHEAT CULTIVARS AND WHITE LUPIN TO ACQUIRE PHOSPHORUS FROM ROCK PHOSPHATE, PHYTATE AND SOLUBLE PHOSPHORUS SOURCES. Journal of Plant Nutrition, 2012, 35, 1180-1191.	0.9	11
133	Nitric oxide is the shared signalling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus). Annals of Botany, 2012, 109, 1055-1064.	1.4	64
134	Root system architecture: insights from <i>Arabidopsis</i> and cereal crops. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1441-1452.	1.8	366
135	Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species. Annals of Botany, 2012, 110, 959-968.	1.4	15
136	Comparative effects of partial root-zone irrigation and deficit irrigation on phosphorus uptake in tomato plants. Journal of Horticultural Science and Biotechnology, 2012, 87, 600-604.	0.9	20
137	Rhizosphere phosphorus depletion by three crops differing in their phosphorus critical levels. Journal of Plant Nutrition and Soil Science, 2012, 175, 810-871.	1.1	13
138	Proteaceae leaf fossils from the Oligo - Miocene of New Zealand: new species and evidence of biome and trait conservatism. Australian Systematic Botany, 2012, 25, 375.	0.3	15
139	Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 2012, 196, 173-180.	3.5	190
140	Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 2012, 196, 807-815.	3.5	209
141	Changes in leaf nutrient traits and photosynthesis of four tree species: effects of elevated [CO2], N fertilization and canopy positions. Journal of Plant Ecology, 2012, 5, 376-390.	1.2	28
142	Rethinking Internal Phosphorus Utilization Efficiency. Advances in Agronomy, 2012, 116, 185-217.	2.4	123
143	Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Annals of Botany, 2012, 110, 329-348.	1.4	149
144	Improving Water Use Efficiency for Sustainable Agriculture. , 2012, , 167-211.		11
145	The effect of mammalian herbivory on inflorescence architecture in ornithophilous <i>Babiana</i> (Iridaceae): Implications for the evolution of a bird perch. American Journal of Botany, 2012, 99, 1096-1103.	0.8	13
146	The future of grain legumes in cropping systems. Crop and Pasture Science, 2012, 63, 501.	0.7	83

		CITATION RE	PORT	
#	Article		IF	CITATIONS
147	Mycorrhizal association and morphology in orchids. Journal of Plant Interactions, 2012,	7, 238-247.	1.0	35
148	Temporal and Tissue-Specific Expression of Tomato 14-3-3 Gene Family in Response to I Deficiency. Pedosphere, 2012, 22, 735-745.	Phosphorus	2.1	7
149	Molecular Characterization and Functional Analysis of OsPHY1, a Purple Acid Phosphata Phytase Gene in Rice(Oryza sativaL.). Journal of Integrative Agriculture, 2012, 11, 1217-		1.7	25
150	Proteaceae Leaf Fossils: Phylogeny, Diversity, Ecology and Austral Distributions. Botanic The, 2012, 78, 261-287.	al Review,	1.7	29
151	The role of maize root size in phosphorus uptake and productivity of maize/faba bean a intercropping systems. Science China Life Sciences, 2012, 55, 993-1001.	nd maize/wheat	2.3	13
153	Transcriptional response of Pseudomonas aeruginosa to a phosphate-deficient Lolium p rhizosphere. Plant and Soil, 2012, 359, 25-44.	erenne	1.8	11
154	Brassica napus root mutants insensitive to exogenous cytokinin show phosphorus effic and Soil, 2012, 358, 61-74.	iency. Plant	1.8	17
155	Arid-zone Acacia species can access poorly soluble iron phosphate but show limited gro Plant and Soil, 2012, 358, 119-130.	wth response.	1.8	9
156	Secretions and Exudates in Biological Systems. Signaling and Communication in Plants,	2012, , .	0.5	24
157	Management of soil phosphorus and plant adaptation mechanisms to phosphorus stres sustainable crop production: a review. Journal of Soil Science and Plant Nutrition, 2012,	s for , 0-0.	1.7	104
158	Growth of Corn Roots and Associated Arbuscular Mycorrhizae Are Affected by Longâ€T Phosphorus Fertilization. Agronomy Journal, 2012, 104, 1672-1678.	erm Tillage and	0.9	33
159	Roles of miRNAs in Nutrient Signaling and Homeostasis. Signaling and Communication 197-217.	in Plants, 2012, ,	0.5	5
160	Rare earth elements lanthanum and gadolinium induce phosphate-deficiency responses thaliana seedlings. Plant and Soil, 2012, 353, 231-247.	in Arabidopsis	1.8	38
161	The roles of climate and soil nutrients in shaping the life histories of grasses native to th Floristic Region. Plant and Soil, 2012, 355, 323-340.	le Cape	1.8	6
162	Unravelling the limits to tree height: a major role for water and nutrient trade-offs. Oeco 169, 61-72.	ologia, 2012,	0.9	26
163	<i>TFT6</i> and <i>TFT7</i> , two different members of tomato 14â€3â€3 gene family, plant adaption to low phosphorus stress. Plant, Cell and Environment, 2012, 35, 1393-1	play distinct roles in 406.	2.8	66
164	Genetic variation in the early vigour of spring bread wheat under phosphate stress as ch through digital charting. Field Crops Research, 2012, 127, 71-78.	aracterised	2.3	6
165	Intercropping promotes the ability of durum wheat and chickpea to increase rhizospher availability in a low P soil. Soil Biology and Biochemistry, 2012, 46, 181-190.	e phosphorus	4.2	177

#	Article	IF	CITATIONS
166	Improved phosphate metabolism and biomass production by overexpression of AtPAP18 in tobacco. Biologia (Poland), 2012, 67, 713-720.	0.8	14
167	Alleviation of phosphorus deficiency stress by moderate salinity in the halophyte Hordeum maritimum L. Plant Growth Regulation, 2012, 66, 75-85.	1.8	49

168 The effect of phosphorus on cluster-root formation and functioning of Embothrium coccineum (R. et) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

169	C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant and Soil, 2013, 373, 553-568.	1.8	183
170	Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant and Soil, 2013, 372, 93-124.	1.8	238
171	Modelling root plasticity and response of narrow-leafed lupin to heterogeneous phosphorus supply. Plant and Soil, 2013, 372, 319-337.	1.8	40
172	Root hairs explain P uptake efficiency of soybean genotypes grown in a P-deficient Ferralsol. Plant and Soil, 2013, 369, 269-282.	1.8	53
173	Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant and Soil, 2013, 368, 315-328.	1.8	38
174	Light inhibition of leaf respiration as soil fertility declines along a post-glacial chronosequence in New Zealand: an analysis using the Kok method. Plant and Soil, 2013, 367, 163-182.	1.8	53
175	Fe and P Solubilization Under Limiting Conditions by Bacteria Isolated from Carex kobomugi Roots at the Hasaki Coast. Current Microbiology, 2013, 66, 314-321.	1.0	36
176	The mixotrophic nature of photosynthetic plants. Functional Plant Biology, 2013, 40, 425.	1.1	33
177	Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.). Science China Life Sciences, 2013, 56, 313-323.	2.3	16
178	The role of nutrients for improving seedling quality in drylands. New Forests, 2013, 44, 719-732.	0.7	51
179	Genetic Improvement of Root Growth Contributes to Efficient Phosphorus Acquisition in maize (Zea) Tj ETQq1 1	0.78431	4 rgBT /Over
180	Plant–Microbe Symbiosis: Perspectives and Applications. , 2013, , 119-145.		5

181	Direct Imaging of Nanoscale Dissolution of Dicalcium Phosphate Dihydrate by an Organic Ligand: Concentration Matters. Environmental Science & Technology, 2013, 47, 13365-13374.	4.6	38
182	The benefits of phosphorus fertilization of trees grown on salinized croplands in the lower reaches of Amu Darya, Uzbekistan. Agroforestry Systems, 2013, 87, 555-569.	0.9	10
183	Assessment and Modeling of Soil Available Phosphorus in Sustainable Cropping Systems. Advances in Agronomy, 2013, 122, 85-126.	2.4	62

#	Article	IF	CITATIONS
184	Rhizosphere acid and alkaline phosphatase activity as a marker of P nutrition in nodulated Cyclopia and Aspalathus species in the Cape fynbos of South Africa. South African Journal of Botany, 2013, 89, 289-295.	1.2	40
185	Rootâ€derived auxin contributes to the phosphorusâ€deficiencyâ€induced clusterâ€root formation in white lupin (<i>Lupinus albus</i>). Physiologia Plantarum, 2013, 148, 481-489.	2.6	24
186	Interactions between arbuscular mycorrhizal and nonâ€mycorrhizal plants: do nonâ€mycorrhizal species at both extremes of nutrient availability play the same game?. Plant, Cell and Environment, 2013, 36, 1911-1915.	2.8	96
187	Phosphorus Uptake by Young Citrus Trees in Low-P Soil Depends on Rootstock Varieties and Nutrient Management. Communications in Soil Science and Plant Analysis, 2013, 44, 2107-2117.	0.6	11
188	Matching roots to their environment. Annals of Botany, 2013, 112, 207-222.	1.4	247
189	Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. Journal of Experimental Botany, 2013, 64, 1181-1192.	2.4	245
190	ASSESSMENT OF THE ROLE OF FLUORESCENT ROOT AND SEED EXUDATES IN CROP PLANTS. Journal of Plant Nutrition, 2013, 36, 811-824.	0.9	2
191	Proteomics of phosphate use and deprivation in plants. Proteomics, 2013, 13, 609-623.	1.3	39
192	Soil nitrogen, and not phosphorus, promotes clusterâ€root formation in a South American Proteaceae, <i>Embothrium coccineum</i> . American Journal of Botany, 2013, 100, 2328-2338.	0.8	22
193	Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding. Annals of Botany, 2013, 112, 331-345.	1.4	173
194	Rhizosphere properties in monocropping and intercropping systems between faba bean (Vicia faba L.) and maize (Zea mays L.) grown in a calcareous soil. Crop and Pasture Science, 2013, 64, 976.	0.7	44
195	How to study deep roots—and why it matters. Frontiers in Plant Science, 2013, 4, 299.	1.7	222
196	Integration of root phenes for soil resource acquisition. Frontiers in Plant Science, 2013, 4, 355.	1.7	203
197	Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques. Frontiers in Plant Science, 2013, 4, 392.	1.7	46
198	Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot. , 2013, 1, cot010-cot010.		76
199	A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability?. Annals of Botany, 2013, 112, 317-330.	1.4	118
200	Downregulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished environment. Annals of Botany, 2013, 111, 445-454.	1.4	67
201	Ecological importance of sedges: a survey of the Australasian Cyperaceae genus Lepidosperma. Annals of Botany, 2013, 111, 499-529.	1.4	29

#	Article	IF	CITATIONS
202	Viminaria juncea does not vary its shoot phosphorus concentration and only marginally decreases its mycorrhizal colonization and cluster-root dry weight under a wide range of phosphorus supplies. Annals of Botany, 2013, 111, 801-809.	1.4	13
203	Commensalism in an agroecosystem: hydraulic redistribution by deepâ€rooted legumes improves survival of a droughted shallowâ€rooted legume companion. Physiologia Plantarum, 2013, 149, 79-90.	2.6	39
204	Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. Journal of Experimental Botany, 2013, 64, 1403-1411.	2.4	90
205	Responses of root architecture development to low phosphorus availability: a review. Annals of Botany, 2013, 112, 391-408.	1.4	433
206	Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. Journal of Experimental Botany, 2013, 64, 2701-2712.	2.4	102
207	How a phosphorusâ€acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (<i>Lupinus</i> , Fabaceae). American Journal of Botany, 2013, 100, 263-288.	0.8	216
209	Calcium: From Root Macronutrient to Mechanical Signal. , 2013, , 298-311.		11
210	Severe Phosphorus Stress Affects Sunflower and Maize but Not Soybean Root to Shoot Allometry. Agronomy Journal, 2013, 105, 1283-1288.	0.9	8
211	Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop and Pasture Science, 2013, 64, 588.	0.7	43
213	Phosphate-Mediated Remediation of Metals and Radionuclides. Advances in Ecology, 2014, 2014, 1-14.	0.5	19
214	Development of Common Bean (Phaseolus Vulgaris L.) Production Under Low Soil Phosphorus and Drought in Sub-Saharan Africa: A Review. Journal of Sustainable Development, 2014, 7, .	0.1	18
215	GmPTF1, a novel transcription factor gene, is involved in conferring soybean tolerance to phosphate starvation. Genetics and Molecular Research, 2014, 13, 926-937.	0.3	8
216	Tree biomass, resource use and crop productivity in agri-horti-silvicultural systems in the dry region of Rajasthan, India. Archives of Agronomy and Soil Science, 2014, 60, 1031-1049.	1.3	8
217	Environmental, developmental, and genetic factors controlling root system architecture. Biotechnology and Genetic Engineering Reviews, 2014, 30, 95-112.	2.4	18
218	Divergent functioning of Proteaceae species: the South American <i><scp>E</scp>mbothrium coccineum</i> displays a combination of adaptive traits to survive in highâ€phosphorus soils. Functional Ecology, 2014, 28, 1356-1366.	1.7	42
219	Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate. BMC Plant Biology, 2014, 14, 334.	1.6	108
220	Root Nutrient Foraging. Plant Physiology, 2014, 166, 509-517.	2.3	369
221	Effect of bioinoculants and superphosphate fertilizer on the growth and yield of broccoli (<i>Brassica oleracea</i> L. var. <i>italica</i> Plenck). New Zealand Journal of Crop and Horticultural Science, 2014, 42, 288-302.	0.7	24

#	Article	IF	CITATIONS
222	WRKY transcription factors. Plant Signaling and Behavior, 2014, 9, e27700.	1.2	533
223	Effects of Arbuscular Mycorrhizal Fungal Inoculation and Phosphorus (P) Addition on Maize P Utilization and Growth in Reclaimed Soil of a Mining Area. Communications in Soil Science and Plant Analysis, 2014, 45, 2413-2428.	0.6	4
224	Root Architecture Responses: In Search of Phosphate. Plant Physiology, 2014, 166, 1713-1723.	2.3	214
225	The alternative respiratory pathway mediates carboxylate synthesis in white lupin cluster roots under phosphorus deprivation. Plant, Cell and Environment, 2014, 37, 922-928.	2.8	45
226	Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrientâ€acquisition strategies along a 2â€millionâ€year dune chronosequence. Journal of Ecology, 2014, 102, 396-410.	1.9	253
227	Phosphorus Stress Induced Variations in Growth Behavior and P Efficiency among <i>Brassica</i> Cultivars Grown with Sparingly Soluble P Sources. Communications in Soil Science and Plant Analysis, 2014, 45, 1995-2017.	0.6	3
228	Phosphorus Deficiency in Plants: Responses, Adaptive Mechanisms, and Signaling. , 2014, , 133-148.		16
229	Spatial and Temporal Dynamics of Root Exudation: How Important is Heterogeneity in Allelopathic Interactions?. Journal of Chemical Ecology, 2014, 40, 940-952.	0.9	23
230	Cluster Roots. Soil Biology, 2014, , 353-367.	0.6	6
231	Does cluster-root activity benefit nutrient uptake and growth of co-existing species?. Oecologia, 2014, 174, 23-31.	0.9	80
232	Nitrogen form but not elevated CO2 alters plant phosphorus acquisition from sparingly soluble phosphorus sources. Plant and Soil, 2014, 374, 109-119.	1.8	17
233	Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients. Journal of Experimental Botany, 2014, 65, 159-168.	2.4	94
234	Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014, 203, 63-69.	3.5	449
235	Organâ€specific phosphorusâ€allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes. Plant, Cell and Environment, 2014, 37, 943-960.	2.8	59
236	Root Engineering. Soil Biology, 2014, , .	0.6	7
237	Consequences of nocturnal water loss: a synthesis of regulating factors and implications for capacitance, embolism and use in models. Tree Physiology, 2014, 34, 1047-1055.	1.4	103
238	Low levels of ribosomal <scp>RNA</scp> partly account for the very high photosynthetic phosphorusâ€use efficiency of <scp>P</scp> roteaceae species. Plant, Cell and Environment, 2014, 37, 1276-1298.	2.8	121
239	Pasture plants and soil fertility management to improve the efficiency of phosphorus fertiliser use in temperate grassland systems. Crop and Pasture Science, 2014, 65, 556.	0.7	53

