Use of Genotype MTBDR Assay for Molecular Detection in Mycobacterium tuberculosis Clinical Strains Isolated

Journal of Clinical Microbiology 44, 2485-2491

DOI: 10.1128/jcm.00083-06

Citation Report

#	Article	IF	CITATIONS
1	Use of Smear-Positive Samples To Assess the PCR-Based Genotype MTBDR Assay for Rapid, Direct Detection of the Mycobacterium tuberculosis Complex as Well as Its Resistance to Isoniazid and Rifampin. Journal of Clinical Microbiology, 2006, 44, 4459-4463.	1.8	65
2	Molecular characteristics of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis isolates from the Russian Federation. Journal of Antimicrobial Chemotherapy, 2007, 59, 1057-1064.	1.3	68
3	Molecular diagnostic methods in pneumonia. Current Opinion in Infectious Diseases, 2007, 20, 157-164.	1.3	31
4	Evaluation of the GenoType MTBDRplus Assay for Rifampin and Isoniazid Susceptibility Testing of Mycobacterium tuberculosis Strains and Clinical Specimens. Journal of Clinical Microbiology, 2007, 45, 2635-2640.	1.8	313
5	Facing the Crisis: Improving the Diagnosis of Tuberculosis in the HIV Era. Journal of Infectious Diseases, 2007, 196, S15-S27.	1.9	249
6	Multidrug-resistant and extensively drug-resistant <i>Mycobacterium tuberculosis</i> epidemiology and control. Expert Review of Anti-Infective Therapy, 2007, 5, 857-871.	2.0	101
7	Current Issues on Molecular and Immunological Diagnosis of Tuberculosis. Yonsei Medical Journal, 2007, 48, 347.	0.9	23
8	Multidrug-resistant tuberculosis: rapid detection of resistance to rifampin and high or low levels of isoniazid in clinical specimens and isolates. European Journal of Clinical Microbiology and Infectious Diseases, 2008, 27, 1079-1086.	1.3	31
9	Genotype MTBDR plus: a Further Step toward Rapid Identification of Drug-Resistant Mycobacterium tuberculosis. Journal of Clinical Microbiology, 2008, 46, 393-394.	1.8	73
10	GenoType MTBDR <i>plus</i> Assay for Molecular Detection of Rifampin and Isoniazid Resistance in <i>Mycobacterium tuberculosis</i> Strains and Clinical Samples. Journal of Clinical Microbiology, 2008, 46, 3660-3667.	1.8	112
11	Rapid Molecular Screening for Multidrug-Resistant Tuberculosis in a High-Volume Public Health Laboratory in South Africa. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 787-792.	2.5	354
12	GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. European Respiratory Journal, 2008, 32, 1165-1174.	3.1	306
13	Mechanisms of heteroresistance to isoniazid and rifampin of Mycobacterium tuberculosis in Tashkent, Uzbekistan. European Respiratory Journal, 2008, 33, 368-374.	3.1	103
14	Detection of Isoniazid and Rifampicin Resistance by Sequencing of katG, inhA, and rpoB Genes in Korea. Annals of Laboratory Medicine, 2009, 29, 455-460.	1.2	15
15	Drug-susceptibility testing in TB: current status and future prospects. Expert Review of Respiratory Medicine, 2009, 3, 497-510.	1.0	44
16	Comparison of rapid tests for detection of rifampicin-resistant Mycobacterium tuberculosis in Kampala, Uganda. BMC Infectious Diseases, 2009, 9, 139.	1.3	12
17	Performance of the Genotype® MTBDRPlus resistance patternSamara, Russian Federation. BMC Clinical Pathology, 2009, 9, 2.	1.8	62
18	Rapid genotypic assays to identify drug-resistant Mycobacterium tuberculosis in South Africa. Journal of Antimicrobial Chemotherapy, 2009, 63, 11-16.	1.3	34

