The Salmonella effector protein PipB2 is a linker for kin

Proceedings of the National Academy of Sciences of the Unite 103, 13497-13502

DOI: 10.1073/pnas.0605443103

Citation Report

#	Article	IF	CITATIONS
1	The Translocated Salmonella Effector Proteins SseF and SseG Interact and Are Required To Establish an Intracellular Replication Niche. Infection and Immunity, 2006, 74, 6965-6972.	2.2	98
2	A Cellular Basis for Wolbachia Recruitment to the Host Germline. PLoS Pathogens, 2007, 3, e190.	4.7	124
3	Membrane dynamics and spatial distribution of Salmonella-containing vacuoles. Trends in Microbiology, 2007, 15, 516-524.	7.7	68
4	Salmonella SPI1 Effector SipA Persists after Entry and Cooperates with a SPI2 Effector to Regulate Phagosome Maturation and Intracellular Replication. Cell Host and Microbe, 2007, 1, 63-75.	11.0	130
5	SteC is a Salmonella kinase required for SPI-2-dependent F-actin remodelling. Cellular Microbiology, 2007, 10, 070720190331003-???.	2.1	79
6	Dynamic Remodeling of the Endosomal System During Formation of <i>Salmonella</i> â€Induced Filaments by Intracellular <i>Salmonella enterica</i> . Traffic, 2008, 9, 2100-2116.	2.7	87
7	<i>Salmonella</i> ontaining Vacuoles: Directing Traffic and Nesting to Grow. Traffic, 2008, 9, 2022-2031.	2.7	156
8	Dynamic Behavior of <i>Salmonella</i> â€Induced Membrane Tubules in Epithelial Cells. Traffic, 2008, 9, 2117-2129.	2.7	120
9	Salmonellae interplay with host cells. Nature Reviews Microbiology, 2008, 6, 53-66.	28.6	708
10	The Salmonella-containing vacuole—Moving with the times. Current Opinion in Microbiology, 2008, 11, 38-45.	5.1	258
11	Maintenance of the Salmonella-containing vacuole in the juxtanuclear area: A role for intermediate filaments. Microbial Pathogenesis, 2008, 45, 415-422.	2.9	19
12	Brucella Control of Dendritic Cell Maturation Is Dependent on the TIR-Containing Protein Btp1. PLoS Pathogens, 2008, 4, e21.	4.7	253
13	Role for Myosin II in Regulating Positioning of <i>Salmonella</i> Containing Vacuoles and Intracellular Replication. Infection and Immunity, 2008, 76, 2722-2735.	2.2	49
14	Interaction between the SifA Virulence Factor and Its Host Target SKIP Is Essential for Salmonella Pathogenesis. Journal of Biological Chemistry, 2009, 284, 33151-33160.	3.4	52
15	<i>Salmonella</i> -Containing Vacuoles Display Centrifugal Movement Associated with Cell-to-Cell Transfer in Epithelial Cells. Infection and Immunity, 2009, 77, 996-1007.	2.2	39
16	SCAMP3 is a component of the <i>Salmonella</i> -induced tubular network and reveals an interaction between bacterial effectors and post-Golgi trafficking. Cellular Microbiology, 2009, 11, 1236-1253.	2.1	76
17	<i>Salmonella</i> - the ultimate insider. <i>Salmonella</i> virulence factors that modulate intracellular survival. Cellular Microbiology, 2009, 11, 1579-1586.	2.1	259
18	Molecular Mechanisms of Bacterial Infection via the Gut. Current Topics in Microbiology and Immunology, 2009, , .	1.1	4

