Uses for JNK: the Many and Varied Substrates of the c-J

Microbiology and Molecular Biology Reviews 70, 1061-1095 DOI: 10.1128/mmbr.00025-06

Citation Report

#	Article	IF	CITATIONS
1	Stimulation-Specific Contribution of p38 and JNK to IFN- <i>β</i> Gene Expression in Human Macrophages. Journal of Interferon and Cytokine Research, 2007, 27, 751-756.	0.5	8
2	Regulation of innate immunity by MAPK dual-specificity phosphatases: knockout models reveal new tricks of old genes. Journal of Leukocyte Biology, 2007, 81, 860-869.	1.5	62
3	The JNK Pathway and Neuronal Migration. Journal of Genetics and Genomics, 2007, 34, 957-965.	1.7	20
4	Substrate and Docking Interactions in Serine/Threonine Protein Kinases. Chemical Reviews, 2007, 107, 5065-5081.	23.0	119
5	Wnt signaling and neurite outgrowth: Insights and questions. Cancer Science, 2007, 98, 1311-1317.	1.7	37
6	Emerging role of mitogenâ€activated protein kinases in peripheral neuropathies. Journal of the Peripheral Nervous System, 2007, 12, 175-194.	1.4	27
7	The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cellular and Molecular Life Sciences, 2008, 65, 3525-3544.	2.4	350
8	Critical roles for JNK, câ€Jun, and Fas/FasLâ€Signaling in vitamin E analogâ€induced apoptosis in human prostate cancer cells. Prostate, 2008, 68, 427-441.	1.2	32
9	Inhibitors of c-Jun N-terminal kinases—JuNK no more?. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 76-93.	1.1	114
10	Distinct signaling pathways of microtubule inhibitors – vinblastine and Taxol induce JNKâ€dependent cell death but through APâ€1â€dependent and APâ€1â€independent mechanisms, respectively. FEBS Journal, 20 275, 1889-1899.	0&.2	46
11	Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites. BMC Bioinformatics, 2008, 9, 245.	1.2	62
12	Molecular and macromolecular alterations of recombinant adenoviral vectors do not resolve changes in hepatic drug metabolism during infection. Virology Journal, 2008, 5, 111.	1.4	10
13	Activation of JNK pathway in persistent pain. Neuroscience Letters, 2008, 437, 180-183.	1.0	135
14	Neuroprotective actions of ovarian hormones without insult in the raphe region of rhesus macaques. Neuroscience, 2008, 154, 720-731.	1.1	26
15	Protective role of c-Jun N-terminal kinase 2 in acetaminophen-induced liver injury. Biochemical and Biophysical Research Communications, 2008, 374, 6-10.	1.0	42
16	Signaling Pathways in Morphogenesis of Cornea and Eyelid. Ocular Surface, 2008, 6, 9-23.	2.2	20
17	Superior cervical ganglion-10 protein as a molecular effector of c-Jun N-terminal kinase 1: implications for the therapeutic targeting of Jun N-terminal kinase in nerve regeneration. Expert Opinion on Therapeutic Targets, 2008, 12, 31-43.	1.5	5
18	Wnt-3a and Dickkopf-1 Stimulate Neurite Outgrowth in Ewing Tumor Cells via a Frizzled3- and c-Jun N-Terminal Kinase-Dependent Mechanism. Molecular and Cellular Biology, 2008, 28, 2368-2379.	1.1	89

#	Article	IF	CITATIONS
19	Differential transmission of MEKK1 morphogenetic signals by JNK1 and JNK2. Development (Cambridge), 2008, 135, 23-32.	1.2	45
20	Microtubule stabilization specifies initial neuronal polarization. Journal of Cell Biology, 2008, 180, 619-632.	2.3	483
21	JNK-mediated Phosphorylation of Paxillin in Adhesion Assembly and Tension-induced Cell Death by the Adenovirus Death Factor E4orf4. Journal of Biological Chemistry, 2008, 283, 34352-34364.	1.6	18
22	p38 and c-Jun N-Terminal Kinase Mitogen-Activated Protein Kinase Signaling Pathways Play Distinct Roles in the Response of Organogenesis-Stage Embryos to a Teratogen. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 764-772.	1.3	12
23	Collagen l–mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. Journal of Cell Biology, 2008, 180, 1277-1289.	2.3	224
24	XIAP Regulates Cytosol-Specific Innate Immunity to Listeria Infection. PLoS Pathogens, 2008, 4, e1000142.	2.1	92
25	Galectin 15 (LGALS15) functions in trophectoderm migration and attachment. FASEB Journal, 2008, 22, 548-560.	0.2	63
26	A Novel High-Throughput Screening System Identifies a Small Molecule Repressive for Matrix Metalloproteinase-9 Expression. Molecular Pharmacology, 2008, 73, 919-929.	1.0	20
27	The p110δ of PI3K plays a critical role in NK cell terminal maturation and cytokine/chemokine generation. Journal of Experimental Medicine, 2008, 205, 2419-2435.	4.2	94
28	Mitogen-Activated Protein (MAP) Kinase/MAP Kinase Phosphatase Regulation: Roles in Cell Growth, Death, and Cancer. Pharmacological Reviews, 2008, 60, 261-310.	7.1	515
29	MAPK signaling pathways are needed for survival of H9c2 cardiac myoblasts under extracellular alkalosis. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1319-H1329.	1.5	16
30	Mechanistic Systems Biology of Inflammatory Gene Expression in Airway Smooth Muscle as Tool for Asthma Drug Development. Current Drug Discovery Technologies, 2008, 5, 279-288.	0.6	5
31	Unraveling the Molecular Mechanisms Behind the Metabolic Basis of Sporadic Alzheimer's Disease. Journal of Alzheimer's Disease, 2008, 17, 267-276.	1.2	28
32	Selectivity of Docking Sites in MAPK Kinases. Journal of Biological Chemistry, 2009, 284, 13165-13173.	1.6	113
33	Ceramide activates JNK to inhibit a cAMPâ€gated K ⁺ conductance and Cl ^{â€} secretion in intestinal epithelia. FASEB Journal, 2009, 23, 259-270.	0.2	9
34	Basal c-Jun NH2-terminal protein kinase activity is essential for survival and proliferation of T-cell acute lymphoblastic leukemia cells. Molecular Cancer Therapeutics, 2009, 8, 3214-3222.	1.9	38
35	Selective Inhibition of Type III Secretion Activated Signaling by the Salmonella Effector AvrA. PLoS Pathogens, 2009, 5, e1000595.	2.1	96
36	Shear Stress Inhibits Homocysteine-Induced Stromal Cell–Derived Factor-1 Expression in Endothelial Cells. Circulation Research, 2009, 105, 755-763.	2.0	25

#	Article	IF	CITATIONS
37	Mammalian sterile 20-like kinase 3 (MST3) mediates oxidative-stress-induced cell death by modulating JNK activation. Bioscience Reports, 2009, 29, 405-415.	1.1	21
38	Kinesin-1 Regulates Microtubule Dynamics via a c-Jun N-terminal Kinase-dependent Mechanism. Journal of Biological Chemistry, 2009, 284, 31992-32001.	1.6	49
39	Human Cytomegalovirus Protein pUL38 Induces ATF4 Expression, Inhibits Persistent JNK Phosphorylation, and Suppresses Endoplasmic Reticulum Stress-Induced Cell Death. Journal of Virology, 2009, 83, 3463-3474.	1.5	105
40	10-Formyltetrahydrofolate Dehydrogenase–Induced c-Jun-NH2-Kinase Pathways Diverge at the c-Jun-NH2-Kinase Substrate Level in Cells with Different p53 Status. Molecular Cancer Research, 2009, 7, 99-107.	1.5	18
41	JNK1, a potential therapeutic target for hepatocellular carcinoma. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 242-251.	3.3	27
42	Oxidized lowâ€density lipoprotein induces matrix metalloproteinaseâ€9 expression via a p42/p44 and JNKâ€dependent APâ€1 pathway in brain astrocytes. Glia, 2009, 57, 24-38.	2.5	53
43	Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology, 2009, 49, 87-96.	3.6	190
44	Spinal Astrogliosis in Pain Models: Cause and Effects. Cellular and Molecular Neurobiology, 2009, 29, 609-619.	1.7	31
45	d-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats. Archives of Toxicology, 2009, 83, 747-762.	1.9	22
46	JNK is constitutively active in mantle cell lymphoma: cell cycle deregulation and polyploidy by JNK inhibitor SP600125. Journal of Pathology, 2009, 218, 95-103.	2.1	36
47	câ€Jun Nâ€terminal kinase negatively regulates epidermal growth factorâ€induced cyclooxygenaseâ€2 expression in oral squamous cell carcinoma cell lines. European Journal of Oral Sciences, 2009, 117, 663-668.	0.7	4
48	Activation of a c-Jun-NH2-terminal kinase pathway by the lethal toxin from <i>Clostridium sordellii</i> , TcsL-82, occurs independently of the toxin intrinsic enzymatic activity and facilitates small GTPase glucosylation. Cellular Microbiology, 2009, 11, 1102-1113.	1.1	11
49	Optimization of 4,6-bis-anilino-1H-pyrrolo[2,3-d]pyrimidine IGF-1R tyrosine kinase inhibitors towards JNK selectivity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 360-364.	1.0	49
50	Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nature Neuroscience, 2009, 12, 864-871.	7.1	222
51	Requirement of the JNK-associated Bcl-2 pathway for human lactoferrin-induced apoptosis in the Jurkat leukemia T cell line. Biochimie, 2009, 91, 102-108.	1.3	50
52	Implication of the JNK pathway in a rat model of Huntington's disease. Experimental Neurology, 2009, 215, 191-200.	2.0	63
53	Involvement of the c-jun N-terminal kinases JNK1 and JNK2 in complement-mediated cell death. Molecular Immunology, 2009, 47, 310-317.	1.0	28
54	Synergistic Interplay between Promoter Recognition and CBP/p300 Coactivator Recruitment by FOXO3a. ACS Chemical Biology, 2009, 4, 1017-1027.	1.6	36

