Loss of glial fibrillary acidic protein (GFAP) impairs Schronerve regeneration after damage

Journal of Cell Science 119, 3981-3993 DOI: 10.1242/jcs.03168

Citation Report

#	Article	IF	CITATIONS
1	GFAP and its role in Alexander disease. Experimental Cell Research, 2007, 313, 2077-2087.	1.2	296
2	Clial fibrillary acidic protein: A marker of axonal Guillain–BarrÃ syndrome and outcome. Muscle and Nerve, 2008, 38, 899-903.	1.0	20
3	Increase of MCPâ€1 (CCL2) in myelin mutant Schwann cells is mediated by MEKâ€ERK signaling pathway. Glia, 2008, 56, 836-843.	2.5	60
4	The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials, 2008, 29, 118-128.	5.7	304
5	Growth factors in mesenchymal stem cells following glial ell differentiation. Biotechnology and Applied Biochemistry, 2008, 51, 167-176.	1.4	50
6	Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Molecular and Cellular Neurosciences, 2008, 37, 298-311.	1.0	130
7	Schwann cell proliferation during Wallerian degeneration is not necessary for regeneration and remyelination of the peripheral nerves: Axon-dependent removal of newly generated Schwann cells by apoptosis. Molecular and Cellular Neurosciences, 2008, 38, 80-88.	1.0	94
8	Rarefaction of the Peripheral Nerve Network in Diabetic Patients Is Associated With a Pronounced Reduction of Terminal Schwann Cells. Diabetes Care, 2008, 31, 1219-1221.	4.3	19
9	The extracellular matrix affects axonal regeneration in peripheral neuropathies. Neurology, 2008, 71, 322-331.	1.5	32
11	Distinct Muscarinic Acetylcholine Receptor Subtypes Contribute to Stability and Growth, But Not Compensatory Plasticity, of Neuromuscular Synapses. Journal of Neuroscience, 2009, 29, 14942-14955.	1.7	53
12	Transthyretin Internalization by Sensory Neurons Is Megalin Mediated and Necessary for Its Neuritogenic Activity. Journal of Neuroscience, 2009, 29, 3220-3232.	1.7	118
13	ERK1/2-Mediated Schwann Cell Proliferation in the Regenerating Sciatic Nerve by Treadmill Training. Journal of Neurotrauma, 2009, 26, 1733-1744.	1.7	49
14	Live imaging of amyotrophic lateral sclerosis pathogenesis: Disease onset is characterized by marked induction of GFAP in Schwann cells. Glia, 2009, 57, 1130-1142.	2.5	87
15	Proteasome inhibition suppresses Schwann cell dedifferentiation <i>in vitro</i> and <i>in vivo</i> . Glia, 2009, 57, 1825-1834.	2.5	54
16	Actinâ€dependent dynamics of keratin filament precursors. Cytoskeleton, 2009, 66, 976-985.	4.4	63
17	Clial fibrillary acidic protein as a marker of axonal damage in chronic neuropathies. Muscle and Nerve, 2009, 40, 50-54.	1.0	25
18	Evidence of innervation following extracellular matrix scaffold-mediated remodelling of muscular tissues. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 590-600.	1.3	88
19	Interleukinâ€6 is required for the early induction of glial fibrillary acidic protein in Schwann cells during Wallerian degeneration. Journal of Neurochemistry, 2009, 108, 776-786.	2.1	50

ATION REDO

#	Article	IF	CITATIONS
20	Interleukin-6 induces proinflammatory signaling in Schwann cells: A high-throughput analysis. Biochemical and Biophysical Research Communications, 2009, 382, 410-414.	1.0	11
21	Chapter 4 Methods and Protocols in Peripheral Nerve Regeneration Experimental Research: Part I—Experimental Models. International Review of Neurobiology, 2009, 87, 47-79.	0.9	73
22	Palisaded Encapsulated ("Solitary Circumscribedâ€) Neuroma of the Oral Cavity: A Review of 55 Cases. Head and Neck Pathology, 2010, 4, 15-26.	1.3	66
