Defective Th1 Cytokine Gene Transcription in CD4+ and Syndrome Patients

Journal of Immunology 177, 7451-7461 DOI: 10.4049/jimmunol.177.10.7451

Citation Report

#	Article	IF	CITATIONS
1	WASP regulates suppressor activity of human and murine CD4+CD25+FOXP3+ natural regulatory T cells. Journal of Experimental Medicine, 2007, 204, 369-380.	4.2	167
2	Current understanding of the Wiskott–Aldrich syndrome and prospects for gene therapy. Expert Review of Clinical Immunology, 2007, 3, 205-215.	1.3	0
3	Structure-Function Analysis of the WIP Role in T Cell Receptor-stimulated NFAT Activation. Journal of Biological Chemistry, 2007, 282, 30303-30310.	1.6	22
5	Opposing Effects of PKCÎ, and WASp on Symmetry Breaking and Relocation of the Immunological Synapse. Cell, 2007, 129, 773-785.	13.5	316
6	Lymphocyte-Dependent and Th2 Cytokine-Associated Colitis in Mice Deficient in Wiskott-Aldrich Syndrome Protein. Gastroenterology, 2007, 133, 1188-1197.	0.6	76
7	Tâ€cell activation through immunological synapses and kinapses. Immunological Reviews, 2008, 221, 77-89.	2.8	277
8	Protective role of nuclear factor of activated T cells 2 in CD8+ long-lived memory T cells in an allergy model. Journal of Allergy and Clinical Immunology, 2008, 121, 992-999.e6.	1.5	30
10	Primary immune deficiencies with aberrant IgE production. Journal of Allergy and Clinical Immunology, 2008, 122, 1054-1062.	1.5	124
11	Tyrosine-Phosphorylation-Dependent Translocation of the SLAT Protein to the Immunological Synapse Is Required for NFAT Transcription Factor Activation. Immunity, 2008, 29, 704-719.	6.6	38
12	Regulation of a Late Phase of T Cell Polarity and Effector Functions by Crtam. Cell, 2008, 132, 846-859.	13.5	119
13	Development of lentiviral gene therapy for Wiskott Aldrich syndrome. Expert Opinion on Biological Therapy, 2008, 8, 181-190.	1.4	46
14	Evidence for Long-term Efficacy and Safety of Gene Therapy for Wiskott–Aldrich Syndrome in Preclinical Models. Molecular Therapy, 2009, 17, 1073-1082.	3.7	77
15	The Wiskott-Aldrich syndrome protein is required for iNKT cell maturation and function. Journal of Experimental Medicine, 2009, 206, 735-742.	4.2	53
16	SWAPâ€70â€ŀike adapter of T cells: a novel Lckâ€regulated guanine nucleotide exchange factor coordinating actin cytoskeleton reorganization and Ca ²⁺ signaling in T cells. Immunological Reviews, 2009, 232, 319-333.	2.8	30
17	Contributions of Wiskott–Aldrich syndrome family cytoskeletal regulatory adapters to immune regulation. Immunological Reviews, 2009, 232, 175-194.	2.8	16
18	Wiskott–Aldrich Syndrome: Immunodeficiency resulting from defective cell migration and impaired immunostimulatory activation. Immunobiology, 2009, 214, 778-790.	0.8	90
19	Recent advances in understanding the pathophysiology of Wiskott-Aldrich syndrome. Blood, 2009, 113, 6288-6295.	0.6	207
20	Critical requirement for the Wiskott-Aldrich syndrome protein in Th2 effector function. Blood, 2010, 115, 3498-3507.	0.6	19