#	ARTICLE JNK-Induced MCP-1 Production in Spinal Cord Astrocytes Contributes to Central Sensitization and	IF	CITATIONS
55	Neuropathic Pain. Journal of Neuroscience, 2009, 29, 4096-4108.	1.7	497
56	ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology. Journal of Neuroinflammation, 2009, 6, 41.	3.1	270
57	c-Jun N-Terminal Kinase Pathway Activation in Human and Experimental Cerebral Contusion. Journal of Neuropathology and Experimental Neurology, 2009, 68, 964-971.	0.9	38
58	Reactive Oxygen Species in TNFα-Induced Signaling and Cell Death. Molecules and Cells, 2010, 30, 1-12.	1.0	154
59	The investigation of Mitogen-Activated Protein kinase Phosphatase-1 as a potential pharmacological target in non-small cell lung carcinomas, assisted by non-invasive molecular imaging. BMC Cancer, 2010, 10, 95.	1.1	32
60	Specific regulation of JNK signalling by the novel rat MKK7γ1 isoform. Cellular Signalling, 2010, 22, 1761-1772.	1.7	16
61	Inhibition of hepatic mitochondrial aldehyde dehydrogenase by carbon tetrachloride through JNK-mediated phosphorylation. Free Radical Biology and Medicine, 2010, 48, 391-398.	1.3	31
62	c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 463-475.	1.1	257
63	The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nature Neuroscience, 2010, 13, 1373-1379.	7.1	147
64	Regulating Endoplasmic Reticulum Function through the Unfolded Protein Response. , 2010, , 2511-2525.		0
65	Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells. PLoS ONE, 2010, 5, e11065.	1.1	30
66	Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. Journal of Cell Biology, 2010, 191, 211-223.	2.3	238
67	c-Jun N-terminal Kinase Phosphorylation of Stathmin Confers Protection against Cellular Stress. Journal of Biological Chemistry, 2010, 285, 29001-29013.	1.6	30
68	Global Up-Regulation of Microtubule Dynamics and Polarity Reversal during Regeneration of an Axon from a Dendrite. Molecular Biology of the Cell, 2010, 21, 767-777.	0.9	111
69	Microtubule Stabilization by Bone Morphogenetic Protein Receptor-Mediated Scaffolding of c-Jun N-Terminal Kinase Promotes Dendrite Formation. Molecular and Cellular Biology, 2010, 30, 2241-2250.	1.1	63
70	Visualization of JNK activity dynamics with a genetically encoded fluorescent biosensor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5459-5464.	3.3	82
71	Inhibition by Anandamide of 6-Hydroxydopamine-Induced Cell Death in PC12 Cells. International Journal of Cell Biology, 2010, 2010, 1-10.	1.0	25
72	Genetically encoded fluorescent indicators to visualise protein phosphorylation by c-Jun NH ₂ -terminal kinase in living cells. Supramolecular Chemistry, 2010, 22, 434-439.	1.5	3

#	Article	IF	Citations
73	Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling. Proceedings of the United States of America, 2010, 107, 11608-11613.	3.3	133
74	JNK-mediated turnover and stabilization of the transcription factor p45/NF-E2 during differentiation of murine erythroleukemia cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 52-57.	3.3	27
75	Hippocampal c-Jun-N-Terminal Kinases Serve as Negative Regulators of Associative Learning. Journal of Neuroscience, 2010, 30, 13348-13361.	1.7	60
76	Polymeric Immunoglobulin Receptor-mediated Invasion of Streptococcus pneumoniae into Host Cells Requires a Coordinate Signaling of SRC Family of Protein-tyrosine Kinases, ERK, and c-Jun N-terminal Kinase. Journal of Biological Chemistry, 2010, 285, 35615-35623.	1.6	19
77	Starvation-induced Hyperacetylation of Tubulin Is Required for the Stimulation of Autophagy by Nutrient Deprivation. Journal of Biological Chemistry, 2010, 285, 24184-24194.	1.6	172
78	JNK1 controls mast cell degranulation and IL-1β production in inflammatory arthritis. Proceedings of the United States of America, 2010, 107, 22122-22127.	3.3	61
79	Computational Prediction and Experimental Verification of New MAP Kinase Docking Sites and Substrates Including Gli Transcription Factors. PLoS Computational Biology, 2010, 6, e1000908.	1.5	80
80	Involvement of Hippocampal Jun-N Terminal Kinase Pathway in the Enhancement of Learning and Memory by Nicotine. Neuropsychopharmacology, 2010, 35, 483-492.	2.8	40
81	Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale. Physiological Reviews, 2010, 90, 1507-1546.	13.1	610
82	Evidence for a differential modulation of p53-phosphorylating kinases by the cyclin-dependent kinase inhibitor p21WAFI/C1P1. Cell Cycle, 2010, 9, 3575-3583.	1.3	7
83	Change in Amniotic Fluid Levels of Multiple Anti-Angiogenic Proteins before Development of Preeclampsia and Intrauterine Growth Restriction. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1431-1441.	1.8	54
84	Modulation of Hepatic Fibrosis by c-Jun-N-Terminal Kinase Inhibition. Gastroenterology, 2010, 138, 347-359.	0.6	195
85	New anti-fibrotic mechanisms of n-acetyl-seryl-aspartyl-lysyl-proline in silicon dioxide-induced silicosis. Life Sciences, 2010, 87, 232-239.	2.0	29
86	Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic–ischemic brain injury. Brain, Behavior, and Immunity, 2010, 24, 812-821.	2.0	80
87	JNK regulation of hepatic manifestations of the metabolic syndrome. Trends in Endocrinology and Metabolism, 2010, 21, 707-713.	3.1	100
88	A JIP3-Regulated GSK3β/DCX Signaling Pathway Restricts Axon Branching. Journal of Neuroscience, 2010, 30, 16766-16776.	1.7	51
89	Development of JNK2-Selective Peptide Inhibitors That Inhibit Breast Cancer Cell Migration. ACS Chemical Biology, 2011, 6, 658-666.	1.6	44
90	The Effects of Berry Extracts on Cell Signaling Pathways: Leading to Cellular Transformation. , 2011, , 51-75.		1

#	Article	IF	CITATIONS
91	c-Jun N-terminal kinases in memory and synaptic plasticity. Reviews in the Neurosciences, 2011, 22, 403-410.	1.4	51
92	Mitogen-Activated Protein Kinases in Mammalian Oxidative Stress Responses. Antioxidants and Redox Signaling, 2011, 15, 205-218.	2.5	146
93	Oxaliplatin Uses JNK to Restore TRAIL Sensitivity in Cancer Cells Through Bcl-xL Inactivation. Gastroenterology, 2011, 141, 430-434.	0.6	9
94	Methamphetamine Exerts Toxic Effects on Subventricular Zone Stem/Progenitor Cells and Inhibits Neuronal Differentiation. Rejuvenation Research, 2011, 14, 205-214.	0.9	17
95	JNK1 Phosphorylation of Cdt1 Inhibits Recruitment of HBO1 Histone Acetylase and Blocks Replication Licensing in Response to Stress. Molecular Cell, 2011, 44, 62-71.	4.5	46
96	Duration of Action of a Broad Range of Selective ^î º-Opioid Receptor Antagonists Is Positively Correlated with c-Jun N-Terminal Kinase-1 Activation. Molecular Pharmacology, 2011, 80, 920-929.	1.0	96
97	Design and Characterization of a Potent and Selective Dual ATP- and Substrate-Competitive Subnanomolar Bidentate c-Jun N-Terminal Kinase (JNK) Inhibitor. Journal of Medicinal Chemistry, 2011, 54, 6206-6214.	2.9	33
98	The role of mitogen―and stressâ€activated protein kinase pathways in melanoma. Pigment Cell and Melanoma Research, 2011, 24, 902-921.	1.5	59
99	Integrin Signaling, Cell Survival, and Anoikis: Distinctions, Differences, and Differentiation. Journal of Signal Transduction, 2011, 2011, 1-18.	2.0	113
100	Phosphorylation of JDP2 on threonine-148 by the c-Jun N-terminal kinase targets it for proteosomal degradation. Biochemical Journal, 2011, 436, 661-669.	1.7	15
101	Characterization of a novel JNK (c-Jun N-terminal kinase) inhibitory peptide. Biochemical Journal, 2011, 434, 399-413.	1.7	27
102	Docking interactions of the JNK scaffold protein WDR62. Biochemical Journal, 2011, 439, 381-392.	1.7	32
103	Role of FGD1, a Cdc42 Guanine Nucleotide Exchange Factor, in Epidermal Growth Factor-Stimulated c-Jun NH2-Terminal Kinase Activation and Cell Migration. Biological and Pharmaceutical Bulletin, 2011, 34, 54-60.	0.6	9
104	Novel role of c-jun N-terminal kinase in regulating the initiation of cap-dependent translation. International Journal of Oncology, 2012, 40, 577-82.	1.4	7
105	Structural Requirements of Isoquinolones as Novel Selective câ€Jun Nâ€terminal Kinase 1 Inhibitors: 2D and 3D QSAR Analyses. Chemical Biology and Drug Design, 2011, 77, 248-254.	1.5	8
106	Phosphorylation of SCG10/stathmin-2 determines multipolar stage exit and neuronal migration rate. Nature Neuroscience, 2011, 14, 305-313.	7.1	101
107	The bottleneck of JNK signaling: Molecular and functional characteristics of MKK4 and MKK7. European Journal of Cell Biology, 2011, 90, 536-544.	1.6	120
108	The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1619-1633.	1.9	708

#	Article	IF	CITATIONS
109	Design and synthesis of brain penetrant selective JNK inhibitors with improved pharmacokinetic properties for the prevention of neurodegeneration. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5521-5527.	1.0	30
110	Cardiovascular effects of the nerve growth factor: An analytical review. Part I: NGF-mediated intracellular signaling pathways. Human Physiology, 2011, 37, 217-228.	0.1	1
111	DUSP13B/TMDP inhibits stress-activated MAPKs and suppresses AP-1-dependent gene expression. Molecular and Cellular Biochemistry, 2011, 352, 155-162.	1.4	11
112	JNK: A Stress-Activated Protein Kinase Therapeutic Strategies and Involvement in Alzheimer's and Various Neurodegenerative Abnormalities. Journal of Molecular Neuroscience, 2011, 43, 376-390.	1.1	136
113	Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells. BMC Cancer, 2011, 11, 170.	1.1	84
114	Fluid shear stressâ€induced JNK activity leads to actin remodeling for cell alignment. Journal of Cellular Physiology, 2011, 226, 110-121.	2.0	29
115	Highly selective c-Jun N-terminal kinase (JNK) 2 and 3 inhibitors with in vitro CNS-like pharmacokinetic properties prevent neurodegeneration. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 315-319.	1.0	36
116	Design and synthesis of a novel, orally active, brain penetrant, tri-substituted thiophene based JNK inhibitor. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1838-1843.	1.0	34
117	Highly selective c-Jun N-terminal kinase (JNK) 3 inhibitors with in vitro CNS-like pharmacokinetic properties II. Central core replacement. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3726-3729.	1.0	11
118	Fine-tuning MAPK signalling in the brain. Communicative and Integrative Biology, 2011, 4, 281-283.	0.6	25
119	JunD and JunB Integrate Prostaglandin E ₂ Activation of Breast Cancer-Associated Proximal Aromatase Promoters. Molecular Endocrinology, 2011, 25, 767-775.	3.7	26
120	c-Jun N-terminal kinase phosphorylates DCP1a to control formation of P bodies. Journal of Cell Biology, 2011, 194, 581-596.	2.3	68
121	Upregulation of Nav1.3 Channel Induced by rrTNF in Cultured Adult Rat DRG Neurons via p38 MAPK and JNK Pathways. Chinese Journal of Physiology, 2011, 54, 241-246.	0.4	14
122	Spontaneous Age-Related Neurite Branching in Caenorhabditis elegans. Journal of Neuroscience, 2011, 31, 9279-9288.	1.7	144
123	c-Jun N-terminal Kinase 2 Regulates Multiple Receptor Tyrosine Kinase Pathways in Mouse Mammary Tumor Growth and Metastasis. Genes and Cancer, 2011, 2, 31-45.	0.6	22
124	<i>Rhou</i> maintains the epithelial architecture and facilitates differentiation of the foregut endoderm. Development (Cambridge), 2011, 138, 4511-4522.	1.2	42
125	Vascular smooth muscle insulin resistance, but not hypertrophic signaling, is independent of angiotensin II-induced IRS-1 phosphorylation by JNK. American Journal of Physiology - Cell Physiology, 2011, 301, C1415-C1422.	2.1	13
126	Alphaherpesviruses and the Cytoskeleton in Neuronal Infections. Viruses, 2011, 3, 941-981.	1.5	33