23	Transgenic inhibition of glial NF-kappa B reduces pain behavior and inflammation after peripheral nerve injury. Pain, 2010, 148, 509-518.	2.0	124
24	Macrophage inflammatory protein- $1\hat{l}_{\pm}$ mediates the development of neuropathic pain following peripheral nerve injury through interleukin- $1\hat{l}^2$ up-regulation. Pain, 2010, 149, 305-315.	2.0	149
25	Induction of high mobility group box-1 in dorsal root ganglion contributes to pain hypersensitivity after peripheral nerve injury. Pain, 2010, 149, 514-521.	2.0	110
26	Foot pad skin biopsy in mouse models of hereditary neuropathy. Glia, 2010, 58, 2005-2016.	2.5	13
27	Nestin Is Required for the Proper Self-Renewal of Neural Stem Cells. Stem Cells, 2010, 28, 2162-2171.	1.4	278
28	Botulinum Neurotoxin for Pain Management: Insights from Animal Models. Toxins, 2010, 2, 2890-2913.	1.5	64
29	Sciatic Nerve of Diabetic Rat Treated With Epoetin Delta: Effects on C-Fibers and Blood Vessels Including Pericytes. Angiology, 2010, 61, 651-668.	0.8	12
30	The conditioning lesion effect on sympathetic neurite outgrowth is dependent on gp130 cytokines. Experimental Neurology, 2010, 223, 516-522.	2.0	30
31	Botulinum neurotoxin type A counteracts neuropathic pain and facilitates functional recovery after peripheral nerve injury in animal models. Neuroscience, 2010, 171, 316-328.	1.1	79
32	A New Way of Targeting to Treat Nerve Injury. International Journal of Neuroscience, 2010, 120, 1-10.	0.8	7
33	Glial Fibrillary Acidic Protein: The Intermediate Filament Protein of Astrocytes. Advances in Neurobiology, 2011, , 455-501.	1.3	1
34	Down-regulation of glutamine synthetase enhances migration of rat astrocytes after in vitro injury. Neurochemistry International, 2011, 58, 404-413.	1.9	25
35	Loss of glial fibrillary acidic protein marginally accelerates disease progression in a SOD1 transgenic mouse model of ALS. Neuroscience Research, 2011, 70, 321-329.	1.0	20
36	GFAP in health and disease. Progress in Neurobiology, 2011, 93, 421-443.	2.8	824
37	Glial NF-kappa B inhibition alters neuropeptide expression after sciatic nerve injury in mice. Brain Research, 2011, 1385, 38-46.	1.1	15

#	Article	IF	CITATIONS
38	Axonal outgrowth is associated with increased ERK 1/2 activation but decreased caspase 3 linked cell death in Schwann cells after immediate nerve repair in rats. BMC Neuroscience, 2011, 12, 12.	0.8	42
39	Phosphorylation of Cytohesin-1 by Fyn Is Required for Initiation of Myelination and the Extent of Myelination During Development. Science Signaling, 2012, 5, ra69.	1.6	46
40	c-Jun N-terminal kinase controls a negative loop in the regulation of glial fibrillary acidic protein expression by retinoic acid. Neuroscience, 2012, 208, 143-149.	1.1	1
41	Phosphoproteome profiling of substantia nigra and cortex regions of Alzheimer's disease patients. Journal of Neurochemistry, 2012, 121, 954-963.	2.1	39
42	Vimentin regulates peripheral nerve myelination. Development (Cambridge), 2012, 139, 1359-1367.	1.2	58
43	The MMP-9/TIMP-1 Axis Controls the Status of Differentiation and Function of Myelin-Forming Schwann Cells in Nerve Regeneration. PLoS ONE, 2012, 7, e33664.	1.1	88
44	The Analgesic Effect on Neuropathic Pain of Retrogradely Transported botulinum Neurotoxin A Involves Schwann Cells and Astrocytes. PLoS ONE, 2012, 7, e47977.	1.1	132
45	The brachial plexus branches to the pectoral muscles in adult rats: morphological aspects and morphometric normative data. Frontiers in Neuroanatomy, 2012, 6, 41.	0.9	8