#	Article	IF	CITATIONS
21	WASP: a key immunological multitasker. Nature Reviews Immunology, 2010, 10, 182-192.	10.6	354
22	Alternative Control: What's WASp Doing in the Nucleus?. Science Translational Medicine, 2010, 2, 37ps31.	5.8	6
23	Nuclear Role of WASp in the Pathogenesis of Dysregulated T _H 1 Immunity in Human Wiskott-Aldrich Syndrome. Science Translational Medicine, 2010, 2, 37ra44.	5.8	109
24	The Wiskott-Aldrich syndrome protein regulates CTL cytotoxicity and is required for efficient killing of B cell lymphoma targets. Journal of Leukocyte Biology, 2010, 88, 1031-1040.	1.5	68
25	Hematopoietic Cell Transplantation for Wiskott-Aldrich Syndrome: Advances in Biology and Future Directions for Treatment. Immunology and Allergy Clinics of North America, 2010, 30, 179-194.	0.7	50
26	Revertant T lymphocytes in a patient with Wiskott-Aldrich syndrome: Analysis of function and distribution in lymphoid organs. Journal of Allergy and Clinical Immunology, 2010, 125, 439-448.e8.	1.5	31
27	Transcriptional Control of the TNF Gene. Current Directions in Autoimmunity, 2010, 11, 27-60.	8.0	217
28	Wiskott Aldrich Syndrome, often Missed: A Case Report and Review. Journal of Nepal Paediatric Society, 2011, 31, 146-150.	0.1	1
29	Functional Studies on the IBD Susceptibility Gene IL23R Implicate Reduced Receptor Function in the Protective Genetic Variant R381Q. PLoS ONE, 2011, 6, e25038.	1.1	93
30	The Wiskott-Aldrich syndrome protein permits assembly of a focused immunological synapse enabling sustained T-cell receptor signaling. Haematologica, 2011, 96, 1415-1423.	1.7	54
31	Autoimmunity in Wiskott–Aldrich Syndrome: An Unsolved Enigma. Frontiers in Immunology, 2012, 3, 209.	2.2	110
32	Wiskott-Aldrich Syndrome; An X-Linked Primary Immunodeficiency Disease with Unique and Characteristic Features. Allergology International, 2012, 61, 183-189.	1.4	26
33	Dendritic cell functional improvement in a preclinical model of lentiviral-mediated gene therapy for Wiskott–Aldrich syndrome. Gene Therapy, 2012, 19, 1150-1158.	2.3	8
34	Lentiviral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-Aldrich Syndrome. Science, 2013, 341, 1233151.	6.0	900
35	Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. Journal of Allergy and Clinical Immunology, 2013, 131, 1594-1603.e9.	1.5	127
36	Wiskottâ€Aldrich syndrome: a comprehensive review. Annals of the New York Academy of Sciences, 2013, 1285, 26-43.	1.8	297
37	In and out of the bull's eye: protein kinase Cs in the immunological synapse. Trends in Immunology, 2013, 34, 234-242.	2.9	34
38	Wiskott-Aldrich Syndrome Protein (WASp) Controls the Delivery of Platelet Transforming Growth Factor-β1. Journal of Biological Chemistry, 2013, 288, 34352-34363.	1.6	16