#	Article	IF	CITATIONS
127	Rapamycin pre-treatment abrogates Tumour Necrosis Factor-α down-regulatory effects on LXR-α and PXR mRNA expression via inhibition of c-Jun N-terminal kinase 1 activation in HepG2 cells. Electronic Journal of Biotechnology, 2011, 14, .	1.2	1
128	JNK-Dependent Stat3 Phosphorylation Contributes to Akt Activation in Response to Arsenic Exposure. Toxicological Sciences, 2012, 129, 363-371.	1.4	58
129	A critical step for JNK activation: isomerization by the prolyl isomerase Pin1. Cell Death and Differentiation, 2012, 19, 153-161.	5.0	29
130	JNK1 Inhibits GluR1 Expression and GluR1-Mediated Calcium Influx through Phosphorylation and Stabilization of Hes-1. Journal of Neuroscience, 2012, 32, 1826-1846.	1.7	29
131	Diverse Roles of JNK and MKK Pathways in the Brain. Journal of Signal Transduction, 2012, 2012, 1-9.	2.0	65
132	A Vaccinia Virus-Driven Interplay between the MKK4/7-JNK1/2 Pathway and Cytoskeleton Reorganization. Journal of Virology, 2012, 86, 172-184.	1.5	24
133	c-Jun N-terminal kinase mediates microtubule-depolymerizing agent-induced microtubule depolymerization and G2/M arrest in MCF-7 breast cancer cells. Anti-Cancer Drugs, 2012, 23, 98-107.	0.7	12
134	Cell wars: regulation of cell survival and proliferation by cell competition. Essays in Biochemistry, 2012, 53, 69-82.	2.1	38
135	Isoform-specific palmitoylation of JNK regulates axonal development. Cell Death and Differentiation, 2012, 19, 553-561.	5.0	28
136	Endogenous Interleukin-4 Regulates Glutathione Synthesis Following Acetaminophen-Induced Liver Injury in Mice. Chemical Research in Toxicology, 2012, 25, 83-93.	1.7	39
137	A chromatin-modifying function of JNK during stem cell differentiation. Nature Genetics, 2012, 44, 94-100.	9.4	113
138	c-Jun N-terminal kinase 2 phosphorylates endothelial nitric oxide synthase at serine 116 and regulates nitric oxide production. Biochemical and Biophysical Research Communications, 2012, 417, 340-345.	1.0	16
139	A novel JNK from Litopenaeus vannamei involved in white spot syndrome virus infection. Developmental and Comparative Immunology, 2012, 37, 421-428.	1.0	60
140	Neuroprotection by inhibiting the c-Jun N-terminal kinase pathway after cerebral ischemia occurs independently of interleukin-6 and keratinocyte-derived chemokine (KC/CXCL1) secretion. Journal of Neuroinflammation, 2012, 9, 76.	3.1	9
141	Activation of c-jun N-terminal kinase in spinal cord contributes to breast cancer induced bone pain in rats. Molecular Brain, 2012, 5, 21.	1.3	28
142	Neuronal câ€Jun is required for successful axonal regeneration, but the effects of phosphorylation of its Nâ€ŧerminus are moderate. Journal of Neurochemistry, 2012, 121, 607-618.	2.1	65
143	Role of the JNK Pathway in Human Diseases. Progress in Molecular Biology and Translational Science, 2012, 106, 145-169.	0.9	119
144	A Liver Full of JNK: Signaling in Regulation of Cell Function and Disease Pathogenesis, and Clinical Approaches. Gastroenterology, 2012, 143, 307-320.	0.6	414

#	Article	IF	CITATIONS
145	Endoplasmic Reticulum Enrollment in Alzheimer's Disease. Molecular Neurobiology, 2012, 46, 522-534.	1.9	70
146	TGF-β1 Induces Tissue Factor Expression in Human Lung Fibroblasts in a PI3K/JNK/Akt-Dependent and AP-1–Dependent Manner. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 614-627.	1.4	43
147	Differential Role of PKC-Induced c-Jun in HTLV-1 LTR Activation by 12-O-Tetradecanoylphorbol-13-acetate in Different Human T-cell Lines. PLoS ONE, 2012, 7, e29934.	1.1	6
148	Upregulation of UCP2 by Adiponectin: The Involvement of Mitochondrial Superoxide and hnRNP K. PLoS ONE, 2012, 7, e32349.	1.1	31
149	Activation of JNK Triggers Release of Brd4 from Mitotic Chromosomes and Mediates Protection from Drug-Induced Mitotic Stress. PLoS ONE, 2012, 7, e34719.	1.1	12
150	Role of Transcription Factors in Peripheral Nerve Regeneration. Frontiers in Molecular Neuroscience, 2012, 5, 8.	1.4	84
151	Histamine Stimulates Neurogenesis in the Rodent Subventricular Zone. Stem Cells, 2012, 30, 773-784.	1.4	46
152	p53 Binding Prevents Phosphatase-mediated Inactivation of Diphosphorylated c-Jun N-terminal Kinase. Journal of Biological Chemistry, 2012, 287, 17554-17567.	1.6	19
153	JNK-Induced Apoptosis, Compensatory Growth, and Cancer Stem Cells. Cancer Research, 2012, 72, 379-386.	0.4	180
154	JNK2 and JNK3 are major regulators of axonal injury-induced retinal ganglion cell death. Neurobiology of Disease, 2012, 46, 393-401.	2.1	127
155	The critical role of JNK in the ERâ€mitochondrial crosstalk during apoptotic cell death. Journal of Cellular Physiology, 2012, 227, 1791-1795.	2.0	85
156	Combining docking site and phosphosite predictions to find new substrates: Identification of smoothelin-like-2 (SMTNL2) as a c-Jun N-terminal kinase (JNK) substrate. Cellular Signalling, 2013, 25, 2518-2529.	1.7	28
157	Identification and characterization of bi-thiazole-2,2′-diamines as kinase inhibitory scaffolds. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1077-1088.	1.1	8
158	Molecular Pathways: The Complex Roles of Inflammation Pathways in the Development and Treatment of Liver Cancer. Clinical Cancer Research, 2013, 19, 2810-2816.	3.2	64
159	Astragalus injection protects cerebral ischemic injury by inhibiting neuronal apoptosis and the expression of JNK3 after cerebral ischemia reperfusion in rats. Behavioral and Brain Functions, 2013, 9, 36.	1.4	39
160	Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene, 2013, 32, 4231-4242.	2.6	104
161	Regulating cell morphogenesis: The drosophila jun Nâ€ŧerminal kinase pathway. Genesis, 2013, 51, 147-162.	0.8	65
162	Propranolol reduces cognitive deficits, amyloid Î ² levels, tau phosphorylation and insulin resistance in response to chronic corticosterone administration. International Journal of Neuropsychopharmacology, 2013, 16, 1351-1360.	1.0	23

#	Article	IF	CITATIONS
163	Endothelial Nitric-oxide Synthase Activation Generates an Inducible Nitric-oxide Synthase-like Output of Nitric Oxide in Inflamed Endothelium. Journal of Biological Chemistry, 2013, 288, 4174-4193.	1.6	44
164	A novel retro-inverso peptide is a preferential JNK substrate-competitive inhibitor. International Journal of Biochemistry and Cell Biology, 2013, 45, 1939-1950.	1.2	8
165	Advanced oxidation protein products induce cardiomyocyte death via Nox2/Rac1/superoxide-dependent TRAF3IP2/JNK signaling. Free Radical Biology and Medicine, 2013, 60, 125-135.	1.3	50
166	Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage. Neurobiology of Disease, 2013, 54, 432-444.	2.1	67
167	Stress contributes to the development of central insulin resistance during aging: Implications for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2332-2339.	1.8	35
168	JNK1β1 is phosphorylated during expression in E. coli and in vitro by MKK4 at three identical novel sites. Biochemical and Biophysical Research Communications, 2013, 432, 683-688.	1.0	5
169	Implication of JNK pathway on tau pathology and cognitive decline in a senescence-accelerated mouse model. Experimental Gerontology, 2013, 48, 565-571.	1.2	27
170	Programmed cell death with a necrotic-like phenotype. Biomolecular Concepts, 2013, 4, 259-275.	1.0	17
171	Mechanisms of Cell Death and Relevance to Drug Toxicity. , 2013, , 101-122.		4
172	The DLK signalling pathway—a doubleâ€edged sword in neural development and regeneration. EMBO Reports, 2013, 14, 605-614.	2.0	108
173	Modulation of the <scp>ASK1–MKK3</scp> /6–p38/ <scp>MAPK</scp> signalling pathway mediates sildenafil protection against chemical hypoxia caused by malonate. British Journal of Pharmacology, 2013, 168, 1820-1834.	2.7	18
174	Knockout of c-Jun N-terminal kinases 1, 2 or 3 isoforms induces behavioural changes. Behavioural Brain Research, 2013, 245, 88-95.	1.2	27
175	JNK3 Couples the Neuronal Stress Response to Inhibition of Secretory Trafficking. Science Signaling, 2013, 6, ra57.	1.6	19
176	Ajuba Family Proteins Link JNK to Hippo Signaling. Science Signaling, 2013, 6, ra81.	1.6	136
177	Linking JNK Activity to the DNA Damage Response. Genes and Cancer, 2013, 4, 360-368.	0.6	69
178	Cardioprotective 3′,4′-dihydroxyflavonol attenuation of JNK and p38MAPK signalling involves CaMKII inhibition. Biochemical Journal, 2013, 456, 149-161.	1.7	22
179	c-Jun N-Terminal Kinase Phosphorylation of Heterogeneous Nuclear Ribonucleoprotein K Regulates Vertebrate Axon Outgrowth via a Posttranscriptional Mechanism. Journal of Neuroscience, 2013, 33, 14666-14680.	1.7	31
180	Phosphorylation of moesin by c-Jun N-terminal kinase is important for podosome rosette formation in Src-transformed fibroblasts. Journal of Cell Science, 2013, 126, 5670-80.	1.2	14

