The Kit ligand/c-Kit receptor system in goat ovaries: ge localization

Zygote 14, 317-328 DOI: 10.1017/s0967199406003832

Citation Report

#	Article	IF	CITATIONS
1	Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation, 2008, 76, 843-856.	1.0	235
2	Human Follicle Culture In Vitro. , 0, , 25-37.		2
3	Immune physiology and oogenesis in fetal and adult humans, ovarian infertility, and totipotency of adult ovarian stem cells. Birth Defects Research Part C: Embryo Today Reviews, 2009, 87, 64-89.	3.6	23
4	Kit ligand promotes first polar body extrusion of mouse preovulatory oocytes. Reproductive Biology and Endocrinology, 2009, 7, 26.	1.4	29
5	Steadyâ€state level of kit ligand mRNA in goat ovaries and the role of kit ligand in preantral follicle survival and growth in vitro. Molecular Reproduction and Development, 2010, 77, 231-240.	1.0	34
6	Presence of c-kit mRNA in goat ovaries and improvement of in vitro preantral follicle survival and development with kit ligand. Molecular and Cellular Endocrinology, 2011, 345, 38-47.	1.6	16
7	Influence of epidermal growth factor supplementation during in vitro maturation on nuclear status and gene expression of canine oocytes. Research in Veterinary Science, 2011, 91, 439-445.	0.9	14
8	Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by Laser Capture Microdissection. BMC Genomics, 2011, 12, 417.	1.2	63
9	Cryopreservation and in vitro culture of caprine preantral follicles. Reproduction, Fertility and Development, 2011, 23, 40.	0.1	31
10	Stability of housekeeping genes and expression of locally produced growth factors and hormone receptors in goat preantral follicles. Zygote, 2011, 19, 71-83.	0.5	25
11	Dynamic Medium Containing Kit Ligand and Follicle-Stimulating Hormone Promotes Follicular Survival, Activation, and Growth during Long-Term in vitro Culture of Caprine Preantral Follicles. Cells Tissues Organs, 2012, 195, 260-271.	1.3	20
12	Expression and regulation of kit ligand in the ovary of the hen. General and Comparative Endocrinology, 2012, 179, 47-52.	0.8	15
13	Polymorphism identification in the goat <i>KITLG</i> gene and association analysis with litter size. Animal Genetics, 2012, 43, 104-107.	0.6	24
14	Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Molecular Reproduction and Development, 2014, 81, 284-314.	1.0	152
15	Current status of molecular genetics research of goat fecundity. Small Ruminant Research, 2015, 125, 34-42.	0.6	30
16	Expression and localisation of c-kit and KITL in the adult human ovary. Journal of Ovarian Research, 2015, 8, 31.	1.3	22
17	Cloning and expression of caprine KIT gene and associations of polymorphisms with litter size. Animal Production Science, 2016, 56, 1579.	0.6	1
18	The bone morphogenetic protein system and the regulation of ovarian follicle development in mammals. Zygote, 2016, 24, 1-17.	0.5	53

CITATION REPORT

#	Article	IF	CITATIONS
19	Ovarian follicle development inÂvitro and oocyte competence: advances and challenges for farm animals. Domestic Animal Endocrinology, 2016, 55, 123-135.	0.8	53
20	Effect of cadmium on kitl preâ€mRNA alternative splicing in murine ovarian granulosa cells and its associated regulation by miRNAs. Journal of Applied Toxicology, 2018, 38, 227-239.	1.4	25
21	Resveratrol promotes in vitro activation of ovine primordial follicles by reducing DNA damage and enhancing granulosa cell proliferation via phosphatidylinositol 3â€kinase pathway. Reproduction in Domestic Animals, 2018, 53, 1298-1305.	0.6	23
22	BMP15 regulates AMH expression via the p38 MAPK pathway in granulosa cells from goat. Theriogenology, 2018, 118, 72-79.	0.9	12
23	Implications of Nonphysiological Ovarian Primordial Follicle Activation for Fertility Preservation. Endocrine Reviews, 2020, 41, 847-872.	8.9	35
24	Where are the theca cells from: the mechanism of theca cells derivation and differentiation. Chinese Medical Journal, 2020, 133, 1711-1718.	0.9	13
25	A novel variant in the promoter region of miR-9 gene strongly affects litter size in Markhoz goats. Theriogenology, 2020, 158, 50-57.	0.9	6
26	Protective Effects of Puerarin on Premature Ovarian Failure via Regulation of Wnt/β-catenin Signaling Pathway and Oxidative Stress. Reproductive Sciences, 2021, 28, 982-990.	1.1	20
27	Cerebrospinal Fluid Stem Cell Factor Concentrations in the Children with Meningitis. Journal of Biological Sciences, 2007, 7, 1244-1248.	0.1	0