#	Article	IF	CITATIONS
240	The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil. Plant and Soil, 2014, 385, 181-191.	1.8	102
241	Complementary plant nutrientâ€acquisition strategies promote growth of neighbour species. Functional Ecology, 2014, 28, 819-828.	1.7	56
242	Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). Journal of Experimental Botany, 2014, 65, 2995-3003.	2.4	63
243	Ground-penetrating radar-based automatic reconstruction of three-dimensional coarse root system architecture. Plant and Soil, 2014, 383, 155-172.	1.8	49
244	RNA-seq analysis identifies an intricate regulatory network controlling cluster root development in white lupin. BMC Genomics, 2014, 15, 230.	1.2	43
245	Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. Oecologia, 2014, 176, 345-355.	0.9	50
246	Nodules from Fynbos legume Virgilia divaricata have high functional plasticity under variable P supply levels. Journal of Plant Physiology, 2014, 171, 1732-1739.	1.6	37
247	Plant Responses to Limited Moisture and Phosphorus Availability. Advances in Agronomy, 2014, 124, 143-200.	2.4	72
248	The changes in physiological and biochemical traits of Tibetan wild and cultivated barley in response to low phosphorus stress. Soil Science and Plant Nutrition, 2014, 60, 832-842.	0.8	15
251	Phosphorus nutrition in Proteaceae and beyond. Nature Plants, 2015, 1, 15109.	4.7	122
252	Dynamics of phosphorus fractions in the rhizosphere of fababean (Vicia faba L.) and maize (Zea mays L.) grown in calcareous and acid soils. Crop and Pasture Science, 2015, 66, 1151.	0.7	17
254	The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression. Molecular Ecology, 2015, 24, 4912-4930.	2.0	51
255	WRKY6 restricts Piriformospora indica-stimulated and phosphate-induced root development in Arabidopsis. BMC Plant Biology, 2015, 15, 305.	1.6	35
256	Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits. AoB PLANTS, 2015, 7, plv097.	1.2	70
257	Root morphological traits related to phosphorusâ€uptake efficiency of soybean, sunflower, and maize. Journal of Plant Nutrition and Soil Science, 2015, 178, 807-815.	1.1	40
258	Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate. Physiologia Plantarum, 2015, 154, 511-525.	2.6	30
259	Plant diversity shapes microbeâ€rhizosphere effects on P mobilisation from organic matter in soil. Ecology Letters, 2015, 18, 1356-1365.	3.0	57

		CITATION REP	ORT	
#	ARTICLE		IF	CITATIONS
263	Ecophysiological role of Embothrium coccineum, a proteaceae species bearing cluster root increasing p availability in its rhizosphere. Journal of Soil Science and Plant Nutrition, 2015,		1.7	8
265	Utilization of organic phosphorus sources by oilseed rape, sunflower, and soybean. Journal Nutrition and Soil Science, 2015, 178, 339-344.	of Plant	1.1	12
267	A novel biologically-based approach to evaluating soil phosphorus availability across compl landscapes. Soil Biology and Biochemistry, 2015, 88, 110-119.	ex	4.2	116
268	Balanced allocation of organic acids and biomass for phosphorus and nitrogen demand in t legume Podalyria calyptrata. Journal of Plant Physiology, 2015, 174, 16-25.	he fynbos	1.6	12
269	Nutrient Use Efficiency: from Basics to Advances. , 2015, , .			30
270	Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress. Journal of Proteomics, 2015, 117, 106-119.		1.2	25
271	Use of Arbuscular Mycorrhiza and Organic Amendments to Enhance Growth of <i>Macaran peltata</i> (Roxb.) MüII. Arg. in Iron Ore Mine Wastelands. International Journal of Phyto 2015, 17, 485-492.		1.7	2
272	Is nitrogen transfer among plants enhanced by contrasting nutrientâ€acquisition strategie Cell and Environment, 2015, 38, 50-60.	s?. Plant,	2.8	30
273	Comparison of the response to phosphorus deficiency in two lupin species, <scp><i>L</i></scp> <i>upinus albus</i> and <scp><i>L</i></scp> <i> angustifolius</i> contrasting root morphology. Plant, Cell and Environment, 2015, 38, 399-410.	>, with	2.8	27
274	Interspecific facilitation of P acquisition in intercropping of maize with white lupin in two contrasting soils as influenced by different rates and forms of P supply. Plant and Soil, 201. 223-236.	5, 390,	1.8	67
275	Explaining within 0mmunity variation in plant biomass allocation: a balance between org and morphology above vs below ground?. Journal of Vegetation Science, 2015, 26, 431-44		1.1	63
276	Sugarcane performance under phosphorus deficiency: physiological responses and genoty variation. Plant and Soil, 2015, 386, 273-283.	Þic	1.8	25
277	Variability in potential to exploit different soil organic phosphorus compounds among trop montane tree species. Functional Ecology, 2015, 29, 121-130.	ical	1.7	64
278	Increasing nitrogen supply stimulates phosphorus acquisition mechanisms in the fynbos sp Aspalathus linearis. Functional Plant Biology, 2015, 42, 52.	ecies	1.1	35
279	High foliar nutrient concentrations and resorption efficiency in <i>Embothrium coccineum (Proteaceae) in southern Chile. American Journal of Botany, 2015, 102, 208-216.</i>		0.8	19
280	Soil Development and Nutrient Availability Along a 2ÂMillion-Year Coastal Dune Chronoseq Under Species-Rich Mediterranean Shrubland in Southwestern Australia. Ecosystems, 2015	uence , 18, 287-309.	1.6	110
281	Cluster roots of Embothrium coccineum (Proteaceae) affect enzyme activities and phospho in rhizosphere soil. Plant and Soil, 2015, 395, 189-200.	orus lability	1.8	20
282	Root phenotyping: from component trait in the lab to breeding: Table 1 Journal of Experim Botany, 2015, 66, 5389-5401.	nental	2.4	163

#	ARTICLE	IF	CITATIONS
283	Dynamic growth pattern and exploitation of soil residual P by Brassica campestris throughout growth cycle on a calcareous soil. Field Crops Research, 2015, 180, 110-117.	2.3	2
285	Root morphology and cluster root formation by seabuckthorn (Hippophaë rhamnoides L.) in response to nitrogen, phosphorus and iron deficiency. Plant and Soil, 2015, 397, 75-91.	1.8	12
286	Metallic Nanoparticle (TiO ₂ and Fe ₃ O ₄) Application Modifies Rhizosphere Phosphorus Availability and Uptake by <i>Lactuca sativa</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 6876-6882.	2.4	145
287	The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Annals of Botany, 2015, 116, 987-999.	1.4	99
289	Influence of different trap solutions on the determination of root exudates in Lupinus albus L Biology and Fertility of Soils, 2015, 51, 757-765.	2.3	61
290	Combined action of an antioxidant defence system and osmolytes on drought tolerance and post-drought recovery of Phoebe zhennan S. Lee saplings. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	22
293	Soil phosphorus fractionation and nutrient dynamics along the Cooloola coastal dune chronosequence, southern Queensland, Australia. Geoderma, 2015, 257-258, 4-13.	2.3	57
294	Plant adaptations to severely phosphorus-impoverished soils. Current Opinion in Plant Biology, 2015, 25, 23-31.	3.5	157
295	Root physiological adaptations involved in enhancing P assimilation in mining and non-mining ecotypes of Polygonum hydropiper grown under organic P media. Frontiers in Plant Science, 2015, 6, 36.	1.7	9
296	Changes in root morphology and physiology to limited phosphorus and moisture in a locally-selected cultivar and an introduced cultivar of Medicago sativa L. growing in alkaline soil. Plant and Soil, 2015, 392, 215-226.	1.8	46
297	Nutritional regulation of root development. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 431-443.	5.9	64
298	Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition. Plant Physiology, 2015, 167, 1430-1439.	2.3	158
299	The southern South American Proteaceae, Embothrium coccineum exhibits intraspecific variation in growth and cluster-root formation depending on climatic and edaphic origins. Plant and Soil, 2015, 396, 201-213.	1.8	9
300	How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 2015, 208, 736-749.	3.5	239
301	Zinc accumulation and remobilization in winter wheat as affected by phosphorus application. Field Crops Research, 2015, 184, 155-161.	2.3	46
302	Phosphorus limitation, soilâ€borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytologist, 2015, 206, 507-521.	3.5	222
303	Interactions among clusterâ€root investment, leaf phosphorus concentration, and relative growth rate in two <i>Lupinus</i> species. American Journal of Botany, 2015, 102, 1529-1537.	0.8	5
304	Cluster root allocation of white lupin (<i>Lupinus albus</i> L.) in soil with heterogeneous phosphorus and water distribution. Soil Science and Plant Nutrition, 2015, 61, 940-950.	0.8	9

#	Article	IF	CITATIONS
305	Changes in plant growth and photosynthetic performance of Zizania latifolia exposed to different phosphorus concentrations under hydroponic condition. Photosynthetica, 2015, 53, 630-635.	0.9	22
306	Presence in M editerranean hotspots and floral symmetry affect speciation and extinction rates in P roteaceae. New Phytologist, 2015, 207, 401-410.	3.5	18
307	Forest and fynbos are alternative states on the same nutrient poor geological substrate. South African Journal of Botany, 2015, 101, 57-65.	1.2	29
308	Phosphorus uptake and utilization efficiency in West African pearl millet inbred lines. Field Crops Research, 2015, 171, 54-66.	2.3	39
309	Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol. Annals of Botany, 2015, 116, 975-985.	1.4	50
310	Mineral nutrition of <i>campos rupestres</i> plant species on contrasting nutrientâ€impoverished soil types. New Phytologist, 2015, 205, 1183-1194.	3.5	149
311	Effect of the Concentration of Phosphorus on Growth and Nutrition ofLeucospermum cordifoliumâ€~Flame Spike'. Journal of Plant Nutrition, 2015, 38, 712-727.	0.9	1
312	Genetic analysis of root morphological traits in wheat. Molecular Genetics and Genomics, 2015, 290, 785-806.	1.0	37
313	Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends in Plant Science, 2015, 20, 83-90.	4.3	251
314	The importance of a sterile rhizosphere when phenotyping for root exudation. Plant and Soil, 2015, 387, 131-142.	1.8	43
315	Phosphorus Fertilization Effect on Timothy Root Growth, and Associated Arbuscular Mycorrhizal Development. Agronomy Journal, 2016, 108, 930-938.	0.9	5
316	Phosphate Uptake and Allocation – A Closer Look at Arabidopsis thaliana L. and Oryza sativa L Frontiers in Plant Science, 2016, 7, 1198.	1.7	127
317	Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement. Frontiers in Plant Science, 2016, 7, 1389.	1.7	29
318	Rhizosphere Organic Anions Play a Minor Role in Improving Crop Species' Ability to Take Up Residual Phosphorus (P) in Agricultural Soils Low in P Availability. Frontiers in Plant Science, 2016, 7, 1664.	1.7	48
319	Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply. Frontiers in Plant Science, 2016, 7, 1939.	1.7	143
320	Increasing plant species diversity and extreme species turnover accompany declining soil fertility along a longâ€ŧerm chronosequence in a biodiversity hotspot. Journal of Ecology, 2016, 104, 792-805.	1.9	76
321	Biogeographic bases for a shift in crop CÂ:ÂNÂ:ÂP stoichiometries during domestication. Ecology Letters, 2016, 19, 564-575.	3.0	42
322	Towards a multidimensional root trait framework: a tree root review. New Phytologist, 2016, 211, 1159-1169.	3.5	432

		CITATION REPORT		
#	Article		IF	CITATIONS
323	Increased soil phosphorus availability induced by faba bean root exudation stimulates root and phosphorus uptake in neighbouring maize. New Phytologist, 2016, 209, 823-831.	growth	3.5	159
324	Fertilizer location modifies root zone salinity, root morphology, and waterâ€stress resistand seedlings according to the watering regime in a dryland reforestation. Journal of Plant Nutri Soil Science, 2016, 179, 223-233.	ce of tree tion and	1.1	8
325	Responses of Reclamation Plants to High Root Zone pH: Effects of Phosphorus and Calcium Availability. Journal of Environmental Quality, 2016, 45, 1652-1662.	I	1.0	14
326	Phosphorus in Soil and Plants in Relation to Human Nutrition and Health. Advances in Soil S 2016, , 65-80.	science,	0.1	2
327	Phosphorus Management. Advances in Soil Science, 2016, , 81-113.		0.1	6
328	QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in t growth systems. Scientific Reports, 2016, 6, 33113.	wo	1.6	55
329	How irrigation rounds and mother corm size control saffron yield, quality, daughter corms b and phosphorus uptake. Scientia Horticulturae, 2016, 213, 132-143.	vehavior	1.7	28
330	Future challenges in coupled C–N–P cycle models for terrestrial ecosystems under glot review. Biogeochemistry, 2016, 131, 173-202.	al change: a	1.7	75
331	The Influence of Phosphorus Sources on the Growth and Rhizosphere Soil Characteristics o Genotypes of Wheat (Triticum aestivumL.). Communications in Soil Science and Plant Analy 1078-1088.		0.6	2
332	Ecophysiology of Campos Rupestres Plants. , 2016, , 227-272.			31
333	Morphological responses of wheat (<i>Triticum aestivum</i> L.) roots to phosphorus supply contrasting soils. Journal of Agricultural Science, 2016, 154, 98-108.	ı in two	0.6	25
335	Plant–Microbiota Interactions as a Driver of the Mineral Turnover in the Rhizosphere. Adv Applied Microbiology, 2016, 95, 1-67.	ances in	1.3	105
336	Can highly weathered soils under conservation agriculture be C saturated?. Catena, 2016, 1	47, 638-649.	2.2	26
337	Phosphate uptake kinetics and tissue-specific transporter expression profiles in poplar (Populus × canescens) at different phosphorus availabilities. BMC Plant Biology,	2016, 16, 206.	1.6	44
338	Trait values and not invasive status determine competitive outcomes between native and ir species under varying soil nutrient availability. Austral Ecology, 2016, 41, 875-885.	ivasive	0.7	9
339	Zinc uptake and accumulation in winter wheat relative to changes in root morphology and mycorrhizal colonization following varying phosphorus application on calcareous soil. Field Research, 2016, 197, 74-82.	Crops	2.3	58
340	Localized application of sewage sludge improved plant nitrogen and phosphorus uptake by rhizoboxâ€grown spring wheat. Journal of Plant Nutrition and Soil Science, 2016, 179, 689	-695.	1.1	9
341	The Effect of P Enrichment on Exudate Quantity and Bioavailability - a Comparison of Two N Species. Wetlands, 2016, 36, 789-798.	/acrophyte	0.7	2

