Cassini Dust Measurements at Enceladus and Implication

Science 311, 1416-1418 DOI: 10.1126/science.1121375

Citation Report

#	Article	IF	CITATIONS
2	Toroidal Atmospheres around Extrasolar Planets. Publications of the Astronomical Society of the Pacific, 2006, 118, 1136-1143.	3.1	33
3	Enceladus: A significant plasma source for Saturn's magnetosphere. Journal of Geophysical Research, 2006, 111, .	3.3	57
4	Model of secondary emission and its application on the charging of gold dust grains. Physical Review B, 2006, 74, .	3.2	19
5	Enceladus' Varying Imprint on the Magnetosphere of Saturn. Science, 2006, 311, 1412-1415.	12.6	57
6	Enceladus: A Source of Nitrogen and an Explanation for the Water Vapor Plume Observed by Cassini. Astrophysical Journal, 2006, 649, L133-L136.	4.5	34
7	The Enceladus and OH Tori at Saturn. Astrophysical Journal, 2006, 644, L137-L139.	4.5	116
8	Science-Driven Design of ENCELADUS Flyby Geometry. , 2006, , .		4
10	Cassini RPWS observations of dust in Saturn's E Ring. Planetary and Space Science, 2006, 54, 988-998.	1.7	91
11	The electrostatic potential of E ring particles. Planetary and Space Science, 2006, 54, 999-1006.	1.7	74
12	Two stages of dust delivery from satellites to planetary rings. Planetary and Space Science, 2006, 54, 1014-1023.	1.7	8
13	In situ dust measurements in the inner Saturnian system. Planetary and Space Science, 2006, 54, 967-987.	1.7	50
14	E ring dust sources: Implications from Cassini's dust measurements. Planetary and Space Science, 2006, 54, 1024-1032.	1.7	59
15	A Clathrate Reservoir Hypothesis for Enceladus' South Polar Plume. Science, 2006, 314, 1764-1766.	12.6	156
16	Enceladus: Cosmic Gymnast, Volatile Miniworld. Science, 2006, 311, 1389-1391.	12.6	58
17	Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot. Science, 2006, 311, 1401-1405.	12.6	481
18	Does Enceladus Govern Magnetospheric Dynamics at Saturn?. Science, 2006, 311, 1391-1392.	12.6	31
19	Cassini Observes the Active South Pole of Enceladus. Science, 2006, 311, 1393-1401.	12.6	1,008
20	Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure. Science, 2006, 311, 1419-1422.	12.6	590

#	Article	IF	CITATIONS
21	NUCLEATION AND GROWTH OF A SOLID PHASE IN A GAS EXPANDING INTO VACUUM. International Journal of Modern Physics C, 2007, 18, 676-684.	1.7	5
22	Major Satellites of the Giant Planets. , 2007, , 1-29.		1
23	Interiors and Evolution of Icy Satellites. , 2007, , 509-539.		8
24	Signatures of Enceladus in Saturn's E ring. Geophysical Research Letters, 2007, 34, .	4.0	22
25	Electron sources in Saturn's magnetosphere. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	83
26	Electron microdiffusion in the Saturnian radiation belts: Cassini MIMI/LEMMS observations of energetic electron absorption by the icy moons. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	63
27	Mass loading of Saturn's magnetosphere near Enceladus. Journal of Geophysical Research, 2007, 112, .	3.3	64
28	Enceladus: Cassini observations and implications for the search for life. Astronomy and Astrophysics, 2007, 463, 353-357.	5.1	41
29	Monte Carlo simulations of the water vapor plumes on Enceladus. Icarus, 2007, 188, 154-161.	2.5	78
30	Degree-one convection and the origin of Enceladus' dichotomy. Icarus, 2007, 191, 203-210.	2.5	28
31	Shear heating as the origin of the plumes and heat flux on Enceladus. Nature, 2007, 447, 289-291.	27.8	232
32	The composition of Saturn's E ring. Monthly Notices of the Royal Astronomical Society, 2007, 377, 1588-1596.	4.4	73
33	Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating. Icarus, 2007, 188, 345-355.	2.5	141
34	Enceladus' south polar sea. Icarus, 2007, 189, 72-82.	2.5	104
35	The Charging of Planetary Rings. Space Science Reviews, 2008, 137, 435-453.	8.1	21
36	In den eisigen Welten des Saturn. Planetenforschung. Physik in Unserer Zeit, 2008, 39, 220-228.	0.0	1
37	lon and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results. Planetary and Space Science, 2008, 56, 3-18.	1.7	119
38	Interpretation of high rate dust measurements with the Cassini dust detector CDA. Planetary and Space Science, 2008, 56, 378-385	1.7	10

