Pneumatically driven peristaltic micropumps utilizing

Journal of Micromechanics and Microengineering 16, 341-348 DOI: 10.1088/0960-1317/16/2/019

Citation Report

#	Article	IF	CITATIONS
1	Geophysical turbulence. Russian Mathematical Surveys, 1983, 38, 127-149.	0.6	1
2	Pneumatic micropumps with serially connected actuation chambers. Journal of Micromechanics and Microengineering, 2006, 16, 2265-2272.	2.6	91
3	A cell counting/sorting system incorporated with a microfabricated flow cytometer chip. Measurement Science and Technology, 2006, 17, 2001-2009.	2.6	117
4	The hydrodynamic focusing effect inside rectangular microchannels. Journal of Micromechanics and Microengineering, 2006, 16, 1024-1032.	2.6	188
5	A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices. Journal of Micromechanics and Microengineering, 2006, 16, 2396-2402.	2.6	129
6	Micro Flow Cytometer Chip Integrated with Micro-Pumps/Micro-Valves for Multi-Wavelength Cell Counting and Sorting. Japanese Journal of Applied Physics, 2007, 46, 3126-3134.	1.5	23
7	A novel two-stage backpressure-independent micropump: modeling and characterization. Journal of Micromechanics and Microengineering, 2007, 17, 949-959.	2.6	36
8	An electrochemical albumin-sensing system utilizing microfluidic technology. Journal of Micromechanics and Microengineering, 2007, 17, 835-842.	2.6	17
9	An electronic Venturi-based pressure microregulator. Lab on A Chip, 2007, 7, 1791.	6.0	13
10	A review of MEMS drug delivery in medical application. IFMBE Proceedings, 2007, , 312-315.	0.3	5
11	Automatic microfluidic platform for cell separation and nucleus collection. Biomedical Microdevices, 2007, 9, 533-543.	2.8	54
12	Integrated microfluidic systems for automatic glucose sensing and insulin injection. Sensors and Actuators B: Chemical, 2007, 122, 461-468.	7.8	74
13	A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture. Biomedical Microdevices, 2008, 10, 309-319.	2.8	86
14	The good, the bad, and the tiny: a review of microflow cytometry. Analytical and Bioanalytical Chemistry, 2008, 391, 1485-1498.	3.7	216
15	Microcapillary electrophoresis chips utilizing controllable microâ€lens structures and buried optical fibers for onâ€line optical detection. Electrophoresis, 2008, 29, 1866-1873.	2.4	23
16	Development of perfusion-based micro 3-D cell culture platform and its application for high throughput drug testing. Sensors and Actuators B: Chemical, 2008, 129, 231-240.	7.8	67
17	A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch. Sensors and Actuators B: Chemical, 2008, 135, 388-397.	7.8	32
18	Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection. Biosensors and Bioelectronics, 2008, 24, 855-862.	10.1	128