CITATION REPORT

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
39	Actin cytoskeletal defects in immunodeficiency. Immunological Reviews, 2013, 256, 282-299.	2.8	106
40	<scp>W</scp> iskott– <scp>A</scp> ldrich syndrome protein – dynamic regulation of actin homeostasis: from activation through function and signal termination in T lymphocytes. Immunological Reviews, 2013, 256, 10-29.	2.8	46
41	Wiskott-Aldrich syndrome protein–mediated actin dynamics control type-l interferon production in plasmacytoid dendritic cells. Journal of Experimental Medicine, 2013, 210, 355-374.	4.2	49
42	Development of Central Nervous System Autoimmunity Is Impaired in the Absence of Wiskott-Aldrich Syndrome Protein. PLoS ONE, 2014, 9, e86942.	1.1	2
43	Exacerbated experimental arthritis in Wiskott–Aldrich syndrome protein deficiency: Modulatory role of regulatory B cells. European Journal of Immunology, 2014, 44, 2692-2702.	1.6	22
44	Allogeneic Bone Marrow Transplantation Appears to Ameliorate IgA Nephropathy in a Patient with X-linked Thrombocytopenia. Journal of Clinical Immunology, 2014, 34, 53-57.	2.0	7
45	T-Cell-Receptor-Dependent Signal Intensity Dominantly Controls CD4+ T Cell Polarization InÂVivo. Immunity, 2014, 41, 63-74.	6.6	214
46	Nuclear Role of WASp in Gene Transcription Is Uncoupled from Its ARP2/3-Dependent Cytoplasmic Role in Actin Polymerization. Journal of Immunology, 2014, 193, 150-160.	0.4	57
47	Next Generation Sequencing Reveals Skewing of the T and B Cell Receptor Repertoires in Patients with Wiskottââ,¬â€œAldrich Syndrome. Frontiers in Immunology, 2014, 5, 340.	2.2	40
48	Human Immunodeficiencies Related to Defective APC/T Cell Interaction. Frontiers in Immunology, 2015, 6, 433.	2.2	14
49	T-cell receptor diversity is selectively skewed in T-cell populations of patients with Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2015, 135, 209-216.e8.	1.5	39
50	Signal Integration during T Lymphocyte Activation and Function: Lessons from the Wiskottââ,¬â€œAldrich Syndrome. Frontiers in Immunology, 2015, 6, 47.	2.2	25
52	Molecular mechanisms and functional implications of polarized actin remodeling at the T cell immunological synapse. Cellular and Molecular Life Sciences, 2015, 72, 537-556.	2.4	77
53	TCR Signal Strength Alters T–DC Activation and Interaction Times and Directs the Outcome of Differentiation. Frontiers in Immunology, 2016, 7, 6.	2.2	93
54	Abnormalities of follicular helper T-cell number and function in Wiskott-Aldrich syndrome. Blood, 2016, 127, 3180-3191.	0.6	18
55	RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nature Immunology, 2016, 17, 1352-1360.	7.0	115
56	Deletion of Wiskott–Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nature Communications, 2016, 7, 12175.	5.8	31
57	F-actin remodeling defects as revealed in primary immunodeficiency disorders. Clinical Immunology, 2016, 164, 34-42.	1.4	8

CITATION REPORT

#	Article	IF	CITATIONS
58	Platelets in Wiskott-Aldrich syndrome: Victims or executioners?. Journal of Leukocyte Biology, 2018, 103, 577-590.	1.5	14
59	Defective thymic output in WAS patients is associated with abnormal actin organization. Scientific Reports, 2017, 7, 11978.	1.6	7
60	Wiskottâ€Aldrich syndrome protein: Emerging mechanisms in immunity. European Journal of Immunology, 2017, 47, 1857-1866.	1.6	72
61	The Wiskott-Aldrich Syndrome Protein Contributes to the Assembly of the LFA-1 Nanocluster Belt at the Lytic Synapse. Cell Reports, 2018, 22, 979-991.	2.9	41
62	R-loops cause genomic instability in T helper lymphocytes from patients with Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2018, 142, 219-234.	1.5	39
63	Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. Journal of Clinical Immunology, 2018, 38, 13-27.	2.0	156
64	T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency. Blood, 2018, 132, 2362-2374.	0.6	99
65	When WAS Gene Diagnosis Is Needed: Seeking Clues Through Comparison Between Patients With Wiskott-Aldrich Syndrome and Idiopathic Thrombocytopenic Purpura. Frontiers in Immunology, 2019, 10, 1549.	2.2	15
66	WASp Is Essential for Effector-to-Memory conversion and for Maintenance of CD8+T Cell Memory. Frontiers in Immunology, 2019, 10, 2262.	2.2	5
67	Peripheral eosinophilia in primary immunodeficiencies of actin dysregulation: A case series of Wiskott-Aldrich syndrome, CARMIL2 and DOCK8 deficiency and review of the literature. Annals of Diagnostic Pathology, 2019, 43, 151413.	0.6	17
68	The role of WASp in T cells and B cells. Cellular Immunology, 2019, 341, 103919.	1.4	18
69	Wiskott-Aldrich syndrome protein may be critical for CD8+ T cell function following MCMV infection. Cellular Immunology, 2019, 338, 43-50.	1.4	1
70	Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunological Reviews, 2019, 287, 121-134.	2.8	40
71	Activation of compensatory pathways via Rac2 in the absence of the Cdc42 effector Wiskott-Aldrich syndrome protein in Dendritic cells. Small GTPases, 2019, 10, 81-88.	0.7	10
72	Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Frontiers in Immunology, 2020, 11, 581119.	2.2	6
73	Wiskott-Aldrich Syndrome in four male siblings from a consanguineous family from Lebanon. Clinical Immunology, 2020, 219, 108573.	1.4	6
74	Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. International Review of Cell and Molecular Biology, 2020, 356, 1-97.	1.6	4
75	Primary Atopic Disorders. Annual Review of Immunology, 2020, 38, 785-808.	9.5	40