#	Article	IF	CITATIONS
39	Geysers of Enceladus: Quantitative analysis of qualitative models. Planetary and Space Science, 2008, 56, 1596-1606.	1.7	26
40	Radiation effects in ice: New results. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 3057-3062.	1.4	23
41	The E ring in the vicinity of Enceladus. Icarus, 2008, 193, 420-437.	2.5	114
42	The E-ring in the vicinity of Enceladus. Icarus, 2008, 193, 438-454.	2.5	126
43	A model for the temperature-dependence of tidal dissipation in convective plumes on icy satellites: Implications for Europa and Enceladus. Icarus, 2008, 195, 758-764.	2.5	37
44	Release of N2, CH4, CO2, and H2O from surface ices on Enceladus. Icarus, 2008, 197, 152-156.	2.5	7
45	Model of explosive eruptions of water vapor and dust on icy satellites. Solar System Research, 2008, 42, 124-138.	0.7	1
46	Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures. Nature, 2008, 451, 685-688.	27.8	162
47	Water vapour jets inside the plume of gas leaving Enceladus. Nature, 2008, 456, 477-479.	27.8	115
48	Largeâ€scale structure of Saturn's Eâ€ring. Geophysical Research Letters, 2008, 35, .	4.0	53
49	Investigating the origins of the Jovian decimetric emission's variability. Journal of Geophysical Research, 2008, 113, .	3.3	22
50	Identification of Saturn's magnetospheric regions and associated plasma processes: Synopsis of Cassini observations during orbit insertion. Reviews of Geophysics, 2008, 46, .	23.0	23
51	The Charging of Planetary Rings. Space Sciences Series of ISSI, 2008, , 435-453.	0.0	0
52	Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations. Geophysical Research Letters, 2008, 35, .	4.0	78
53	Is Enceladus' plume tidally controlled?. Geophysical Research Letters, 2008, 35, .	4.0	16
54	Mission Concepts for Studying Enceladus. AIP Conference Proceedings, 2008, , .	0.4	2
55	First High Solar Phase Angle Observations of Rhea Using <i>Cassini</i> VIMS: Upper Limits on Water Vapor and Geologic Activity. Astrophysical Journal, 2008, 680, L65-L68.	4.5	7
56	IS THE 3.5 μm INFRARED FEATURE ON ENCELADUS DUE TO HYDROGEN PEROXIDE?. Astrophysical Journal, 2009, 694, L92-L94.	4.5	13

#	Article	IF	CITATIONS
57	Deep Space Craft. , 2009, , .		9
58	Characteristics of charged dust inferred from the Cassini RPWS measurements in the vicinity of Enceladus. Planetary and Space Science, 2009, 57, 1807-1812.	1.7	49
59	Crater modification and geologic activity in Enceladus' heavily cratered plains: Evidence from the impact crater distribution. Icarus, 2009, 202, 656-668.	2.5	69
60	Saturn Satellites as Seen by Cassini Mission. Earth, Moon and Planets, 2009, 105, 289-310.	0.6	4
61	Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 2009, 459, 1098-1101.	27.8	435
62	Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature, 2009, 460, 487-490.	27.8	470
63	Enceladus with a grain of salt. Nature, 2009, 459, 1067-1068.	27.8	5
64	The stress of forming blood cells. Nature, 2009, 459, 1068-1069.	27.8	13
65	Endogenic heat from Enceladus' south polar fractures: New observations, and models of conductive surface heating. Icarus, 2009, 199, 189-196.	2.5	55
66	Fine jet structure of electrically charged grains in Enceladus' plume. Geophysical Research Letters, 2009, 36, .	4.0	86
67	A cometary perspective of Enceladus. Proceedings of the International Astronomical Union, 2009, 5, 151-156.	0.0	1
68	Magnetic Fields of the Satellites of Jupiter and Saturn. Space Science Reviews, 2010, 152, 271-305.	8.1	41
69	Induced Magnetic Fields in Solar System Bodies. Space Science Reviews, 2010, 152, 391-421.	8.1	58
70	Dione's spectral and geological properties. Icarus, 2010, 206, 631-652.	2.5	61
71	How the Enceladus dust plume feeds Saturn's E ring. Icarus, 2010, 206, 446-457.	2.5	125
72	Disk-integrated bolometric Bond albedos and rotational light curves of saturnian satellites from Cassini Visual and Infrared Mapping Spectrometer. Icarus, 2010, 206, 537-560.	2.5	39
73	Simulation of polyvinylidene fluoride detector response to hypervelocity particle impact. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 622, 583-587.	1.6	11
74	Interaction of Saturn's magnetosphere and its moons: 1. Interaction between corotating plasma and standard obstacles. Journal of Geophysical Research, 2010, 115, .	3.3	20