#	Article	IF	CITATIONS
19	A systematic review of rapid drug susceptibility tests for multidrug-resistant tuberculosis using rifampin resistance as a surrogate. Expert Opinion on Medical Diagnostics, 2009, 3, 99-122.	1.6	7
20	Rolling circle amplification and multiplex allele-specific PCR for rapid detection of katG and inhA gene mutations in Mycobacterium tuberculosis. International Journal of Medical Microbiology, 2009, 299, 574-581.	1.5	5
21	Diagnosing Childhood Tuberculosis: Traditional and Innovative Modalities. Current Problems in Pediatric and Adolescent Health Care, 2009, 39, 61-88.	0.8	32
22	Rapid Detection of rpoB Gene Mutations in Rif-resistant M. tuberculosis Isolates by Oligonucleotide Microarray. Biomedical and Environmental Sciences, 2009, 22, 253-258.	0.2	8
23	Multidrug-resistant tuberculosis: Rapid molecular detection with MTBDRplus® assay in clinical samples. Revista Portuguesa De Pneumologia, 2009, 15, 353-365.	0.7	4
25	Validation of the GenoTypeÂ $^{\odot}$ MTBDRplus assay for detection of MDR-TB in a public health laboratory in Thailand. BMC Infectious Diseases, 2010, 10, 123.	1.3	56
26	Validation of the GenoType®MTBDRplus assay for diagnosis of multidrug resistant tuberculosis in South Vietnam. BMC Infectious Diseases, 2010, 10, 149.	1.3	55
27	Use of the GenoType \hat{A}^{\otimes} MTBDRplus assay to assess drug resistance of Mycobacterium tuberculosis isolates from patients in rural Uganda. BMC Clinical Pathology, 2010, 10, 5.	1.8	18
28	Clinical Efficacy of Direct DNA Sequencing Analysis on Sputum Specimens for Early Detection of Drug-Resistant Mycobacterium tuberculosis in a Clinical Setting. Chest, 2010, 137, 393-400.	0.4	21
29	Recent Advances in the Laboratory Detection of Mycobacterium tuberculosis Complex and Drug Resistance. Clinical Infectious Diseases, 2011, 52, 1350-1355.	2.9	69
31	Detection of rifampin-resistant genotypes in Mycobacterium tuberculosis by reverse hybridization assay. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 139-145.	0.8	8
32	Detection of mutations associated with multidrug-resistantMycobacterium tuberculosisclinical isolates. FEMS Immunology and Medical Microbiology, 2011, 62, 321-327.	2.7	9
33	GenoType®MTBDRplus compared with conventional drug-susceptibility testing ofMycobacterium tuberculosisin a low-resistance locale. Future Microbiology, 2011, 6, 357-362.	1.0	8
34	Utility of GenoType MTBDRplus assay in rapid diagnosis of multidrug resistant tuberculosis at a tertiary care centre in India. Indian Journal of Medical Microbiology, 2012, 30, 58-63.	0.3	25
35	Clinical Research and Development of Tuberculosis Diagnostics: Moving From Silos to Synergy. Journal of Infectious Diseases, 2012, 205, S159-S168.	1.9	30
36	GenoType MTBDR <i>sl</i> performance on clinical samples with diverse genetic background. European Respiratory Journal, 2012, 40, 690-698.	3.1	37
37	Analysis of gene mutations associated with isoniazid, rifampicin and ethambutol resistance among Mycobacterium tuberculosisisolates from Ethiopia. BMC Infectious Diseases, 2012, 12, 37.	1.3	56
38	Evaluation of Genetic Mutations Associated with Mycobacterium tuberculosis Resistance to Amikacin, Kanamycin and Capreomycin: A Systematic Review. PLoS ONE, 2012, 7, e33275.	1.1	219