ATION REDO

#	Article	IF	CITATIONS
19	A microfluidic device for precise pipetting. Journal of Micromechanics and Microengineering, 2008, 18, 035004.	2.6	11
20	A disposable planar peristaltic pump for lab-on-a-chip. Lab on A Chip, 2008, 8, 660.	6.0	38
21	Microfluidic Systems Integrated With a Sample Pretreatment Device for Fast Nucleic-Acid Amplification. Journal of Microelectromechanical Systems, 2008, 17, 288-301.	2.5	27
22	Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system. Journal of Micromechanics and Microengineering, 2008, 18, 035019.	2.6	51
23	The self-generated peristaltic motion of cascaded pneumatic actuators for micro pumps. Journal of Micromechanics and Microengineering, 2008, 18, 085017.	2.6	22
24	A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance. Journal of Micromechanics and Microengineering, 2008, 18, 045008.	2.6	43
25	Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication. Biomicrofluidics, 2009, 3, 012007.	2.4	53
26	Development and characterization of thermopneumatic peristaltic micropumps. Journal of Micromechanics and Microengineering, 2009, 19, 025003.	2.6	26
27	A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls. Sensors, 2009, 9, 2611-2620.	3.8	33
28	Current micropump technologies and their biomedical applications. Microsystem Technologies, 2009, 15, 647-666.	2.0	278
29	A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure. Microfluidics and Nanofluidics, 2009, 6, 823-833.	2.2	83
30	A microfluidic-based system using reverse transcription polymerase chain reactions for rapid detection of aquaculture diseases. Microfluidics and Nanofluidics, 2009, 7, 795-806.	2.2	30
31	Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system. Biomedical Microdevices, 2009, 11, 161-171.	2.8	57
32	Magnetic-bead-based microfluidic system for ribonucleic acid extraction and reverse transcription processes. Biomedical Microdevices, 2009, 11, 339-350.	2.8	42
33	A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures. Biomedical Microdevices, 2009, 11, 1297-1307.	2.8	25
34	A miniaturized quantitative polymerase chain reaction system for DNA amplification and detection. Sensors and Actuators B: Chemical, 2009, 141, 329-337.	7.8	45
35	A tunable micro filter modulated by pneumatic pressure for cell separation. Sensors and Actuators B: Chemical, 2009, 142, 389-399.	7.8	41
36	An integrated microfluidic system for C-reactive protein measurement. Biosensors and Bioelectronics, 2009, 24, 3091-3096.	10.1	82

#	Article	IF	CITATIONS
37	A vortex-type micromixer utilizing pneumatically driven membranes. Journal of Micromechanics and Microengineering, 2009, 19, 035020.	2.6	61
38	Microcapillary Electrophoresis Chip Device Integrated with Micro Focusing Lens Structures and Its Biomedical Applications. Fooyin Journal of Health Sciences, 2009, 1, 11-20.	0.2	0
39	Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab on A Chip, 2009, 9, 3118.	6.0	126
40	Size-controlled synthesis of gold nanoparticles using a micro-mixing system. Microfluidics and Nanofluidics, 2010, 8, 303-311.	2.2	70
41	Three-dimensional microfluidic chip for the extraction of mitochondrial DNA. Microfluidics and Nanofluidics, 2010, 9, 489-498.	2.2	10
43	An integrated microfluidic system for isolation, counting, and sorting of hematopoietic stem cells. Biomicrofluidics, 2010, 4, .	2.4	38
45	A planar PDMS micropump using in-contact minimized-leakage check valves. Journal of Micromechanics and Microengineering, 2010, 20, 095033.	2.6	31
46	Fabrication of Peristaltic Micropump Driven by a Single-Phase Pneumatic Force. Japanese Journal of Applied Physics, 2010, 49, 056506.	1.5	5
47	Microfluidic cell culture systems for drug research. Lab on A Chip, 2010, 10, 939.	6.0	364
48	Electroactive Elastomeric Actuator for All-Polymer Linear Peristaltic Pumps. IEEE/ASME Transactions on Mechatronics, 2010, 15, 460-470.	5.8	79
49	Design and dynamic characterization of "single-stroke―peristaltic PDMS micropumps. Lab on A Chip, 2011, 11, 336-342.	6.0	54
51	A vacuum-driven peristaltic micropump with valved actuation chambers. Journal of Micromechanics and Microengineering, 2011, 21, 065034.	2.6	15
52	Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Reviews of Modern Physics, 2011, 83, 647-704.	45.6	742
53	A suction-type, pneumatic microfluidic device for liquid transport and mixing. Microfluidics and Nanofluidics, 2011, 10, 301-310.	2.2	72
54	An integrated microfluidic system for counting of CD4+/CD8+ T lymphocytes. Microfluidics and Nanofluidics, 2011, 10, 531-541.	2.2	27
55	Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes. Microfluidics and Nanofluidics, 2011, 10, 761-771.	2.2	78
56	A Fully Polymeric Mouldable Microfluidic Device. Part 1: The Process of Design. Macromolecular Materials and Engineering, 2011, 296, 1081-1090.	3.6	5
57	A multiâ€functional electrochemical sensing system using microfluidic technology for the detection of urea and creatinine. Electrophoresis, 2011, 32, 931-938.	2.4	28