5

#	Article	IF	Citations
75	Detection and measurement of ice grains and gas distribution in the Enceladus plume by Cassini's Ion Neutral Mass Spectrometer. Journal of Geophysical Research, 2010, 115, .	3.3	56
76	An approach to numerical simulation of the gas distribution in the atmosphere of Enceladus. Journal of Geophysical Research, 2010, 115, .	3.3	31
77	Timeâ€varying magnetospheric environment near Enceladus as seen by the Cassini magnetometer. Geophysical Research Letters, 2010, 37, .	4.0	18
78	First results from the Venetia Burney Student Dust Counter on the New Horizons mission. Geophysical Research Letters, 2010, 37, .	4.0	38
79	Modification of the plasma in the nearâ€vicinity of Enceladus by the enveloping dust. Geophysical Research Letters, 2010, 37, .	4.0	26
80	Random fluctuation leads to forbidden escape of particles. Physical Review E, 2010, 82, 026211.	2.1	17
81	High heat flow from Enceladus' south polar region measured using 10–600 cm ^{â^'1} Cassini/CIRS data. Journal of Geophysical Research, 2011, 116, .	3.3	145
82	The composition and structure of the Enceladus plume. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	136
83	Cryoclastic origin of particles on the surface of Enceladus. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	16
84	Stream particles as the probe of the dust-plasma-magnetosphere interaction at Saturn. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	25
85	Influence of negatively charged plume grains on the structure of Enceladus' Alfvén wings: Hybrid simulations versus Cassini Magnetometer data. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56
86	Dusty plasma in the vicinity of Enceladus. Journal of Geophysical Research, 2011, 116, .	3.3	89
87	Brown dwarfs and free-floating planets. , 0, , 209-216.		0
88	Formation and evolution. , 0, , 217-254.		3
89	The auroral footprint of Enceladus on Saturn. Nature, 2011, 472, 331-333.	27.8	82
90	The lunar dust environment. Planetary and Space Science, 2011, 59, 1672-1680.	1.7	96
91	Compositional mapping of planetary moons by mass spectrometry of dust ejecta. Planetary and Space Science, 2011, 59, 1815-1825.	1.7	33
92	Mapping Magnetospheric Equatorial Regions at Saturn from Cassini Prime Mission Observations. Space Science Reviews, 2011, 164, 1-83.	8.1	40

		CITATION REPORT	
#	Article	IF	CITATIONS
93	The cosmic dust analyser onboard cassini: ten years of discoveries. CEAS Space Journal, 2011, 2, 3-16.	2.3	26
94	Modeling the secondary emission yield of salty ice dust grains. Icarus, 2011, 212, 367-372.	2.5	5
95	Characteristics of the dust–plasma interaction near Enceladus' South Pole. Planetary and Space Science, 2011, 59, 17-25.	1.7	43
96	A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature, 2011, 474, 620-622.	27.8	394
97	Mimas' far-UV albedo: Spatial variations. Icarus, 2012, 220, 922-931.	2.5	17
98	Saturn's icy satellites and rings investigated by Cassini–VIMS: III – Radial compositional variability. Icarus, 2012, 220, 1064-1096.	2.5	86
99	Microchip capillary electrophoresis instrumentation for in situ analysis in the search for extraterrestrial life. Electrophoresis, 2012, 33, 2624-2638.	2.4	44
100	Charged nanograins in the Enceladus plume. Journal of Geophysical Research, 2012, 117, .	3.3	71
101	Spacecraft charging near Enceladus. Geophysical Research Letters, 2012, 39, .	4.0	9
102	Enceladus: A hypothesis for bringing both heat and chemicals to the surface. Icarus, 2012, 221, 53-62.	2.5	46
103	The Cassini Enceladus encounters 2005–2010 in the view of energetic electron measurements. Icarus, 2012, 218, 433-447.	2.5	14
104	The electromagnetic pickup of submicron-sized dust above Enceladus's northern hemisphere. Icarus, 2012, 219, 498-501.	2.5	12
105	The Saturnian satellite Rhea as seen by Cassini VIMS. Planetary and Space Science, 2012, 61, 142-160.	1.7	38
106	Charging of ice grains in Saturn's E ring: theory and observations. Monthly Notices of the Royal Astronomical Society, 2012, 423, 176-184.	4.4	12
107	On the charge of nanograins in cold environments and Enceladus dust. Icarus, 2013, 226, 583-590.	2.5	14
108	The Science of Solar System Ices. Astrophysics and Space Science Library, 2013, , .	2.7	35
109	Constraints on the detection of cryovolcanic plumes on Europa. Planetary and Space Science, 2013, 86, 1-9.	1.7	34
110	Energetic aspects of Enceladus' magnetospheric interaction. Journal of Geophysical Research: Space Physics, 2013, 118, 3430-3445.	2.4	8