#	Article	IF	CITATIONS
342	Phosphorus Stress-Induced Differential Growth, and Phosphorus Acquisition and Use Efficiency by Spring Wheat Cultivars. Communications in Soil Science and Plant Analysis, 2016, 47, 15-27.	0.6	11
343	Determinants of the N content of Quercus wutaishanica leaves in the Loess Plateau: a structural equation modeling approach. Scientific Reports, 2016, 6, 26845.	1.6	4
344	The effects of nitrogen form on root morphological and physiological adaptations of maize, white lupin and faba bean under phosphorus deficiency. AoB PLANTS, 2016, 8, .	1.2	17
345	Using models to guide field experiments: <i>a priori</i> predictions for the <scp>CO</scp> ₂ response of a nutrient―and waterâ€imited native Eucalypt woodland. Global Change Biology, 2016, 22, 2834-2851.	4.2	77
346	Underestimated effects of climate on plant species turnover in the Southwest Australian Floristic Region. Journal of Biogeography, 2016, 43, 289-300.	1.4	22
347	Rhizosphere priming of barley with and without root hairs. Soil Biology and Biochemistry, 2016, 100, 74-82.	4.2	55
348	Genetic control of traits associated with phosphorus uptake in rice (Oryza sativa L.) varieties. Russian Journal of Genetics: Applied Research, 2016, 6, 270-278.	0.4	3
349	Characterisation of soils under long-term crop cultivation without fertilisers: a case study in Japan. SpringerPlus, 2016, 5, 283.	1.2	4
350	Physiology and Spatio-temporal Relations of Nutrient Acquisition by Roots and Root Symbionts. Progress in Botany Fortschritte Der Botanik, 2016, , 167-233.	0.1	0
351	The formation of the oceanic temperate forests of New Zealand. New Zealand Journal of Botany, 2016, 54, 128-155.	0.8	51
352	Explore less to control more: why and when should plants limit the horizontal exploration of soil by their roots?. Oikos, 2016, 125, 1110-1120.	1.2	8
353	Assessment of functional diversity and structure of phytate-hydrolysing bacterial community in Lolium perenne rhizosphere. Plant and Soil, 2016, 401, 151-167.	1.8	15
354	Interspecific root interactions between white lupin and barley enhance the uptake of rare earth elements (REEs) and nutrients in shoots of barley. Plant and Soil, 2016, 402, 235-245.	1.8	29
355	Fineâ€ŧuning by strigolactones of root response to low phosphate. Journal of Integrative Plant Biology, 2016, 58, 203-212.	4.1	25
356	Effect of organic cultivation of rooibos tea plants (<i>Aspalathus linearis</i>) on soil nutrient status in Nieuwoudtville, South Africa. South African Journal of Plant and Soil, 2016, 33, 13-21.	0.4	5
357	Rhizosphere shape of lentil and maize: Spatial distribution of enzyme activities. Soil Biology and Biochemistry, 2016, 96, 229-237.	4.2	148
358	Closely related allopatricPodalyriaspecies from the Core Cape Subregion differ in their mechanisms for acquisition of phosphorus, growth and ecological niche. Journal of Plant Ecology, 2016, 9, 451-463.	1.2	3
359	The effects of a 9-year nitrogen and water addition on soil aggregate phosphorus and sulfur availability in a semi-arid grassland. Ecological Indicators, 2016, 61, 806-814.	2.6	54

#	Article	IF	CITATIONS
360	Effect of shade tree planting and soil management on rehabilitation success of a 22-year-old degraded cocoa (Theobroma cacao L.) plantation. Agriculture, Ecosystems and Environment, 2016, 219, 14-25.	2.5	32
361	Shifts in microbial communities do not explain the response of grassland ecosystem function to plant functional composition and rainfall change. Soil Biology and Biochemistry, 2016, 92, 199-210.	4.2	34
362	The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. European Journal of Agronomy, 2016, 72, 80-90.	1.9	127
363	Phosphorus-use efficiency of kale genotypes from coastal Croatia. Journal of Plant Nutrition, 2016, 39, 389-398.	0.9	6
364	Imaging the interaction of roots and phosphate fertiliser granules using 4D X-ray tomography. Plant and Soil, 2016, 401, 125-134.	1.8	67
365	Root morphology acclimation to phosphorus supply by six cultivars of Trifolium subterraneum L. Plant and Soil, 2017, 412, 21-34.	1.8	19
366	Arbuscular mycorrhizal fungus colonization in Nicotiana tabacum decreases the rate of both carboxylate exudation and root respiration and increases plant growth under phosphorus limitation. Plant and Soil, 2017, 416, 97-106.	1.8	31
367	Morphophysiological, ultrastructural, and nutritional changes induced by Cu toxicity in young <i>Erythrina fusca</i> plants. International Journal of Phytoremediation, 2017, 19, 621-631.	1.7	5
368	Influences of Potassium Chloride Fertilization on Mycorrhizal Formation in a Tropical Alfisol. Communications in Soil Science and Plant Analysis, 2017, 48, 524-538.	0.6	6
369	Greater root phosphatase activity in nitrogenâ€fixing rhizobial but not actinorhizal plants with declining phosphorus availability. Journal of Ecology, 2017, 105, 1246-1255.	1.9	77
370	Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems and Environment, 2017, 240, 148-161.	2.5	399
371	Response of Arabidopsis thaliana root growth to phosphorus and its relation to media chemical composition. Biologia Plantarum, 2017, 61, 587-594.	1.9	4
372	Sampling roots to capture plant and soil functions. Functional Ecology, 2017, 31, 1506-1518.	1.7	150
373	Phosphorus acquisition by three wheat cultivars contrasting in aluminium tolerance growing in an aluminium-rich volcanic soil. Crop and Pasture Science, 2017, 68, 305.	0.7	27
374	Do soil and climate properties drive biogeography of the Australian proteaceae?. Plant and Soil, 2017, 417, 317-329.	1.8	6
375	Relationship between mycorrhizal responsiveness and root traits in European sand dune species. Rhizosphere, 2017, 3, 160-169.	1.4	9
376	Soil type determines how root and rhizosphere traits relate to phosphorus acquisition in field-grown maize genotypes. Plant and Soil, 2017, 412, 115-132.	1.8	26
377	White Lupin: A Model System for Understanding Plant Adaptation to Low Phosphorus Availability. , 2017, , 243-280.		5

# 378	ARTICLE Metabolism and Transport of Carbon in Legume Nodules Under Phosphorus Deficiency. , 2017, , 77-95.	IF	Citations 4
379	Legume Nitrogen Fixation in Soils with Low Phosphorus Availability. , 2017, , .		16
380	Growth, morphological and physiological responses of alfalfa (Medicago sativa) to phosphorus supply in two alkaline soils. Plant and Soil, 2017, 416, 565-584.	1.8	43
381	Effect of morphology of root system on adaptability of rice to the deficiency of mineral elements. Russian Agricultural Sciences, 2017, 43, 1-6.	0.1	0
382	Arabidopsis plasma membrane H+-ATPase genes AHA2 and AHA7 have distinct and overlapping roles in the modulation of root tip H+ efflux in response to low-phosphorus stress. Journal of Experimental Botany, 2017, 68, 1731-1741.	2.4	75
383	Specialization to Extremely Low-Nutrient Soils Limits the Nutritional Adaptability of Plant Lineages. American Naturalist, 2017, 189, 684-699.	1.0	29
384	Plant carnivory beyond bogs: reliance on prey feeding inDrosophyllum lusitanicum(Drosophyllaceae) in dry Mediterranean heathland habitats. Annals of Botany, 2017, 119, mcw247.	1.4	12
385	Assessment of diffusive phosphate supply in soils by microdialysis. Journal of Plant Nutrition and Soil Science, 2017, 180, 220-230.	1.1	25
386	Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant and Soil, 2017, 416, 377-389.	1.8	90
387	Functional traits of a facultative metallophyte from tropical Africa: population variation and plasticity in response to cobalt. Environmental and Experimental Botany, 2017, 136, 1-8.	2.0	9
388	Regulation of dauciform root formation and root phosphatase activities of sedges (Carex) by nitrogen and phosphorus. Plant and Soil, 2017, 415, 57-72.	1.8	17
389	PHOSPHORUS DEFICIENCY IMPAIRS SHOOT REGROWTH OF SUGARCANE VARIETIES. Experimental Agriculture, 2017, 53, 1-11.	0.4	11
391	Respiratory ATP cost and benefit of arbuscular mycorrhizal symbiosis with Nicotiana tabacum at different growth stages and under salinity. Journal of Plant Physiology, 2017, 218, 243-248.	1.6	19
392	Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability. Oecologia, 2017, 185, 387-400.	0.9	36
393	Quantifying components of the phosphorus cycle in temperate forests. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1243.	2.8	44
394	Effects of external supplied sucrose on the uptake and metabolism of glycine by pakchoi (Brassica) Tj ETQq1 1 C	0.784314 i 1.0	rgBT /Overloc
395	How functional is a trait? Phosphorus mobilization through root exudates differs little between <i>Carex</i> species with and without specialized dauciform roots. New Phytologist, 2017, 215, 1438-1450.	3.5	29
396	Rhizotrophs: Plant Growth Promotion to Bioremediation. , 2017, , .		8

#	Article	IF	CITATIONS
397	Effects of Cover Crops and Phosphorus Sources on Maize Yield, Phosphorus Uptake, and Phosphorus Use Efficiency. Agronomy Journal, 2017, 109, 1039-1047.	0.9	45
398	Challenges Faced in Field Application of Phosphate-Solubilizing Bacteria. , 2017, , 125-143.		12
399	Root Plasticity Not Evident in N-Enriched Soil Volumes for Wheat (<i>Triticum aestivum</i> L.) and Barley (<i>Hordeum vulgare</i> L.) Varieties. Communications in Soil Science and Plant Analysis, 2017, 48, 2002-2012.	0.6	3
400	Effects of glucose on the uptake and metabolism of glycine in pakchoi (Brassica chinensis L.) exposed to various nitrogen sources. BMC Plant Biology, 2017, 17, 58.	1.6	17
401	Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source. Plant Science, 2017, 255, 12-28.	1.7	41
402	PHOSPHORUS-MOBILIZATION STRATEGY BASED ON CARBOXYLATE EXUDATION IN LUPINS (LUPINUS,) Tj ETQq1 PLANTS UNDER PHOSPHORUS-LIMITED CONDITIONS. Experimental Agriculture, 2017, 53, 308-319.	1 0.78431 0.4	4 rgBT /Ove 14
403	Nitrogen deposition and grass encroachment in calcareous and acidic Grey dunes (H2130) in NW-Europe. Biological Conservation, 2017, 212, 406-415.	1.9	19
404	Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrientâ€acquisition strategies. Journal of Ecology, 2017, 105, 549-557.	1.9	52
405	Impact of phosphorus on rhizosphere organic anions of wheat at different growth stages under field conditions. AoB PLANTS, 2017, 9, .	1.2	26
406	An Explicit Structural Model of Root Hair and Soil Interactions Parameterised by Synchrotron X-ray Computed Tomography. Bulletin of Mathematical Biology, 2017, 79, 2785-2813.	0.9	16
407	Assessing the Effect of Phosphorus Fertilizer Levels on Soil Phosphorus Fractionation in Rhizosphere and Non-Rhizosphere Soils of Wheat. Communications in Soil Science and Plant Analysis, 2017, 48, 1931-1942.	0.6	2
408	Growth and yield responses of cowpea genotypes to soluble and rock P fertilizers on acid, highly weathered soil from humid tropical West Africa. International Journal of Biological and Chemical Sciences, 2017, 10, 1493.	0.1	6
409	Role of nutrient-efficient plants for improving crop yields: bridging plant ecology, physiology, and molecular biology. , 2017, , 31-44.		9
410	The significance of nutrient interactions for crop yield and nutrient use efficiency. , 2017, , 65-82.		7
411	Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest. Frontiers in Plant Science, 2017, 8, 1834.	1.7	54
412	Use of spermidine reduced the oxidative damage in onion seedlings under salinity by modulating antioxidants. African Journal of Agricultural Research Vol Pp, 2017, 12, 3304-3314.	0.2	1
413	Morphological and physiological studies on densely branched lateral roots triggered by localized phosphate in Sesbania cannabina. Journal of Plant Nutrition and Soil Science, 2018, 181, 336-344.	1.1	3
414	P uptake characteristics and root morphological responses in the mining ecotype of Polygonum hydropiper under high organic P media. International Journal of Phytoremediation, 2018, 20, 608-615.	1.7	2

#	Article	IF	Citations
415	Variation of morpho-physiological traits in geographically diverse pigeonpea [<i>Cajanus cajan</i> (L.) Millsp] germplasm under different phosphorus conditions. Journal of Plant Nutrition, 2018, 41, 1321-1332.	0.9	3
416	Phosphorus concentration coordinates a respiratory bypass, synthesis and exudation of citrate, and the expression of highâ€affinity phosphorus transporters in <i>Solanum lycopersicum</i> . Plant, Cell and Environment, 2018, 41, 865-875.	2.8	21
417	Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker–trait associations. Annals of Botany, 2018, 121, 267-280.	1.4	34
418	Phosphorus―and nitrogenâ€acquisition strategies in two Bossiaea species (Fabaceae) along retrogressive soil chronosequences in southâ€western Australia. Physiologia Plantarum, 2018, 163, 323-343.	2.6	18
419	Phosphorus-acquisition characteristics and rhizosphere properties of wild barley in relation to genotypic differences as dependent on soil phosphorus availability. Plant and Soil, 2018, 423, 503-516.	1.8	12
420	Key acclimation responses to phosphorus deficiency in maize plants are influenced by exogenous nitric oxide. Journal of Plant Physiology, 2018, 222, 51-58.	1.6	15
421	Spatial patterns of enzyme activities in the rhizosphere: Effects of root hairs and root radius. Soil Biology and Biochemistry, 2018, 118, 69-78.	4.2	86
422	Phosphorus allocation and phosphatase activity in grasses with different growth rates. Oecologia, 2018, 186, 633-643.	0.9	16
423	Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes. Plant, Cell and Environment, 2018, 41, 2069-2079.	2.8	40
424	Measuring and modeling microclimate impacts of Sequoiadendron giganteum. Sustainable Cities and Society, 2018, 38, 509-525.	5.1	9
425	Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytologist, 2018, 217, 1420-1427.	3.5	154
426	Morphological and Symbiotic Root Modifications for Mineral Acquisition from Nutrient-Poor Soils. Soil Biology, 2018, , 85-142.	0.6	4
427	Phosphorus Stress-Induced Changes in Plant Root Exudation Could Potentially Facilitate Uranium Mobilization from Stable Mineral Forms. Environmental Science & Technology, 2018, 52, 7652-7662.	4.6	38
428	Tomato plants ectopically expressing Arabidopsis GRF9 show enhanced resistance to phosphate deficiency and improved fruit production in the field. Journal of Plant Physiology, 2018, 226, 31-39.	1.6	17
429	Strigolactones as Regulators of Symbiotrophy of Plants and Microorganisms. Russian Journal of Plant Physiology, 2018, 65, 151-167.	0.5	4
430	Morphological and genetic characterisation of the root system architecture of selected barley recombinant chromosome substitution lines using an integrated phenotyping approach. Journal of Theoretical Biology, 2018, 447, 84-97.	0.8	9
431	Habitat heterogeneity promotes intraspecific trait variability of shrub species in Australian granite inselbergs. Folia Geobotanica, 2018, 53, 133-145.	0.4	14
432	Deciphering the Mechanisms of Endophyte-Mediated Biofortification of Fe and Zn in Wheat. Journal of Plant Growth Regulation, 2018, 37, 174-182.	2.8	53