46	β-1,4-Galactosyltransferase I involved in Schwann cells proliferation and apoptosis induced by tumor necrosis factor-alpha via the activation of MAP kinases signal pathways. Molecular and Cellular Biochemistry, 2012, 365, 149-158.	1.4	19
47	Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and reâ€expressed in scar myofibroblasts. Journal of Cellular Physiology, 2012, 227, 813-820.	2.0	31
48	Biology of Schwann cells. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 115, 55-79.	1.0	125
49	Chemically Functionalized Single-Walled Carbon Nanotube Films Modulate the Morpho-Functional and Proliferative Characteristics of Astrocytes. Nano Letters, 2013, 13, 4387-4392.	4.5	25
50	Sonic Hedgehog Is Neuroprotective in the Cavernous Nerve with Crush Injury. Journal of Sexual Medicine, 2013, 10, 1240-1250.	0.3	33
51	Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Progress in Neurobiology, 2013, 105, 60-78.	2.8	141
52	Electrospun Hyaluronan-Gelatin Nanofibrous Matrix for Nerve Tissue Engineering. Journal of Nanomaterials, 2013, 2013, 1-9.	1.5	19
53	αvβ8 integrin interacts with RhoGDI1 to regulate Rac1 and Cdc42 activation and drive glioblastoma cell invasion. Molecular Biology of the Cell, 2013, 24, 474-482.	0.9	60
54	Future Perspectives in Nerve Repair and Regeneration. International Review of Neurobiology, 2013, 109, 165-192.	0.9	40
55	Sonic Hedgehog Regulates Brain-Derived Neurotrophic Factor in Normal and Regenerating Cavernous Nerves. Journal of Sexual Medicine, 2013, 10, 730-737.	0.3	42

		EPORT	
# 56	ARTICLE Stabilization of the dystroglycan complex in Cajal bands of myelinating Schwann cells through plectin-mediated anchorage to vimentin filaments. Glia, 2013, 61, 1274-1287.	IF 2.5	Citations 27
57	Distinct Changes in Synaptic Protein Composition at Neuromuscular Junctions of Extraocular Muscles versus Limb Muscles of ALS Donors. PLoS ONE, 2013, 8, e57473.	1.1	43
58	Role of Schwann cells in peripheral nerve regeneration. , 0, , 472-495.		0
59	The Effects of Different Culture Media on Human Corneal Endothelial Cells. , 2014, 55, 5099.		26
60	The influence of spatial pulsed magnetic field application on neuropathic pain after tibial nerve transection in rat. Electromagnetic Biology and Medicine, 2014, 33, 35-46.	0.7	1
61	Effect of local application of transforming growth factor–β at the nerve repair site following chronic axotomy and denervation on the expression of regeneration-associated genes. Journal of Neurosurgery, 2014, 121, 859-874.	0.9	24
62	Inflammatory responses and morphological changes of radiofrequencyâ€induced rat sciatic nerve fibres. European Journal of Pain, 2014, 18, 192-203.	1.4	19
63	Involvement of extracellular factors in maintaining self-renewal of neural stem cell by nestin. NeuroReport, 2014, 25, 782-787.	0.6	11
64	Jab1 regulates Schwann cell proliferation and axonal sorting through p27. Journal of Experimental Medicine, 2014, 211, 29-43.	4.2	35
65	Syncoilin is an intermediate filament protein in activated hepatic stellate cells. Histochemistry and Cell Biology, 2014, 141, 85-99.	0.8	10
66	Peripheral nerve morphogenesis induced by scaffold micropatterning. Biomaterials, 2014, 35, 4035-4045.	5.7	39
67	Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A. Skeletal Muscle, 2015, 5, 30.	1.9	15
68	Stemness Characteristics of Human Corneal Endothelial Cells Cultured in Various Media. Eye and Contact Lens, 2015, 41, 190-196.	0.8	8
69	Visualizing Peripheral Nerve Regeneration by Whole Mount Staining. PLoS ONE, 2015, 10, e0119168.	1.1	48
70	Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends in Neurosciences, 2015, 38, 364-374.	4.2	573
