γâ€Polyglutamic Acid Produced by <i>Bacillus Subtilis Characteristics, Chemical Properties and Biological Fun

Journal of the Chinese Chemical Society 53, 1363-1384 DOI: 10.1002/jccs.200600182

Citation Report

#	Article	IF	CITATIONS
1	Effects of temperature and pH on adsorption of basic brown 1 by the bacterial biopolymer poly(γ-glutamic acid). Bioresource Technology, 2008, 99, 1026-1035.	4.8	50
2	Adsorption of toxic mercury(II) by an extracellular biopolymer poly(γ-glutamic acid). Bioresource Technology, 2009, 100, 200-207.	4.8	214
3	<i>In Vitro</i> Binding of Heavy Metals by an Edible Biopolymer Poly(γ-glutamic acid). Journal of Agricultural and Food Chemistry, 2009, 57, 777-784.	2.4	46
4	Antibacterial activity and biocompatibility of a chitosan‑î³-poly(glutamic acid) polyelectrolyte complex hydrogel. Carbohydrate Research, 2010, 345, 1774-1780.	1.1	140
5	Controlled Release of Doxorubicin from Doxorubicin/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>-Polyglutamic Acid Ionic Complex. Journal of Nanomaterials, 2010, 2010, 1-9.</mml:math 	1.5	111
6	Inhibition Effect of Poly(\hat{I}^3 -glutamic acid) on Lead-Induced Toxicity in Mice. Journal of Agricultural and Food Chemistry, 2010, 58, 12562-12567.	2.4	12
7	Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter, 2011, 7, 5083.	1.2	128
8	Effect of poly-α, γ, L-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles. International Journal of Nanomedicine, 2011, 6, 2837.	3.3	34
9	Dye adsorption characteristics of magnetite nanoparticles coated with a biopolymer poly(\hat{I}^3 -glutamic) Tj ETQqO C	0 0 rgBT /0	verlock 10 Th
10	The synthesis and characterization of poly(γ-glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity. Nanotechnology, 2011, 22, 075101.	1.3	48

11	Effect of alum treatment on the mechanical and antibacterial properties of poly-Î ³ -glutamic acid nanofibers. Textile Reseach Journal, 2012, 82, 1211-1219.	1.1	6
12	In vitro removal of toxic heavy metals by poly(γ-glutamic acid)-coated superparamagnetic nanoparticles. International Journal of Nanomedicine, 2012, 7, 4419.	3.3	37

13	Spore-forming bacteria and their utilisation as probiotics. Beneficial Microbes, 2012, 3, 67-75.	1.0	72
14	Physicochemical Properties of Roasted Soybean Flour Bioconverted by Solid-State Fermentation Using Bacillus subtilis and Lactobacillus plantarum. Preventive Nutrition and Food Science, 2012, 17, 36-45.	0.7	15
15	Mechanistic study of transfection of chitosan/DNA complexes coated by anionic poly(γ-glutamic acid). Biomaterials, 2012, 33, 3306-3315.	5.7	63
16	Chitosan-based polyelectrolyte complex scaffolds with antibacterial properties for treating dental bone defects. Materials Science and Engineering C, 2012, 32, 207-214.	3.8	22
17	A Novel Biodegradable Green Poly(l-Aspartic Acid-Citric Acid) Copolymer for Antimicrobial Applications. Journal of Polymers and the Environment, 2012, 20, 17-22.	2.4	24
18	OPTIMIZATION PROCESS OF ROASTED BROKEN BLACK SOYBEAN NATTO USING RESPONSE SURFACE METHODOLOGY. Journal of Food Processing and Preservation, 2013, 37, 474-482.	0.9	3