#	ARTICLE	IF	Citations
39	Comprehensive Multicenter Evaluation of a New Line Probe Assay Kit for Identification of Mycobacterium Species and Detection of Drug-Resistant Mycobacterium tuberculosis. Journal of Clinical Microbiology, 2012, 50, 884-890.	1.8	52
40	New insight into the molecular characterization of isoniazid and rifampicin resistant Mycobacterium tuberculosis strains from Saudi Arabia. Infection, Genetics and Evolution, 2012, 12, 549-556.	1.0	13
41	Characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Sichuan in China. Tuberculosis, 2013, 93, 89-95.	0.8	25
42	Use of GenoType® MTBDRplus assay to assess drug resistance and mutation patterns of multidrug-resistant tuberculosis isolates in northern India. Indian Journal of Medical Microbiology, 2013, 31, 230-236.	0.3	16
43	Rapid Diagnosis of Mycobacterium tuberculosis Infection and Drug Susceptibility Testing. Archives of Pathology and Laboratory Medicine, 2013, 137, 812-819.	1.2	27
44	Predictive Value of Molecular Drug Resistance Testing of Mycobacterium tuberculosis Isolates in Valle del Cauca, Colombia. Journal of Clinical Microbiology, 2013, 51, 2220-2224.	1.8	22
45	Comparative Evaluation of GenoType MTBDRplus Line Probe Assay with Solid Culture Method in Early Diagnosis of Multidrug Resistant Tuberculosis (MDR-TB) at a Tertiary Care Centre in India. PLoS ONE, 2013, 8, e72036.	1.1	61
46	Molecular Approaches for Detection of the Multi-Drug Resistant Tuberculosis (MDR-TB) in Bangladesh. PLoS ONE, 2014, 9, e99810.	1.1	23
47	A Field Evaluation of the Hardy TB MODS Kitâ,,¢ for the Rapid Phenotypic Diagnosis of Tuberculosis and Multi-Drug Resistant Tuberculosis. PLoS ONE, 2014, 9, e107258.	1.1	14
48	Evaluation of the GenoType MTBDR assay for detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis complex isolates. Indian Journal of Medical Microbiology, 2014, 32, 318-322.	0.3	4
49	Mycobacterium tuberculosis Pyrazinamide Resistance Determinants: a Multicenter Study. MBio, 2014, 5, e01819-14.	1.8	125
50	Comparison of Xpert MTB/RIF with Line Probe Assay for Detection of Rifampin-Monoresistant Mycobacterium tuberculosis. Journal of Clinical Microbiology, 2014, 52, 1846-1852.	1.8	120
51	High degree of multi-drug resistance and hetero-resistance in pulmonary TB patients from Punjab state of India. Tuberculosis, 2014, 94, 73-80.	0.8	51
52	Rapid Detection of Isoniazid Resistance in Mycobacterium tuberculosis Isolates by Use of Real-Time-PCR-Based Melting Curve Analysis. Journal of Clinical Microbiology, 2014, 52, 1644-1652.	1.8	35
53	Assessment of the GenoType MTBDRplus assay for rifampin and isoniazid resistance detection on sputum samples in Cote d'Ivoire. European Journal of Microbiology and Immunology, 2014, 4, 166-173.	1.5	9
54	General and advanced diagnostic tools to detect Mycobacterium tuberculosis and their drug susceptibility: a review. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 851-861.	1.3	20
55	Comparison of Three Commercial Molecular Assays for Detection of Rifampin and Isoniazid Resistance among Mycobacterium tuberculosis Isolates in a High-HIV-Prevalence Setting: TABLE 1. Journal of Clinical Microbiology, 2015, 53, 3032-3034.	1.8	9
56	Mixed Infections and Rifampin Heteroresistance among Mycobacterium tuberculosis Clinical Isolates. Journal of Clinical Microbiology, 2015, 53, 2138-2147.	1.8	37