#	Article	IF	CITATIONS
433	Root dynamics and survival in a nutrient-poor and species-rich woodland under a drying climate. Plant and Soil, 2018, 424, 91-102.	1.8	7
434	Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum?. Plant and Soil, 2018, 424, 35-48.	1.8	59
435	Effects of simulated nitrogen deposition on ectomycorrhizae community structure in hybrid larch and its parents grown in volcanic ash soil: The role of phosphorous. Science of the Total Environment, 2018, 618, 905-915.	3.9	17
436	Woody plant encroachment amplifies spatial heterogeneity of soil phosphorus to considerable depth. Ecology, 2018, 99, 136-147.	1.5	40
437	How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant and Soil, 2018, 424, 11-33.	1.8	149
438	Impact of plant root functional traits and associated mycorrhizas on the aggregate stability of a tropical Ferralsol. Geoderma, 2018, 312, 6-16.	2.3	76
439	Soil-applied phosphorous is an effective tool to mitigate the toxicity of copper excess on grapevine grown in rhizobox. Scientia Horticulturae, 2018, 227, 102-111.	1.7	39
440	Relationships between leaf mass per area and nutrient concentrations in 98 Mediterranean woody species are determined by phylogeny, habitat and leaf habit. Trees - Structure and Function, 2018, 32, 497-510.	0.9	35
441	Maize and wheat root biomass, vertical distribution, and size class as affected by fertilization intensity in two long-term field trials. Field Crops Research, 2018, 216, 197-208.	2.3	60
442	The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils. Journal of Plant Nutrition and Soil Science, 2018, 181, 185-197.	1.1	13
443	High abundance of non-mycorrhizal plant species in severely phosphorus-impoverished Brazilian campos rupestres. Plant and Soil, 2018, 424, 255-271.	1.8	31
444	The role of complementarity and selection effects in P acquisition of intercropping systems. Plant and Soil, 2018, 422, 479-493.	1.8	38
445	Reduction in Root Secondary Growth as a Strategy for Phosphorus Acquisition. Plant Physiology, 2018, 176, 691-703.	2.3	99
446	Effects of tillage practices, cropping systems and organic inputs on soil nutrient content in Machakos County. African Journal of Agricultural Research Vol Pp, 2018, 13, 2618-2630.	0.2	3
450	Using species traits to guide conservation actions under climate change. Climatic Change, 2018, 151, 317-332.	1.7	35
451	A Larger Root System Is Coupled With Contrasting Expression Patterns of Phosphate and Nitrate Transporters in Foxtail Millet [Setaria italica (L.) Beauv.] Under Phosphate Limitation. Frontiers in Plant Science, 2018, 9, 1367.	1.7	14
452	Australian dryland soils are acidic and nutrientâ€depleted, and have unique microbial communities compared with other drylands. Journal of Biogeography, 2018, 45, 2803-2814.	1.4	35
453	Response of Common Bean Genotypes Grown in Soil with Normal or Limited Moisture, with Special Reference to the Nutrient Phosphorus. Agronomy, 2018, 8, 132.	1.3	2

		CITATION REPORT		
#	Article		IF	Citations
454	Categorization of wheat genotypes for phosphorus efficiency. PLoS ONE, 2018, 13, e02	205471.	1.1	39
455	Low root/shoot (R/S) biomass ratio can be an indicator of low cadmium accumulation in Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) Environmental Science and Pollution Research, 2018, 25, 36328-36340.		2.7	27
456	The responses of root morphology and phosphorus-mobilizing exudations in wheat to in shoot phosphorus concentration. AoB PLANTS, 2018, 10, ply054.	ncreasing	1.2	40
457	Germanium in the soil-plant system—a review. Environmental Science and Pollution R 31938-31956.	esearch, 2018, 25,	2.7	31
458	Phosphorus Efficient Phenotype of Rice. , 0, , .			6
459	Changes in Soil Enzyme Activities and Microbial Biomass after Revegetation in the Thre Reservoir, China. Forests, 2018, 9, 249.	e Gorges	0.9	20
460	Examination of deep root water uptake using anomalies of soil water stable isotopes, depth-controlled isotopic labeling and mixing models. Journal of Hydrology, 2018, 566,	122-136.	2.3	67
461	Phosphorus acquisition and utilisation in crop legumes under global change. Current O Plant Biology, 2018, 45, 248-254.	pinion in	3.5	58
462	The carboxylateâ€releasing phosphorusâ€mobilizing strategy can be proxied by foliar m concentration in a large set of chickpea germplasm under low phosphorus supply. New 2018, 219, 518-529.	ianganese Phytologist,	3.5	130
463	Phosphorus acquisition efficiency and phosphorus remobilization mediate genotype-sp differences in shoot phosphorus content in grapevine. Tree Physiology, 2018, 38, 1742	ecific -1751.	1.4	25
464	Phosphorus addition shifts the microbial community in the rhizosphere of blueberry (Va	iccinium) Tj ETQq0 0 0 rg	BT/Qverlo	ock_10 Tf 50 3
465	Importance of phosphorus supply through endophytic Metarhizium brunneum for root: allocation and root architecture in potato plants. Plant and Soil, 2018, 430, 87-97.	shoot	1.8	17
466	Linking root traits to superior phosphorus uptake and utilisation efficiency in three Fab Core Cape Subregion, South Africa. Functional Plant Biology, 2018, 45, 760.	ales in the	1.1	6
467	Seasonal Alterations in Organic Phosphorus Metabolism Drive the Phosphorus Econom Growth in F. sylvatica Trees on P-Impoverished Soil. Frontiers in Plant Science, 2018, 9,	y of Annual 723.	1.7	20
468	Nutrient Use Efficiency of Southern South America Proteaceae Species. Are there Gener the Proteaceae Family?. Frontiers in Plant Science, 2018, 9, 883.	al Patterns in	1.7	17
469	Spatiotemporal patterns of enzyme activities in the rhizosphere: effects of plant growtl morphology. Biology and Fertility of Soils, 2018, 54, 819-828.	n and root	2.3	31
470	Soil application of P can mitigate the copper toxicity in grapevine: physiological implica Horticulturae, 2018, 238, 400-407.	tions. Scientia	1.7	16
471	Genomic Regions Analysis of Seedling Root Traits and Their Regulation in Responses to Deficiency Tolerance in CSSL Population of Elite Super Hybrid Rice. International Journa Molecular Sciences, 2018, 19, 1460.	Phosphorus of	1.8	5

	Сітатіої	N REPORT	
#	Article	IF	Citations
472	Contrasting effects of N addition on the N and P status of understory vegetation in plantations of sapling and mature <i>Larix principis-rupprechtii</i> . Journal of Plant Ecology, 2018, 11, 843-852.	1.2	9
473	Selection of arbuscular mycorrhizal fungal strains to improve Casuarina equisetifolia L. and Casuarina glauca Sieb. tolerance to salinity. Annals of Forest Science, 2018, 75, 1.	0.8	17
474	Acid phosphatase gene GmHAD1 linked to low phosphorus tolerance in soybean, through fine mapping. Theoretical and Applied Genetics, 2018, 131, 1715-1728.	1.8	26
475	Role of soil quality in declining rooibos (Aspalathus linearis) tea yields in the Clanwilliam area, South Africa. Soil Research, 2018, 56, 252.	0.6	8
476	Transcriptome and metabolome analyses provide insights into root and root-released organic anion responses to phosphorus deficiency in oat. Journal of Experimental Botany, 2018, 69, 3759-3771.	2.4	42
477	The surprising anatomical diversity in the roots of African Restionaceae. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 34, 77-93.	1.1	2
478	Mineral Nutrition of Plants in Australia's Arid Zone. , 2018, , 77-102.		0
479	Characterization of phosphorus availability in response to radial oxygen losses in the rhizosphere of Vallisneria spiralis. Chemosphere, 2018, 208, 740-748.	4.2	24
480	Changes in root traits explain the variability of biochar effects on fruit production in eight agronomic species. Organic Agriculture, 2019, 9, 139-153.	1.2	7
481	The LaCEP1 peptide modulates cluster root morphology in <scp><i>Lupinus albus</i></scp> . Physiologia Plantarum, 2019, 166, 525-537.	2.6	16
482	Interspecific competition among catch crops modifies vertical root biomass distribution and nitrate scavenging in soils. Scientific Reports, 2019, 9, 11531.	1.6	24
483	Histone acetyltransferase GCN5-mediated regulation of long non-coding RNA At4 contributes to phosphate starvation response in Arabidopsis. Journal of Experimental Botany, 2019, 70, 6337-6348.	2.4	30
484	Mycorrhizae Resource Allocation in Root Development and Root Morphology. , 2019, , 1-26.		1
485	Lateral Roots: Random Diversity in Adversity. Trends in Plant Science, 2019, 24, 810-825.	4.3	25
486	Arbuscular Mycorrhizal Fungi Confer Salt Tolerance in Giant Reed (Arundo donax L.) Plants Grown Under Low Phosphorus by Reducing Leaf Na+ Concentration and Improving Phosphorus Use Efficiency. Frontiers in Plant Science, 2019, 10, 843.	1.7	33
487	Effect of phosphorus concentration on the photochemical stability of PSII and CO2 assimilation in Pistacia vera L. and Pistacia atlantica Desf Plant Physiology and Biochemistry, 2019, 142, 283-291.	2.8	13
488	The response of root traits to precipitation change of herbaceous species in temperate steppes. Functional Ecology, 2019, 33, 2030-2041.	1.7	35
489	How Slow Rock Weathering Balances Nutrient Loss During Fast Forest Floor Turnover in Montane, Temperate Forest Ecosystems. Frontiers in Earth Science, 2019, 7, .	0.8	41

#	Article	IF	CITATIONS
490	Phosphorus Limitation Improved Salt Tolerance in Maize Through Tissue Mass Density Increase, Osmolytes Accumulation, and Na+ Uptake Inhibition. Frontiers in Plant Science, 2019, 10, 856.	1.7	49
491	Early priority effects of occupying a nutrient patch do not influence final maize growth in intensive cropping systems. Plant and Soil, 2019, 442, 285-298.	1.8	11
492	Phosphorus-acquisition strategies of canola, wheat and barley in soil amended with sewage sludges. Scientific Reports, 2019, 9, 14878.	1.6	35
493	Rhizosphere soil bacterial community composition in soybean genotypes and feedback to soil P availability. Journal of Integrative Agriculture, 2019, 18, 2230-2241.	1.7	7
494	Root trait plasticity and plant nutrient acquisition in phosphorus limited soil. Journal of Plant Nutrition and Soil Science, 2019, 182, 945-952.	1.1	36
496	The cost of standing tall: wood nutrients associated with tree invasions in nutrientâ€poor fynbos soils of South Africa. Ecosphere, 2019, 10, e02831.	1.0	0
497	Genotypic Variation in Cotton Genotypes for Phosphorus-Use Efficiency. Agronomy, 2019, 9, 689.	1.3	42
498	Mechanisms of potassium uptake efficiency and dynamics in the rhizosphere of safflower and sunflower in different soils. Journal of Plant Nutrition, 2019, 42, 2459-2483.	0.9	3
499	Nutrient acquisition strategies in agroforestry systems. Plant and Soil, 2019, 444, 1-19.	1.8	96
500	Drought and phosphorus affect productivity of a mesic grassland via shifts in root traits of dominant species. Plant and Soil, 2019, 444, 457-473.	1.8	12
501	Changing Environmental Condition and Phosphorus-Use Efficiency in Plants. , 2019, , 241-305.		17
502	Towards a more physiological representation of vegetation phosphorus processes in land surface models. New Phytologist, 2019, 222, 1223-1229.	3.5	58
503	Genetic Engineering of the Biosynthesis of Glycine Betaine Modulates Phosphate Homeostasis by Regulating Phosphate Acquisition in Tomato. Frontiers in Plant Science, 2018, 9, 1995.	1.7	45
504	Exposure–Response of Wheat Cultivars to TiO ₂ Nanoparticles in Contrasted Soils. Soil and Sediment Contamination, 2019, 28, 184-199.	1.1	25
505	Plant–environment interactions through a functional traits perspective: a review of Italian studies. Plant Biosystems, 2019, 153, 853-869.	0.8	48
506	Three-Dimensional Time-Lapse Analysis Reveals Multiscale Relationships in Maize Root Systems with Contrasting Architectures. Plant Cell, 2019, 31, 1708-1722.	3.1	43
507	Variation in morphological and physiological root traits and organic acid exudation of three sweet potato (Ipomoea batatas) cultivars under seven phosphorus levels. Scientia Horticulturae, 2019, 256, 108572.	1.7	19
508	Phosphobacteria inoculation enhances the benefit of P–fertilization on Lolium perenne in soils contrasting in P–availability. Soil Biology and Biochemistry, 2019, 136, 107516.	4.2	26

#	Article	IF	Citations
509	Phosphorus fractionation in grasses with different resource-acquisition characteristics in natural grasslands of South America. Journal of Tropical Ecology, 2019, 35, 203-212.	0.5	4
510	Crop root systems and rhizosphere interactions. Plant and Soil, 2019, 439, 1-5.	1.8	26
511	Coupling zymography with pH mapping reveals a shift in lupine phosphorus acquisition strategy driven by cluster roots. Soil Biology and Biochemistry, 2019, 135, 420-428.	4.2	36
512	Effect of localised phosphorus application on root growth and soil nutrient dynamics in situ – comparison of maize (Zea mays) and faba bean (Vicia faba) at the seedling stage. Plant and Soil, 2019, 441, 469-483.	1.8	36
513	Mycorrhizal Fungi in South America. Fungal Biology, 2019, , .	0.3	9
514	How Does the Use of Non-Host Plants Affect Arbuscular Mycorrhizal Communities and Levels and Nature of Glomalin in Crop Rotation Systems Established in Acid Andisols?. Fungal Biology, 2019, , 147-158.	0.3	3
515	Variation in root system architecture and morphology of two wheat genotypes is a predictor of their tolerance to phosphorus deficiency. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	35
516	Carbon Dioxide Improves Phosphorus Nutrition by Facilitating the Remobilization of Phosphorus From the Shoot Cell Wall in Rice (Oryza sativa). Frontiers in Plant Science, 2019, 10, 665.	1.7	11
517	Forest stand productivity derived from site conditions: an assessment of old Douglas-fir stands (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) in Central Europe. Annals of Forest Science, 2019, 76, 19.	0.8	27
518	The Phosphorus Economy of Mediterranean Oak Saplings Under Global Change. Frontiers in Plant Science, 2019, 10, 405.	1.7	8
519	Root morphology and seedling growth of three tree species in southern China in response to homogeneous and heterogeneous phosphorus supplies. Trees - Structure and Function, 2019, 33, 1283-1297.	0.9	18
520	Genotypic differences in phosphorus acquisition efficiency and root performance of cotton (Gossypium hirsutum) under low-phosphorus stress. Crop and Pasture Science, 2019, 70, 344.	0.7	19
521	Nitric oxide and plant mineral nutrition: current knowledge. Journal of Experimental Botany, 2019, 70, 4461-4476.	2.4	69
522	Specialized roots of Velloziaceae weather quartzite rock while mobilizing phosphorus using carboxylates. Functional Ecology, 2019, 33, 762-773.	1.7	37
523	Cluster root formation and function vary in two species with contrasting geographic ranges. Plant and Soil, 2019, 440, 25-38.	1.8	13
524	Effects of soil water on maize root morphological and physiological responses to phosphorus supply. Journal of Plant Nutrition and Soil Science, 2019, 182, 477-484.	1.1	1
525	Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorusâ€acquisition strategies of 16 crop species. New Phytologist, 2019, 223, 882-895.	3.5	235
526	Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. Frontiers in Plant Science, 2019, 10, 157.	1.7	540

ARTICLE IF CITATIONS # Interactions between arbuscular mycorrhizal fungi and non-host Carex capillacea. Mycorrhiza, 2019, 527 1.3 9 29, 149-157. A ley-farming system for marginal lands based upon a self-regenerating perennial pasture legume. 2.2 Agrónomy for Śustainable Development, 2019, 39, 1. The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated 529 46 1.8 with struvite as a recycled phosphorus source. Plant and Soil, 2019, 434, 65-78. Interactions Between Light Intensity and Phosphorus Nutrition Affect the P Uptake Capacity of Maize and Soybean Seedling in a Low Light Intensity Area. Frontiers in Plant Science, 2019, 10, 183. Species Interactions Improve Above-Ground Biomass and Land Use Efficiency in Intercropped Wheat 531 1.3 32 and Chickpea under Low Soil Inputs. Agronomy, 2019, 9, 765. Genomeâ€Wide Association Study of 13 Traits in Maize Seedlings under Low Phosphorus Stress. Plant 1.6 Genome, 2019, 12, 1-13. Linkages between Phosphorus and Plant Diversity in Central European Forest 533 0.9 10 Ecosystemsâ€"Complementarity or Competition?. Forests, 2019, 10, 1156. Is PGPR an Alternative for NPK Fertilizers in Sustainable Agriculture?., 2019, , 51-62. 534 Effects of elevated CO2 on plant C-N-P stoichiometry in terrestrial ecosystems: A meta-analysis. 535 3.9 40 Science of the Total Environment, 2019, 650, 697-708. The role of phosphorus sources on root diameter, root length and root dry matter of barley (<i>Hordeum vulgare</i>L.). Journal of Plant Nutrition, 2019, 42, 1-15. Mycorrhizas improve the absorption of non-available phosphorus by the green manure Tithonia 537 1.4 9 diversifolia in poor soils. Rhizosphere, 2019, 9, 27-33. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal 3.7 147 communities: A review. Environmental Pollution, 2019, 246, 148-162. Arbuscular mycorrhizae and absence of cluster roots in the Brazilian Proteaceae Roupala montana 539 1.2 2 Aubl.. Symbiosis, 2019, 77, 115-122. Hidden miners $\hat{a} \in$ the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant and Soil, 2019, 434, 7-45. 540 1.8 180 Phosphorus Efficiency of Winter Canola Cultivars and Rhizosphere Properties in Rhizobox Technique. 541 0.6 3 Communications in Soil Science and Plant Analysis, 2019, 50, 35-48. Performance of alfalfa rather than maize stimulates system phosphorus uptake and overyielding of maize/alfalfa intercropping via changes in soil water balance and root morphology and distribution in a light chernozemic soil. Plant and Soil, 2019, 439, 145-161. 542 1.8 30 Relationship between acid phosphatase activity and P concentration in organs of <i>Cyclopia and 543 Aspalathus</i> species, and a non-legume of the Cape Floristic Region. Journal of Plant Ecology, 2019, 1.2 6 12, 387-392. Architectural Root Responses of Rice to Reduced Water Availability Can Overcome Phosphorus 544 1.3 Stress. Agronomy, 2019, 9, 11.