#	Article	IF	CITATIONS
111	Enceladus auroral hiss observations: Implications for electron beam locations. Journal of Geophysical Research: Space Physics, 2013, 118, 160-166.	2.4	8
112	Dust and spacecraft charging in Saturn's E ring. Earth, Planets and Space, 2013, 65, 149-156.	2.5	14
113	A novel particle source based on electrospray charging for dust accelerators and its significance for cosmic dust studies. Earth, Planets and Space, 2013, 65, 157-165.	2.5	5
114	Photoelectrons in the Enceladus plume. Journal of Geophysical Research: Space Physics, 2013, 118, 5099-5108.	2.4	13
115	Planetary volcanism. , 2013, , 384-413.		4
116	Auroral Processes Associated with Saturn's Moon Enceladus. Geophysical Monograph Series, 2013, , 305-314.	0.1	7
117	Discontinuities in the magnetic field near Enceladus. Geophysical Research Letters, 2014, 41, 3359-3366.	4.0	13
118	The Lunar Dust Experiment (LDEX) Onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission. Space Science Reviews, 2014, 185, 93-113.	8.1	97
119	Science goals and mission concept for the future exploration of Titan and Enceladus. Planetary and Space Science, 2014, 104, 59-77.	1.7	15
120	A model of the spatial and size distribution of Enceladus× ³ dust plume. Planetary and Space Science, 2014, 104, 216-233.	1.7	15
121	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	1.7	56
122	Thermophysical property variations across Dione and Rhea. Icarus, 2014, 241, 239-247.	2.5	23
123	HOW THE GEYSERS, TIDAL STRESSES, AND THERMAL EMISSION ACROSS THE SOUTH POLAR TERRAIN OF ENCELADUS ARE RELATED. Astronomical Journal, 2014, 148, 45.	4.7	129
124	Major Satellites of the Giant Planets. , 2014, , 313-334.		1
125	Random dust charge fluctuations in the nearâ€Enceladus plasma. Journal of Geophysical Research: Space Physics, 2014, 119, 6190-6198.	2.4	9
126	An estimate of the dust pickup current at Enceladus. Icarus, 2014, 239, 217-221.	2.5	8
127	Electron density inside Enceladus plume inferred from plasma oscillations excited by dust impacts. Journal of Geophysical Research: Space Physics, 2014, 119, 3373-3380.	2.4	22
128	Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft. Journal of Geophysical Research: Space Physics, 2014, 119, 6294-6312.	2.4	40

#	Article	IF	CITATIONS
129	Suprathermal magnetospheric minor ions heavier than water at Saturn: Discovery of ²⁸ M ⁺ seasonal variations. Journal of Geophysical Research: Space Physics, 2014, 119, 5662-5673.	2.4	11
130	lon densities and magnetic signatures of dust pickup at Enceladus. Journal of Geophysical Research: Space Physics, 2014, 119, 2740-2774.	2.4	38
131	Dust charging in the Enceladus torus. Journal of Geophysical Research: Space Physics, 2014, 119, 221-236.	2.4	9
132	Modeling Europa's dust plumes. Geophysical Research Letters, 2015, 42, 10,541.	4.0	24
133	Secondary electron emission from surfaces with small structure. Physical Review B, 2015, 92, .	3.2	7
134	Characteristics of ice grains in the Enceladus plume from Cassini observations. Journal of Geophysical Research: Space Physics, 2015, 120, 915-937.	2.4	34
135	Saturn Plasma Sources and Associated Transport Processes. Space Science Reviews, 2015, 192, 237-283.	8.1	25
136	Electrostatic solitary waves observed at Saturn by Cassini inside 10 <i>R_s</i> and near Enceladus. Journal of Geophysical Research: Space Physics, 2015, 120, 6569-6580.	2.4	34
137	Cassini INMS measurements of Enceladus plume density. Icarus, 2015, 257, 139-162.	2.5	24
138	Modeling the total dust production of Enceladus from stochastic charge equilibrium and simulations. Planetary and Space Science, 2015, 119, 208-221.	1.7	10
139	The Cassini-Huygens Visit to Saturn. , 2015, , .		25
140	Interiors and Evolution of Icy Satellites. , 2015, , 605-635.		24
141	A unified nomenclature for tectonic structures on the surface of Enceladus. Icarus, 2015, 258, 67-81.	2.5	14
142	2D models of gas flow and ice grain acceleration in Enceladus' vents using DSMC methods. Icarus, 2015, 257, 362-376.	2.5	4
144	A permanent, asymmetric dust cloud around the Moon. Nature, 2015, 522, 324-326.	27.8	174
145	On understanding the physics of the Enceladus south polar plume via numerical simulation. Icarus, 2015, 253, 205-222.	2.5	34
146	Particle-in-cell simulation of spacecraft/plasma interactions in the vicinity of Enceladus. Icarus, 2015, 257, 1-8.	2.5	7
147	Ongoing hydrothermal activities within Enceladus. Nature, 2015, 519, 207-210.	27.8	382