71	Loss of Fig4 in both Schwann cells and motor neurons contributes to CMT4J neuropathy. Human Molecular Genetics, 2015, 24, 383-396.	1.4	39
72	Decoration of PLGA electrospun nanofibers with designer self-assembling peptides: a "Nano-on-Nano― concept. RSC Advances, 2015, 5, 88748-88757.	1.7	16
73	The Role of the Cytoskeleton in Cell Migration, Its Influence on Stem Cells and the Special Role of GFAP in Clial Functions. , 2015, , 87-117.		0

#	Article	IF	CITATIONS
74	Effects of age-related loss of P/Q-type calcium channels in a mice model of peripheral nerve injury. Neurobiology of Aging, 2015, 36, 352-364.	1.5	11
75	Immune response in peripheral axons delays disease progression in SOD1G93A mice. Journal of Neuroinflammation, 2016, 13, 261.	3.1	63
76	Kif13b Regulates PNS and CNS Myelination through the Dlg1 Scaffold. PLoS Biology, 2016, 14, e1002440.	2.6	32
77	Extracorporeal shockwave treatment: A novel tool to improve Schwann cell isolation and culture. Cytotherapy, 2016, 18, 760-770.	0.3	23
78	Glial Fibrillary Acidic Protein (GFAP): on the 45th Anniversary of Its Discovery. Neurophysiology, 2016, 48, 54-71.	0.2	31
79	Schwann cell proliferation and differentiation that is induced by ferulic acid through MEK1/ERK1/2 signalling promotes peripheral nerve remyelination following crush injury in rats. Experimental and Therapeutic Medicine, 2016, 12, 1915-1921.	0.8	11
80	Dorsal Root Ganglionic Field Stimulation Relieves Spontaneous and Induced Neuropathic Pain in Rats. Journal of Pain, 2016, 17, 1349-1358.	0.7	38
81	Effects of Oxaliplatin Treatment on the Enteric Glial Cells and Neurons in the Mouse Ileum. Journal of Histochemistry and Cytochemistry, 2016, 64, 530-545.	1.3	29
82	Proteomics and transcriptomics of peripheral nerve tissue and cells unravel new aspects of the human Schwann cell repair phenotype. Glia, 2016, 64, 2133-2153.	2.5	77
83	Intermediate filaments in peripheral nervous system: Their expression, dysfunction and diseases. Revue Neurologique, 2016, 172, 607-613.	0.6	13
84	Combination of grafted Schwann cells and lentiviral-mediated prevention of glial scar formation improve recovery of spinal cord injured rats. Journal of Chemical Neuroanatomy, 2016, 76, 48-60.	1.0	5
85	Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells. FASEB Journal, 2017, 31, 1744-1755.	0.2	25
86	Biological roles of glial fibrillary acidic protein as a biomarker in cartilage regenerative medicine. Journal of Cellular Physiology, 2017, 232, 3182-3193.	2.0	6
87	Irreversible changes occurring in long-term denervated Schwann cells affect delayed nerve repair. Journal of Neurosurgery, 2017, 127, 843-856.	0.9	38
88	NTE/PNPLA6 is expressed in mature Schwann cells and is required for glial ensheathment of Remak fibers. Glia, 2017, 65, 804-816.	2.5	22
89	Postinjury Induction of Activated ErbB2 Selectively Hyperactivates Denervated Schwann Cells and Promotes Robust Dorsal Root Axon Regeneration. Journal of Neuroscience, 2017, 37, 10955-10970.	1.7	13
90	The Impact of Oxidative Stress Factors on the Viability, Senescence, and Methylation Status of Olfactory Bulb-Derived Glial Cells Isolated from Human Cadaver Donors. Cells Tissues Organs, 2017, 204, 105-118.	1.3	1
91	Alexander Disease Mutations Produce Cells with Coexpression of Glial Fibrillary Acidic Protein and NG2 in Neurosphere Cultures and Inhibit Differentiation into Mature Oligodendrocytes. Frontiers in Neurology, 2017, 8, 255.	1.1	19

#	Article	IF	CITATIONS
92	Immunofluorescent characterization of non-myelinating Schwann cells and their interactions with immune cells in mouse mesenteric lymph node. European Journal of Histochemistry, 2017, 61, 2827.	0.6	12