	CITATION REP	PORT	
ARTICLE Production of Ultra-high Molecular Weight Poly-Î ³ -Glutamic Acid with Bacillus lichenifo Characterization of its Flocculation Properties. Applied Biochemistry and Biotechnolog	ormis P-104 and 3y, 2013, 170,	IF 1.4	CITATIONS
Study on optimal conditions and adsorption kinetics of copper from water by collodior cross-linked poly-13-glutamic acid. Korean Journal of Chemical Engineering, 2013, 30, 1	n membrane 295-1300.	1.2	1
Fabrication of Poly(γ-glutamic acid)-coated Fe3O4 Magnetic Nanoparticles and Their A Heavy Metal Removal. Chinese Journal of Chemical Engineering, 2013, 21, 1244-1250.	Application in	1.7	37
Effect of poly(<i>γ</i> -glutamic acid) on microbial community and nitrogen pools of s Agriculturae Scandinavica - Section B Soil and Plant Science, 2013, 63, 657-668.	oil. Acta	0.3	11
Bioactivity in silica/poly(γ-glutamic acid) sol–gel hybrids through calcium chelation. Biomaterialia, 2013, 9, 7662-7671.	Acta	4.1	58
Analysis of calcium-induced effects on the conformation of fengycin. Spectrochimica A Molecular and Biomolecular Spectroscopy, 2013, 110, 450-457.	Acta - Part A:	2.0	12
Dye Adsorbent Prepared by Crosslinking of Poly(γ-glutamic acid) and Gelatin. Advance Research, 2014, 989-994, 809-813.	2d Materials	0.3	0
Synthesis of Gelatin-γ-Polyglutamic Acid-Based Hydrogel for the In Vitro Controlled Re Epigallocatechin Gallate (EGCG) from Camellia sinensis. Polymers, 2014, 6, 39-58.	lease of	2.0	42
Novel bioconversion of sodium glutamate to Î ³ -poly-glutamic acid and Î ³ -amino butyric fermentation using Bacillus subtilis HA and Lactobacillus plantarum K154. Food Scienc Biotechnology, 2014, 23, 1551-1559.	acid in a mixed and	1.2	9
Poly(γ-glutamic acid)–silica hybrids with fibrous structure: effect of cation and silica on molecular structure, degradation rate and tensile properties. RSC Advances, 2014,	concentration 4, 52491-52499.	1.7	13
Synthesis of $poly(\acute{E})$ -caprolactone) nanospheres in the presence of the protective agen Colloids and Surfaces B: Biointerfaces, 2014, 117, 414-424.	ıt poly(glutamic) Tj ETQq0 0	0 rgBT /O 2.5	verlock 10 T 11
Reducing Impurities in Fermentation Broth for Î ³ -Polyglutamic Acid Production by Med Using Bacillus licheniformis CGMCC 3336. Lecture Notes in Electrical Engineering, 201	ium Optimization 4, , 291-303.	0.3	2
Metabolic studies of temperature control strategy on poly(1 ³ -glutamic acid) production thermophilic strain Bacillus subtilis GXA-28. Bioresource Technology, 2014, 155, 104-1	n in a l 10.	4.8	34
Poly(γâ€glutamic acid)/Silica Hybrids with Calcium Incorporated in the Silica Network Calcium Alkoxide Precursor. Chemistry - A European Journal, 2014, 20, 8149-8160.	by Use of a	1.7	47
In Vitro Adsorption of Aluminum by an Edible Biopolymer Poly(Î ³ -glutamic acid). Journa and Food Chemistry, 2014, 62, 4803-4811.	l of Agricultural	2.4	16

34	Physico-chemical and rheological characterization of poly-gamma-glutamic acid produced by a new strain of Bacillus subtilis. European Polymer Journal, 2014, 57, 91-98.	2.6	13
35	ToF-SIMS evaluation of calcium-containing silica/γ-PGA hybrid systems for bone regeneration. Applied Surface Science, 2014, 309, 231-239.	3.1	7