#	Article	IF	CITATIONS
148	Plasma regions, charged dust and field-aligned currents near Enceladus. Planetary and Space Science, 2015, 117, 453-469.	1.7	16
149	In-situ measurements of Saturn's dusty rings based on dust impact signals detected by Cassini RPWS. Icarus, 2016, 279, 51-61.	2.5	25
150	Detecting meteoroid streams with an in-situ dust detector above an airless body. Icarus, 2016, 275, 221-231.	2.5	25
151	THEO concept mission: Testing the Habitability of Enceladus's Ocean. Advances in Space Research, 2016, 58, 1117-1137.	2.6	13
152	Dusty plasma of the Enceladus plume. Plasma Physics and Controlled Fusion, 2016, 58, 014010.	2.1	5
153	An improved model for interplanetary dust fluxes in the outer Solar System. Icarus, 2016, 264, 369-386.	2.5	121
154	Investigation of diurnal variability of water vapor in Enceladus' plume by the Cassini ultraviolet imaging spectrograph. Geophysical Research Letters, 2017, 44, 672-677.	4.0	20
155	Ion trapping by dust grains: Simulation applications to the Enceladus plume. Journal of Geophysical Research E: Planets, 2017, 122, 729-743.	3.6	5
156	Radioisotope power system-based enceladus smallsat mission concept: Enceladus express. , 2017, , .		0
157	Deciphering sub-micron ice particles on Enceladus surface. Icarus, 2017, 290, 183-200.	2.5	22
158	Spatially resolved near infrared observations of Enceladus' tiger stripe eruptions from Cassini VIMS. Icarus, 2017, 292, 1-12.	2.5	10
159	Detecting and Characterizing Exomoons and Exorings. , 2017, , 1-17.		1
160	Ring detected around a dwarf planet. Nature, 2017, 550, 197-198.	27.8	0
161	Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations. Astrobiology, 2017, 17, 926-940.	3.0	43
163	Feasibility of Detecting Bioorganic Compounds in Enceladus Plumes with the Enceladus Organic Analyzer. Astrobiology, 2017, 17, 902-912.	3.0	35
164	High energy electron sintering of icy regoliths: Formation of the PacMan thermal anomalies on the icy Saturnian moons. Icarus, 2017, 285, 211-223.	2.5	13
165	Dusty Rings. , 0, , 308-337.		6
166	Laboratory Studies of Planetary Ring Systems. , 0, , 494-516.		1

#	Article	IF	CITATIONS
167	Physical Processes in the Dusty Plasma of the Enceladus Plume. Astrophysics and Space Science Library, 2018, , 241-262.	2.7	2
168	Modeling, Analysis, and Interpretation of Photoelectron Energy Spectra at Enceladus Observed by Cassini. Journal of Geophysical Research: Space Physics, 2018, 123, 287-296.	2.4	5
169	Energetic electron measurements near Enceladus by Cassini during 2005–2015. Icarus, 2018, 306, 256-274.	2.5	4
170	A planetary dust ring generated by impact-ejection from the Galilean satellites. Icarus, 2018, 303, 166-180.	2.5	3
171	Explorer of Enceladus and Titan (E2T): Investigating ocean worlds' evolution and habitability in the solar system. Planetary and Space Science, 2018, 155, 73-90.	1.7	26
172	Enceladus' near-surface CO2 gas pockets and surface frost deposits. Icarus, 2018, 302, 18-26.	2.5	8
173	Do we detect interplanetary dust with Faraday cups?. Planetary and Space Science, 2018, 156, 17-22.	1.7	1
174	Limits on Dione's Activity Using Cassini/CIRS Data. Geophysical Research Letters, 2018, 45, 5876-5898.	4.0	2
175	Life in the Universe. , 2018, , .		23
176	Dust Observations by the Radio and Plasma Wave Science Instrument During Cassini's Grand Finale. Geophysical Research Letters, 2018, 45, 10,101.	4.0	16
178	Dust Emission by Active Moons. Space Science Reviews, 2018, 214, 1.	8.1	3
179	Interplanetary dust delivery of water to the atmospheres of Pluto and Triton. Astronomy and Astrophysics, 2018, 617, L5.	5.1	5
180	Detecting and Characterizing Exomoons and Exorings. , 2018, , 835-851.		4
182	Radial velocities. , 0, , 17-80.		0
183	Astrometry. , 0, , 81-102.		0
184	Timing. , 0, , 103-118.		0
185	Microlensing. , 0, , 119-152.		0
187	Host stars. , 0, , 373-428.		0