		15	0
#	ARTICLE	IF	CITATIONS
181	CSN5/JAB1 Interacts with the Centromeric Components CENP-T and CENP-W and Regulates Their Proteasome-mediated Degradation. Journal of Biological Chemistry, 2013, 288, 27208-27219.	1.6	14
182	Dual leucine zipper kinase as a therapeutic target for neurodegenerative conditions. Future Medicinal Chemistry, 2013, 5, 1923-1934.	1.1	28
183	Mineralocorticoid Receptor Activation Induces Insulin Resistance Through câ€Jun Nâ€ŧerminal kinases in Response to Chronic Corticosterone: Cognitive Implications. Journal of Neuroendocrinology, 2013, 25, 350-356.	1.2	23
184	Mechanisms for PDCF, a Serum Cytokine, Stimulating Loss of Corneal Keratocyte Crystallins. Cornea, 2013, 32, 1269-1275.	0.9	5
185	Analgesic Effect of Acupuncture Is Mediated via Inhibition of JNK Activation in Astrocytes after Spinal Cord Injury. PLoS ONE, 2013, 8, e73948.	1.1	41
186	Melatonin Inhibits the Migration of Human Lung Adenocarcinoma A549 Cell Lines Involving JNK/MAPK Pathway. PLoS ONE, 2014, 9, e101132.	1.1	62
187	SP600125 Induces Src and Type I IGF Receptor Phosphorylation Independent of JNK. International Journal of Molecular Sciences, 2014, 15, 16246-16256.	1.8	3
188	JNK1 stress signaling is hyper-activated in high breast density and the tumor stroma: Connecting fibrosis, inflammation, and stemness for cancer prevention. Cell Cycle, 2014, 13, 580-599.	1.3	52
189	C-Jun N-terminal kinase (JNK) isoforms play differing roles in otitis media. BMC Immunology, 2014, 15, 46.	0.9	16
190	Cyclic stretch disrupts apical junctional complexes in Caco-2 cell monolayers by a JNK-2-, c-Src-, and MLCK-dependent mechanism. American Journal of Physiology - Renal Physiology, 2014, 306, G947-G958.	1.6	46
191	The Dpp/TGFÎ ² -Dependent Corepressor Schnurri Protects Epithelial Cells from JNK-Induced Apoptosis in Drosophila Embryos. Developmental Cell, 2014, 31, 240-247.	3.1	17
192	Harnessing the power of yeast to elucidate the role of sphingolipids in metabolic and signaling processes pertinent to psychiatric disorders. Clinical Lipidology, 2014, 9, 533-551.	0.4	1
193	TRAF2 Facilitates Vaccinia Virus Replication by Promoting Rapid Virus Entry. Journal of Virology, 2014, 88, 3664-3677.	1.5	18
194	The yeast model system as a tool towards the understanding of apoptosis regulation by sphingolipids. FEMS Yeast Research, 2014, 14, 160-178.	1.1	38
195	Regulation of the effects of CYP2E1-induced oxidative stress by JNK signaling. Redox Biology, 2014, 3, 7-15.	3.9	59
196	<scp>JNK</scp> signalling in cancer: in need of new, smarter therapeutic targets. British Journal of Pharmacology, 2014, 171, 24-37.	2.7	292
197	An Unconventional KITENIN/ErbB4-Mediated Downstream Signal of EGF Upregulates c-Jun and the Invasiveness of Colorectal Cancer Cells. Clinical Cancer Research, 2014, 20, 4115-4128.	3.2	26
198	NOX1, Reactive Oxygen Species, JNK, and Necrotic Cell Death. , 2014, , 135-162.		0

#	Article	IF	CITATIONS
199	Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiology of Learning and Memory, 2014, 107, 108-132.	1.0	59
200	Apoptosis in MCF-7 breast cancer cells induced by S-alkenylmercaptocysteine (CySSR) species derived from Allium tissues in combination with sodium selenite. Food and Chemical Toxicology, 2014, 68, 1-10.	1.8	14
201	The Biological Functions and Signaling Mechanisms of the p75 Neurotrophin Receptor. Handbook of Experimental Pharmacology, 2014, 220, 121-164.	0.9	100
202	Differences in c-Jun N-terminal kinase recognition and phosphorylation of closely related stathmin-family members. Biochemical and Biophysical Research Communications, 2014, 446, 248-254.	1.0	17
203	Axon Regeneration Genes Identified by RNAi Screening in <i>C. elegans</i> . Journal of Neuroscience, 2014, 34, 629-645.	1.7	87
204	Intracellular mobility and nuclear trafficking of the stress-activated kinase JNK1 are impeded by hyperosmotic stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 253-264.	1.9	10
205	A Switch From Canonical to Noncanonical Wnt Signaling Mediates Early Differentiation of Human Neural Stem Cells. Stem Cells, 2014, 32, 3196-3208.	1.4	55
206	The JNK1/JNK3 interactome – Contributions by the JNK3 unique N-terminus and JNK common docking site residues. Biochemical and Biophysical Research Communications, 2014, 453, 576-581.	1.0	10
207	Pyrazole derivatives as potent inhibitors of c-Jun N-terminal kinase: Synthesis and SAR studies. Bioorganic and Medicinal Chemistry, 2014, 22, 6209-6219.	1.4	12
208	Regulation of YAP by Mechanical Strain through Jnk and Hippo Signaling. Current Biology, 2014, 24, 2012-2017.	1.8	195
209	Selective Mitogen Activated Protein Kinase Activity Sensors through the Application of Directionally Programmable D Domain Motifs. Biochemistry, 2014, 53, 5771-5778.	1.2	20
210	Phosphorylation- and Nucleotide-Binding-Induced Changes to the Stability and Hydrogen Exchange Patterns of JNK1l²1 Provide Insight into Its Mechanisms of Activation. Journal of Molecular Biology, 2014, 426, 3569-3589.	2.0	6
211	Electroacupuncture attenuates mechanical allodynia by suppressing the spinal JNK1/2 pathway in a rat model of inflammatory pain. Brain Research Bulletin, 2014, 108, 27-36.	1.4	20
212	uPAR and cathepsin B-mediated compartmentalization of JNK regulates the migration of glioma-initiating cells. Stem Cell Research, 2014, 12, 716-729.	0.3	26
213	Association of CXCR1 and 2 expressions with gastric cancer metastasis in ex vivo and tumor cell invasion in vitro. Cytokine, 2014, 69, 6-13.	1.4	34
214	A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress. Frontiers in Cellular Neuroscience, 2014, 8, 213.	1.8	496
215	Regulation of Spontaneous Eosinophil Apoptosis—A Neglected Area of Importance. Journal of Cell Death, 2014, 7, JCD.S13588.	0.8	31
216	Protection of rat intestinal epithelial cells from ischemia/reperfusion injury by (D-Ala2,) Tj ETQq1 1 0.784314 rgBT 2015, 12, 4079-4088.	/Overlock 1.1	10 Tf 50 67 9

#	Article	IF	CITATIONS
217	The c-Jun N-terminal kinase inhibitor SP600125 inhibits human cytomegalovirus replication. Journal of Medical Virology, 2015, 87, 2135-2144.	2.5	19
218	Transcriptome Analysis and Discovery of Genes Involved in Immune Pathways from Coelomocytes of Sea Cucumber (Apostichopus japonicus) after Vibrio splendidus Challenge. International Journal of Molecular Sciences, 2015, 16, 16347-16377.	1.8	50
219	Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness. International Journal of Nanomedicine, 2015, 10, 3245.	3.3	42
220	Pleiotropic effects of spongean alkaloids on mechanisms of cell death, cell cycle progression and DNA damage response (DDR) of acute myeloid leukemia (AML) cells. Cancer Letters, 2015, 361, 39-48.	3.2	22
221	c-Jun <i>N</i> -terminal kinase inhibitors: a patent review (2010 – 2014). Expert Opinion on Therapeutic Patents, 2015, 25, 849-872.	2.4	47
222	Nicotinic Receptors, Memory, and Hippocampus. Current Topics in Behavioral Neurosciences, 2015, 23, 137-163.	0.8	31
223	High CO ₂ Leads to Na,K-ATPase Endocytosis via c-Jun Amino-Terminal Kinase-Induced LMO7b Phosphorylation. Molecular and Cellular Biology, 2015, 35, 3962-3973.	1.1	29
224	Phosphorylation of Clutathione S-Transferase P1 (CSTP1) by Epidermal Growth Factor Receptor (EGFR) Promotes Formation of the CSTP1-c-Jun N-terminal kinase (JNK) Complex and Suppresses JNK Downstream Signaling and Apoptosis in Brain Tumor Cells. Journal of Biological Chemistry, 2015, 290, 30866-30878.	1.6	32
225	CYP2E1- and TNFalpha/LPS-Induced Oxidative Stress and MAPK Signaling Pathways in Alcoholic Liver Disease. Current Pathobiology Reports, 2015, 3, 263-272.	1.6	4
226	Metabolism and disposition of a potent and selective JNK inhibitor [¹⁴ C]tanzisertib following oral administration to rats, dogs and humans. Xenobiotica, 2015, 45, 428-441.	0.5	4
227	<i>In vitro</i> metabolism of a novel JNK inhibitor tanzisertib: interspecies differences in oxido-reduction and characterization of enzymes involved in metabolism. Xenobiotica, 2015, 45, 465-480.	0.5	5
228	APPL1 endocytic adaptor as a fine tuner of Dvl2â€induced transcription. FEBS Letters, 2015, 589, 532-539.	1.3	5
229	Quantitative Proteomics Reveals Dynamic Interaction of c-Jun N-terminal Kinase (JNK) with RNA Transport Granule Proteins Splicing Factor Proline- and Glutamine-rich (Sfpq) and Non-POU Domain-containing Octamer-binding Protein (Nono) during Neuronal Differentiation. Molecular and Cellular Proteomics, 2015, 14, 50-65.	2.5	17
230	<i>Tetra</i> -Substituted Pyridinylimidazoles As Dual Inhibitors of p38α Mitogen-Activated Protein Kinase and c-Jun <i>N</i> -Terminal Kinase 3 for Potential Treatment of Neurodegenerative Diseases. Journal of Medicinal Chemistry, 2015, 58, 443-456.	2.9	43
231	Role of Hippocampus Mitogen-Activated Protein Kinase Phosphatase-1 mRNA Expression and DNA Methylation in the Depression of the Rats with Chronic Unpredicted Stress. Cellular and Molecular Neurobiology, 2015, 35, 473-482.	1.7	7
232	Investigation of phosphoproteome in RAGE signaling. Proteomics, 2015, 15, 245-259.	1.3	16
233	Oxygen- and temperature-dependent expression of survival protein kinases in crucian carp (Carassius) Tj ETQq0 (Physiology, 2015, 308, R50-R61.) 0 rgBT /C 0.9)verlock 10 T 7