#

19

21

23

25

27

29

31

33

3

#	Article	IF	CITATIONS
37	The preparation and characterization of micelles from poly(γ-glutamic acid)-graft-poly(l-lactide) and the cellular uptake thereof. Journal of Materials Science: Materials in Medicine, 2015, 26, 187.	1.7	11
38	Texture modification of soy-based products. , 2015, , 237-255.		4
39	Infection-mimicking poly(γ-glutamic acid) as adjuvant material for effective anti-tumor immune response. International Journal of Biological Macromolecules, 2015, 75, 495-504.	3.6	17
40	Adsorption of La3+ and Ce3+ by poly-γ-glutamic acid crosslinked with polyvinyl alcohol. Journal of Rare Earths, 2015, 33, 884-891.	2.5	44
41	Poly-Î ³ -glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin. Acta Biomaterialia, 2015, 24, 106-116.	4.1	111
42	Improving survival of probiotic bacteria using bacterial poly-Î ³ -glutamic acid. International Journal of Food Microbiology, 2015, 196, 24-31.	2.1	31
43	Poly-Î ³ -glutamic acid: production, properties and applications. Microbiology (United Kingdom), 2015, 161, 1-17.	0.7	283
44	Poly-Î ³ -Glutamic Acid: Biodegradable Polymer for Potential Protection of Beneficial Viruses. Materials, 2016, 9, 28.	1.3	23
45	Simultaneous Biosynthesis of Polyhydroxyalkanoates and Extracellular Polymeric Substance (EPS) from Crude Glycerol from Biodiesel Production by Different Bacterial Strains. Applied Biochemistry and Biotechnology, 2016, 180, 1110-1127.	1.4	22
46	Microbial synthesis of poly-Î ³ -glutamic acid: current progress, challenges, and future perspectives. Biotechnology for Biofuels, 2016, 9, 134.	6.2	186
47	A review on progress of heavy metal removal using biosorbents of poly- \hat{I}^3 -glutamic acid. , 2016, , .		0
48	Cryoprotection of probiotic bacteria with poly-γ-glutamic acid produced by Bacillus subtilis and Bacillus licheniformis. Journal of Genetic Engineering and Biotechnology, 2016, 14, 269-279.	1.5	9
49	Microstructured chitosan/poly(γ-glutamic acid) polyelectrolyte complex hydrogels by computer-aided wet-spinning for biomedical three-dimensional scaffolds. Journal of Bioactive and Compatible Polymers, 2016, 31, 531-549.	0.8	56
50	Fabrication and inÂvitro characterization of electrospun poly (γ-glutamic acid)-silica hybrid scaffolds for bone regeneration. Polymer, 2016, 91, 106-117.	1.8	28
51	Adsorption capacities of poly-γ-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters. Journal of Environmental Radioactivity, 2016, 165, 151-158.	0.9	38
52	Physicochemical characterization and evaluation of PGA bioflocculant in coagulation-flocculation and sedimentation processes. Journal of Environmental Chemical Engineering, 2016, 4, 3753-3760.	3.3	18
53	Poly-Î ³ -glutamic acid-based GGT-targeting and surface camouflage strategy for improving cervical cancer gene therapy. Journal of Materials Chemistry B, 2017, 5, 1315-1327.	2.9	23
54	Effects of poly-γ-glutamic acid (γ-PGA) on soil nitrogen and carbon leaching and CO2 fluxes in a sandy clay loam soil. Canadian Journal of Soil Science, 0, , .	0.5	5

CITATION REPORT

ARTICLE

IF CITATIONS

Feasible protein aggregation of phosphorylated poly- \hat{I}^3 -glutamic acid derivative from Bacillus subtilis () Tj ETQq0 0 3rgBT /Overlock 10 T

56	Modification of calcium phosphate cement with poly (γ-glutamic acid) and its strontium salt for kyphoplasty application. Materials Science and Engineering C, 2017, 80, 352-361.	3.8	21
57	Effects of poly-γ-glutamic acid (γ-PGA) on plant growth and its distribution in a controlled plant-soil system. Scientific Reports, 2017, 7, 6090.	1.6	41
58	Effects of nanosized zinc oxide and \hat{I}^3 -polyglutamic acid on eggshell quality and serum parameters of aged laying hens. Archives of Animal Nutrition, 2017, 71, 373-383.	0.9	19
59	Mucilage extracted from wasted natto (fermented soybeans) as a low-cost poly-γ-glutamic acid based biosorbent: Removal of rare-earth metal Nd from aqueous solutions. Journal of Environmental Chemical Engineering, 2017, 5, 6061-6069.	3.3	14
60	Biosynthesis and physicochemical characterization of a bacterial polysaccharide/polyamide blend, applied for microfluidics study in porous media. International Journal of Biological Macromolecules, 2017, 96, 100-110.	3.6	9
61	Preparation of Chitosan/Polyâ€Î³â€Glutamic Acid Polyelectrolyte Multilayers on Biomedical Metals for Local Antibiotic Delivery. Metals, 2017, 7, 418.	1.0	5
62	Investigation of poly(γ-glutamic acid) production via online determination of viscosity and oxygen transfer rate in shake flasks. Journal of Biological Engineering, 2017, 11, 23.	2.0	12
63	Production of poly-Î ³ -glutamic acid by a thermotolerant glutamate-independent strain and comparative analysis of the glutamate dependent difference. AMB Express, 2017, 7, 213.	1.4	16
64	Recovery of rare-earth metal neodymium from aqueous solutions by poly-γ-glutamic acid and its sodium salt as biosorbents: Effects of solution pH on neodymium recovery mechanisms. Journal of Rare Earths, 2018, 36, 528-536.	2.5	24
65	Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environmental Science and Pollution Research, 2018, 25, 5231-5242.	2.7	39
66	Physicochemical properties, production, and biological functionality of poly-Î ³ -d-glutamic acid with constant molecular weight from halotolerant Bacillus sp. SJ-10. International Journal of Biological Macromolecules, 2018, 108, 598-607.	3.6	25
67	Fabrication of strontium/calcium containing poly(γ-glutamic acid) – organosiloxane fibrous hybrid materials for osteoporotic bone regeneration. RSC Advances, 2018, 8, 25745-25753.	1.7	6
68	Preparation of new biosorbents based on poly-γ-glutamic acid and its adsorption of heavy metal ions. IOP Conference Series: Earth and Environmental Science, 0, 191, 012061.	0.2	3
69	The effects of ploy (γ-glutamic acid) on spinach productivity and nitrogen use efficiency in North-West China. Plant, Soil and Environment, 2018, 64, 517-522.	1.0	17
70	Poly-Î ³ -glutamic acid improves the drought resistance of maize seedlings by adjusting the soil moisture and microbial community structure. Applied Soil Ecology, 2018, 129, 128-135.	2.1	47
71	Poly-Î ³ -glutamic acid, a bio-chelator, alleviates the toxicity of Cd and Pb in the soil and promotes the establishment of healthy Cucumis sativus L. seedling. Environmental Science and Pollution Research, 2018, 25, 19975-19988.	2.7	36
72	Effectiveness of poly-γ-glutamic acid in maintaining enamel integrity. Archives of Oral Biology, 2019, 106, 104482.	0.8	8