#	Article	IF	CITATIONS
188	Brown dwarfs and free-floating planets. , 0, , 429-448.		0
189	Formation and evolution. , 0, , 449-558.		0
190	Interiors and atmospheres. , 0, , 559-648.		0
191	The solar system. , 0, , 649-700.		Ο
199	Review of Saturn's icy moons following the Cassini mission. Reports on Progress in Physics, 2018, 81, 065901.	20.1	9
200	Enceladus Auroral Hiss Emissions During Cassini's Grand Finale. Geophysical Research Letters, 2018, 45, 7347-7353.	4.0	16
201	Cladistical Analysis of the Jovian and Saturnian Satellite Systems. Astrophysical Journal, 2018, 859, 97.	4.5	11
202	Transits. , 0, , 153-328.		0
203	Dust Phenomena Relating to Airless Bodies. Space Science Reviews, 2018, 214, 1.	8.1	21
204	Cassini RPWS Dust Observation Near the Janus/Epimetheus Orbit. Journal of Geophysical Research: Space Physics, 2018, 123, 4952-4960.	2.4	9
205	The Search for Signatures of Life and Habitability on Planets and Moons of Our Solar System. , 2018, , 457-481.		2
206	Peptide Synthesis under the Alkaline Hydrothermal Conditions on Enceladus. ACS Earth and Space Chemistry, 2019, 3, 2559-2568.	2.7	20
207	Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5231-5243.	4.4	98
208	Using dust shed from asteroids as microsamples to link remote measurements with meteorite classes. Meteoritics and Planetary Science, 2019, 54, 2046-2066.	1.6	4
209	Differentiation of Enceladus and Retention of a Porous Core. Astrophysical Journal, 2019, 882, 47.	4.5	14
210	The contribution of Centaur-emitted dust to the interplanetary dust distribution. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2421-2429.	4.4	6
211	Chemical Ionization Mass Spectrometry: Applications for the In Situ Measurement of Nonvolatile Organics at Ocean Worlds. Astrobiology, 2019, 19, 1196-1210.	3.0	9
212	Circumplanetary Dust Populations. Space Science Reviews, 2019, 215, 1.	8.1	8

ARTICLE IF CITATIONS # Recovery of the ejecta velocity distribution by remote spacecraft measurements. Planetary and Space 213 1.7 0 Science, 2019, 165, 293-295. Ultraviolet observation of Enceladus' plume in transit across Saturn, compared to Europa. Icarus, 214 2.5 2019, 330, 256-260. How Adsorption Affects the Gas–Ice Partitioning of Organics Erupted from Enceladus. Astrophysical 215 4.5 16 Journal, 2019, 873, 28. Impact Ejecta and Gardening in the Lunar Polar Regions. Journal of Geophysical Research E: Planets, 216 <u>2019, 1</u>24, 143-154. Surface deposition of the Enceladus plume and the zenith angle of emissions. Icarus, 2019, 319, 33-42. 217 2.5 36 The composition and structure of Enceladus' plume from the complete set of Cassini UVIS occultation 2.5 observations. Icarus, 2020, 344, 113461. Magnetic Field Effect on Antenna Signals Induced by Dust Particle Impacts. Journal of Geophysical 219 2.4 8 Research: Space Physics, 2020, 125, e2019JA027245. Feasibility of Enceladus plume biosignature analysis: Successful capture of organic ice particles in 1.6 10 hypervelocity impacts. Meteoritics and Planetary Science, 2020, 55, . Key Technologies and Instrumentation for Subsurface Exploration of Ocean Worlds. Space Science 221 8.1 18 Reviews, 2020, 216, 1. Returning Samples From Enceladus for Life Detection. Frontiers in Astronomy and Space Sciences, 2.8 2020, 7, . An Analysis of the Statistics and Systematics of Limb Anomaly Detections in HST/STIS Transit Images of 223 4.710 Europa. Astronomical Journal, 2020, 159, 155. Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites. Space Science Reviews, 2020, 216, 1. 224 8.1 Characterizing organic particle impacts on inert metal surfaces: Foundations for capturing organic 225 molecules during hypervelocity transits of Enceladus plumes. Meteoritics and Planetary Science, 1.6 19 2020, 55, 465-479. Characterizing deposits emplaced by cryovolcanic plumes on Europa. Icarus, 2020, 343, 113667. 2.5 Experimental and Simulation Efforts in the Astrobiological Exploration of Exooceans. Space Science 227 8.1 25 Reviews, 2020, 216, 9. Method for detecting and quantitating capture of organic molecules in hypervelocity impacts. MethodsX, 2021, 8, 101239. 229 Ocean Worlds: A Roadmap for Science and Exploration., 2021, 53, . 0 Sampling Accelerated Micron Scale Ice Particles with a Quadrupole Ion Trap Mass Spectrometer. 2.8 Journal of the American Society for Mass Spectrometry, 2021, 32, 1162-1168.