234	Calcium/Ask1/MKK7/JNK2/c-Src signalling cascade mediates disruption of intestinal epithelial tight junctions by dextran sulfate sodium. Biochemical Journal, 2015, 465, 503-515.	1.7	83
-----	--	-----	----

#	Article	IF	CITATIONS
235	Stronger learning recruits additional cell-signaling cascades: c-Jun-N-terminal kinase 1 (JNK1) is necessary for expression of stronger contextual fear conditioning. Neurobiology of Learning and Memory, 2015, 118, 162-166.	1.0	8
236	Cocaine Induces Nuclear Export and Degradation of Neuronal Retinoid X Receptor-γ via a TNF-α/JNK- Mediated Mechanism. Journal of NeuroImmune Pharmacology, 2015, 10, 55-73.	2.1	11
237	Stress-induced ceramide generation and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling. Cell Death and Differentiation, 2015, 22, 258-273.	5.0	89
238	c-Jun N-terminal kinase attenuates TNFα signaling by reducing Nox1-dependent endosomal ROS production in vascular smooth muscle cells. Free Radical Biology and Medicine, 2015, 86, 219-227.	1.3	21
239	SR calcium handling dysfunction, stress-response signaling pathways, and atrial fibrillation. Frontiers in Physiology, 2015, 6, 46.	1.3	7
240	MAPK/JNK signalling: a potential autophagy regulation pathway. Bioscience Reports, 2015, 35, .	1.1	319
241	JNK2 controls fragmentation of the Golgi complex and the G2/M transition through phosphorylation of GRASP65. Journal of Cell Science, 2015, 128, 2249-2260.	1.2	50
243	Critical role of c-jun N-terminal protein kinase in promoting mitochondrial dysfunction and acute liver injury. Redox Biology, 2015, 6, 552-564.	3.9	41
244	Stress kinases in the modulation of metabolism and energy balance. Journal of Molecular Endocrinology, 2015, 55, R11-R22.	1.1	64
245	Two Hydrophobic Residues Can Determine the Specificity of Mitogen-activated Protein Kinase Docking Interactions. Journal of Biological Chemistry, 2015, 290, 26661-26674.	1.6	25
246	Genetic inhibition of JNK3 ameliorates spinal muscular atrophy. Human Molecular Genetics, 2015, 24, ddv401.	1.4	63
247	High-mobility group box 1 enhances the inflammatory process in diabetic lung. Archives of Biochemistry and Biophysics, 2015, 583, 55-64.	1.4	12
248	Inhibitors of c-Jun N-Terminal Kinases: An Update. Journal of Medicinal Chemistry, 2015, 58, 72-95.	2.9	81
249	Bone marrow-derived c-jun N-terminal kinase-1 (JNK1) mediates liver regeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 137-145.	1.8	9
250	Endotoxaemia resulting from decreased serotonin tranporter (5-HTT) function: A reciprocal risk factor for depression and insulin resistance?. Behavioural Brain Research, 2015, 276, 111-117.	1.2	31
251	Signaling Pathways that Facilitate Chronic Inflammation-Induced Carcinogenesis. Journal of Cell Signaling, 2016, 01, .	0.3	0
252	Kinase Signaling in Apoptosis Induced by Saturated Fatty Acids in Pancreatic β-Cells. International Journal of Molecular Sciences, 2016, 17, 1400.	1.8	32

#	Article	IF	CITATIONS
254	Tolerance to the antinociceptive and hypothermic effects of morphine is mediated by multiple isoforms of c-Jun N-terminal kinase. NeuroReport, 2016, 27, 392-396.	0.6	15
255	Role of C-Jun N-terminal Kinase in Hepatocellular Carcinoma Development. Targeted Oncology, 2016, 11, 723-738.	1.7	40
256	cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Scientific Reports, 2016, 6, 20930.	1.6	31
257	Effects of sodium selenite on c-Jun N-terminal kinase signalling pathway induced by oxidative stress in human chondrocytes and c-Jun N-terminal kinase expression in patients with Kashin–Beck disease, an endemic osteoarthritis. British Journal of Nutrition, 2016, 115, 1547-1555.	1.2	17
258	Inflammatory cell signaling following exposures to particulate matter and ozone. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2826-2834.	1.1	57
259	HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nature Cell Biology, 2016, 18, 527-539.	4.6	70
260	JNK in spinal cord facilitates bone cancer pain in rats through modulation of CXCL1. Journal of Huazhong University of Science and Technology [Medical Sciences], 2016, 36, 88-94.	1.0	8
261	The Role of Platelet-Derived Growth Factor Receptor in Early Brain Injury Following Subarachnoid Hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 2203-2208.	0.7	4
262	The relationship between p53/p21/Rb and MAPK signaling pathways in human endometrium-derived stem cells under oxidative stress. Cell and Tissue Biology, 2016, 10, 185-193.	0.2	5
263	Down-regulation of miR-20a-5p triggers cell apoptosis to facilitate mycobacterial clearance through targeting JNK2 in human macrophages. Cell Cycle, 2016, 15, 2527-2538.	1.3	41
264	JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiology and Molecular Biology Reviews, 2016, 80, 793-835.	2.9	348
265	JNK/SAPK Signaling Is Essential for Efficient Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells, 2016, 34, 1198-1212.	1.4	21
266	Purine-Type Compounds Induce Microtubule Fragmentation and Lung Cancer Cell Death through Interaction with Katanin. Journal of Medicinal Chemistry, 2016, 59, 8521-8534.	2.9	29
267	The Stress-Response MAP Kinase Signaling in Cardiac Arrhythmias. Reviews of Physiology, Biochemistry and Pharmacology, 2016, 172, 77-100.	0.9	11
268	Mesenchymal stem cells derived from normal gingival tissue inhibit the proliferation of oral cancer cells in vitro and in vivo. International Journal of Oncology, 2016, 49, 2011-2022.	1.4	35
269	Targeting MAPK Signaling in Age-Related Macular Degeneration. Ophthalmology and Eye Diseases, 2016, 8, OED.S32200.	1.2	55
270	Autotetraploid cell Line induced by SP600125 from crucian carp and its developmental potentiality. Scientific Reports, 2016, 6, 21814.	1.6	13
271	Dissecting cellular senescence and SASP in Drosophila. Inflammation and Regeneration, 2016, 36, 25.	1.5	19

#	Article	IF	CITATIONS
272	Linking apoptosis to cancer metabolism: Another missing piece of JuNK. Molecular and Cellular Oncology, 2016, 3, e1103398.	0.3	9
273	Transcriptomic differences between euryhaline and stenohaline malaria vector sibling species in response to salinity stress. Molecular Ecology, 2016, 25, 2210-2225.	2.0	17
274	Metformin and AICAR regulate NANOG expression via the JNK pathway in HepG2 cells independently of AMPK. Tumor Biology, 2016, 37, 11199-11208.	0.8	15
275	The p75 neurotrophin receptor augments survival signaling in the striatum of pre-symptomatic Q175 mice. Neuroscience, 2016, 324, 297-306.	1.1	12
276	Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Translational Research, 2016, 167, 228-256.	2.2	217
277	c-Jun N-terminal kinase 2 promotes enterocyte survival and goblet cell differentiation in the inflamed intestine. Mucosal Immunology, 2017, 10, 1211-1223.	2.7	17
278	JNK activation is essential for activation of MEK/ERK signaling in IL-1Î ² -induced COX-2 expression in synovial fibroblasts. Scientific Reports, 2017, 7, 39914.	1.6	40
279	Bone characteristics, histopathology, and chondrocyte apoptosis in femoral head necrosis induced by glucocorticoid in broilers. Poultry Science, 2017, 96, 1609-1614.	1.5	19
280	New Challenges in Cancer Therapy: MAPK Inhibitors from Bench to Bedside. , 2017, , 67-91.		1
281	Alzheimer's disease pathology and the unfolded protein response: prospective pathways and therapeutic targets. Behavioural Pharmacology, 2017, 28, 161-178.	0.8	11
282	A Specific and Covalent JNKâ€1 Ligand Selected from an Encoded Selfâ€Assembling Chemical Library. Chemistry - A European Journal, 2017, 23, 8152-8155.	1.7	54
283	Novel tumor-suppressor function of KLF4 in pediatric T-cell acute lymphoblastic leukemia. Experimental Hematology, 2017, 53, 16-25.	0.2	22
284	Role of JNK during buccopharyngeal membrane perforation, the last step of embryonic mouth formation. Developmental Dynamics, 2017, 246, 100-115.	0.8	12
285	The immune response of the C-Jun in the black tiger shrimp (Penaeus monodon) after bacterial infection. Fish and Shellfish Immunology, 2017, 61, 181-186.	1.6	20
286	c-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through upregulation of Notch1 via activation of c-Jun. Oncogene, 2017, 36, 2599-2608.	2.6	70
287	Tri- and Tetrasubstituted Pyridinylimidazoles as Covalent Inhibitors of c-Jun N-Terminal Kinase 3. Journal of Medicinal Chemistry, 2017, 60, 594-607.	2.9	46
288	Reactive oxygen species and protein modifications in spermatozoaâ€. Biology of Reproduction, 2017, 97, 577-585.	1.2	91
289	The potential roles of c-Jun N-terminal kinase (JNK) during the maturation and aging of oocytes produced by a marine protostome worm. Zygote, 2017, 25, 686-696.	0.5	4