ARTICLE IF CITATIONS Uncertainties in soil physicochemical factors controlling phosphorus mineralization and 545 2.4 43 immobilization processes. Advances in Agronomy, 2019, 153-200. Early events following phosphorus restriction involve changes in proteome and affects nitric oxide 546 metabolism in soybean leaves. Environmental and Experimental Botany, 2019, 161, 203-217. Linkages between aboveground and belowground community compositions in grasslands along a 547 1.8 16 historical land-use intensity gradient. Plant and Soil, 2019, 434, 289-304. Understanding physiological and morphological traits contributing to drought tolerance in barley. 548 34 Journal of Agronomy and Crop Science, 2019, 205, 129-140. Competition between Zea mays genotypes with different root morphological and physiological traits 549 1.8 32 is dependent on phosphorus forms and supply patterns. Plant and Soil, 2019, 434, 125-137. Dephytinizing and Probiotic Potentials of Saccharomyces cerevisiae (NCIM 3662) Strain for Amelíoration of Nutritional Quality of Functional Foods. Probiotics and Antimicrobial Proteins, 2019, 11, 604-617. Nodulation promotes cluster-root formation in Lupinus albus under low phosphorus conditions. 551 1.8 10 Plant and Soil, 2019, 439, 233-242. Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central 1.8 60 Amazonia. Plant and Soil, 2020, 450, 49-63. Root-released organic anions in response to low phosphorus availability: recent progress, challenges 553 1.8 164 and future perspectives. Plant and Soil, 2020, 447, 135-156. Differences in investment and functioning of cluster roots account for different distributions of 554 1.8 Banksia attenuata and B. sessilis, with contrasting life history. Plant and Soil, 2020, 447, 85-98. The relative contributions of pH, organic anions, and phosphatase to rhizosphere soil phosphorus 555 68 1.8 mobilization and crop phosphorus uptake in maize/alfalfa polyculture. Plant and Soil, 2020, 447, 117-133. Growth responses of seedlings produced by parent seeds from specific altitudes. Journal of Forestry Research, 2020, 31, 2121-2127. Light intensity influence maize adaptation to low P stress by altering root morphology. Plant and 557 1.8 21 Soil, 2020, 447, 183-197. Nutrient Dynamics for Sustainable Crop Production., 2020, ... Short-term N transfer from alfalfa to maize is dependent more on arbuscular mycorrhizal fungi than 559 1.8 25 root exudates in N deficient soil. Plant and Soil, 2020, 446, 23-41. The assembly of the Cape flora is consistent with an edaphic rather than climatic filter. Molecular 14 Phylogenetics and Evolution, 2020, 142, 106645. Kinetic parameters govern of the uptake of nitrogen forms in â€⁻Paulsenâ€[™] and â€⁻Magnoliaâ€[™] grapevine 561 1.7 12 rootstocks. Scientia Horticulturae, 2020, 264, 109174. Linking shifts in species composition induced by grazing with root traits for phosphorus acquisition in a typical steppe in Inner Mongolia. Science of the Total Environment, 2020, 712, 136495.

#	Article	IF	CITATIONS
563	Belowground Competition Can Influence the Evolution of Root Traits. American Naturalist, 2020, 195, 577-590.	1.0	21
564	Plant cover of Ammopiptanthus mongolicus and soil factors shape soil microbial community and catabolic functional diversity in the arid desert in Northwest China. Applied Soil Ecology, 2020, 147, 103389.	2.1	17
565	Fine-root morphological trait variation in tropical forest ecosystems: an evidence synthesis. Plant Ecology, 2020, 221, 1-13.	0.7	27
566	Co-inoculation with a bacterium and arbuscular mycorrhizal fungi improves root colonization, plant mineral nutrition, and plant growth of a Cyperaceae plant in an ultramafic soil. Mycorrhiza, 2020, 30, 121-131.	1.3	23
567	Apple rootstocks with different phosphorus efficiency exhibit alterations in rhizosphere bacterial structure. Journal of Applied Microbiology, 2020, 128, 1460-1471.	1.4	7
568	Major phosphorus in soils is unavailable, yet critical for plant development. Notulae Scientia Biologicae, 2020, 12, 500-535.	0.1	10
569	Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime. Scientific Reports, 2020, 10, 15642.	1.6	31
570	The impact of biogas digestate typology on nutrient recovery for plant growth: Accessibility indicators for first fertilization prediction. Waste Management, 2020, 117, 18-31.	3.7	15
571	The niche complementarity driven by rhizosphere interactions enhances phosphorusâ€use efficiency in maize/alfalfa mixture. Food and Energy Security, 2020, 9, e252.	2.0	26
572	Root-mediated acidification and resistance to low calcium improve wheat (Triticum aestivum) performance in saline-sodic conditions. Plant Physiology and Biochemistry, 2020, 156, 201-208.	2.8	7
573	Mineral Nutrients Sourced in Deep Regolith Sustain Longâ€Term Nutrition of Mountainous Temperate Forest Ecosystems. Global Biogeochemical Cycles, 2020, 34, e2019GB006513.	1.9	35
574	The impact of different morphological and biochemical root traits on phosphorus acquisition and seed yield of Brassica napus. Field Crops Research, 2020, 258, 107960.	2.3	22
575	Linking absorptive roots and their functional traits with rhizosphere priming of tree species. Soil Biology and Biochemistry, 2020, 150, 107997.	4.2	16
576	P-dipping of rice seedlings increases applied P use efficiency in high P-fixing soils. Scientific Reports, 2020, 10, 11919.	1.6	24
577	Barley shoot biomass responds strongly to N:P stoichiometry and intraspecific competition, whereas roots only alter their foraging. Plant and Soil, 2020, 453, 515-528.	1.8	14
578	Genome-Wide Association Analysis for Phosphorus Use Efficiency Traits in Mungbean (Vigna radiata L.) Tj ETQq1	1 0,7843 1.7	14.rgBT /Ove
579	Productive and Environmental Consequences of Sixteen Years of Unbalanced Fertilization with Nitrogen and Phosphorus—Trials in Poland with Oilseed Rape, Wheat, Maize and Barley. Agronomy, 2020, 10, 1747.	1.3	5
580	Phosphorus fertilization affects soybean rhizosphere phosphorus dynamics and the bacterial community in karst soils. Plant and Soil, 2022, 475, 137-152.	1.8	29

ARTICLE

IF CITATIONS

581 Phosphate fertiliser alters carboxylates and bacterial communities in sweet potato (Ipomoea batatas) Tj ETQq0 0 0 1gBT /Oveflock 10 Tf

582	Urochloa in Tropical Agroecosystems. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	56
583	Function and application of the <i>Eutrema salsugineum PHT1;1</i> gene in phosphate deficiency stress. Plant Biology, 2020, 22, 1133-1139.	1.8	3
584	Immobilization of agricultural phosphorus in temperate floodplain soils of Illinois, USA. Biogeochemistry, 2020, 150, 257-278.	1.7	7
585	Morphological variation of fine root systems and leaves in primary and secondary tropical forests of Hainan Island, China. Annals of Forest Science, 2020, 77, 1.	0.8	9
586	Physiological and biomass partitioning shifts to water stress under distinct soil types in Populus deltoides saplings. Journal of Plant Ecology, 2020, 13, 545-553.	1.2	2
587	Root Handling Affects Carboxylates Exudation and Phosphate Uptake of White Lupin Roots. Frontiers in Plant Science, 2020, 11, 584568.	1.7	19
588	Seedling Growth and Phosphorus Uptake in Response to Different Phosphorus Sources. Agronomy, 2020, 10, 1089.	1.3	23
589	Elevated CO2 promotes the acquisition of phosphorus in crop species differing in physiological phosphorus-acquiring mechanisms. Plant and Soil, 2020, 455, 397-408.	1.8	10
590	Root Morphological Adjustments of Crops to Improve Nutrient Use Efficiency in Limited Environments. Communications in Soil Science and Plant Analysis, 2020, 51, 2452-2465.	0.6	9
591	Targeting Low-Phytate Soybean Genotypes Without Compromising Desirable Phosphorus-Acquisition Traits. Frontiers in Genetics, 2020, 11, 574547.	1.1	3
592	Accessing Legacy Phosphorus in Soils. Soil Systems, 2020, 4, 74.	1.0	35
593	Recovery of soil phosphorus on former bauxite mines through tropical forest restoration. Restoration Ecology, 2020, 28, 1237-1246.	1.4	10
594	Warming Change Nutritional Status and Improve Stylosanthes capitata Vogel Growth Only Under Well-Watered Conditions. Journal of Soil Science and Plant Nutrition, 2020, 20, 1838-1847.	1.7	12
595	Functional collembolan assemblages induce different plant responses in Lolium perenne. Plant and Soil, 2020, 452, 347-358.	1.8	13
596	Modelling time variations of root diameter and elongation rate as related to assimilate supply and demand. Journal of Experimental Botany, 2020, 71, 3524-3534.	2.4	6
597	Can the scaling of plant nitrogen to phosphorus be altered by global change? An empirical test. Journal of Plant Ecology, 2020, 13, 442-449.	1.2	9
598	Independent evolutionary changes in fineâ€root traits among main clades during the diversification of seed plants. New Phytologist, 2020, 228, 541-553.	3.5	24

#	Article	IF	CITATIONS
599	Carbon dioxide elevation combined with sufficient irrigation and nitrogen fertilization improves fruit quality of tomato grown in glasshouse. Archives of Agronomy and Soil Science, 2021, 67, 1134-1149.	1.3	4
600	Phosphate starvation responses in crop roots: from well-known players to novel candidates. Environmental and Experimental Botany, 2020, 178, 104162.	2.0	11
601	Crop Response to Low Phosphorus Bioavailability with a Focus on Tomato. Agronomy, 2020, 10, 617.	1.3	29
602	Coconut Coir as a Sustainable Nursery Growing Media for Seedling Production of the Ecologically Diverse Quercus Species. Forests, 2020, 11, 522.	0.9	19
603	In Vivo Metabolic Regulation of Alternative Oxidase under Nutrient Deficiency—Interaction with Arbuscular Mycorrhizal Fungi and Rhizobium Bacteria. International Journal of Molecular Sciences, 2020, 21, 4201.	1.8	9
604	Unexpected diversity and evolutionary lability in root architectural ecomorphs in the rushes of the hyperdiverse Cape flora. New Phytologist, 2020, 227, 216-231.	3.5	2
605	Root Contact between Maize and Alfalfa Facilitates Nitrogen Transfer and Uptake Using Techniques of Foliar 15N-Labeling. Agronomy, 2020, 10, 360.	1.3	27
606	Release of tartrate as a major carboxylate by alfalfa (Medicago sativa L.) under phosphorus deficiency and the effect of soil nitrogen supply. Plant and Soil, 2020, 449, 169-178.	1.8	26
607	Linking root structure to functionality: the impact of root system architecture on citrateâ€enhanced phosphate uptake. New Phytologist, 2020, 227, 376-391.	3.5	40
608	Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants. Nature Plants, 2020, 6, 349-354.	4.7	25
609	Is occluded phosphate plantâ€available?. Journal of Plant Nutrition and Soil Science, 2020, 183, 338-344.	1.1	11
610	Impacts of drought and nitrogen enrichment on leaf nutrient resorption and root nutrient allocation in four Tibetan plant species. Science of the Total Environment, 2020, 723, 138106.	3.9	35
611	Combined Silicon-Phosphorus Fertilization Affects the Biomass and Phytolith Stock of Rice Plants. Frontiers in Plant Science, 2020, 11, 67.	1.7	34
612	Nutrient availability affects the polar lipidome of Halimione portulacoides leaves cultured in hydroponics. Scientific Reports, 2020, 10, 6583.	1.6	7
613	Contrasting responses of cluster roots formation induced by phosphorus and nitrogen supply in Embothrium coccineum populations from different geographical origin. Plant and Soil, 2020, 453, 473-485.	1.8	3
614	Effect of vermicompost tea on rooibos (Aspalathus linearis) growth and rhizosphere microbial diversity under field conditions. South African Journal of Plant and Soil, 2020, 37, 71-78.	0.4	2
615	Xylem sap phosphorus sampling using microdialysis—a non-destructive high sampling frequency method tested under laboratory and field conditions. Tree Physiology, 2020, 40, 1623-1638.	1.4	5
616	Cooperation between Sporobolus airoides and associated arbuscular mycorrhizal fungi for phosphorus acquisition under drought conditions in an oligotrophic desert ecosystem. Rhizosphere, 2020, 15, 100225.	1.4	8