#	Article	IF	CITATIONS
231	The Enceladus Orbilander Mission Concept: Balancing Return and Resources in the Search for Life. Planetary Science Journal, 2021, 2, 77.	3.6	74
232	Dione's Wispy Terrain: A Cryovolcanic Story?. Planetary Science Journal, 2021, 2, 83.	3.6	6
233	Sampling Plume Deposits on Enceladus' Surface to Explore Ocean Materials and Search for Traces of Life or Biosignatures. Planetary Science Journal, 2021, 2, 100.	3.6	8
234	Two-body model for the spatial distribution of dust ejected from an atmosphereless body. Astronomy and Astrophysics, 2021, 650, A186.	5.1	0
235	Exploration of Enceladus and Titan: investigating ocean worlds' evolution and habitability in the Saturn system. Experimental Astronomy, 2022, 54, 877-910.	3.7	3
236	The Science Case for a Return to Enceladus. Planetary Science Journal, 2021, 2, 132.	3.6	40
237	On the Feasibility of Informative Biosignature Measurements Using an Enceladus Plume Organic Analyzer. Planetary Science Journal, 2021, 2, 163.	3.6	6
238	ARTEMIS Observations of Lunar Nightside Surface Potentials in the Magnetotail Lobes: Evidence for Micrometeoroid Impact Charging. Geophysical Research Letters, 2021, 48, e2021GL094585.	4.0	1
239	Salt grains in hypervelocity impacts in the laboratory: Methods to sample plumes from the ice worlds Enceladus and Europa. Meteoritics and Planetary Science, 2021, 56, 1652-1668.	1.6	4
240	UMaMI: A New Frontiers-style Mission Concept to Explore the Uranian System. Planetary Science Journal, 2021, 2, 174.	3.6	11
241	Quantitative evaluation of the feasibility of sampling the ice plumes at Enceladus for biomarkers of extraterrestrial life. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
242	Nonlinear dust-acoustic modes in homogeneous dusty plasmas: bifurcation analysis. Physica Scripta, 2021, 96, 125611.	2.5	6
243	Tiger: Concept Study for a New Frontiers Enceladus Habitability Mission. Planetary Science Journal, 2021, 2, 195.	3.6	5
244	Detecting the surface composition of geological features on Europa and Ganymede using a surface dust analyzer. Planetary and Space Science, 2021, 208, 105343.	1.7	11
245	Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere. , 2009, , 393-453.		31
246	Diffuse Rings. , 2009, , 511-536.		22
247	Icy Satellites: Geological Evolution and Surface Processes. , 2009, , 637-681.		34
248	Enceladus: An Active Cryovolcanic Satellite. , 2009, , 683-724.		65

# 249	ARTICLE Saturn's Magnetospheric Configuration. , 2009, , 203-255.	IF	CITATIONS
250	Induced Magnetic Fields in Solar System Bodies. Space Sciences Series of ISSI, 2009, , 391-421.	0.0	5
251	Geology of Icy Bodies. Astrophysics and Space Science Library, 2013, , 279-367.	2.7	8
252	The Lunar Dust Experiment (LDEX) Onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission. , 2015, , 93-113.		3
253	4.3.5 Interplanetary dust. Landolt-Bâ^šâ^,rnstein - Group VI Astronomy and Astrophysics, 2009, , 644-684.	0.1	1
254	Dynamics, Composition, and Origin of Jovian and Saturnian Dust-Stream Particles. Astrophysics and Space Science Library, 2012, , 77-117.	2.7	9
255	Photometrically-corrected global infrared mosaics of Enceladus: New implications for its spectral diversity and geological activity. Icarus, 2020, 349, 113848.	2.5	10
257	Enceladus gets active. Nature, 0, , .	27.8	1
258	Macromolecular organic compounds from the depths of Enceladus. Nature, 2018, 558, 564-568.	27.8	282
259	SPECTRAL OBSERVATIONS OF THE ENCELADUS PLUME WITH CASSINI-VIMS. Astrophysical Journal, 2009, 693, 1749-1762.	4.5	72
260	Magnetic Fields of the Satellites of Jupiter and Saturn. Space Sciences Series of ISSI, 2009, , 271-305.	0.0	1
261	Science Instruments and Experiments. , 2009, , 181-240.		0
262	10.1007/s11208-008-2004-x. , 2010, 42, 124.		0
264	Enceladus. , 2014, , 1-3.		0
266	The ring system. , 2015, , 285-320.		0
267	Enceladus. , 2015, , 723-725.		1
268	Saturn Plasma Sources and Associated Transport Processes. Space Sciences Series of ISSI, 2016, , 237-283.	0.0	1
269	Enceladus. , 2019, , 1-3.		0