#	Article	IF	Citations
290	Role of JNK signaling in oral cancer: A mini review. Tumor Biology, 2017, 39, 101042831771165.	0.8	62
291	Anti-hepatitis B virus (HBV) response of imiquimod based toll like receptor 7 ligand in hbv-positive human hepatocelluar carcinoma cell line. BMC Infectious Diseases, 2017, 17, 76.	1.3	10
292	Microtubule destabilising agents: far more than just antimitotic anticancer drugs. British Journal of Clinical Pharmacology, 2017, 83, 255-268.	1.1	237
293	The Regulatory Roles of Mitogen-Activated Protein Kinase (MAPK) Pathways in Health and Diabetes: Lessons Learned from the Pancreatic β-Cell. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2017, 10, 76-84.	0.7	54
294	Probiotic Bacillus amyloliquefaciens SC06 Induces Autophagy to Protect against Pathogens in Macrophages. Frontiers in Microbiology, 2017, 8, 469.	1.5	47
295	Evidence of Presynaptic Localization and Function of the c-Jun N-Terminal Kinase. Neural Plasticity, 2017, 2017, 1-14.	1.0	20
296	Brain Edema in Developing Brain Diseases. , 2017, , 393-429.		1
297	Bacterial effector NleL promotes enterohemorrhagic E. coli-induced attaching and effacing lesions by ubiquitylating and inactivating JNK. PLoS Pathogens, 2017, 13, e1006534.	2.1	28
298	JNK and NFâ€ÎºB signaling pathways are involved in cytokine changes in patients with congenital heart disease prior to and after transcatheter closure. Experimental and Therapeutic Medicine, 2018, 15, 1525-1531.	0.8	4
299	Clostridium Tyrobutyricum Protect Intestinal Barrier Function from LPS-Induced Apoptosis via P38/JNK Signaling Pathway in IPEC-J2 Cells. Cellular Physiology and Biochemistry, 2018, 46, 1779-1792.	1.1	50
300	JNK1/2 and ERK1/2 provides vital clues about tumor recurrence and survival in hepatocellular carcinoma patients. Future Oncology, 2018, 14, 2471-2481.	1.1	8
301	Antitumor and radiosensitizing effects of SKLB-163, a novel benzothiazole-2-thiol derivative, on nasopharyngeal carcinoma by affecting the RhoGDI/JNK-1 signaling pathway. Radiotherapy and Oncology, 2018, 129, 30-37.	0.3	12
302	The HDAC1/c-JUN complex is essential in the promotion of nerve injury-induced neuropathic pain through JNK signaling. European Journal of Pharmacology, 2018, 825, 99-106.	1.7	43
303	Coevolving <scp>MAPK</scp> and <scp>PID</scp> phosphosites indicate an ancient environmental control of <scp>PIN</scp> auxin transporters in land plants. FEBS Letters, 2018, 592, 89-102.	1.3	48
304	JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension. Journal of Biological Chemistry, 2018, 293, 271-284.	1.6	14
305	The transcriptional coactivator WBP2 primes triple-negative breast cancer cells for responses to Wnt signaling via the JNK/Jun kinase pathway. Journal of Biological Chemistry, 2018, 293, 20014-20028.	1.6	20
306	The Regulation of JNK Signaling Pathways in Cell Death through the Interplay with Mitochondrial SAB and Upstream Post-Translational Effects. International Journal of Molecular Sciences, 2018, 19, 3657.	1.8	50
308	miR-326 functions as a tumor suppressor in human prostatic carcinoma by targeting Mucin1. Biomedicine and Pharmacotherapy, 2018, 108, 574-583.	2.5	39

#	Article	IF	CITATIONS
309	The c-Jun and JunB transcription factors facilitate the transit of classical Hodgkin lymphoma tumour cells through G1. Scientific Reports, 2018, 8, 16019.	1.6	10
310	Allosteric Modulation of JNK Docking Site Interactions with ATP-Competitive Inhibitors. Biochemistry, 2018, 57, 5897-5909.	1.2	9
311	Endothelial loss of Fzd5 stimulates PKC/Ets1-mediated transcription of Angpt2 and Flt1. Angiogenesis, 2018, 21, 805-821.	3.7	12
312	MiR-429 regulates rat liver regeneration and hepatocyte proliferation by targeting JUN/MYC/BCL2/CCND1 signaling pathway. Cellular Signalling, 2018, 50, 80-89.	1.7	20
313	Stimulation of JNK Phosphorylation by the PTTH in Prothoracic Glands of the Silkworm, Bombyx mori. Frontiers in Physiology, 2018, 9, 43.	1.3	6
314	c-Jun N-Terminal Kinases and Their Pharmacological Modulation in Ischemic and Reperfusion Brain Injury. Neuroscience and Behavioral Physiology, 2018, 48, 721-728.	0.2	3
315	Antiviral and Inflammatory Cellular Signaling Associated with Enterovirus 71 Infection. Viruses, 2018, 10, 155.	1.5	43
316	c-Jun N-Terminal Kinases (JNKs) in Myocardial and Cerebral Ischemia/Reperfusion Injury. Frontiers in Pharmacology, 2018, 9, 715.	1.6	87
317	Exposure to Di-(2-ethylhexyl) Phthalate During Perinatal Period Gender-Specifically Impairs the Dendritic Growth of Pyramidal Neurons in Rat Offspring. Frontiers in Neuroscience, 2018, 12, 444.	1.4	27
318	Association of NF-κB and AP-1 with MMP-9 Overexpression in 2-Chloroethanol Exposed Rat Astrocytes. Cells, 2018, 7, 96.	1.8	29
319	WDR62 mediates TNFα-dependent JNK activation via TRAF2-MLK3 axis. Molecular Biology of the Cell, 2018, 29, 2470-2480.	0.9	15
320	The Quest for MAP Kinase Substrates: Gaining Momentum. Trends in Plant Science, 2018, 23, 918-932.	4.3	37
321	The JNK Pathway in Drug Resistance. , 2019, , 87-100.		4
322	Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxidants and Redox Signaling, 2019, 30, 577-634.	2.5	96
323	The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation. Environmental Pollution, 2019, 253, 741-748.	3.7	78
324	Reproduction disrupts stem cell homeostasis in testes of aged male Drosophila via an induced microenvironment. PLoS Genetics, 2019, 15, e1008062.	1.5	12
325	JNK1 Induces Notch1 Expression to Regulate Genes Governing Photoreceptor Production. Cells, 2019, 8, 970.	1.8	5
326	JNK Isoforms Are Involved in the Control of Adult Hippocampal Neurogenesis in Mice, Both in Physiological Conditions and in an Experimental Model of Temporal Lobe Epilepsy. Molecular Neurobiology, 2019, 56, 5856-5865.	1.9	20

#	Article	IF	Citations
327	Mir-215-5p induces autophagy by targeting PI3K and activating ROS-mediated MAPK pathways in cardiomyocytes of chicken. Journal of Inorganic Biochemistry, 2019, 193, 60-69.	1.5	21
328	Research Progress on PARP14 as a Drug Target. Frontiers in Pharmacology, 2019, 10, 172.	1.6	43
329	Pro-apoptotic and pro-proliferation functions of the JNK pathway of <i>Drosophila</i> : roles in cell competition, tumorigenesis and regeneration. Open Biology, 2019, 9, 180256.	1.5	65
330	Baicalin protects mouse testis from injury induced by heat stress. Journal of Thermal Biology, 2019, 82, 63-69.	1.1	18
331	PKCδ contributes to oxidative stress-induced apoptosis in porcine ovarian granulosa cells via activating JNK. Theriogenology, 2019, 131, 89-95.	0.9	13
332	CD40 induces renal cell carcinoma-specific differential regulation of TRAF proteins, ASK1 activation and JNK/p38-mediated, ROS-dependent mitochondrial apoptosis. Cell Death Discovery, 2019, 5, 148.	2.0	16
333	JNK Signaling Pathway Involvement in Spinal Cord Neuron Development and Death. Cells, 2019, 8, 1576.	1.8	39
334	<i>Theileria</i> highjacks JNK2 into a complex with the macroschizont GPI (GlycosylPhosphatidylInositol)-anchored surface protein p104. Cellular Microbiology, 2019, 21, e12973.	1.1	7
335	The effect of selected molecules influencing the detrimental host immune response on a course of rabies virus infection in a murine model. Vaccine, 2019, 37, 4715-4723.	1.7	7
336	Regulation of RhoA activation and cell motility by c-Jun N-terminal kinases and Net1. Small GTPases, 2020, 11, 385-391.	0.7	8
337	The role of JNK in prostate cancer progression and therapeutic strategies. Biomedicine and Pharmacotherapy, 2020, 121, 109679.	2.5	62
338	<p>Theabrownin Induces Apoptosis and Tumor Inhibition of Hepatocellular Carcinoma Huh7 Cells Through ASK1-JNK-c-Jun Pathway</p> . OncoTargets and Therapy, 2020, Volume 13, 8977-8987.	1.0	23
339	JNK3 as Therapeutic Target and Biomarker in Neurodegenerative and Neurodevelopmental Brain Diseases. Cells, 2020, 9, 2190.	1.8	35
340	In vitro and in vivo studies on potentiation of curcumin-induced lysosomal-dependent apoptosis upon silencing of cathepsin C in colorectal cancer cells. Pharmacological Research, 2020, 161, 105156.	3.1	16
342	Oleuropein Aglycone Peracetylated (3,4-DHPEA-EA(P)) Attenuates H2O2-Mediated Cytotoxicity in C2C12 Myocytes via Inactivation of p-JNK/p-c-Jun Signaling Pathway. Molecules, 2020, 25, 5472.	1.7	3
343	<p>miR-602 Mediates the RASSF1A/JNK Pathway, Thereby Promoting Postoperative Recurrence in Nude Mice with Liver Cancer</p> . OncoTargets and Therapy, 2020, Volume 13, 6767-6776.	1.0	6
344	VIRM1 Promoted Tumor Growth and Suppressed Apoptosis via the JNK Signaling Pathway in Hepatocellular Carcinoma. OncoTargets and Therapy, 2020, Volume 13, 8011-8025.	1.0	5
345	Alarmins and c-Jun N-Terminal Kinase (JNK) Signaling in Neuroinflammation. Cells, 2020, 9, 2350.	1.8	24