#	Article	IF	CITATIONS
19	Modulation of membrane traffic between endoplasmic reticulum, ERGIC and Golgi to generate compartments for the replication of bacteria and viruses. Seminars in Cell and Developmental Biology, 2009, 20, 828-833.	5.0	33
20	Salmonella takes control: effector-driven manipulation of the host. Current Opinion in Microbiology, 2009, 12, 117-124.	5.1	285
21	Molecular Mechanisms of Salmonella Virulence and Host Resistance. Current Topics in Microbiology and Immunology, 2009, 337, 93-127.	1.1	88
24	SKIP, the Host Target of the Salmonella Virulence Factor SifA, Promotes Kinesin-1-Dependent Vacuolar Membrane Exchanges. Traffic, 2010, 11, 899-911.	2.7	99
25	Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors. Nature Methods, 2010, 7, 325-330.	19.0	144
26	The 'when and whereabouts' of injected pathogen effectors. Nature Methods, 2010, 7, 267-269.	19.0	4
27	Tracking the dynamic interplay between bacterial and host factors during pathogen-induced vacuole rupture in real time. Cellular Microbiology, 2010, 12, 545-556.	2.1	90
28	Vaccinia Protein F12 Has Structural Similarity to Kinesin Light Chain and Contains a Motor Binding Motif Required for Virion Export. PLoS Pathogens, 2010, 6, e1000785.	4.7	39
29	The Virulence Protein SopD2 Regulates Membrane Dynamics of Salmonella-Containing Vacuoles. PLoS Pathogens, 2010, 6, e1001002.	4.7	67
30	Pathogens and polymers: Microbe–host interactions illuminate the cytoskeleton. Journal of Cell Biology, 2011, 195, 7-17.	5.2	181
31	Singleâ€domain llama antibodies as specific intracellular inhibitors of SpvB, the actin ADPâ€ribosylating toxin of <i>Salmonella typhimurium</i> . FASEB Journal, 2011, 25, 526-534.	0.5	35
32	Arl8 and SKIP Act Together to Link Lysosomes to Kinesin-1. Developmental Cell, 2011, 21, 1171-1178.	7.0	257
33	Spotting the right location— imaging approaches to resolve the intracellular localization of invasive pathogens. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 297-307.	2.4	13
34	Salmonella-induced tubular networks. Trends in Microbiology, 2011, 19, 268-277.	7.7	73
35	Salmonella exploits Arl8B-directed kinesin activity to promote endosome tubulation and cell-to-cell transfer. Cellular Microbiology, 2011, 13, 1812-1823.	2.1	43
36	Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiology Reviews, 2011, 35, 1100-1125.	8.6	239
37	Dynamic modification of microtubule-dependent transport by effector proteins of intracellular Salmonella enterica. European Journal of Cell Biology, 2011, 90, 897-902.	3.6	9
38	Salmonella effector proteins and host-cell responses. Cellular and Molecular Life Sciences, 2011, 68, 3687-3697.	5.4	111

#	Article	IF	CITATIONS
39	Salmonella $\hat{a} \in At$ Home in the Host Cell. Frontiers in Microbiology, 2011, 2, 125.	3.5	94
40	Kinesin regulation by Salmonella. Virulence, 2011, 2, 63-66.	4.4	22
41	Subversion of membrane transport pathways by vacuolar pathogens. Journal of Cell Biology, 2011, 195, 943-952.	5.2	84
42	Salmonella enterica Serovar Typhimurium Colonizing the Lumen of the Chicken Intestine Grows Slowly and Upregulates a Unique Set of Virulence and Metabolism Genes. Infection and Immunity, 2011, 79, 4105-4121.	2.2	94
43	Role of Rab GTPases in Membrane Traffic and Cell Physiology. Physiological Reviews, 2011, 91, 119-149.	28.8	1,268
44	Gene Expression Analysis of <i>Salmonella enterica</i> Enteritidis Nal ^R and <i>Salmonella enterica</i> Kentucky 3795 Exposed to HCl and Acetic Acid in Rich Medium. Foodborne Pathogens and Disease, 2012, 9, 331-337.	1.8	12
45	Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology (United Kingdom), 2012, 158, 1147-1161.	1.8	300
46	Impact of <i>Salmonella enterica</i> Type III Secretion System Effectors on the Eukaryotic Host Cell. , 2012, 2012, 1-36.		70
47	Prison Break: Pathogens' Strategies To Egress from Host Cells. Microbiology and Molecular Biology Reviews, 2012, 76, 707-720.	6.6	82
48	Bacterial Pathogens Commandeer Rab <scp>GTPases</scp> to Establish Intracellular Niches. Traffic, 2012, 13, 1565-1588.	2.7	89
49	Salmonella: strategies for survival. Toxin Reviews, 2012, 31, 1-10.	3.4	4
50	Unconventional functions of microtubule motors. Archives of Biochemistry and Biophysics, 2012, 520, 17-29.	3.0	11
51	A glance at Listeria and Salmonella cell invasion: Different strategies to promote host actin polymerization. International Journal of Medical Microbiology, 2012, 302, 19-32.	3.6	25
52	PipB2 is a substrate of the Salmonella pathogenicity island 1-encoded type III secretion system. Biochemical and Biophysical Research Communications, 2012, 423, 240-246.	2.1	22
53	A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia. European Journal of Immunology, 2012, 42, 2395-2408.	2.9	54
54	Salmonella: Invasion, Evasion & amp; Persistence. , 0, , .		1
55	The current <i>Salmonella</i> â€host interactome. Proteomics - Clinical Applications, 2012, 6, 117-133.	1.6	54
56	Prediction and Comparison of <i>Salmonella</i> ï£;Human and <i>Salmonella</i> ï£; <i>Arabidopsis</i> Interactomes. Chemistry and Biodiversity, 2012, 9, 991-1018.	2.1	41