#	Article	IF	CITATIONS
617	A functional–structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils. Annals of Botany, 2020, 126, 789-806.	1.4	28
618	A commonâ€mesocosm experiment recreates sawgrass (Cladium jamaicense) phenotypes from Everglades marl prairies and peat marshes. American Journal of Botany, 2020, 107, 56-65.	0.8	4
619	Native tree and shrub canopy facilitates oak seedling regeneration in semiarid woodland. Ecosphere, 2020, 11, e03017.	1.0	8
620	Phosphorus facilitation and covariation of root traits in steppe species. New Phytologist, 2020, 226, 1285-1298.	3.5	62
621	Phosphorus uptake from struvite is modulated by the nitrogen form applied. Journal of Plant Nutrition and Soil Science, 2020, 183, 80-90.	1.1	19
622	Mycorrhizal impacts on root trait plasticity of six maize varieties along a phosphorus supply gradient. Plant and Soil, 2020, 448, 71-86.	1.8	25
623	Different life-form plants exert different rhizosphere effects on phosphorus biogeochemistry in subtropical mountainous soils with low and high phosphorus content. Soil and Tillage Research, 2020, 199, 104516.	2.6	26
624	Contrasting patterns in biomass allocation, root morphology and mycorrhizal symbiosis for phosphorus acquisition among 20 chickpea genotypes with different amounts of rhizosheath carboxylates. Functional Ecology, 2020, 34, 1311-1324.	1.7	35
625	<scp>LaALMT1</scp> mediates malate release from phosphorusâ€deficient white lupin root tips and metal root to shoot translocation. Plant, Cell and Environment, 2020, 43, 1691-1706.	2.8	22
626	Greater root phosphatase activity of tropical trees at low phosphorus despite strong variation among species. Ecology, 2020, 101, e03090.	1.5	35
627	Alteration in root morphological and physiological traits of two maize cultivars in response to phosphorus deficiency. Rhizosphere, 2020, 14, 100201.	1.4	23
628	Formation of dauciform roots by Japanese native Cyperaceae and their contribution to phosphorus dynamics in soils. Plant and Soil, 2021, 461, 107-118.	1.8	7
629	Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification. Plant and Soil, 2021, 461, 137-150.	1.8	32
630	Identification of two glycerophosphodiester phosphodiesterase genes in maize leaf phosphorus remobilization. Crop Journal, 2021, 9, 95-108.	2.3	12
631	Gevuina avellana and Lomatia dentata, two Proteaceae species from evergreen temperate forests of South America exhibit contrasting physiological responses under nutrient deprivation. Plant and Soil, 2021, 464, 29-44.	1.8	8
632	Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. Journal of Hazardous Materials, 2021, 402, 123570.	6.5	102
633	Accumulation of phosphorus and calcium in different cells protects the phosphorus-hyperaccumulator Ptilotus exaltatus from phosphorus toxicity in high-phosphorus soils. Chemosphere, 2021, 264, 128438.	4.2	10
634	Longâ€ŧerm biochar application promotes rice productivity by regulating root dynamic development and reducing nitrogen leaching. GCB Bioenergy, 2021, 13, 257-268.	2.5	46

#	Article	IF	CITATIONS
635	Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests. Molecular Ecology, 2021, 30, 572-591.	2.0	31
636	A significant increase in rhizosheath carboxylates and greater specific root length in response to terminal drought is associated with greater relative phosphorus acquisition in chickpea. Plant and Soil, 2021, 460, 51-68.	1.8	15
637	Response of diverse bread wheat genotypes in terms of root architectural traits at seedling stage in response to low phosphorus stress. Plant Physiology Reports, 2021, 26, 152-161.	0.7	15
638	Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytologist, 2021, 230, 116-128.	3.5	50
639	Responses of root morphology and seedling growth in three tree species to heterogeneous supplies of ammonium and nitrate. Forest Ecology and Management, 2021, 479, 118538.	1.4	8
640	Arbuscular mycorrhizal colonization outcompetes root hairs in maize under low phosphorus availability. Annals of Botany, 2021, 127, 155-166.	1.4	44
641	Differential physiological behavior of sugarcane genotypes in response to sparingly soluble phosphorusâ€sources. Journal of Plant Nutrition and Soil Science, 2021, 184, 187-197.	1.1	4
642	Plant Species Rather than Elevated Atmospheric CO2 Impact Rhizosphere Properties and Phosphorus Fractions in a Phosphorus-Deficient Soil. Journal of Soil Science and Plant Nutrition, 2021, 21, 622-636.	1.7	4
643	Plant mineral transport systems and the potential for crop improvement. Planta, 2021, 253, 45.	1.6	29
644	Low soil phosphorus availability triggers maize growth stage specific rhizosphere processes leading to mineralization of organic P. Plant and Soil, 2021, 459, 423-440.	1.8	16
645	Chickpea. , 2021, , 173-215.		6
646	Preface of phytobiome in nutrient recycling, biogeochemistry, and spatial dynamics. , 2021, , 243-266.		4
647	Bringing function to structure: Root–soil interactions shaping phosphatase activity throughout a soil profile in Puerto Rico. Ecology and Evolution, 2021, 11, 1150-1164.	0.8	28
648	Evidence of elemental homeostasis in fine root and leaf tissues of saplings across a fertility gradient in tropical montane forest in Hainan, China. Plant and Soil, 2021, 460, 625-646.	1.8	13
649	Ecophysiological Performance of Proteaceae Species From Southern South America Growing on Substrates Derived From Young Volcanic Materials. Frontiers in Plant Science, 2021, 12, 636056.	1.7	5
650	Genomeâ€wide association study of soybean (Glycine Max) phosphorus deficiency tolerance during the seedling stage. Plant Breeding, 2021, 140, 267-284.	1.0	1
651	Evaluation of Diverse Wheat (Triticum aestivum) and Triticale (× Triticosecale) Genotypes for Low Phosphorus Stress Tolerance in Soil and Hydroponic Conditions. Journal of Soil Science and Plant Nutrition, 2021, 21, 1236-1251.	1.7	6
652	Compatible Mycorrhizal Types Contribute to a Better Design for Mixed Eucalyptus Plantations. Frontiers in Plant Science, 2021, 12, 616726.	1.7	2

#	Article	IF	CITATIONS
653	Traits related to efficient acquisition and use of phosphorus promote diversification in Proteaceae in phosphorusâ€impoverished landscapes. Plant and Soil, 2021, 462, 67-88.	1.8	26
654	Adaptive Mechanisms of Root System of Rice for Withstanding Osmotic Stress. , 0, , .		2
655	Biochemical and biophysical pH clamp controlling Net H ⁺ efflux across the plasma membrane of plant cells. New Phytologist, 2021, 230, 408-415.	3.5	25
656	Temporal and Spatial Dynamics of Dark Septate Endophytes in the Roots of Lycium ruthenicum in the Desert Region of Northwest China. Agronomy, 2021, 11, 648.	1.3	9
657	Biochar and Arbuscular Mycorrhizal Fungi Play Different Roles in Enabling Maize to Uptake Phosphorus. Sustainability, 2021, 13, 3244.	1.6	21
658	Evidence for magnesium–phosphorus synergism and co-limitation of grain yield in wheat agriculture. Scientific Reports, 2021, 11, 9012.	1.6	19
660	Root developmental responses to phosphorus nutrition. Journal of Integrative Plant Biology, 2021, 63, 1065-1090.	4.1	88
661	Pearl millet genotype impacts microbial diversity and enzymatic activities in relation to root-adhering soil aggregation. Plant and Soil, 2021, 464, 109.	1.8	22
662	Cluster roots of Embothrium coccineum modify their metabolism and show differential gene expression in response to phosphorus supply. Plant Physiology and Biochemistry, 2021, 161, 191-199.	2.8	4
663	Valorization of calcium phosphite waste as phosphorus fertilizer: Effects on green manure productivity and soil properties. Journal of Environmental Management, 2021, 285, 112061.	3.8	12
664	In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply. Plant and Soil, 2021, 465, 31-46.	1.8	10
665	Root anatomy helps to reconcile observed root trait syndromes in tropical tree species. American Journal of Botany, 2021, 108, 744-755.	0.8	11
666	Genetic Variation in Root Architectural Traits in Lactuca and Their Roles in Increasing Phosphorus-Use-Efficiency in Response to Low Phosphorus Availability. Frontiers in Plant Science, 2021, 12, 658321.	1.7	9
667	ANAC044 is associated with P reutilization in P deficient Arabidopsis thaliana root cell wall in an ethylene dependent manner. Environmental and Experimental Botany, 2021, 185, 104386.	2.0	8
668	How do terrestrial plants access high molecular mass organic nitrogen, and why does it matter for soil organic matter stabilization?. Plant and Soil, 2021, 465, 583-592.	1.8	5
669	Clobal analysis of phosphorus fertilizer use efficiency in cereal crops. Global Food Security, 2021, 29, 100545.	4.0	38
670	The Effect of Water Supply on Sweet Cherry Phytochemicals in Bud, Leaf and Fruit. Plants, 2021, 10, 1131.	1.6	4
671	Diversity of arbuscular mycorrhizal fungi associated to Sorghum (Sorghum bicolor L. Moench) in soils of Sikasso region (Mali). African Journal of Environmental Science and Technology, 2021, 15, 223-229.	0.2	1

#	Article	IF	CITATIONS
672	Phylogeny, tissue-specific expression, and activities of root-secreted purple acid phosphatases for P uptake from ATP in P starved poplar. Plant Science, 2021, 307, 110906.	1.7	7
673	Biochar, compost and arbuscular mycorrhizal fungi: a tripartite approach to combat Sclerotinia sclerotiorum in soybean. Journal of Plant Diseases and Protection, 2021, 128, 1433-1445.	1.6	11
674	Heterogeneous nutrient supply promotes maize growth and phosphorus acquisition: additive and compensatory effects of lateral roots and root hairs. Annals of Botany, 2021, 128, 431-440.	1.4	14
675	Genetic Dissection of Root Angle of Brassica napus in Response to Low Phosphorus. Frontiers in Plant Science, 2021, 12, 697872.	1.7	10
676	Phosphorus-Rich Ash from Poultry Manure Combustion in a Fluidized Bed Reactor. Minerals (Basel,) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
677	Evaluation of Potato Varieties Grown in Hydroponics for Phosphorus Use Efficiency. Agriculture (Switzerland), 2021, 11, 668.	1.4	2

678	Morphological and physiological parameters influence the use efficiency of nitrogen and phosphorus by Eucalyptus seedlings. New Forests, 2022, 53, 431-448.	0.7	6
679	Contrasting phosphorus (P) accumulation in response to soil P availability in â€~metal crops' from P-impoverished soils. Plant and Soil, 2021, 467, 155-164.	1.8	5
680	Trade-Offs in Phosphorus Acquisition Strategies of Five Common Tree Species in a Tropical Forest of Puerto Rico. Frontiers in Forests and Global Change, 2021, 4, .	1.0	10
681	Differing Trade-Off Patterns of Tree Vegetative Organs in a Tropical Cloud Forest. Frontiers in Plant Science, 2021, 12, 680379.	1.7	7
682	Contribution of Arbuscular Mycorrhizal Fungi, Phosphate–Solubilizing Bacteria, and Silicon to P Uptake by Plant. Frontiers in Plant Science, 2021, 12, 699618.	1.7	137
683	An integrated framework of plant form and function: the belowground perspective. New Phytologist, 2021, 232, 42-59.	3.5	153
684	Critical phosphorus requirements of <scp> <i>Trifolium</i> </scp> species: The importance of root morphology and root acclimation in response to phosphorus stress. Physiologia Plantarum, 2021, 173, 1030-1047.	2.6	6
685	Rice G protein γ subunit <i>qPE9â€1</i> modulates root elongation for phosphorus uptake by involving 14â€3â€3 protein OsGF14b and plasma membrane H ⁺ â€ATPase. Plant Journal, 2021, 107, 1603-161	.2.8 .5.	13
686	Impact of phosphorous-deficit conditions on morpho-physiological traits and phosphorous metabolism in chickpea genotypes. Protoplasma, 2021, , 1.	1.0	0
687	Low molecular weight organic acids regulate soil phosphorus availability in the soils of subalpine forests, eastern Tibetan Plateau. Catena, 2021, 203, 105328.	2.2	23
688	Woody plants reduce the sensitivity of soil extracellular enzyme activity to nutrient enrichment in wetlands: A meta-analysis. Soil Biology and Biochemistry, 2021, 159, 108280.	4.2	8
689	Silicon dynamics through the lens of soil-plant-animal interactions: perspectives for agricultural practices. Plant and Soil, 2021, 467, 1-28.	1.8	24

#	Article	IF	CITATIONS
690	Transcription Factor WRKY33 Mediates the Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Arabidopsis Roots. International Journal of Molecular Sciences, 2021, 22, 9275.	1.8	17
691	Strigolactones affect phosphorus acquisition strategies in tomato plants. Plant, Cell and Environment, 2021, 44, 3628-3642.	2.8	17
692	Phosphorus-Induced Adaptation Mechanisms of Rye Grown on Post-Flotation Copper Tailings. Biology, 2021, 10, 818.	1.3	1
694	Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency. Plant Physiology and Biochemistry, 2021, 166, 531-539.	2.8	17
695	Dynamic Development of White Lupin Rootlets Along a Cluster Root. Frontiers in Plant Science, 2021, 12, 738172.	1.7	4
696	The role of shade in maintaining alternative stable states between open―and closed anopy vegetation. Journal of Ecology, 2021, 109, 3835-3848.	1.9	3
697	Variability in soil properties influencing pigeonpea (Cajanus cajana L.) yield: a multivariate statistical analysis. F1000Research, 0, 10, 944.	0.8	0
698	Root exudates impact plant performance under abiotic stress. Trends in Plant Science, 2022, 27, 80-91.	4.3	152
699	Interactive effects of phosphorus fertilization and salinity on plant growth, phosphorus and sodium status, and tartrate exudation by roots of two alfalfa cultivars. Annals of Botany, 2022, 129, 53-64.	1.4	8
700	Mycorrhizal symbiosis and phosphorus supply determine interactions among plants with contrasting nutrientâ€acquisition strategies. Journal of Ecology, 2021, 109, 3892-3902.	1.9	10
701	Effects of Phosphorus Supply on the Leaf Photosynthesis, and Biomass and Phosphorus Accumulation and Partitioning of Canola (Brassica napus L.) in Saline Environment. Agronomy, 2021, 11, 1918.	1.3	11
702	Root morphology and rhizosheath acid phosphatase activity in legume and graminoid species respond differently to low phosphorus supply. Rhizosphere, 2021, 19, 100391.	1.4	18
703	Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicology and Environmental Safety, 2021, 222, 112510.	2.9	122
704	Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiological Research, 2021, 252, 126842.	2.5	65
705	Quantitative evaluation of the grain zinc in cereal crops caused by phosphorus fertilization. A meta-analysis. Agronomy for Sustainable Development, 2021, 41, 1.	2.2	29
706	OCBIL theory examined: reassessing evolution, ecology and conservation in the world's ancient, climatically buffered and infertile landscapes. Biological Journal of the Linnean Society, 2021, 133, 266-296.	0.7	36
708	Soil Microbial Composition and phoD Gene Abundance Are Sensitive to Phosphorus Level in a Long-Term Wheat-Maize Crop System. Frontiers in Microbiology, 2020, 11, 605955.	1.5	17
709	Role of Root Clusters in Phosphorus Acquisition and Increasing Biological Diversity in Agriculture. , 0, , 237-250.		17

#	Article	IF	CITATIONS
710	Symbiotic Associations. , 2008, , 403-443.		4
711	Interactions Among Plants. , 2008, , 505-531.		2
712	Mineral Nutrition. , 2019, , 301-384.		17
713	Distribution and Evolution of Mycorrhizal Types and Other Specialised Roots in Australia. Ecological Studies, 2017, , 361-394.	0.4	11
714	Global Diversity and Importance of Mycorrhizal and Nonmycorrhizal Plants. Ecological Studies, 2017, , 533-556.	0.4	59
715	Phosphorus Nutrition: Rhizosphere Processes, Plant Response and Adaptations. Soil Biology, 2011, , 245-271.	0.6	32
716	Modelling Phosphorus Dynamics in the Soil–Plant System. Soil Biology, 2011, , 113-133.	0.6	19
717	3D Quantification of Plant Root Architecture In Situ. , 2012, , 135-148.		18
718	Proteoid Roots and Exudation of Proteases by Plant Roots. Signaling and Communication in Plants, 2012, , 75-89.	0.5	4
719	Enhanced Phosphorus Fertilizer Use Efficiency with Microorganisms. , 2020, , 215-245.		30
720	The Rhizosphere Microbiome and Its Role in Plant Growth in Stressed Conditions. Microorganisms for Sustainability, 2020, , 503-529.	0.4	3
721	Spanish spelt is unique germplasm for improvement of root hair length in hexaploid wheat. Plant and Soil, 2020, 452, 171-184.	1.8	8
722	Morphological and kinetic parameters of the absorption of nitrogen forms for selection of Eucalyptus clones. Journal of Forestry Research, 2021, 32, 1599-1611.	1.7	7
723	Rhizosphere processes do not explain variation in P acquisition from sparingly soluble forms among Lupinus albus accessions. Australian Journal of Agricultural Research, 2008, 59, 616.	1.5	8
724	Sensitivity of seedling growth to phosphorus supply in six tree species of the Australian Great Western Woodlands. Australian Journal of Botany, 2019, 67, 390.	0.3	14
725	Mulling over the mulla mullas: revisiting phosphorus hyperaccumulation in the Australian plant genus Ptilotus (Amaranthaceae). Australian Journal of Botany, 2020, 68, 63.	0.3	5
726	Forage biomass yield and arbuscular mycorrhizal symbiosis in a legume and C3 and C4 grasses under increasing soil phosphorus availability. Crop and Pasture Science, 2020, 71, 907.	0.7	5
727	Divergent responses of above- and below-ground chemical defence to nitrogen and phosphorus supply in waratahs (Telopea speciosissima). Functional Plant Biology, 2019, 46, 1134.	1.1	6