#	Article	IF	CITATIONS
58	Research on a Peristaltic Micropump with Normally Closed Valves Driven By Vacuum Pressure. Advanced Materials Research, 0, 529, 200-204.	0.3	0
59	Fluid-structure interaction in deformable microchannels. Physics of Fluids, 2012, 24, .	4.0	53
60	Rapid detection of live methicillin-resistant <i>Staphylococcus aureus</i> by using an integrated microfluidic system capable of ethidium monoazide pre-treatment and molecular diagnosis. Biomicrofluidics, 2012, 6, 34119.	2.4	25
61	A new micropump using amplified deformation of resilient membranes. , 2013, , .		0
62	A microfluidic immunomagnetic bead-based system for the rapid detection of influenza infections: from purified virus particles to clinical specimens. Biomedical Microdevices, 2013, 15, 539-551.	2.8	37
63	An integrated microfluidic cell culture system for high-throughput perfusion three-dimensional cell culture-based assays: effect of cell culture model on the results of chemosensitivity assays. Lab on A Chip, 2013, 13, 1133.	6.0	55
64	A peristaltic micropump using traveling waves on a polymer membrane. Journal of Micromechanics and Microengineering, 2013, 23, 085024.	2.6	14
65	Body on a Chip: Re-Creation of a Living System In Vitro. IEEE Nanotechnology Magazine, 2013, 7, 6-14.	1.3	7
66	Design and characterisation of a threeâ€forked micropump on a fluid circulation channel. Micro and Nano Letters, 2013, 8, 70-73.	1.3	1
67	Formation of Tunable, Emulsion Micro-Droplets Utilizing Flow-Focusing Channels and a Normally-Closed Micro-Valve. Micromachines, 2013, 4, 306-320.	2.9	11
68	Pneumatically actuated biomimetic particle transporter. , 2014, , .		2
69	Piezoelectric peristaltic micropump with a single actuator. Journal of Micromechanics and Microengineering, 2014, 24, 105010.	2.6	23
70	Optically induced dielectropheresis sorting with automated medium exchange in an integrated optofluidic device resulting in higher cell viability. Lab on A Chip, 2014, 14, 2837-2843.	6.0	12
71	A micropump using amplified deformation of resilient membranes through oil hydraulics. Microfluidics and Nanofluidics, 2014, 17, 393-400.	2.2	3
72	Development of a pneumatically driven active cover lid for multi-well microplates for use in perfusion three-dimensional cell culture. Scientific Reports, 2015, 5, 18352.	3.3	12
73	Deformation Analysis of a Pneumatically-Activated Polydimethylsiloxane (PDMS) Membrane and Potential Micro-Pump Applications. Micromachines, 2015, 6, 216-229.	2.9	27
74	Dynamic formation of a microchannel array enabling kinesin-driven microtubule transport between separate compartments on a chip. Lab on A Chip, 2015, 15, 2055-2063.	6.0	8
75	Dielectric elastomer peristaltic pump module with finite deformation. Smart Materials and Structures, 2015, 24, 075026.	3.5	35