#	Article	IF	CITATIONS
346	Elaeagnus angustifolia Plant Extract Inhibits Epithelial-Mesenchymal Transition and Induces Apoptosis via HER2 Inactivation and JNK Pathway in HER2-Positive Breast Cancer Cells. Molecules, 2020, 25, 4240.	1.7	15
347	Regulation of mitogen-activated protein kinase signaling pathway and proinflammatory cytokines by ursolic acid in murine macrophages infected with Mycobacterium avium . Gastroenterology Insights, 2020, 12, 8717.	0.7	5
348	Hepatoprotective effect of Xiayuxue decoction ethyl acetate fraction against carbon tetrachloride-induced liver fibrosis in mice via inducing apoptosis and suppressing activation of hepatic stellate cells. Pharmaceutical Biology, 2020, 58, 1238-1252.	1.3	9
349	Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression. PLoS Genetics, 2020, 16, e1008782.	1.5	12
350	Antihypertensive activity of a new c-Jun N-terminal kinase inhibitor in spontaneously hypertensive rats. Hypertension Research, 2020, 43, 1068-1078.	1.5	10
351	Soil Microbes Trade-Off Biogeochemical Cycling for Stress Tolerance Traits in Response to Year-Round Climate Change. Frontiers in Microbiology, 2020, 11, 616.	1.5	41
352	Tiao Geng decoction for treating menopausal syndrome exhibits anti-aging effects likely via suppressing ASK1/MKK7/JNK mediated apoptosis in ovariectomized rats. Journal of Ethnopharmacology, 2020, 261, 113061.	2.0	6
353	Functionalized graphene oxide against U251 glioma cells and its molecular mechanism. Materials Science and Engineering C, 2020, 116, 111187.	3.8	19
354	JNK signaling in Drosophila immunity and homeostasis. Immunology Letters, 2020, 226, 7-11.	1.1	42
355	Silencing RNF13 Alleviates Parkinson's Disease – Like Problems in Mouse Models by Regulating the Endoplasmic Reticulum Stress–Mediated IRE1α-TRAF2-ASK1-JNK Pathway. Journal of Molecular Neuroscience, 2020, 70, 1977-1986.	1.1	12
356	A TGF-β– and p63-Responsive Enhancer Regulates IFN-κ Expression in Human Keratinocytes. Journal of Immunology, 2020, 204, 1825-1835.	0.4	8
357	Transcripts' Evolutionary History and Structural Dynamics Give Mechanistic Insights into the Functional Diversity of the JNK Family. Journal of Molecular Biology, 2020, 432, 2121-2140.	2.0	7
358	PDK1 promotes ovarian cancer metastasis by modulating tumor-mesothelial adhesion, invasion, and angiogenesis via α5β1 integrin and JNK/IL-8 signaling. Oncogenesis, 2020, 9, 24.	2.1	41
359	Mitogen-Activated Protein Kinase (MAPK) and Obesity-Related Cancer. International Journal of Molecular Sciences, 2020, 21, 1241.	1.8	49
360	Transcriptional regulation of neutrophil differentiation and function during inflammation. Journal of Leukocyte Biology, 2020, 107, 419-430.	1.5	31
361	Crosstalk between NLRP12 and JNK during Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2020, 21, 496.	1.8	12
362	Circular RNA circMAN2B2 promotes growth and migration of gastric cancer cells by downâ€regulation of miRâ€145. Journal of Clinical Laboratory Analysis, 2020, 34, e23215.	0.9	15
363	Inhibitors of c-Jun N-Terminal Kinase 3. Topics in Medicinal Chemistry, 2020, , 203-224.	0.4	2

#	Article	IF	CITATIONS
364	All-trans retinoic acid induces reprogramming of canine dedifferentiated cells into neuron-like cells. PLoS ONE, 2020, 15, e0229892.	1.1	10
365	The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Cells, 2020, 9, 857.	1.8	141
366	E6-mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer. Cell Death and Differentiation, 2021, 28, 1669-1687.	5.0	52
367	Polyphyllin VII induces fibroblasts apoptosis via the ERK/JNK pathway. Burns, 2021, 47, 140-149.	1.1	4
368	LncRNA GIRGL drives CAPRIN1-mediated phase separation to suppress glutaminase-1 translation under glutamine deprivation. Science Advances, 2021, 7, .	4.7	38
369	JNK Pathway in CNS Pathologies. International Journal of Molecular Sciences, 2021, 22, 3883.	1.8	27
370	Involvement of c-Jun N-terminal kinase 2 (JNK2) in Endothelin-1 (ET-1) Mediated Neurodegeneration of Retinal Ganglion Cells. , 2021, 62, 13.		4
371	5-((7-Chloro-6-fluoro-1h-indol-3-yl) methyl)-3-methylimidazolidine-2,4-dione as a RIP1 inhibitor protects LPS/D-galactosamine-induced liver failure. Life Sciences, 2021, 273, 119304.	2.0	3
372	The Emerging Roles of JNK Signaling in Drosophila Stem Cell Homeostasis. International Journal of Molecular Sciences, 2021, 22, 5519.	1.8	18
373	Regulation and mechanism of YAP/TAZ in theÂmechanical microenvironment of stem cells (Review). Molecular Medicine Reports, 2021, 24, .	1.1	16
374	JNK signaling pathway in metabolic disorders: An emerging therapeutic target. European Journal of Pharmacology, 2021, 901, 174079.	1.7	18
375	Norcantharidin triggers apoptotic cell death in non-small cell lung cancer via a mitophagy-mediated autophagy pathway. Annals of Translational Medicine, 2021, 9, 971-971.	0.7	8
376	Signaling cross-talk during development: Context-specific networking of Notch, NF-ήB and JNK signaling pathways in Drosophila. Cellular Signalling, 2021, 82, 109937.	1.7	9
377	The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacological Reviews, 2021, 73, 1016-1049.	7.1	33
378	Effects of Di-2-Ethylhexyl Phthalate on Central Nervous System Functions: A Narrative Review. Current Neuropharmacology, 2022, 20, 766-776.	1.4	12
379	JunD, not c-Jun, is the AP-1 transcription factor required for Ras-induced lung cancer. JCI Insight, 2021, 6, .	2.3	22
380	Cytoskeleton and Associated Proteins: Pleiotropic JNK Substrates and Regulators. International Journal of Molecular Sciences, 2021, 22, 8375.	1.8	20
381	Protein misfolding, ER stress and chaperones: an approach to develop chaperone-based therapeutics for Alzheimer's disease. International Journal of Neuroscience, 2023, 133, 714-734.	0.8	9

#	Article	IF	CITATIONS
382	Mixed Lineage Kinase 3 phosphorylates prolyl-isomerase PIN1 and potentiates GLI1 signaling in pancreatic cancer development. Cancer Letters, 2021, 515, 1-13.	3.2	12
383	Molecular and biochemical investigations of inborn errors of metabolism-altered redox homeostasis in branched-chain amino acid disorders, organic acidurias, and homocystinuria. Free Radical Research, 2021, 55, 859-872.	1.5	4
384	Protein convertase subtilisin/Kexin type 9 inhibits hepatocellular carcinoma growth by interacting with CSTP1 and suppressing the JNK signaling pathway. Cancer Biology and Medicine, 2021, 18, 0-0.	1.4	9
386	Metabolic Syndrome as a Risk Factor for Alzheimer Disease. , 2013, , 281-341.		3
387	The Effects of Nicotine on Learning and Memory. Receptors, 2014, , 217-237.	0.2	4
388	THP-1 and U937 Cells. , 2015, , 147-159.		32
389	Arrestin-Dependent Activation of JNK Family Kinases. Handbook of Experimental Pharmacology, 2014, 219, 259-280.	0.9	23
390	The Impact of JNK on Neuronal Migration. Advances in Experimental Medicine and Biology, 2014, 800, 37-57.	0.8	9
391	Involvement of activation of PLIN5-Sirt1 axis in protective effect of glycycoumarin on hepatic lipotoxicity. Biochemical and Biophysical Research Communications, 2020, 528, 7-13.	1.0	4
392	Symmetric Arginine Dimethylation Is Selectively Required for mRNA Splicing and the Initiation of Type I and Type III Interferon Signaling. Cell Reports, 2020, 30, 1935-1950.e8.	2.9	28
393	Stress-induced phosphorylation of CLIP-170 by JNK promotes microtubule rescue. Journal of Cell Biology, 2020, 219, .	2.3	12
395	Irreversible JNK1-JUN inhibition by JNK-IN-8 sensitizes pancreatic cancer to 5-FU/FOLFOX chemotherapy. JCI Insight, 2020, 5, .	2.3	25
396	Jnk2 Effects on Tumor Development, Genetic Instability and Replicative Stress in an Oncogene-Driven Mouse Mammary Tumor Model. PLoS ONE, 2010, 5, e10443.	1.1	42
397	Preventing Phosphorylation of Sterol Regulatory Element-Binding Protein 1a by MAP-Kinases Protects Mice from Fatty Liver and Visceral Obesity. PLoS ONE, 2012, 7, e32609.	1.1	42
398	Differential Feedback Regulation of Δ4-3-Oxosteroid 5β-Reductase Expression by Bile Acids. PLoS ONE, 2017, 12, e0170960.	1.1	6
399	miR-125a-5p inhibits tumorigenesis in hepatocellular carcinoma. Aging, 2019, 11, 7639-7662.	1.4	28
400	A c-Jun N-terminal kinase inhibitor, JNK-IN-8, sensitizes triple negative breast cancer cells to lapatinib. Oncotarget, 2017, 8, 104894-104912.	0.8	28
401	Infliction of proteotoxic stresses by impairment of the unfolded protein response or proteasomal inhibition as a therapeutic strategy for mast cell leukemia. Oncotarget, 2018, 9, 2984-3000.	0.8	15