#	Article	IF	CITATIONS
57	Lab-on-Chip-Based Platform for Fast Molecular Diagnosis of Multidrug-Resistant Tuberculosis. Journal of Clinical Microbiology, 2015, 53, 3876-3880.	1.8	41
58	Detection of <l>kat</l> G and <l>inh</l> A mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis. International Journal of Tuberculosis and Lung Disease, 2016, 20, 1099-1104.	0.6	79
59	Genotyping of mutations detected with GeneXpert. International Journal of Mycobacteriology, 2016, 5, 142-147.	0.3	13
60	Rationing tests for drug-resistant tuberculosis – who are we prepared to miss?. BMC Medicine, 2016, 14, 30.	2.3	7
61	Redefining MTBDR <l>plus</l> test results: what do indeterminate results actually mean?. International Journal of Tuberculosis and Lung Disease, 2016, 20, 154-159.	0.6	10
62	Recommendations for the diagnosis of pediatric tuberculosis. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 1-18.	1.3	29
63	Isoniazid-resistant tuberculosis: a cause for concern?. International Journal of Tuberculosis and Lung Disease, 2017, 21, 129-139.	0.6	68
64	Molecular screening of multidrug-resistance tuberculosis by a designated public health laboratory in Taiwan. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 2431-2439.	1.3	6
65	Evaluation of Genotype MTBDRplus Line Probe Assay in Detection of Rifampicin and Isoniazid Resistance in Comparison to Solid Culture Drug Susceptibility Testing in a Tertiary Care Centre of Western Uttar Pradesh. Indian Journal of Medical Microbiology, 2017, 35, 568-574.	0.3	7
66	Comparison of line probe assay to BACTEC MGIT 960 system for susceptibility testing of first and second-line anti-tuberculosis drugs in a referral laboratory in South Africa. BMC Infectious Diseases, 2017, 17, 795.	1.3	29
67	MUTATIONS IN THE RPOB GENE OF MYCOBACTERIUM TUBERCULOSIS IDENTIFIED BY SEQUENCING METHOD. Asian Journal of Pharmaceutical and Clinical Research, 2017, 10, 382.	0.3	1
68	Analysis of isoniazid and rifampicin resistance in Mycobacterium tuberculosis isolates in Morocco using GenoType® MTBDRplus assay. Journal of Global Antimicrobial Resistance, 2018, 12, 197-201.	0.9	10
69	Performance of Biochip system in detecting drug resistant and multidrug-resistant tuberculosis using sputum collected from multiple clinical settings in Zhejiang, China. Scientific Reports, 2018, 8, 10587.	1.6	3
70	Advantages of the AdvanSure MDR-TB GenoBlot assay containing disputed rpoB mutation-specific probes in a routine clinical laboratory setting. Respiratory Medicine, 2019, 146, 71-75.	1.3	2
71	Advances in the molecular diagnosis of tuberculosis: From probes to genomes. Infection, Genetics and Evolution, 2019, 72, 93-112.	1.0	46
72	OUP accepted manuscript. JAC-Antimicrobial Resistance, 2021, 3, dlab101.	0.9	4
73	MYCOBACTERİUM TUBERCULOSİS KOMPLEKSİ KLİNİK İZOLATLARINDA İZONİAZİD VE RİFAMPÄ TANISI İÇİN â€~REVERSE BLOT HYBRIDIZATION ASSAY MYCOBACTERIUM TUBERCULOSIS DRUG RESISTANCE YÖNTEMİNİN ETKİNLİĞİNİN ARAŞTIRILMASI. Süleyman Demirel Üniversitesi Tıp Fakültesi De	Eâ € !∀	1
74	Compatibility of a novel filter paper-based bio-safe sputum transport kit with Line Probe Assay for diagnosing drug-resistant tuberculosis: a single-site evaluation study. ERJ Open Research, 2021, 7, 00137-2021.	1.1	2