	Сітатіс	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
76	Peristaltic transport of bi-viscosity fluids through a curved tube: A mathematical model for intestinal flow. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2016, 230, 817-828.	1.8	17
77	Innovative Micro Gas Pumping Via Liquid Dielectrophoresis With Zero-Dead Volume and Leak-tight Features. Journal of Microelectromechanical Systems, 2016, 25, 884-889.	2.5	2
79	Microfluidics for Biologists. , 2016, , .		16
80	Numerical and experimental studies of phase difference effects on flow rate of peristaltic micro-pumps with pumping chambers in series configurations. Microsystem Technologies, 2017, 23, 329-341.	2.0	4
81	Micro real-time PCR device using a circulation pump. Microsystem Technologies, 2017, 23, 4405-4412.	2.0	2
82	Microfluidic diafiltration-on-chip using an integrated magnetic peristaltic micropump. Lab on A Chip, 2017, 17, 3796-3803.	6.0	19
83	Microtechnology for Cell Manipulation and Sorting. Microsystems and Nanosystems, 2017, , .	0.1	21
84	Gravity-Driven Fluid Pumping and Cell Manipulation. Microsystems and Nanosystems, 2017, , 175-192.	0.1	2
85	3D-printed Quake-style microvalves and micropumps. Lab on A Chip, 2018, 18, 1207-1214.	6.0	119
86	Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification. Technology, 2018, 06, 1-23.	1.4	34
87	Microfluidic dual loops reactor for conducting a multistep reaction. Frontiers of Chemical Science and Engineering, 2018, 12, 239-246.	4.4	6
88	Property Investigation of Replaceable PDMS Membrane as an Actuator in Microfluidic Device. Actuators, 2018, 7, 68.	2.3	9
89	Transient peristaltic diffusion of nanofluids: A model of micropumps in medical engineering. Journal of Hydrodynamics, 2018, 30, 1001-1011.	3.2	26
90	Pneumatic Actuated Linear Peristaltic Micro Pump for Standalone and On-Chip Applications. , 2018, , .		0
91	Optimization of Micropump Performance Utilizing a Single Membrane with an Active Check Valve. Micromachines, 2018, 9, 1.	2.9	82
92	Effect of Relative Permittivity with Strain in Dielectric Elastomer Peristaltic Actuator. IOP Conference Series: Materials Science and Engineering, 2019, 691, 012063.	0.6	4
93	Organs-on-a-chip engineering. , 2020, , 47-130.		11
94	A rotating permanent magnetic actuator for micropumping devices with magnetic nanofluids. Journal of Micromechanics and Microengineering, 2020, 30, 075012.	2.6	19

#	Article	IF	CITATIONS
95	Shape optimization of Stokesian peristaltic pumps using boundary integral methods. Advances in Computational Mathematics, 2020, 46, 1.	1.6	5
96	Frequency-specific, valveless flow control in insect-mimetic microfluidic devices. Bioinspiration and Biomimetics, 2021, 16, 036004.	2.9	4
97	A review of peristaltic micropumps. Sensors and Actuators A: Physical, 2021, 326, 112602.	4.1	44
98	Microvalves and Micropumps for BioMEMS. Micromachines, 2011, 2, 179-220.	2.9	266
99	Experimental Study of the Behavior Characteristics of Actuator Diaphragms in Thermopneumatic Micropumps. Transactions of the Korean Society of Mechanical Engineers, B, 2010, 34, 599-606.	0.1	0
100	Peristaltic Pumps. , 2013, , 1-12.		0
101	Valve-Less Rectification Pumps. , 2014, , 1-20.		0
102	Pneumatically-Driven Micropump Using Active Check-Valve for Liquid Transportation. Lecture Notes in Networks and Systems, 2020, , 599-606.	0.7	0
103	A transport of Jeffrey model viscoelastic fluid by complex peristalsis motion of nonuniform curved channel's walls under resistance of magnetic field. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 0, , e202100067.	1.6	2
104	Fabricating plasma bonded microfluidic chips by CO2 laser machining of PDMS by the application of viscoelastic particle focusing and droplet generation. Journal of Manufacturing Processes, 2022, 73, 260-268.	5.9	7
105	EMHD creeping rheology of nanofluid through a micro-channel via ciliated propulsion under porosity and thermal effects. Case Studies in Thermal Engineering, 2022, 30, 101746.	5.7	31
107	Recent trends of silicon elastomer-based nanocomposites and their sensing applications. Journal of Polymer Research, 2022, 29, .	2.4	11
108	Applying Hybrid Bonding Technique to Manufacture A Peristaltic Micropump With Extremely High Flow Rate. , 2022, , .		0
109	Engineering an extremely high flow rate micropump and integrating with an inertial microfluidics for rapid and efficient blood plasma extraction from fingertip blood with lancets. Sensors and Actuators A: Physical, 2023, 358, 114430.	4.1	2
110	Pneumatic Microballoons for Active Control of the Vibration-Induced Flow. Micromachines, 2023, 14, 2010.	2.9	0