CITATION REPORT List of articles citing

A COMET'S CHEMICAL COMPOSITION

DOI: 10.1021/cen-v084n029.p007 Chemical & Engineering News, 2006, 84, 7.

Source: https://exaly.com/paper-pdf/41173949/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
47	One-pot electrocatalytic oxidation of glycerol to DHA. <i>Tetrahedron Letters</i> , 2006 , 47, 6993-6995	2	96
46	Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. <i>Biotechnology and Bioengineering</i> , 2006 , 94, 821-9	4.9	313
45	Anharmonic properties of the vibrational quantum computer. <i>Journal of Chemical Physics</i> , 2007 , 126, 204102	3.9	30
44	Green chemistry: the emergence of a transformative framework. <i>Green Chemistry Letters and Reviews</i> , 2007 , 1, 9-24	4.7	69
43	Acidic Mesoporous Silica for the Acetylation of Glycerol: Synthesis of Bioadditives to Petrol Fuel. <i>Energy & Energy & E</i>	4.1	219
42	Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. <i>Chemical Society Reviews</i> , 2008 , 37, 527-49	58.5	1330
41	A General Strategy for the Design of New Solid Catalysts for Environmentally Benign Conversions. <i>Topics in Catalysis</i> , 2009 , 52, 1630-1639	2.3	27
40	Synthesis and Stabilization of Novel Aliphatic Polycarbonate from Renewable Resource. <i>Macromolecules</i> , 2009 , 42, 9251-9254	5.5	43
39	Dehydratisierung von Glycerin zu Acrolein in der Gasphase an getrgerten Heteropolysüre-Katalysatoren. <i>Chemie-Ingenieur-Technik</i> , 2010 , 82, 1203-1210	0.8	6
38	In situ nitrogen enriched carbon for carbon dioxide capture. <i>Carbon</i> , 2010 , 48, 396-402	10.4	121
37	Platensimycin and platencin: promising antibiotics for future application in human medicine. <i>Journal of Antibiotics</i> , 2011 , 64, 705-10	3.7	58
36	Hydroxylated magnesium fluorides as environmentally friendly catalysts for glycerol acetylation. <i>Applied Catalysis B: Environmental</i> , 2011 , 107, 260-267	21.8	46
35	Cyclopentadienyl and pentamethylcyclopentadienyl ruthenium complexes as catalysts for the total deoxygenation of 1,2-hexanediol and glycerol. <i>Green Chemistry</i> , 2011 , 13, 357-366	10	32
34	The energy balance of soybean biodiesel in Brazil: a case study. <i>Biofuels, Bioproducts and Biorefining</i> , 2011 , 5, 185-197	5.3	27
33	Influence of alkaline metal on performance of supported silicotungstic acid catalysts in glycerol dehydration towards acrolein. <i>Applied Catalysis A: General</i> , 2011 , 393, 331-339	5.1	70
32	Direct catalytic conversion of glycerol to liquid-fuel classes over Ir R e supported on W-doped mesostructured silica. <i>Applied Catalysis A: General</i> , 2012 , 449, 163-171	5.1	5
31	Tuning of diglycerol yield and isomer distribution in oligomerization of glycerol supported by DFT-calculations. <i>Catalysis Communications</i> , 2012 , 25, 130-135	3.2	24