ARTICLE IF CITATIONS # Do Oceanic Convection and Clathrate Dissociation Drive Europa's Geysers?. Planetary Science Journal, 270 3.6 3 2021, 2, 221. Discrete element modeling of planetary ice analogs: mechanical behavior upon sintering. Granular 271 2.2 Matter, 2022, 24, 1. 272 Cryovolcanism., 2022, , 161-234. 3 Quantitative and Compositional Analysis of Trace Amino Acids in Icy Moon Analogues Using a Microcapillary Electrophoresis Laser-Induced Fluorescence Detection System. ACS Earth and Space 2.7 Chemistry, 2022, 6, 333-345. Modeling the complete set of Cassini's UVIS occultation observations of Enceladus' plume. Icarus, 274 2.5 1 2022, 383, 114918. Effects of trapped ions concentration on the dynamics of dustâ€acoustic periodic travelling waves in 1.1 dusty plasmas. Contributions To Plasma Physics, 2022, 62, . Dust-acoustic solitary and periodic waves in a plasma with ion distribution with trapped particles. 276 1.2 2 Radiation Effects and Defects in Solids, 0, , 1-16. Grain growth inhibited during grain size-sensitive creep in polycrystalline ice: an energy dissipation-rate perspective. Physics and Chemistry of Minerals, 2022, 49, . 0.8 A multi-lander New Frontiers mission concept study for Enceladus: SILENUS. Frontiers in Astronomy 278 2.8 3 and Space Sciences, 0, 9, . 279 Moonraker: Enceladus Multiple Flyby Mission. Planetary Science Journal, 2022, 3, 268. 3.6 The ETNA mission concept: Assessing the habitability of an active ocean world. Frontiers in Astronomy 280 2 2.8 and Space Sciences, 0, 9, . Mapping the surface composition of Europa with SUDA. Planetary and Space Science, 2023, 227, 105633. Salty ocean and submarine hydrothermal vents on Saturn's Moon Enceladusâ€"Tall plume of gas, jets 282 0 of water vapor & amp; organic-enriched ice particles spewing from its south pole. , 2023, , 583-616. Venus-Earth seismicity related to the orbital movement. Geosystems and Geoenvironment, 2023, 2, 3.2 100180. The Fermi Paradox and Astrobiology., 2023, , 209-266. 284 0 Charged Ice Particle Beams with Selected Narrow Mass and Kinetic Energy Distributions. Journal of 2.8 the American Society for Mass Spectrometry, 0, , . 286 Circumplanetary disk ices. Astronomy and Astrophysics, 2023, 672, A142. 5.10 Discriminating Aromatic Parent Compounds and Their Derivative Isomers in Ice Grains From Enceladus and Europa Using a Laboratory Analogue for Spaceborne Mass Spectrometers. Earth and Space Science, 2023, 10, .

			2
#	ARTICLE	IF	CITATIONS
288	Selected Problems of Classical and Modern Celestial Mechanics and Stellar Dynamics: Il–Modern Studies. Solar System Research, 2023, 57, 175-189.	0.7	0
289	New Insights into Variations in Enceladus Plume Particle Launch Velocities from Cassini-VIMS Spectral Data. Planetary Science Journal, 2023, 4, 108.	3.6	0
290	JWST molecular mapping and characterization of Enceladus' water plume feeding its torus. Nature Astronomy, 2023, 7, 1056-1062.	10.1	10
291	Keck near-infrared detections of Mab and Perdita. Icarus, 2023, 405, 115697.	2.5	0
292	Enceladus. , 2023, , 891-893.		0
293	Predicting the Effect of Surface Properties on Enceladus for Landing. Planetary Science Journal, 2023, 4, 150.	3.6	0
294	Mass Spectrometric Fingerprints of Organic Compounds in Sulfate-Rich Ice Grains: Implications for Europa Clipper. ACS Earth and Space Chemistry, 2023, 7, 1675-1693.	2.7	3
295	Cohesive properties of ice powders analogous to fresh plume deposits on Enceladus and Europa. Icarus, 2024, 409, 115859.	2.5	Ο
296	Radial compositional profile of Saturn's E ring indicates substantial space weathering effects. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	2
297	Detection of intact amino acids with a hypervelocity ice grain impact mass spectrometer. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	4
298	Unraveling the Fate of Impacted Ice Particles and the Consequences for Plume Flyâ€Through Missions. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	0
299	Titan, Enceladus, and other icy moons of Saturn. , 2024, , 315-356.		Ο
300	Energy yields for acetylenotrophy on Enceladus and Titan. Icarus, 2024, 411, 115969.	2.5	1
301	Icy ocean worlds, plumes, and tasting the water. Meteoritics and Planetary Science, 0, , .	1.6	Ο
302	The Composition and Chemistry of Titan's Atmosphere. ACS Earth and Space Chemistry, 2024, 8, 406-456.	2.7	0
303	Chapter 7: Assessing Habitability Beyond Earth. Astrobiology, 2024, 24, S-143-S-163.	3.0	0
304	How to identify cell material in a single ice grain emitted from Enceladus or Europa. Science Advances, 2024, 10, .	10.3	0