#	Article	IF	CITATIONS
57	Interspecies communication in the gut, from bacterial delivery to host ell response. Journal of Physiology, 2012, 590, 433-440.	2.9	15
58	The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics. Current Opinion in Microbiology, 2013, 16, 643-651.	5.1	8
59	A Toxin-Antitoxin Module of Salmonella Promotes Virulence in Mice. PLoS Pathogens, 2013, 9, e1003827.	4.7	111
60	Transâ€sialidase Stimulates <i>Eat Me</i> Response from Epithelial Cells. Traffic, 2013, 14, 853-869.	2.7	15
61	Salmonella enterica Serovar Typhimurium Skills To Succeed in the Host: Virulence and Regulation. Clinical Microbiology Reviews, 2013, 26, 308-341.	13.6	562
62	Live Cell Imaging Reveals Novel Functions of Salmonella enterica SPI2-T3SS Effector Proteins in Remodeling of the Host Cell Endosomal System. PLoS ONE, 2014, 9, e115423.	2.5	33
63	A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration. Integrative Biology (United Kingdom), 2014, 6, 438-449.	1.3	28
64	<i>BPSS1504</i> , a Cluster 1 Type VI Secretion Gene, Is Involved in Intracellular Survival and Virulence of Burkholderia pseudomallei. Infection and Immunity, 2014, 82, 2006-2015.	2.2	33
65	Bacterial Pathogen Manipulation of Host Membrane Trafficking. Annual Review of Cell and Developmental Biology, 2014, 30, 79-109.	9.4	132
66	The Salmonella Effector SteA Contributes to the Control of Membrane Dynamics of Salmonella-Containing Vacuoles. Infection and Immunity, 2014, 82, 2923-2934.	2.2	35
67	Maintenance of vacuole integrity by bacterial pathogens. Current Opinion in Microbiology, 2014, 17, 46-52.	5.1	53
68	Dormant Intracellular Salmonella enterica Serovar Typhimurium Discriminates among Salmonella Pathogenicity Island 2 Effectors To Persist inside Fibroblasts. Infection and Immunity, 2014, 82, 221-232.	2.2	27
69	The Salmonella effector protein SifA plays a dual role in virulence. Scientific Reports, 2015, 5, 12979.	3.3	34
70	Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms. Microbiology Spectrum, 2015, 3, .	3.0	13
71	Subversion of the cytoskeleton by intracellular bacteria: lessons from <i>Listeria</i> , <i>Salmonella</i> and <i>Vibrio</i> . Cellular Microbiology, 2015, 17, 164-173.	2.1	46
71 72	from <i>Listeria</i> , <i>Salmonella</i> and <i>Vbiro</i> . Cellular Microbiology,	2.1 28.6	46 414
	from <i>Listeria</i> , <i>Salmonella</i> and <i>Vibrio</i> . Cellular Microbiology, 2015, 17, 164-173.		

#	Article	IF	CITATIONS
75	Description of the interaction between Candida albicans and macrophages by mixed and quantitative proteome analysis without isolation. AMB Express, 2015, 5, 127.	3.0	22
76	Salmonella enterica: living a double life in epithelial cells. Current Opinion in Microbiology, 2015, 23, 23-31.	5.1	94
77	Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms. , 2016, , 693-713.		0
78	Bacterial Subversion of Phagocytic Killing. , 2016, , 776-783.		0
79	<i>Salmonella</i> Effectors SseF and SseG Interact with Mammalian Protein ACBD3 (GCP60) To Anchor <i>Salmonella</i> -Containing Vacuoles at the Golgi Network. MBio, 2016, 7, .	4.1	50
80	Characterization of the Inflammasome in Human Kupffer Cells in Response to Synthetic Agonists and Pathogens. Journal of Immunology, 2016, 197, 356-367.	0.8	53
81	Effector proteins support the asymmetric apportioning of <i>Salmonella</i> during cytokinesis. Virulence, 2016, 7, 669-678.	4.4	9
82	How Bacteria Subvert Animal Cell Structure and Function. Annual Review of Cell and Developmental Biology, 2016, 32, 373-397.	9.4	33
83	The Mosaic Type IV Secretion Systems. EcoSal Plus, 2016, 7, .	5.4	116
84	Salmonella SPI-2 Type III Secretion System Effectors: Molecular Mechanisms And Physiological Consequences. Cell Host and Microbe, 2017, 22, 217-231.	11.0	311
85	The Enterococcus faecalis virulence factor ElrA interacts with the human Four-and-a-Half LIM Domains Protein 2. Scientific Reports, 2017, 7, 4581.	3.3	9
86	What the SIF Is Happening—The Role of Intracellular Salmonella-Induced Filaments. Frontiers in Cellular and Infection Microbiology, 2017, 7, 335.	3.9	59
87	Methods to Illuminate the Role of Salmonella Effector Proteins during Infection: A Review. Frontiers in Cellular and Infection Microbiology, 2017, 7, 363.	3.9	7
88	Tiny architects: biogenesis of intracellular replicative niches by bacterial pathogens. FEMS Microbiology Reviews, 2018, 42, 425-447.	8.6	18
89	Structure-based functional analysis of effector protein SifA in living cells reveals motifs important for Salmonella intracellular proliferation. International Journal of Medical Microbiology, 2018, 308, 84-96.	3.6	4
90	Pathways of host cell exit by intracellular pathogens. Microbial Cell, 2018, 5, 525-544.	3.2	56
91	Novel Effector Protein EspY3 of Type III Secretion System from Enterohemorrhagic Escherichia coli Is Localized in Actin Pedestals. Microorganisms, 2018, 6, 112.	3.6	12
92	Contribution of bacterial effectors and host proteins to the composition and function of Salmonella-induced tubules. Cellular Microbiology, 2018, 20, e12951.	2.1	6