CITATION REPORT

#	Article	IF	CITATIONS
73	Morphological transformation of calcium phenylphosphonate microspheres induced by micellization of Î ³ -polyglutamic acid. Journal of Colloid and Interface Science, 2019, 556, 33-46.	5.0	2
74	Determination of gallic acid using poly(glutamic acid): graphene modified electrode. Journal of Chemical Sciences, 2019, 131, 1.	0.7	37
75	Viability of Lactobacillus plantarum encapsulated with poly-Î ³ -glutamic acid produced by Bacillus sp. SJ-10 during freeze-drying and in an in vitro gastrointestinal model. LWT - Food Science and Technology, 2019, 112, 108222.	2.5	16
76	Properties of Poly-Î ³ -Glutamic Acid Producing-Bacillus Species Isolated From Ogi Liquor and Lemon-Ogi Liquor. Frontiers in Microbiology, 2019, 10, 771.	1.5	21
77	Improvement of soybean cultivars for natto production through the selection of seed morphological and physiological characteristics and seed compositions: A review. Plant Breeding, 2019, 138, 131-139.	1.0	12
78	Optimized production of gamma poly glutamic acid (γ-PGA) using sago. Biocatalysis and Agricultural Biotechnology, 2019, 22, 101413.	1.5	20
79	Preparation, characterization, and antimicrobial activity of poly(γ-glutamic acid)/chitosan blends. Polymer Bulletin, 2019, 76, 2163-2178.	1.7	11
80	A field pilot-scale study on heavy metal-contaminated soil washing by using an environmentally friendly agent—poly-l³-glutamic acid (l̂3-PGA). Environmental Science and Pollution Research, 2020, 27, 34760-34769.	2.7	21
81	Optimized production of poly (γâ€glutamic acid) (γâ€PGA) using <i>Bacillus licheniformis</i> and its application as cryoprotectant for probiotics. Biotechnology and Applied Biochemistry, 2020, 67, 892-902.	1.4	19
82	Chelate chemistry governs ion-specific stiffening of <i>Bacillus subtilis</i> B-1 and <i>Azotobacter vinelandii</i> biofilms. Biomaterials Science, 2020, 8, 1923-1933.	2.6	6
83	Chelation of zinc(II) with poly(γ-glutamic acid) in aqueous solution: kinetics, binding constant, and its antimicrobial activity. Polymer Bulletin, 2021, 78, 1353-1377.	1.7	7
84	Mitigation of soil salinization and alkalization by bacterium-induced inhibition of evaporation and salt crystallization. Science of the Total Environment, 2021, 755, 142511.	3.9	29
85	Poly-Î ³ -glutamic acid improves water-stable aggregates, nitrogen and phosphorus uptake efficiency, water-fertilizer productivity, and economic benefit in barren desertified soils of Northwest China. Agricultural Water Management, 2021, 245, 106551.	2.4	32
86	Improving enzyme activity, thermostability and storage stability of β-1,3-1,4-glucanase with poly-γ-glutamic acid produced by Bacillus sp. SJ-10. Enzyme and Microbial Technology, 2021, 143, 109703.	1.6	9
87	γ-PGA-Rich Chungkookjang, Short-Term Fermented Soybeans: Prevents Memory Impairment by Modulating Brain Insulin Sensitivity, Neuro-Inflammation, and the Gut–Microbiome–Brain Axis. Foods, 2021, 10, 221.	1.9	27
88	Poly(glutamic acid): Production, composites, and medical applications of the next-generation biopolymer. Progress in Polymer Science, 2021, 113, 101341.	11.8	66
89	Drug delivery applications of poly-Î ³ -glutamic acid. Future Journal of Pharmaceutical Sciences, 2021, 7, .	1.1	9
90	On the Role of Poly-Glutamic Acid in the Early Stages of Iron(III) (Oxy)(hydr)oxide Formation. Minerals (Basel, Switzerland), 2021, 11, 715.	0.8	2

