Nuclear multifragmentation within the framework of d

Physical Review C 73,

DOI: 10.1103/physrevc.73.024613

Citation Report

#	Article	IF	CITATIONS
1	Comparisons of statistical multifragmentation and evaporation models for heavy-ion collisions. European Physical Journal A, 2006, 30, 129-139.	1.0	29
2	Effects of geometric constraints on the nuclear multifragmentation process. Physical Review C, 2007, 76, .	1.1	5
3	Fragmentation experiment and model for falling mercury drops. Physica A: Statistical Mechanics and Its Applications, 2007, 375, 375-380.	1.2	3
4	COMPARISON OF STATISTICAL TREATMENTS FOR THE EQUATION OF STATE FOR CORE-COLLAPSE SUPERNOVAE. Astrophysical Journal, 2009, 707, 1495-1505.	1.6	25
5	Statistical multifragmentation model with Skyrme effective interactions. Physical Review C, 2009, 79, .	1.1	15
6	Temperature effects in nuclear isoscaling. Physical Review C, 2009, 80, .	1.1	14
7	Shear viscosity to entropy density ratio in nuclear multifragmentation. Physical Review C, 2010, 81, .	1.1	19
8	Isospin dependence of nuclear multifragmentation in statistical model. Chinese Physics C, 2011, 35, 567-571.	1.5	O
9	Symmetry Energy Effects in a Statistical Multifragmentation Model. Chinese Physics Letters, 2011, 28, 112102.	1.3	4
10	Monte Carlo Calculation of Fragment Distributions in Nuclear Reactions. Science and Technology of Nuclear Installations, 2012, 2012, 1-9.	0.3	3
11	Caloric curve for nuclear liquid–gas phase transition in relativistic mean-field hadronic model. Nuclear Physics A, 2012, 887, 1-21.	0.6	2
12	Many-particle correlations and Coulomb effects on temperatures from fragment momentum fluctuations. Physical Review C, 2017, 96, .	1.1	2
13	Dynamical and many-body correlation effects in the kinetic energy spectra of isotopes produced in nuclear multifragmentation. Physical Review C, 2018, 97, .	1.1	3
14	Post breakup dynamical evolution of fragments produced in nuclear multifragmentation. Nuclear Physics A, 2019, 989, 69-80.	0.6	3
15	Isobar correlations bearing information on the properties of hot disassembling nuclear sources. Physical Review C, 2020, 102 , .	1.1	1
16	Liquid–Gas phase transition in nuclei. Progress in Particle and Nuclear Physics, 2019, 105, 82-138.	5.6	50
17	Comparisons of statistical multifragmentation and evaporation models for heavy-ion collisions. , $2006, 129-139.$		0
18	Constraints from isoscaling on the source size in energetic heavy ion collisions. Physical Review C, 2022, 106, .	1.1	1