#	Article	IF	CITATIONS
93	Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts. PLoS ONE, 2018, 13, e0194368.	2.5	50
94	Typhoidal <i>Salmonella</i> : Distinctive virulence factors and pathogenesis. Cellular Microbiology, 2018, 20, e12939.	2.1	112
95	Wolbachia and host germline components compete for kinesin-mediated transport to the posterior pole of the Drosophila oocyte. PLoS Pathogens, 2018, 14, e1007216.	4.7	21
96	BioID screen of Salmonella type 3 secreted effectors reveals host factors involved in vacuole positioning and stability during infection. Nature Microbiology, 2019, 4, 2511-2522.	13.3	39
97	The Burkholderia Type VI Secretion System 5: Composition, Regulation and Role in Virulence. Frontiers in Microbiology, 2018, 9, 3339.	3.5	44
98	The Role of the Type III Secretion System in the Intracellular Lifestyle of Enteric Pathogens. Microbiology Spectrum, 2019, 7, .	3.0	14
99	Loss and Gain in the Evolution of the <i>Salmonella enterica</i> Serovar Gallinarum Biovar Pullorum Genome. MSphere, 2019, 4, .	2.9	23
100	Whole-Genome Comparisons Among the Genus Shewanella Reveal the Enrichment of Genes Encoding Ankyrin-Repeats Containing Proteins in Sponge-Associated Bacteria. Frontiers in Microbiology, 2019, 10, 5.	3.5	14
101	Comparative Genomics Reveals Metabolic Specificity of Endozoicomonas Isolated from a Marine Sponge and the Genomic Repertoire for Host-Bacteria Symbioses. Microorganisms, 2019, 7, 635.	3.6	13
102	Zoonotic Source Attribution of <i>Salmonella enterica</i> Serotype Typhimurium Using Genomic Surveillance Data, United States. Emerging Infectious Diseases, 2019, 25, 82-91.	4.3	75
103	How to do business with lysosomes: Salmonella leads the way. Current Opinion in Microbiology, 2019, 47, 1-7.	5.1	21
104	The role of microtubules and the dynein/dynactin motor complex of host cells in the biogenesis of the Coxiella burnetii-containing vacuole. PLoS ONE, 2019, 14, e0209820.	2.5	3
105	Exploring bacterial pathogen community dynamics in freshwater beach sediments: A tale of two lakes. Environmental Microbiology, 2020, 22, 568-583.	3.8	13
106	Salmonella secretion systems: Differential roles in pathogen-host interactions. Microbiological Research, 2020, 241, 126591.	5.3	34
107	A trafficome-wide RNAi screen reveals deployment of early and late secretory host proteins and the entire late endo-/lysosomal vesicle fusion machinery by intracellular Salmonella. PLoS Pathogens, 2020, 16, e1008220.	4.7	12
108	Regulation of kinesin-1 activity by the <i>Salmonella enterica</i> effectors PipB2 and SifA. Journal of Cell Science, 2020, 133, .	2.0	12
109	Salmonella Virulence and Immune Escape. Microorganisms, 2020, 8, 407.	3.6	63
110	Multiple Salmonella-pathogenicity island 2 effectors are required to facilitate bacterial establishment of its intracellular niche and virulence. PLoS ONE, 2020, 15, e0235020.	2.5	17