#	Article	IF	CITATIONS
728	Plant ecophysiological diversity. , 2014, , 248-272.		29
732	Omics: Modern Tools for Precise Understanding of Drought Adaptation in Plants. , 2017, , 263-294.		5
733	Plant Biomass and Stem Juice of the C4 Sugarcane at Elevated Growth CO2 and Temperature. , 2016, , 1049-1060.		3
734	Advances in Improving Adaptation of Common Bean and Brachiaria Forage Grasses to Abiotic Stresses in the Tropics. Books in Soils, Plants, and the Environment, 2014, , 847-890.	0.1	16
735	Wheat response to plant growth promoting rhizobacteria,humic acid and sn-brassinolide. International Journal of Biosciences, 2014, 5, 51-60.	0.4	2
736	Soil Nutritional Status of Tea Plantations in Plains of Sub Himalayan West Bengal, India. Current Agriculture Research Journal, 2020, 8, 239-246.	0.3	4
737	Is the Inherent Potential of Maize Roots Efficient for Soil Phosphorus Acquisition?. PLoS ONE, 2014, 9, e90287.	1.1	56
738	Identification of putative QTLs for seedling stage phosphorus starvation response in finger millet (Eleusine coracana L. Gaertn.) by association mapping and cross species synteny analysis. PLoS ONE, 2017, 12, e0183261.	1.1	52
739	Patterns of biomass allocation between foliage and woody structure: the effects of tree size and specific functional traits. Annals of Forest Research, 2014, 59, .	0.6	66
740	Interaction between growth strategies and phosphorus use efficiency in grasses from South America natural grasslands. Revista Ceres, 2020, 67, 62-69.	0.1	14
741	Efficiency in the use of phosphorus by common bean genotypes. Scientia Agricola, 2014, 71, 232-239.	0.6	14
742	Microcosm Investigation on Differential Potential of Free Floating Azolla Macrophytes for Phytoremediation of P-controlled Water Eutrophication. International Journal of Agriculture and Biology, 2015, 18, 204-212.	0.2	5
743	Hongos solubilizadores de fosfato en suelo de páramo cultivado con papa (Solanum tuberosum). Ciencia En Desarrollo, 2015, 5, .	0.1	2
744	Influence of the three main genetic backgrounds of grapevine rootstocks on petiolar nutrient concentrations of the scion, with a focus on phosphorus. Oeno One, 2020, 54, 1-13.	0.7	36
745	Functional Assessment of an Overexpressed Arabidopsis Purple Acid Phosphatase Gene (Atpap26) in Tobacco Plants. Iranian Journal of Biotechnology, 2018, 16, 31-41.	0.3	10
746	Mannose regulates water balance, leaf senescence, and genes related to stress tolerance in white clover under osmotic stress. Biologia Plantarum, 0, 64, 406-416.	1.9	25
747	Efficiency and responsiveness of using phosphorus and molecular diversity among soybean cultivars. Agronomy Science and Biotechnology, 0, 6, 1-11.	0.3	4
748	Growth, Rhizosphere Carboxylate Exudation, and Arbuscular Mycorrhizal Colonisation in Temperate Perennial Pasture Grasses Varied with Phosphorus Application. Agronomy, 2020, 10, 2017.	1.3	7

#	Article	IF	CITATIONS
749	A High Internal Phosphorus Use Efficiency in Tea (Camellia sinensis L.) Plants. Asian Journal of Plant Sciences, 2007, 7, 30-36.	0.2	32
750	Bioavailability of Phosphorus and Micronutrients in the Soil-Plant-Microbe Continuum. Revista De La Ciencia Del Suelo Y Nutricion Vegetal, 2008, 8, .	0.4	7
751	<i>Bradyrhizobium japonicum</i> Inoculation and Phosphorus Supplementation on Growth and Chlorophyll Accumulation in Soybean (<i>Clycine) Tj ETQq0 0 0</i>	rg ð. Ɓ/Ove	rlozesk 10 Tf 5(
752	Phosphorus Recycling from Wastes. Journal of Environmental Protection, 2017, 08, 831-843.	0.3	2
753	Comparison of Early and Conventional Soybean Production Systems for Yield and other Agronomic Traits. Atlas Journal of Plant Biology, 2017, 1, 1-5.	0.1	3
754	Genetic Analysis of Root and Shoot Traits in the â€~Essex' By â€~Forrest' Recombinant Inbred Line (RIL) Population of Soybean [Clycine max (L.) Merr.]. Journal of Plant Genome Sciences, 2017, 1, 1-9.	0.2	12
755	Is there genetic variation in mycorrhization of <i>Medicago truncatula</i> ?. PeerJ, 2017, 5, e3713.	0.9	11
756	Comparative Expression Analyses of Rice and Arabidopsis Phosphate Transporter Families Revealed Their Conserved Roles for the Phosphate Starvation Response. Plant Breeding and Biotechnology, 2019, 7, 42-49.	0.3	12
757	Flavonoids are involved in phosphorus-deficiency-induced cluster-root formation in white lupin. Annals of Botany, 2022, 129, 101-112.	1.4	9
758	Quantifying Leaf Trait Covariations and Their Relationships with Plant Adaptation Strategies along an Aridity Gradient. Biology, 2021, 10, 1066.	1.3	5
759	Arbuscular mycorrhizal fungal communities of a mangrove forest along a salinity gradient on Iriomote Island. Plant and Soil, 2022, 472, 145-159.	1.8	3
760	Does Legume Root Exudation Facilitate Itself P Uptake in Intercropped Wheat?. Journal of Soil Science and Plant Nutrition, 2021, 21, 3269-3283.	1.7	6
761	A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 2021, 232, 973-1122.	3.5	216
762	Soil pH effects on phosphorus mobilization in the rhizosphere of Lupinus angustifolius. Plant and Soil, 2021, 469, 387-407.	1.8	15
763	Comparison of different selection traits for identification of phosphorus use efficient lines in mungbean. PeerJ, 2021, 9, e12156.	0.9	5
764	Cluster root production and P utilization of macadamia seedling under different P treatments. Chinese Journal of Eco-Agriculture, 2010, 18, 753-757.	0.1	0
765	Water and solute movements in soil heterogeneity-system as interacted with plant roots Journal of Weed Science and Technology, 2011, 56, 19-23.	0.1	0
766	Distribuição do carbono orgânico em Latossolo sob manejoda adubação fosfatada em plantio direto no Cerrado. Pesquisa Agropecuaria Brasileira, 2012, 47, 442-448.	0.9	1

#	Article	IF	CITATIONS
767	Improving Nutrient Use Efficiency in Oilseeds Brassica. , 2015, , 317-327.		0
768	Distortion Correction in 3D-Modeling of Root Systems for Plant Phenotyping. Lecture Notes in Computer Science, 2015, , 140-157.	1.0	1
769	ROOT BIOMASS ACCUMULATION IN VETCH (Vicia sativa L.) AFTER TREATMENT WITH ORGANIC FERTILIZER. Banat's Journal of Biotechnology, 2015, VI, 100-105.	0.4	6
770	Phosphorus Recycling from Waste, Dams and Wetlands Receiving Landfill Leachate – Long Term Monitoring in Norway. , 2016, , 141-146.		1
771	Studies on phenological characters and yield attributes of rice genotypes at graded levels of phosphorus. International Journal Plant Sciences, 2016, 11, 198-202.	0.0	0
772	Effect of Legume Integration and Phosphorus Use on Maize N and P Concentration and Grain Yield in Kabete - Kenya. International Journal of Plant & Soil Science, 2017, 19, 1-9.	0.2	0
773	Parameters Related to Nodulating Ability of Some Legumes. International Journal of Agricultural Science and Food Technology, 0, , 005-008.	0.2	0
774	Genotypic Variation for Phosphorus Efficiency of Pigeonpea Genotypes under Varied Phosphorus Levels. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 3633-3647.	0.0	1
776	Legume and Organic Fertilizer Effects on Soil Nutrient Availability, Uptake and Kale Yields in Kabete Sub-county Kenya. Journal of Experimental Agriculture International, 2018, 26, 1-21.	0.3	1
777	Biotic Influences: Symbiotic Associations. , 2019, , 487-540.		3
780	Role of Arbuscular Mycorrhizal Fungi in Mulberry Ecosystem Development. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 13-37.	0.0	0
782	Ecophysiological responses of southern South American Proteaceae to nutrient deprivation are related to their edaphic distributions. Plant and Soil, 2022, 471, 27-32.	1.8	1
783	Phosphorus and Biofertilizer Application Effects on Growth Parameters, Yield and Chemical Constituents of Broccoli. Agronomy, 2021, 11, 2210.	1.3	5
784	Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. , 2020, , 455-514.		1
786	Below-ground physiological processes enhancing phosphorus acquisition in plants. Plant Physiology Reports, 2021, 26, 600-613.	0.7	8
787	An R2R3-type myeloblastosis transcription factor MYB103 is involved in phosphorus remobilization. Food Production Processing and Nutrition, 2020, 2, .	1.1	0
789	Unravelling the Role of Rhizosphere Microbiome and Root Traits in Organic Phosphorus Mobilization for Sustainable Phosphorus Fertilization. A Review. Agronomy, 2021, 11, 2267.	1.3	17
790	Patterns and Internal Stability of Carbon, Nitrogen, and Phosphorus in Soils and Soil Microbial Biomass in Terrestrial Ecosystems in China: A Data Synthesis. Forests, 2021, 12, 1544.	0.9	7

#	ARTICLE	IF	CITATIONS
791	Linking root exudation to belowground economic traits for resource acquisition. New Phytologist, 2022, 233, 1620-1635.	3.5	129
792	Natural forests promote phosphorus retention in soil. Global Change Biology, 2022, 28, 1678-1689.	4.2	13
793	Growth and P absorption of Fibraurea tinctoria lour in peat soil with an amendment. IOP Conference Series: Earth and Environmental Science, 2021, 905, 012099.	0.2	0
794	Apoplastic histochemical features of plant root walls that may facilitate ion uptake and retention. Open Life Sciences, 2021, 16, 1347-1356.	0.6	0
795	The wheat secreted root proteome: Implications for phosphorus mobilisation and biotic interactions. Journal of Proteomics, 2022, 252, 104450.	1.2	8
796	Root hair and rhizosheath traits contribute to genetic variation and phosphorus use efficiency in cowpea (Vigna unguiculata (L.) Walp). Rhizosphere, 2022, 21, 100463.	1.4	9
797	Approaches and determinants to sustainably improve crop production. Food and Energy Security, 2023, 12, .	2.0	12
798	Plant phosphorusâ€use and â€acquisition strategies in Amazonia. New Phytologist, 2022, 234, 1126-1143.	3.5	40
799	In Memoriam David Thomas Clarkson (1938-2021). Plant and Soil, 0, , 1.	1.8	1
800	Root phosphatase activity aligns with the collaboration gradient of the root economics space. New Phytologist, 2022, 234, 837-849.	3.5	51
801	Variation and Influential Factors Underlying P Cycling in Rhizosphere Microbial Communities Along Water Gradients in an Arid Desert Region. SSRN Electronic Journal, 0, , .	0.4	0
802	White lupin (Lupinus albus L.) exposed to elevated atmospheric CO2 requires additional phosphorus for N2 fixation. Plant and Soil, 0, , .	1.8	4
803	Calibration of Near-Infrared Spectra for Phosphorus Fractions in Grassland Soils on the Tibetan Plateau. Agronomy, 2022, 12, 783.	1.3	5
804	Ethylene works as a possible regulator for the rootlet elongation and transcription of genes for phosphorus acquisition in cluster roots of <i>Lupinus albus</i> L. Soil Science and Plant Nutrition, 2022, 68, 383-392.	0.8	2
805	A framework for fineâ€root trait syndromes: syndrome coexistence may support phosphorus partitioning in tropical forests. Oikos, 2023, 2023, .	1.2	7
806	Regulatory role of organic acids and phytochelators in influencing the rhizospheric availability of phosphorus and iron and their uptake by plants. Plant Physiology Reports, 2022, 27, 193-206.	0.7	2
807	Understanding the Adaptive Mechanisms of Plants to Enhance Phosphorus Use Efficiency on Podzolic Soils in Boreal Agroecosystems. Frontiers in Plant Science, 2022, 13, 804058.	1.7	12
808	Sinks for plant surplus carbon explain several ecological phenomena. Plant and Soil, 2022, 476, 689-698.	1.8	10

#	Article	IF	CITATIONS
809	Dynamics of phoD- and gcd-Harboring Microbial Communities Across an Age Sequence of Biological Soil Crusts Under Sand-Fixation Plantation. Frontiers in Microbiology, 2022, 13, 831888.	1.5	1
812	Carbon efficiency for nutrient acquisition (CENA) by plants: role of nutrient availability and microbial symbionts. Plant and Soil, 2022, 476, 289-300.	1.8	9
813	Catch crop mixtures have higher potential for nutrient carry-over than pure stands under changing environments. European Journal of Agronomy, 2022, 136, 126504.	1.9	7
814	Plasticity and coâ€variation of root traits govern differential phosphorus acquisition among 20 wheat genotypes. Oikos, 2023, 2023, .	1.2	9
815	Kıvırcık ve Yedikule Tipi Marul Çeşitlerinin Kök Gelişimi ve Kök Sistemi Mimarisi Yönünden İncel 2021, 11, 120-130.	enmesi. ,	1
816	Metabolite shift in <i>Medicago truncatula</i> occurs in phosphorus deprivation. Journal of Experimental Botany, 2022, 73, 2093-2111.	2.4	4
817	Litterfall and Accumulated Nutrients in Pinus taeda Plantation and Native Forest in Southern Brazil. Forests, 2021, 12, 1791.	0.9	5
818	Cluster roots of Embothrium coccineum growing under field conditions differentially shape microbial diversity according to their developmental stage. Journal of Soil Science and Plant Nutrition, 2022, 22, 2418-2433.	1.7	1
819	Effects of Drought on the Growth of Lespedeza davurica through the Alteration of Soil Microbial Communities and Nutrient Availability. Journal of Fungi (Basel, Switzerland), 2022, 8, 384.	1.5	7
820	Phosphorus Fractionation Affected by Root Induced Changes of Two Canola Cultivars. Eurasian Soil Science, 2022, 55, 819-829.	0.5	2
843	RESEARCH OF THE PROPERTIES OF PHOSPHATMOBILIZING BACTERIA PERSPECTIVE FOR INCREASING THE PRODUCTIVITY OF AGRICULTURAL GRAINS. Experimental Biology, 2022, 90, .	0.1	0
844	MILK CLOTTING ACTIVITY OF RECOMBINANT CAMEL CHYMOSIN. Experimental Biology, 2022, 90, .	0.1	0
845	Mechanisms Underlying Soybean Response to Phosphorus Deficiency through Integration of Omics Analysis. International Journal of Molecular Sciences, 2022, 23, 4592.	1.8	11
846	Soil phosphorus sorption capacity dictates the effect of elevated CO ₂ on soil and plant critical phosphorus levels for wheat growth [#] . Journal of Plant Nutrition and Soil Science, 0, , .	1.1	2
847	Arbuscular mycorrhizal fungi have a greater role than root hairs of maize for priming the rhizosphere microbial community and enhancing rhizosphere organic P mineralization. Soil Biology and Biochemistry, 2022, 171, 108713.	4.2	18
848	The Effectiveness of AMF Inoculum to Enhance The Potency of Papuan Crandallite Phosphate Rock and The Growth of Cocoa Seedling. Jurnal Tanah Tropika, 2018, 14, 261.	0.2	1
849	Role of Slow-Release Phosphate Nanofertilizers in Forage Nutrition and Phosphorus Lability. ACS Agricultural Science and Technology, 2022, 2, 564-572.	1.0	5
851	Effects of Liming on the Morphologies and Nutrients of Different Functional Fine Roots of Cunninghamia lanceolata Seedlings. Forests, 2022, 13, 822.	0.9	0