93	An Optimized Collagen-Fibrin Blend Engineered Neural Tissue Promotes Peripheral Nerve Repair. Tissue Engineering - Part A, 2018, 24, 1332-1340.	1.6	42
94	Glial fibrillary acidic protein promoter determines transgene expression in satellite glial cells following intraganglionic adenoâ€associated virus delivery in adult rats. Journal of Neuroscience Research, 2018, 96, 436-448.	1.3	10
95	<scp>A</scp> <scp>P</scp> arkinson's disease gene, <scp>DJ</scp> â€1, repairs brain injury through <scp>S</scp> ox9 stabilization and astrogliosis. Glia, 2018, 66, 445-458.	2.5	33
96	Neuromuscular Junction Changes in a Mouse Model of Charcot-Marie-Tooth Disease Type 4C. International Journal of Molecular Sciences, 2018, 19, 4072.	1.8	24
97	Ivermectin Promotes Peripheral Nerve Regeneration during Wound Healing. ACS Omega, 2018, 3, 12392-12402.	1.6	11
98	Effects of Oxaliplatin Treatment on the Myenteric Plexus Innervation and Glia in the Murine Distal Colon. Journal of Histochemistry and Cytochemistry, 2018, 66, 723-736.	1.3	11
99	Leptin Receptor Expression in Mouse Intracranial Perivascular Cells. Frontiers in Neuroanatomy, 2018, 12, 4.	0.9	25
100	Biomaterial-Supported Cell Transplantation Treatments for Spinal Cord Injury: Challenges and Perspectives. Frontiers in Cellular Neuroscience, 2017, 11, 430.	1.8	83
101	Age-related loss of VGLUT1 excitatory, but not VGAT inhibitory, immunoreactive terminals on motor neurons in spinal cords of old sarcopenic male mice. Biogerontology, 2018, 19, 385-399.	2.0	12
102	Counteracting roles of MHCI and CD8+ T cells in the peripheral and central nervous system of ALS SOD1G93A mice. Molecular Neurodegeneration, 2018, 13, 42.	4.4	40
103	A Schwann cell–enriched circular RNA circâ€Ankib1 regulates Schwann cell proliferation following peripheral nerve injury. FASEB Journal, 2019, 33, 12409-12424.	0.2	23
104	Melatonin regulates neuroinflammation ischemic stroke damage through interactions with microglia in reperfusion phase. Brain Research, 2019, 1723, 146401.	1.1	34
105	Spatiotemporal Differences in Gene Expression Between Motor and Sensory Autografts and Their Effect on Femoral Nerve Regeneration in the Rat. Frontiers in Cellular Neuroscience, 2019, 13, 182.	1.8	11
106	Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Frontiers in Neurology, 2019, 10, 99.	1.1	15
107	Polypeptide Thermogel-Filled Silk Tube as a Bioactive Nerve Conduit. ACS Applied Bio Materials, 2019, 2, 1967-1974.	2.3	4
108	Peptide nanostructures on nanofibers for peripheral nerve regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1059-1070.	1.3	13
109	Development of the central nervous system in equine twin fetuses derived by somatic cell nuclear transfer. Reproduction, Fertility and Development, 2019, 31, 941.	0.1	0

#	Article	IF	Citations
110	Corneal Cells: Fine-tuning Nerve Regeneration. Current Eye Research, 2020, 45, 291-302.	0.7	7
111	Iron Ion-Releasing Polypeptide Thermogel for Neuronal Differentiation of Mesenchymal Stem Cells. Biomacromolecules, 2020, 21, 143-151.	2.6	20
112	Fast three-dimensional micropatterning of PC12 cells in rapidly crosslinked hydrogel scaffolds using ultrasonic standing waves. Biofabrication, 2020, 12, 015013.	3.7	15
113	Activated Schwann cells and increased inflammatory cytokines ILâ€1β, ILâ€6, and TNFâ€Î± in patients' sural nerve are lack of tight relationship with specific sensory disturbances in Parkinson's disease. CNS Neuroscience and Therapeutics, 2020, 26, 518-526.	1.9	17