CITATION REPORT

#	Article	IF	CITATIONS
76	Clinical and genetic analysis of 2 rare cases of Wiskott–Aldrich syndrome from Chinese minorities. Medicine (United States), 2021, 100, e25527.	0.4	3
77	Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Frontiers in Cell and Developmental Biology, 2021, 9, 665519.	1.8	26
78	Wiskott-Aldrich Syndrome Protein: Roles in Signal Transduction in T Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 674572.	1.8	11
79	Autoimmunity in Wiskott–Aldrich Syndrome: Updated Perspectives. The Application of Clinical Genetics, 2021, Volume 14, 363-388.	1.4	15
80	Immunological Synapse Formation: Cell Polarity During T Cell–APC Interaction. , 2015, , 247-275.		4
81	Plasticity of Immunological Synapses. Current Topics in Microbiology and Immunology, 2010, 340, 209-228.	0.7	12
82	IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function. Journal of Clinical Investigation, 2011, 121, 1535-1548.	3.9	75
83	Lentiviral-mediated gene therapy restores B cell tolerance in Wiskott-Aldrich syndrome patients. Journal of Clinical Investigation, 2015, 125, 3941-3951.	3.9	43
84	WASP, Tregs, and food allergies — rare disease provides insight into a common problem. Journal of Clinical Investigation, 2016, 126, 3728-3730.	3.9	3
85	Discs Large Homolog 1 Splice Variants Regulate p38 –Dependent and –Independent Effector Functions in CD8+ T Cells. PLoS ONE, 2015, 10, e0133353.	1.1	11
87	Genetic Predispositions for Hematologic and Lymphoid Disorders. Molecular Pathology Library, 2010, , 21-64.	0.1	0
88	Biology of Lymphocytes. , 2014, , 203-214.		4
89	Wiskott-Aldrich Syndrome With Normal-Sized Platelets in an Eighteen-Month-Old Boy: A Rare Mutation. Journal of Pediatrics Review, 2015, 3, .	0.1	1
90	Wiskott-Aldrich Syndrome Deficiency. , 2019, , 1-8.		0
91	Wiskott-Aldrich Syndrome Deficiency. , 2020, , 697-704.		0
92	IL-17-Dependent Dysregulated Cutaneous Immune Homeostasis in the Absence of the Wiskott–Aldrich Syndrome Protein. Frontiers in Immunology, 2022, 13, 817427.	2.2	1
93	Clinical Features, Cancer Biology, Transplant Approach and Other Integrated Management Strategies for Wiskott–Aldrich Syndrome. Journal of Multidisciplinary Healthcare, 2021, Volume 14, 3497-3512.	1.1	6
98	Atopy as Immune Dysregulation: Offender Genes and Targets. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1737-1756.	2.0	15

#	Article	IF	CITATIONS
99	T-helper-2 cells and atopic disease: lessons learnt from inborn errors of immunity. Current Opinion in Immunology, 2023, 81, 102298.	2.4	3
100	Understanding immunoactinopathies: A decade of research on <i>WAS</i> gene defects. Pediatric Allergy and Immunology, 2023, 34, .	1.1	4