#	Article	IF	CITATIONS
402	JNK2 downregulation promotes tumorigenesis and chemoresistance by decreasing p53 stability in bladder cancer. Oncotarget, 2016, 7, 35119-35131.	0.8	12
403	c-Jun N-Terminal Kinase in Inflammation and Rheumatic Diseases. Open Rheumatology Journal, 2012, 6, 220-231.	0.1	51
404	Differential Effects of Whole Red Raspberry Polyphenols and Their Gut Metabolite Urolithin A on Neuroinflammation in BV-2 Microglia. International Journal of Environmental Research and Public Health, 2021, 18, 68.	1.2	19
405	Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow. International Journal of Molecular Sciences, 2021, 22, 148.	1.8	13
406	c-Jun N-terminal kinase is required for thermotherapy-induced apoptosis in human gastric cancer cells. World Journal of Gastroenterology, 2012, 18, 7348.	1.4	18
407	Anti-inflammatory Activity of 3,6,3'-Trihydroxyflavone in Mouse Macrophages, In vitro. Bulletin of the Korean Chemical Society, 2014, 35, 3169-3174.	1.0	5
408	NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. ELife, 2019, 8, .	2.8	29
409	Zinc antagonizes common carp (Cyprinus carpio) intestinal arsenic poisoning through PI3K/AKT/mTOR signaling cascade and MAPK pathway. Aquatic Toxicology, 2021, 240, 105986.	1.9	12
410	JNKs in liver diseases. , 2010, , 215-227.		0
411	JNK Subfamily. , 2011, , 1927-1928.		0
411 412	JNK Subfamily. , 2011, , 1927-1928. The intersection of inflammation, insulin resistance and ageing: implications for the study of molecular signalling pathways in horses. Comparative Exercise Physiology, 2012, 8, 153-171.	0.3	0
	The intersection of inflammation, insulin resistance and ageing: implications for the study of	0.3	
412	The intersection of inflammation, insulin resistance and ageing: implications for the study of molecular signalling pathways in horses. Comparative Exercise Physiology, 2012, 8, 153-171. Cortical Neurons Culture to Study c-Jun N-Terminal Kinase Signaling Pathway. Neuromethods, 2012, ,		0
412 413	The intersection of inflammation, insulin resistance and ageing: implications for the study of molecular signalling pathways in horses. Comparative Exercise Physiology, 2012, 8, 153-171. Cortical Neurons Culture to Study c-Jun N-Terminal Kinase Signaling Pathway. Neuromethods, 2012, , 189-202. The Role of JNK Pathway in the Process of Excitotoxicity Induced by Epilepsy and Neurodegeneration. ,		0
412 413 414	The intersection of inflammation, insulin resistance and ageing: implications for the study of molecular signalling pathways in horses. Comparative Exercise Physiology, 2012, 8, 153-171. Cortical Neurons Culture to Study c-Jun N-Terminal Kinase Signaling Pathway. Neuromethods, 2012, , 189-202. The Role of JNK Pathway in the Process of Excitotoxicity Induced by Epilepsy and Neurodegeneration. , 2013, , 99-113.		0 0 0
412413414415	The intersection of inflammation, insulin resistance and ageing: implications for the study of molecular signalling pathways in horses. Comparative Exercise Physiology, 2012, 8, 153-171. Cortical Neurons Culture to Study c-Jun N-Terminal Kinase Signaling Pathway. Neuromethods, 2012, , 189-202. The Role of JNK Pathway in the Process of Excitotoxicity Induced by Epilepsy and Neurodegeneration. , 2013, , 99-113. Signalling Pathways of Î2-Catenin/JNK in Carcinogenesis. , 2013, , 277-296. DNA Oxidative Damage is Correlated with JNK Activation in Hepatocytes from Rats with Experimental Insulin Resistance. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical	0.2	0 0 0
 412 413 414 415 416 	 The intersection of inflammation, insulin resistance and ageing: implications for the study of molecular signalling pathways in horses. Comparative Exercise Physiology, 2012, 8, 153-171. Cortical Neurons Culture to Study c-Jun N-Terminal Kinase Signaling Pathway. Neuromethods, 2012, , 189-202. The Role of JNK Pathway in the Process of Excitotoxicity Induced by Epilepsy and Neurodegeneration. , 2013, , 99-113. Signalling Pathways of Î²-Catenin/JNK in Carcinogenesis. , 2013, , 277-296. DNA Oxidative Damage is Correlated with JNK Activation in Hepatocytes from Rats with Experimental Insulin Resistance. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, 02, . Investigation of activity of jnk kinases new potential inhibitors. Ukrainian Biopharmaceutical Journal, 	0.2	0 0 0 0 0

#	Article	IF	CITATIONS
428	3,4-oxo-isopropylidene-shikimic acid inhibits cerebral ischemia-induced oxidative stress and neuronal apoptosis in rats. American Journal of Translational Research (discontinued), 2017, 9, 1764-1773.	0.0	3
429	Correlation of expression of WWOX and JNK with clinicopathologic features in human breast carcinoma. International Journal of Clinical and Experimental Pathology, 2018, 11, 695-703.	0.5	0
430	Exposure to imidacloprid induce oxidative stress, mitochondrial dysfunction, inflammation, apoptosis and mitophagy via NF-kappaB/JNK pathway in grass carp hepatocytes. Fish and Shellfish Immunology, 2022, 120, 674-685.	1.6	95
431	Repressing c-Jun N-terminal kinase signaling mitigates retinal pigment epithelium degeneration in mice with failure to clear all-trans-retinal. Experimental Eye Research, 2022, 214, 108877.	1.2	4
432	Kinase Inhibitors Involved in the Regulation of Autophagy: Molecular Concepts and Clinical Implications. Current Medicinal Chemistry, 2023, 30, 1502-1528.	1.2	3
433	Functional Roles of JNK and p38 MAPK Signaling in Nasopharyngeal Carcinoma. International Journal of Molecular Sciences, 2022, 23, 1108.	1.8	59
434	Multiplexing the Quantitation of MAP Kinase Activities Using Differential Sensing. Journal of the American Chemical Society, 2022, 144, 4017-4025.	6.6	12
435	SARM1 Suppresses Axon Branching Through Attenuation of Axonal Cytoskeletal Dynamics. Frontiers in Molecular Neuroscience, 2022, 15, 726962.	1.4	7
436	Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling. Seminars in Cancer Biology, 2022, 86, 1086-1104.	4.3	25
437	Unraveling the Design and Discovery of c-Jun N-Terminal Kinase Inhibitors and Their Therapeutic Potential in Human Diseases. Journal of Medicinal Chemistry, 2022, 65, 3758-3775.	2.9	10
438	Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers, 2022, 14, 1462.	1.7	29
439	Green tea-derived theabrownin suppresses human non-small cell lung carcinoma in xenograft model through activation of not only p53 signaling but also MAPK/JNK signaling pathway. Journal of Ethnopharmacology, 2022, 291, 115167.	2.0	15
440	Tanshinol suppresses osteosarcoma by specifically inducing apoptosis of U2-OS cells through p53-mediated mechanism. Journal of Ethnopharmacology, 2022, 292, 115214.	2.0	11
441	DAMPs Released From Injured Renal Tubular Epithelial Cells Activate Innate Immune Signals in Healthy Renal Tubular Epithelial Cells. Transplantation, 2022, 106, 1589-1599.	0.5	6
445	Regulation of apoptosis and autophagy by albendazole in human colon adenocarcinoma cells. Biochimie, 2022, 198, 155-166.	1.3	6
446	<scp>FGF7</scp> / <scp>FGFR2</scp> – <scp>JunB</scp> signalling counteracts the effect of progesterone in luminal breast cancer. Molecular Oncology, 2022, 16, 2823-2842.	2.1	6
447	The role of protein kinases as key drivers of metabolic dysfunction-associated fatty liver disease progression: New insights and future directions. Life Sciences, 2022, 305, 120732.	2.0	12
448	Virus-host protein-protein interactions as molecular drug targets for arboviral infections. Frontiers in Virology, 0, 2, .	0.7	4

#	Article	IF	Citations
449	Hyperglycemia promotes myocardial dysfunction via the ERS-MAPK10 signaling pathway in db/db mice. Laboratory Investigation, 2022, 102, 1192-1202.	1.7	4
450	Microfabricated Stretching Devices for Studying the Effects of Tensile Stress on Cells and Tissues. Biochip Journal, 2022, 16, 366-375.	2.5	7
451	The "Yin and Yang―of Unfolded Protein Response in Cancer and Immunogenic Cell Death. Cells, 2022, 11, 2899.	1.8	3
452	Oleanolic acid stimulation of cell migration involves a biphasic signaling mechanism. Scientific Reports, 2022, 12, .	1.6	5
453	Stress Kinase Signaling in Cardiac Myocytes. , 2022, , 67-110.		0
454	MG132 protects against lung injury following brain death in rats. Experimental and Therapeutic Medicine, 2022, 24, .	0.8	0
455	Sonidegib Suppresses Production of Inflammatory Mediators and Cell Migration in BV2 Microglial Cells and Mice Treated with Lipopolysaccharide via JNK and NF-ήB Inhibition. International Journal of Molecular Sciences, 2022, 23, 10590.	1.8	0
456	Activation of Host Cellular Signaling and Mechanism of Enterovirus 71 Viral Proteins Associated with Hand, Foot and Mouth Disease. Viruses, 2022, 14, 2190.	1.5	9
457	c- <i>Jun</i> -N Terminal Kinase-Mediated Degradation of γ-Glutamylcysteine Ligase Catalytic Subunit Inhibits GSH Recovery After Acetaminophen Treatment: Role in Sustaining JNK Activation and Liver Injury. Antioxidants and Redox Signaling, 2023, 38, 1071-1081.	2.5	4
458	Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase. Advances in Biological Regulation, 2022, , 100938.	1.4	1
459	Electroacupuncture inhibits hippocampal neuronal apoptosis and improves cognitive dysfunction in mice with vascular dementia via the JNK signaling pathway. Acupuncture in Medicine, 0, , 096452842211368.	0.4	1
460	Eucalyptol antagonized the apoptosis and immune dysfunction of grass carp hepatocytes induced by tetrabromobisphenol <scp>A</scp> by regulating <scp>ROS</scp> / <scp>ASK1</scp> / <scp>JNK</scp> pathway. Environmental Toxicology, 2023, 38, 820-832.	2.1	8
461	p38 and ERK1/2-Dependent Activation of c-Jun Is Required for the Downregulation of Oxidative Stress-Induced ERα in Hypothalamic Astrocytes. Neuroendocrinology, 2023, 113, 756-769.	1.2	2
462	In silico identification and biological evaluation of a selective MAP4K4 inhibitor against pancreatic cancer. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, .	2.5	2
463	PLX8394, a RAF inhibitor, inhibits enterovirus 71 replication by blocking RAF/MEK/ERK signaling. Virologica Sinica, 2023, 38, 276-284.	1.2	1
464	Activating Protein-1 (AP-1): A Promising Target for the Treatment of Fibrotic Diseases. Current Medicinal Chemistry, 2023, 30, .	1.2	0
465	Liquiritin exhibits anti-acute lung injury activities through suppressing the JNK/Nur77/c-Jun pathway. Chinese Medicine, 2023, 18, .	1.6	3
466	JNK-JUN-NCOA4 axis contributes to chondrocyte ferroptosis and aggravates osteoarthritis via ferritinophagy. Free Radical Biology and Medicine, 2023, 200, 87-101.	1.3	24

#	Article	IF	CITATIONS
467	Reactive oxygen species–mediated phosphorylation of JNK is involved in the regulation of BmFerHCH on Bombyx mori nucleopolyhedrovirus proliferation. International Journal of Biological Macromolecules, 2023, 235, 123834.	3.6	4
468	Cardioprotective Effects of a Selective c-Jun N-terminal Kinase Inhibitor in a Rat Model of Myocardial Infarction. Biomedicines, 2023, 11, 714.	1.4	2
469	Robust Computational Model for Diagnosis of Mitogenic Activated Protein Kinase Leading to Neurodegenerative Diseases. Current Signal Transduction Therapy, 2023, 18, .	0.3	0
477	The Role of JNK3 in Epilepsy and Neurodegeneration. , 2023, , 281-308.		Ο
487	. Nature Reviews Urology, 0, .	1.9	0