114	The Extraocular Muscles Are Selectively Spared in ALS. , 2020, , .		1
115	A Novel HGF/SF Receptor (MET) Agonist Transiently Delays the Disease Progression in an Amyotrophic Lateral Sclerosis Mouse Model by Promoting Neuronal Survival and Dampening the Immune Dysregulation. International Journal of Molecular Sciences, 2020, 21, 8542.	1.8	8
116	An electrospun nerve wrap comprising Bletilla striata polysaccharide with dual function for nerve regeneration and scar prevention. Carbohydrate Polymers, 2020, 250, 116981.	5.1	23
117	GFAP at 50. ASN Neuro, 2020, 12, 175909142094968.	1.5	55
118	Hydroxytyrosol Promotes Proliferation of Human Schwann Cells: An In Vitro Study. International Journal of Environmental Research and Public Health, 2020, 17, 4404.	1.2	12
119	Botulinum Toxin and Neuronal Regeneration after Traumatic Injury of Central and Peripheral Nervous System. Toxins, 2020, 12, 434.	1.5	10
120	Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells, 2020, 9, 358.	1.8	79
121	Motor and sensory Schwann cell phenotype commitment is diminished by extracorporeal shockwave treatment in vitro. Journal of the Peripheral Nervous System, 2020, 25, 32-43.	1.4	3
122	GFAP IgG associated inflammatory polyneuropathy. Journal of Neuroimmunology, 2020, 343, 577233.	1.1	14
123	Mesenchymal Stem Cells Derived from Wharton's Jelly Can Differentiate into Schwann Cell-Like Cells and Promote Peripheral Nerve Regeneration in Acellular Nerve Grafts. Tissue Engineering and Regenerative Medicine, 2021, 18, 467-478.	1.6	15
124	Murine Esophagus Expresses Glial-Derived Central Nervous System Antigens. International Journal of Molecular Sciences, 2021, 22, 3233.	1.8	8
125	Ginsenoside Compound K Promotes Proliferation, Migration and Differentiation of Schwann Cells via the Activation of MEK/ERK1/2 and PI3K/AKT Pathways. Neurochemical Research, 2021, 46, 1400-1409.	1.6	5
126	In vitro investigation of growth factors including MGF and IGF-1 in neural stem cell activation, proliferation, and migration. Brain Research, 2021, 1759, 147366.	1.1	10
127	The ependymal cell cytoskeleton in the normal and injured spinal cord of mice. Journal of Neuroscience Research, 2021, 99, 2592-2609.	1.3	3

#	Article	IF	CITATIONS
128	Quantitative proteomic analysis of human peripheral nerves from subjects with type 2 diabetes. Diabetic Medicine, 2021, 38, e14658.	1.2	8
129	Discrepancy in the Usage of GFAP as a Marker of Satellite Glial Cell Reactivity. Biomedicines, 2021, 9, 1022.	1.4	20
130	Effects of Pulsed Radiofrequency on Nerve Repair and Expressions of GFAP and GDNF in Rats with Neuropathic Pain. BioMed Research International, 2021, 2021, 1-8.	0.9	2
131	The prion protein is not required for peripheral nerve de- and remyelination after crush injury. PLoS ONE, 2021, 16, e0245944.	1.1	5
132	Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis. Scientific Reports, 2020, 10, 1984.	1.6	18
133	Schwann cells induce cancer cell dispersion and invasion. Journal of Clinical Investigation, 2016, 126, 1538-1554.	3.9	176
134	Influence of Perineurial Cells and Toll-Like Receptors 2 and 9 on Herpes simplex Type 1 Entry to the Central Nervous System in Rat Encephalitis. PLoS ONE, 2010, 5, e12350.	1.1	13
135	Urokinase Plasminogen Receptor and the Fibrinolytic Complex Play a Role in Nerve Repair after Nerve Crush in Mice, and in Human Neuropathies. PLoS ONE, 2012, 7, e32059.	1.1	16
136	Identification of Novel Autoantigen in the Synovial Fluid of Rheumatoid Arthritis Patients Using an Immunoproteomics Approach. PLoS ONE, 2013, 8, e56246.	1.1	70