30	Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes. AMB Express, 2012, 2, 20	4.1	26
29	Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol. <i>Biotechnology and Bioprocess Engineering</i> , 2012 , 17, 671-678	3.1	19
28	Characterization of crude glycerol from biodiesel plants. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 5915-21	5.7	187
27	Optimization of culture conditions for 1,3-propanediol production from glycerol using a mutant strain of Klebsiella pneumoniae. <i>Applied Biochemistry and Biotechnology</i> , 2012 , 166, 127-37	3.2	29
26	Biotechnological conversion of glycerol to 2-amino-1,3-propanediol (serinol) in recombinant Escherichia coli. <i>Applied Microbiology and Biotechnology</i> , 2012 , 93, 357-65	5.7	11
25	Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes. <i>Bioprocess and Biosystems Engineering</i> , 2012 , 35, 85-92	3.7	27
24	Optimization of cultural conditions for conversion of glycerol to ethanol by Enterobacter aerogenes S012. <i>AMB Express</i> , 2013 , 3, 12	4.1	13
23	Enrichment of activated sludge for enhanced hydrogen production from crude glycerol. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 1319-1331	6.7	39
22	Wet oxidation of glycerol into fine organic acids: catalyst selection and kinetic evaluation. <i>Brazilian Journal of Chemical Engineering</i> , 2014 , 31, 913-923	1.7	15
21	Polyols and polyurethane foams from acid-catalyzed biomass liquefaction by crude glycerol: Effects of crude glycerol impurities. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	11
20	Microbial Conversion of Crude Glycerol to Dihydroxyacetone. <i>Waste and Biomass Valorization</i> , 2014 , 5, 781-787	3.2	6
19	Enhanced CO2 capture in Fe3O4-graphene nanocomposite by physicochemical adsorption. <i>Journal of Applied Physics</i> , 2014 , 116, 064306	2.5	32
18	Experimental and modelling studies of carbon dioxide adsorption by porous biomass derived activated carbon. <i>Clean Technologies and Environmental Policy</i> , 2014 , 16, 1353-1361	4.3	59
17	Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 1238-54	4.8	215
16	Preparation of lignin/glycerol-based bis(cyclic carbonate) for the synthesis of polyurethanes. <i>Green Chemistry</i> , 2015 , 17, 4546-4551	10	63
15	Selective electro-oxidation of glycerol over Au supported on extended poly(4-vinylpyridine) functionalized graphene. <i>Applied Catalysis B: Environmental</i> , 2015 , 166-167, 25-31	21.8	14
14	Jatropha and Karanja oil derived DMCBiodiesel synthesis: A kinetics study. Fuel, 2015 , 140, 597-608	7.1	60
13	Alcohol-treated SiO2 as the support of Ir-Re/SiO2 catalysts for glycerol hydrogenolysis. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 2009-2017	11.3	14

12	Dissolved chloride markedly changes the nanostructure of the protic ionic liquids propylammonium and ethanolammonium nitrate. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 17169-82	3.6	11
11	Volume accessibility of acid sites in modified montmorillonite and triacetin selectivity in acetylation of glycerol. <i>RSC Advances</i> , 2016 , 6, 45819-45828	3.7	20
10	Environmentally Friendly Coatings. 2016 , 183-223		4
9	Processing of vegetable oil for biofuel production through conventional and non-conventional routes. <i>Energy for Sustainable Development</i> , 2016 , 31, 24-49	5.4	52
8	Selective hydrogenolysis of glycerol to 1,3-propanediol over egg-shell type Ir R eOx catalysts. <i>RSC Advances</i> , 2016 , 6, 13600-13608	3.7	25
7	Continuous fermentation and kinetic experiments for the conversion of crude glycerol derived from second-generation biodiesel into 1,3 propanediol and butyric acid. <i>Biochemical Engineering Journal</i> , 2017 , 128, 149-161	4.2	29
6	Dehydrogenation of alcohols and polyols from a hydrogen production perspective. <i>ChemistrySelect</i> , 2018 , 3,	1.8	1
5	Preparation, characterization, and catalytic behavior of xMO/yNaZSM-5 catalyst for dichlorohydrin dechlorination reaction. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2018 , 13, e2194	1.3	1
4	Carbon Dioxide Capture by Deep Eutectic Solvent Impregnated Sea Mango Activated Carbon. <i>E3S Web of Conferences</i> , 2018 , 34, 02030	0.5	2
3	Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes. <i>Applied Energy</i> , 2018 , 230, 1347-1379	10.7	36
2	Characterization analysis of activated carbon derived from the carbonization process of plane tree (Platanus orientalis) seeds. <i>Energy and Environment</i> , 2020 , 31, 583-612	2.4	3
1	Glycerol as Carbon Source for Production of Added-Value Compounds. 2017 , 93-123		3