#	Article	IF	CITATIONS
91	Optimization of fermentation conditions, purification and rheological properties of poly (\hat{I}^3 -glutamic) Tj ETQq0 0 302-310.	0 rgBT /Ov 1.0	verlock 10 Tf 2
92	Controlled Release of Chlorogenic Acid from Polyvinyl Alcohol/Poly(γ-Glutamic Acid) Blended Electrospun Nanofiber Mats with Potential Applications in Diabetic Foot Treatment. Polymers, 2021, 13, 2943.	2.0	3
93	Glycerol-modified Î ³ -PGA and gellan composite hydrogel materials with tunable physicochemical and thermal properties for soft tissue engineering application. Polymer, 2021, 230, 124049.	1.8	13
94	Phytoremediation of secondary saline soil by halophytes with the enhancement of Î ³ -polyglutamic acid. Chemosphere, 2021, 285, 131450.	4.2	22
95	Production and applications of polyglutamic acid. , 2021, , 253-282.		0
96	Coherent Aspects of Multifaceted Eco-friendly Biopolymer - Polyglutamic Acid from the Microbes. Journal of Pure and Applied Microbiology, 2019, 13, 741-756.	0.3	3
97	Biosynthesis of γ-Polyglutamic Acid by Bacillus licheniformis Through Submerged Fermentation (SmF) and Solid-state Fermentation (SSF). Chemical and Biochemical Engineering Quarterly, 2021, , .	0.5	0
98	Effects of nanoparticle chromium mixed with γ-polyglutamic acid on the chromium bioavailability, growth performance, serum parameters and carcass traits of pigs. Animal Production Science, 2019, 59, 2222.	0.6	0
99	Recent Advances in Microbial Synthesis of Poly-Î ³ -Glutamic Acid: A Review. Foods, 2022, 11, 739.	1.9	18
100	Preparation of the Chitosan/Poly-γ-Glutamic Acid/Glabrid in Hybrid Nanoparticles and Study on its Releasing Property. Current Drug Delivery, 2023, 20, 1195-1205.	0.8	1
101	Preparation of gamma poly-glutamic acid/hydroxyapatite/collagen composite as the 3D-printing scaffold for bone tissue engineering. Biomaterials Research, 2022, 26, .	3.2	5
102	Microbial Poly-γ-Clutamic Acid (γ-PGA) as an Effective Tooth Enamel Protectant. Polymers, 2022, 14, 2937.	2.0	6
103	Building a circular economy around poly(D/L-γ-glutamic acid)- a smart microbial biopolymer. Biotechnology Advances, 2022, 61, 108049.	6.0	8
104	Removal of humic acid interference in soil enzymatic analysis using poly-Î ³ -glutamic acid. Analytical Sciences, 0, , .	0.8	0
105	Citric Acid and Poly-glutamic Acid Promote the Phytoextraction of Cadmium and Lead in Solanum nigrum L. Grown in Compound Cd–Pb Contaminated Soils. Bulletin of Environmental Contamination and Toxicology, 2023, 110, .	1.3	2
106	Implication of organic solvents in the precipitation of γ-polyglutamic acid for application as a sustainable flocculating agent. Biocatalysis and Agricultural Biotechnology, 2023, 50, 102698.	1.5	1

Synergistic Impact of Lactobacillus plantarum and Bacillus coagulans on Solid-State Fermentation of Astragalus and Effects of Fermentation Products on Disease Resistance of Crucian Carp (Carassius) Tj ETQq0 0 0 rg&9/Overl@ck 10 Tf 5