	CITATION	Report	
#	Article	IF	CITATIONS
111	<p>Molecular Mechanisms of Salmonella Effector Proteins: A Comprehensive Review</p> . Infection and Drug Resistance, 2020, Volume 13, 11-26.	2.7	23
112	Genomic diversity and molecular epidemiology of Pasteurella multocida. PLoS ONE, 2021, 16, e0249138.	2.5	36
113	Manipulation of Host Cell Organelles by Intracellular Pathogens. International Journal of Molecular Sciences, 2021, 22, 6484.	4.1	27
114	Molecular determinants of peaceful coexistence versus invasiveness of non-Typhoidal Salmonella: Implications in long-term side-effects. Molecular Aspects of Medicine, 2021, 81, 100997.	6.4	2
115	Bacteriophages fEV-1 and fD1 Infect Yersinia pestis. Viruses, 2021, 13, 1384.	3.3	6
116	Global mapping of Salmonella enterica-host protein-protein interactions during infection. Cell Host and Microbe, 2021, 29, 1316-1332.e12.	11.0	39
117	Myosins, an Underestimated Player in the Infectious Cycle of Pathogenic Bacteria. International Journal of Molecular Sciences, 2021, 22, 615.	4.1	7
118	SPI2 T3SS effectors facilitate enterocyte apical to basolateral transmigration of <i>Salmonella</i> -containing vacuoles <i>in vivo</i> . Gut Microbes, 2021, 13, 1973836.	9.8	6
119	A Method to Introduce an Internal Tag Sequence into a Salmonella Chromosomal Gene. Methods in Molecular Biology, 2015, 1225, 81-92.	0.9	4
121	Functional Dissection of SseF, a Membrane-Integral Effector Protein of Intracellular Salmonella enterica. PLoS ONE, 2012, 7, e35004.	2.5	21
122	Biophysics of Active Vesicle Transport, an Intermediate Step That Couples Excitation and Exocytosis of Serotonin in the Neuronal Soma. PLoS ONE, 2012, 7, e45454.	2.5	12
123	The Interplay of Host Lysosomes and Intracellular Pathogens. Frontiers in Cellular and Infection Microbiology, 2020, 10, 595502.	3.9	31
124	The Multiple Interactions between Salmonella and Phagocytes. , 0, , 379-P1.		0
125	The SsrAB Virulon of <i>Salmonella enterica</i> . , 0, , 386-401.		0
128	The Role of the Type III Secretion System in the Intracellular Lifestyle of Enteric Pathogens. , 0, , 197-214.		1
129	The Salmonella effector SifA initiates a kinesin-1 and kinesin-3 recruitment process mirroring that mediated by Arl8a and Arl8b. Journal of Cell Science, 2022, 135, .	2.0	6
130	Recent Advancements in Tracking Bacterial Effector Protein Translocation. Microorganisms, 2022, 10, 260.	3.6	8
131	Endomembrane remodeling and dynamics in Salmonella infection. Microbial Cell, 2022, 9, 24-41.	3.2	8

#	Article	IF	CITATIONS
132	T6SS Accessory Proteins, Including DUF2169 Domain-Containing Protein and Pentapeptide Repeats Protein, Contribute to Bacterial Virulence in T6SS Group_5 of Burkholderia glumae BGR1. Plants, 2022, 11, 34.	3.5	3
145	Photo-ANA enables profiling of host–bacteria protein interactions during infection. Nature Chemical Biology, 2023, 19, 614-623.	8.0	3
146	Single molecule analyses reveal dynamics of Salmonella translocated effector proteins in host cell endomembranes. Nature Communications, 2023, 14, .	12.8	2
147	Speaking the host language: how Salmonella effector proteins manipulate the host. Microbiology (United Kingdom), 2023, 169, .	1.8	9
149	<i>Salmonella enterica</i> serovar Typhi uses two type 3 secretion systems to replicate in human macrophages and colonize humanized mice. MBio, 0, , .	4.1	1
150	RUFY3 regulates endolysosomes perinuclear positioning, antigen presentation and migration in activated phagocytes. Nature Communications, 2023, 14, .	12.8	0
151	The Salmonella Typhi SPI-2 injectisome enigma. Microbiology (United Kingdom), 2023, 169, .	1.8	0
152	Survival strategies of intracellular bacterial pathogens. , 2024, , 457-488.		1
153	Infection biology of <i>Salmonella enterica</i> . EcoSal Plus, 0, , .	5.4	0