137	Axonal Regeneration after Sciatic Nerve Lesion Is Delayed but Complete in GFAP- and Vimentin-Deficient Mice. PLoS ONE, 2013, 8, e79395.	1.1	33
138	Effect of two-week continuous epidural administration of 2% lidocaine on mechanical allodynia induced by spinal nerve ligation in rats. Anesthesia and Pain Medicine, 2020, 15, 334-343.	0.5	2
139	Effects of Short Term Hypoxia-Preconditioning on Clial Phenotype Induction of Human Mesenchymal Stem Cells. AIMS Cell and Tissue Engineering, 2017, 1, 47-63.	0.4	0
140	Adipose Tissue Graft Improves Early but not Late Stages of Nerve Regeneration. In Vivo, 2017, 31, 649-655.	0.6	4
142	Palisaded Encapsulated (Solitary Circumscribed) Neuroma of the Buccal Mucosa: a Rare Case. Journal of Dentistry, 2017, 18, 314-317.	0.1	0
143	Novel protocol for the isolation of highly purified neonatal murine microglia and astrocytes. Journal of Neuroscience Methods, 2022, 366, 109420.	1.3	7
144	Effect of Botulinum Toxin Injection and Extracorporeal Shock Wave Therapy on Nerve Regeneration in Rats with Experimentally Induced Sciatic Nerve Injury. Toxins, 2021, 13, 879.	1.5	8
145	Endothelial cells promote the proliferation and migration of Schwann cells. Annals of Translational Medicine, 2022, 10, 78-78.	0.7	8
146	ADAM17 Regulates p75 ^{NTR} -Mediated Fibrinolysis and Nerve Remyelination. Journal of Neuroscience, 2022, 42, 2433-2447.	1.7	2

#	Article	IF	CITATIONS
147	Regulation of Schwann Cell and DRG Neurite Behaviors within Decellularized Peripheral Nerve Matrix. ACS Applied Materials & Interfaces, 2022, 14, 8693-8704.	4.0	15
148	Localized delivery of brain-derived neurotrophic factor from PLGA microspheres promotes peripheral nerve regeneration in rats. Journal of Orthopaedic Surgery and Research, 2022, 17, 172.	0.9	9
149	Glial Fibrillary Acidic Protein in Blood as a Disease Biomarker of Neuromyelitis Optica Spectrum Disorders. Frontiers in Neurology, 2022, 13, 865730.	1.1	9
150	Phenotypical changes of satellite glial cells in a murine model of G _{M1} â€gangliosidosis. Journal of Cellular and Molecular Medicine, 2022, 26, 527-539.	1.6	3
159	Preclinical Evidence for the Role of Botulinum Neurotoxin A (BoNT/A) in the Treatment of Peripheral Nerve Injury. Microorganisms, 2022, 10, 886.	1.6	8
160	Thermosensitive Hydrogel Carrying Extracellular Vesicles from Adipose-Derived Stem Cells Promotes Peripheral Nerve Regeneration after Microsurgical Repair. SSRN Electronic Journal, 0, , .	0.4	0
161	Development of myelinating glia: An overview. Glia, 2022, 70, 2237-2259.	2.5	17
162	Sexual dimorphism of early transcriptional reprogramming in degenerating peripheral nerves. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	1
163	Co-Culturing Rat Dorsal Root Ganglion Neurons With Rat Schwann Cells Protects Them Against the Cytotoxic Effects of Silver and Gold Nanoparticles. International Journal of Toxicology, 2023, 42, 4-18.	0.6	1
165	Thermosensitive hydrogel carrying extracellular vesicles from adipose-derived stem cells promotes peripheral nerve regeneration after microsurgical repair. APL Bioengineering, 2022, 6, .	3.3	6
167	Histone deacetylase 5â€induced deficiency of signal transducer and activator of transcriptionâ€3 acetylation contributes to spinal astrocytes degeneration in painful diabetic neuropathy. Glia, 2023, 71, 1099-1119.	2.5	1
170	Peripheral nervous system involvement accompanies central nervous system involvement in anti-glial fibrillary acidic protein (GFAP) antibody-related disease. Journal of Neurology, 2023, 270, 5545-5560.	1.8	1