#	Article	IF	CITATIONS
75	Drug resistance in tuberculosis- resurvey in Wardha district, India after implementation of revised national TB control program. IP International Journal of Medical Microbiology and Tropical Diseases, 2021, 7, 192-198.	0.1	0
76	Mechanisms and Detection of Antimicrobial Resistance. , 2008, , 1392-1403.		2
77	A Multi-Site Validation in India of the Line Probe Assay for the Rapid Diagnosis of Multi-Drug Resistant Tuberculosis Directly from Sputum Specimens. PLoS ONE, 2014, 9, e88626.	1.1	33
78	Comparison of Xpert MTB/RIF Assay and GenoType MTBDRplus DNA Probes for Detection of Mutations Associated with Rifampicin Resistance in Mycobacterium tuberculosis. PLoS ONE, 2016, 11, e0152694.	1.1	58
79	Research article Evaluation of Genotype MTBDRplus Assay for identifying Multidrug Resistant Mycobacterium tuberculosis isolates in Nepal. Janaki Medical College Journal of Medical Science, 2013, 1, 30-37.	0.1	2
80	Evaluation of GenoType®MTBDRplus assay for rapid detection of drug susceptibility testing of multi-drug resistance tuberculosis in Northern India. Indian Journal of Pathology and Microbiology, 2013, 56, 139.	0.1	6
81	Molecular Detection of Resistance to Rifampin and Isoniazid among Patients Eligible for Retreatment Regimen in Côte d'Ivoire in 2012. Advances in Infectious Diseases, 2013, 03, 65-70.	0.0	3
82	Molecular Profiling of Drug Resistant Isolates of <i>Mycobacterium tuberculosis</i> in North India. Advances in Microbiology, 2012, 02, 317-326.	0.3	5
83	Line Probe Assay as a Rapid Tool for Detection of MDRTB. Annual Research & Review in Biology, 2014, 4, 246-257.	0.4	3
84	Performance of the Genotype MTBDR assay for molecular detection of multidrug-resistant strains of <i>Mycobacterium tuberculosis </i> Annals of Saudi Medicine, 2008, 28, 203-206.	0.5	1
85	THE PHARMACOKINETIC-PHARMACODYNAMIC INTERFACE: DETERMINANTS OF ANTI-INFECTIVE DRUG ACTION AND EFFICACY IN PEDIATRICS. , 2009, , 3156-3178.		1
87	Analysis of mutational pattern in multidrug resistant tuberculosis (MDR TB) in a geographically isolated northeastern region of India. IOSR Journal of Pharmacy and Biological Sciences, 2014, 9, 04-10.	0.1	2
88	Performace of Genotype-MTBDR Test Directly on Clinical Specimens. Journal of Microbiology and Infectious Diseases, 2012, 2, 135-141.	0.1	0
89	Use of GenoType MTBDR plus assay for the detection of mycobacteria molecular rifampicin and isoniazid resistance. Postępy Nauk Medycznych, 2015, 28, 249-254.	0.0	2
90	Molecular Evaluation of Resistance to Rifampicin and Isoniazid of Tuberculosis Patients by test "Genotype® MTBDR Plus―in Senegal. Journal of Tropical Diseases, 2018, 06, .	0.1	0
91	Molecular Detection of Rifampicin and Isoniazid Resistance and Characterization of Mutations in Mycobacterium tuberculosis Complex using Line Probe Assay. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 465-471.	0.0	1
92	Spoligotyping with pncA sequencing strategy conferring the transmission of multidrug-resistant tuberculosis in Egypt. International Journal of Mycobacteriology, 2019, 8, 211.	0.3	1
93	In Silico Analysis of S315T and S315R Mutations of Multidrug-resistant Mycobacterium tuberculosis Clinical Isolates from Karachi, Pakistan. Jundishapur Journal of Microbiology, 2020, 13, .	0.2	1

#	Article	IF	CITATIONS
94	Systematic evaluation of line probe assays for the diagnosis of tuberculosis and drug-resistant tuberculosis. Clinica Chimica Acta, 2022, 533, 183-218.	0.5	1
95	Use of Whole-Genome Sequencing for Detection of Antimicrobial Resistance: <i>Mycobacterium tuberculosis</i>), a Model Organism. Clinical Laboratory Science: Journal of the American Society for Medical Technology, 2019, 32, ascls.2019001784.	0.1	0
96	Drug Resistance in Tuberculosis: Mechanisms, Diagnosis, New Responses, and the Need for an Integrated Approach. Integrated Science, 2023, , 331-359.	0.1	0