#	Article	IF	CITATIONS
852	Phosphorus resorption and tissue longevity of roots and leaves – importance for phosphorus use efficiency and ecosystem phosphorus cycles. Plant and Soil, 2022, 476, 627-637.	1.8	6
853	Root traits distinguish phosphorus acquisition of two wheat cultivars growing in phosphorus-deficient acid soil. Rhizosphere, 2022, 22, 100549.	1.4	4
854	Soil controls on carboxylate-driven processes and opportunities. Plant and Soil, 0, , .	1.8	0
855	Harnessing belowground processes for sustainable intensification of agricultural systems. Plant and Soil, 2022, 478, 177-209.	1.8	8
857	Trade-offs among fine-root phosphorus-acquisition strategies of 15 tropical woody species. Forest Ecosystems, 2022, 9, 100055.	1.3	7
858	From outside to inside: mechanisms modulating plant responses to boron stress. , 2022, , 91-126.		0
859	Progression in plant phosphate uptake studies. Asia-Pacific Journal of Molecular Biology and Biotechnology, 0, , 69-82.	0.2	0
860	Effect of Rice-Straw Biochar Application on the Acquisition of Rhizosphere Phosphorus in Acidified Paddy Soil. Agronomy, 2022, 12, 1556.	1.3	1
861	Root diameter decreases and rhizosheath carboxylates and acid phosphatases increase in chickpea during plant development. Plant and Soil, 0, , .	1.8	2
862	Scientific impact, direction and highlights of Plant and Soil in the 30Âyears since Professor Hans Lambers became Editor in Chief. Plant and Soil, 0, , .	1.8	Ο
863	Wastewaterâ€recovered struvite evaluation as a fertilizerâ€phosphorus source for corn in eastern Arkansas. Agronomy Journal, 2022, 114, 2994-3012.	0.9	7
864	Carbon–Phosphorus Coupling Governs Microbial Effects on Nutrient Acquisition Strategies by Four Crops. Frontiers in Plant Science, 0, 13, .	1.7	5
865	Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops. Frontiers in Plant Science, 0, 13, .	1.7	26
866	Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Frontiers in Microbiology, 0, 13, .	1.5	10
867	Changes in belowground interactions betweenÂwheat and white lupin along nitrogen and phosphorus gradients. Plant and Soil, 0, , .	1.8	4
868	Leading nutrient foraging strategies shaping by root system characteristics along the elevations in rubber <i>(Hevea brasiliensis)</i> plantations. Tree Physiology, 2022, 42, 2468-2479.	1.4	2
869	Alleviation of low phosphorus stress in Eucalyptus grandis by arbuscular mycorrhizal symbiosis and excess Mn. Plant Stress, 2022, 5, 100104.	2.7	4
870	Weak impact of nutrient enrichment on peat: Evidence from physicochemical properties. Frontiers in Ecology and Evolution, 0, 10, .	1.1	2

ARTICLE IF CITATIONS # Relationship between soil phosphorus dynamics and low-phosphorus responses at specific root 871 0.8 1 locations of white lupine. Soil Science and Plant Nutrition, 2022, 68, 526-535. Increased microbial biomass and turnover underpin efficient phosphorus acquisition by Brassica 872 2.6 chinensis. Soil and Tillage Research, 2022, 223, 105492. Nitrogen addition and defoliation alter belowground carbon allocation with consequences for 873 plant nitrogen uptake and soil organic carbon decomposition. Science of the Total Environment, 2022, 3.9 5 846, 157430. Nutrient Acquisition with Particular Reference to Subsoil Constraints., 2022, , 289-321. 874 Soil properties and geomorphic processes influence vegetation composition, structure, and function 875 1.8 9 in the Cerrado Domain. Plant and Soil, 2022, 476, 549-588. Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: processes and ecological functions. Plant and Soil, 2022, 481, 1-22. 1.8 Effect of arbuscular mycorrhizal fungi and phosphorus on drought-induced oxidative stress and 877 1.5 3 14-3-3 proteins gene expression of Populus cathayana. Frontiers in Microbiology, 0, 13, . The root apoplastic pH as an integrator of plant signaling. Frontiers in Plant Science, 0, 13, . 1.7 How do tropical tree species maintain high growth rates on low-phosphorus soils?. Plant and Soil, 879 9 1.8 2022, 480, 31-56. Breeding against mycorrhizal symbiosis: Modern cotton (Gossypium hirsutum L.) varieties perform more poorly than older varieties except at very high phosphorus supply levels. Journal of Integrative 1.7 Agriculture, 2023, 22, 701-715. Global Identification of White Lupin IncRNAs Reveals Their Role in Cluster Roots under Phosphorus 881 1.8 5 Deficiency. International Journal of Molecular Sciences, 2022, 23, 9012. Root Architectures of Hybrid Pepper Variety Candidates with Low Temperature Stress Tolerance. Journal of the Institute of Science and Technology, 2022, 12, 1213-1223. Root response and phosphorus uptake with enhancement in available phosphorus level in soil in the 883 presence of water-soluble organic matter deriving from organic material. Journal of Environmental 3.8 4 Management, 2022, 322, 116038. $Phosphorus\ uptake\ and\ toxicity\ are\ delimited\ by\ mycorrhizal\ symbiosis\ in\ P-sensitive\ <i>Eucalyptus\ marginata</i> but\ not\ in\ P-tolerant\ <i>Acacia\ celastrifolia</i>. AoB\ PLANTS, 2022, 14, .$ 884 1.2 Elevated CO2 exposure enhances P-uptake, plant biomass and grain yield in wheat genotypes. Plant 885 0 0.7 Physiology Reports, O, , . Preferences of Pinus sylvestris seedling roots for different phosphorus sources under 1.8 phosphorus-deficient conditions. Plant and Soil, 0, , . Nitrogen loading enhances phosphorus limitation in terrestrial ecosystems with implications for soil 887 1.7 55 carbon cycling. Functional Ecology, 2022, 36, 2845-2858. Phylogeny and Properties of New Pseudomonas spp. from the Rhizosphere of Southern Ural 888 Leguminous Plants. Microbiology, 2022, 91, 489-496.

#	Article	IF	CITATIONS
889	Linking root morphology and anatomy with transporters for mineral element uptake in plants. Plant and Soil, 2023, 484, 1-12.	1.8	1
890	Propagation Methods Decide Root Architecture of Chinese Fir: Evidence from Tissue Culturing, Rooted Cutting and Seed Germination. Plants, 2022, 11, 2472.	1.6	4
891	Current Trends and Challenges in Viticulture Using Arbuscular Mycorrhizal Fungi. Fungal Biology, 2022, , 357-371.	0.3	0
892	Low Phosphorus Tolerance in Cotton Genotypes is Regulated by Root Morphology and Physiology. Journal of Plant Growth Regulation, 2023, 42, 3677-3695.	2.8	4
893	Soil Fertility Clock—Crop Rotation as a Paradigm in Nitrogen Fertilizer Productivity Control. Plants, 2022, 11, 2841.	1.6	11
894	Breeding and genomics approaches for improving phosphorus-use efficiency in grain legumes. Environmental and Experimental Botany, 2023, 205, 105120.	2.0	7
895	Evolutionary adaptation of plants to phosphorus deficiency: the multifaceted role of cluster roots. Acta Horticulturae, 2022, , 51-62.	0.1	0
896	Nutrient acquisition, transport and metabolism within the plant cells. , 2023, , 51-70.		2
897	Effect of different growing media on selected growth performance parameters of Raphanus pugioniformis and Raphanus raphanistrum. Journal of Experimental Biology and Agricultural Sciences, 2022, 10, 1138-1148.	0.1	0
898	New Insights into the Phosphorus Acquisition Capacity of Chilean Lowland Quinoa Roots Grown under Low Phosphorus Availability. Plants, 2022, 11, 3043.	1.6	1
899	Differential factors determine the response of soil P fractions to N deposition in wet and dry seasons in a subtropical Moso bamboo forest. Plant and Soil, 0, , .	1.8	2
900	Adaptive Responses of Crop Species Against Phosphorus Deficiency. Sustainable Agriculture Reviews, 2023, , 69-91.	0.6	1
901	Integrating transcriptomic and metabolomic analysis in roots of wild soybean seedlings in response to low-phosphorus stress. Frontiers in Plant Science, 0, 13, .	1.7	3
902	Localized phosphorus promotes nutrient productivity of Brassica chinensis genotype with strong root morphological plasticity. Scientia Horticulturae, 2023, 310, 111779.	1.7	1
903	Coated diammonium phosphate combined with Paecilomyces variotii extracts improves root architecture, enhances spring low temperature tolerance, and increases wheat yield. Soil and Tillage Research, 2023, 227, 105613.	2.6	0
905	Limestone and phosphogypsum are key drivers of eucalypt production in the highly weathered soils of Brazil. Plant and Soil, 0, , .	1.8	3
906	Effects of biochar and arbuscular mycorrhizal fungi on winter wheat growth and soil N2O emissions in different phosphorus environments. Frontiers in Plant Science, 0, 13, .	1.7	1
907	Plastic responses of belowâ€ground foraging traits to soil phosphorusâ€rich patches across 17 coexisting <scp>AM</scp> tree species in a subtropical forest. Journal of Ecology, 2023, 111, 830-844.	1.9	0

#	Article	IF	CITATIONS
908	Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Frontiers in Plant Science, 0, 13, .	1.7	30
909	The suppression of TdMRP3 genes reduces the phytic acid and increases the nutrient accumulation in durum wheat grain. Frontiers in Plant Science, 0, 14, .	1.7	6
910	Critical shoot phosphorus concentrations for changes in root morphology to improve phosphorus uptake in cotton. Journal of Plant Nutrition and Soil Science, 2023, 186, 130-140.	1.1	0
911	Composition and structure of tree species in two forest fragments in southern amazon region. Revista Brasileira De Botanica, 0, , .	0.5	0
912	Relationship between mineral nutrition, plant diseases, and pests. , 2023, , 445-476.		1
913	Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability, 2023, 15, 2338.	1.6	26
914	Different nitrogen acquirement and utilization strategies might determine the ecological competition between ferns and angiosperms. Annals of Botany, 2023, 131, 1097-1106.	1.4	2
915	Nutrient availability in soils. , 2023, , 499-522.		13
916	Transport of hydroxyapatite nanoparticles coated with polyacrylic acid under unsaturated water flow in soil columns. Soil Science and Plant Nutrition, 0, , 1-13.	0.8	0
917	Functions of macronutrients. , 2023, , 201-281.		16
919	Some physio-biochemical traits of sunflower (Helianthus annuus L.) as affected by arbuscular mycorrhizal fungi inoculation under different irrigation treatments. Italian Journal of Agronomy, 2023, 18, .	0.4	0
920	Elevational variation in soil phosphorus pools and controlling factors in alpine areas of Southwest China. Geoderma, 2023, 431, 116361.	2.3	1
921	Plant Growth and Phosphorus Uptake of Wheat in Response to Oxytetracycline. Journal of Soil Science and Plant Nutrition, 0, , .	1.7	0
922	Enhanced nodulation and phosphorus acquisition from sparinglyâ€soluble iron phosphate upon treatment with arbuscular mycorrhizal fungi in chickpea. Physiologia Plantarum, 2023, 175, .	2.6	6
923	Improving phosphorus acquisition efficiency through modification of root growth responses to phosphate starvation in legumes. Frontiers in Plant Science, 0, 14, .	1.7	5
924	Phosphorus and carbohydrate metabolism contributes to low phosphorus tolerance in cotton. BMC Plant Biology, 2023, 23, .	1.6	3
925	Effect of cultivars and nature–based solutions for the reduction of phosphate fertilizer usage on oilseed rape. Field Crops Research, 2023, 293, 108851.	2.3	0
926	Facilitation of phosphorus acquisition by Banksia attenuata allows Adenanthos cygnorum (Proteaceae) to extend its range into severely phosphorus-impoverished habitats. Plant and Soil, 2024, 496, 51-70.	1.8	4

		FORT	
#	Article	IF	CITATIONS
929	Integrated Nutrient Management as a driving force for sustainable use of phosphorus. , 2023, , 235-246.		0
930	Arbuscular Mycorrhizal Fungi Improve the Growth, Water Status, and Nutrient Uptake of Cinnamomum migao and the Soil Nutrient Stoichiometry under Drought Stress and Recovery. Journal of Fungi (Basel, Switzerland), 2023, 9, 321.	1.5	5
931	What role do dauciform roots play? Responses of <i>Carex filispica</i> to trampling in alpine meadows based on functional traits. Ecology and Evolution, 2023, 13, .	0.8	2
932	Role of mycorrhizas and root exudates in plant uptake of soil nutrients (calcium, iron, magnesium,) Tj ETQq1 1 0.	784314 i 2.8	rgBT_/Overloc
933	Transcription factors GmERF1 and GmWRKY6 synergistically regulate low phosphorus tolerance in soybean. Plant Physiology, 2023, 192, 1099-1114.	2.3	5
934	Genome-Wide Association Study for Root Morphology and Phosphorus Acquisition Efficiency in Diverse Maize Panels. International Journal of Molecular Sciences, 2023, 24, 6233.	1.8	4
935	Ecological drivers of fine-scale distribution of arbuscular mycorrhizal fungi in a semiarid Mediterranean scrubland. Annals of Botany, 0, , .	1.4	1
936	Performance of Maize-Bean Intercropping Assessed Through Varied Spatial Arrangements and Nutrient Phosphorus Levels in Tanzania. Indonesian Journal of Agricultural Research, 2023, 5, 189-200.	0.1	0
937	Root phosphatase activity is a competitive trait affiliated with the conservation gradient in root economic space. Forest Ecosystems, 2023, 10, 100111.	1.3	3
938	Root morphological and physiological traits are committed to the phosphorus acquisition of the desert plants in phosphorus-deficient soils. BMC Plant Biology, 2023, 23, .	1.6	5
939	Proper Delay of Phosphorus Application Promotes Wheat Growth and Nutrient Uptake under Low Phosphorus Condition. Agriculture (Switzerland), 2023, 13, 884.	1.4	1
940	Root System Architecture and Phenotyping for Improved Resource Use Efficiency in Crops. , 2023, , 229-255.		0
973	Role of soil abiotic processes on phosphorus availability and plant responses with a focus on strigolactones in tomato plants. Plant and Soil, 2024, 494, 1-49.	1.8	3
986	Impacts of nitrogen deposition on forest mycorrhizal communities. , 2024, , 95-118.		0
992	Alleviation of Salinity Stress by Microbes. , 2023, , 145-174.		0
999	Non-host Plant Species: Definition, Description, and Mechanisms of Interaction with Arbuscular Mycorrhizal Fungi. , 2024, , 19-36.		0