Oxygen Isotope Variation in Stony-Iron Meteorites

Science 313, 1763-1765 DOI: 10.1126/science.1128865

Citation Report

#	Article	IF	CITATIONS
1	Petrology and geochemistry of a silicate clast from the Mount Padbury mesosiderite: Implications for metal-silicate mixing events of mesosiderite. Meteoritics and Planetary Science, 2006, 41, 1919-1928.	0.7	4
2	PLANETARY SCIENCE: Enhanced: Meteorites and Their Parent Asteroids. Science, 2006, 313, 1743-1744.	6.0	7
3	The Stannern trend eucrites: Contamination of main group eucritic magmas by crustal partial melts. Geochimica Et Cosmochimica Acta, 2007, 71, 4108-4124.	1.6	131
5	Geochemical and Cosmochemical Materials. Analytical Chemistry, 2007, 79, 4249-4274.	3.2	7
6	Astrophysics in 2006. Space Science Reviews, 2007, 132, 1-182.	3.7	9
7	New ideas on the early solar system. Astronomy and Geophysics, 2008, 49, 1.28-1.30.	0.1	0
8	Oxygen Isotopes in Asteroidal Materials. Reviews in Mineralogy and Geochemistry, 2008, 68, 345-397.	2.2	37
9	53Mn–53Cr systematics of the early Solar System revisited. Geochimica Et Cosmochimica Acta, 2008, 72, 5146-5163.	1.6	229
10	Geochemistry of diogenites: Still more diversity in their parental melts. Meteoritics and Planetary Science, 2008, 43, 1759-1775.	0.7	92
11	Geochemistry and origin of metal, olivine clasts, and matrix in the Dong Ujimqin Qi mesosiderite. Meteoritics and Planetary Science, 2008, 43, 451-460.	0.7	11
12	13. Oxygen Isotopes in Asteroidal Materials. , 2008, , 345-398.		4
13	A unique basaltic micrometeorite expands the inventory of solar system planetary crusts. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6904-6909.	3.3	41
14	Plausible parent bodies for enstatite chondrites and mesosiderites: Implications for Lutetia's fly-by. Icarus, 2009, 202, 477-486.	1.1	75
15	Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie Der Erde, 2009, 69, 293-325.	0.8	216
16	Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica Et Cosmochimica Acta, 2009, 73, 5835-5853.	1.6	148
17	Trace element geochemistry of K-rich impact spherules from howardites. Geochimica Et Cosmochimica Acta, 2009, 73, 5944-5958.	1.6	26
18	Crustal partial melting on Vesta: Evidence from highly metamorphosed eucrites. Geochimica Et Cosmochimica Acta, 2009, 73, 7162-7182.	1.6	89
20	Magnetic classification of stony meteorites: 3. Achondrites. Meteoritics and Planetary Science, 2009, 44, 405-427.	0.7	47

CITATION REPORT

#	Article	IF	CITATIONS
21	Trace element chemistry of Cumulus Ridge 04071 pallasite with implications for main group pallasites. Meteoritics and Planetary Science, 2009, 44, 1019-1032.	0.7	12
23	Paleomagnetic Records of Meteorites and Early Planetesimal Differentiation. Space Science Reviews, 2010, 152, 341-390.	3.7	128
24	Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin. Geochimica Et Cosmochimica Acta, 2010, 74, 4471-4492.	1.6	99
25	26Al–26Mg dating of asteroidal magmatism in the young Solar System. Geochimica Et Cosmochimica Acta, 2010, 74, 4844-4864.	1.6	93
26	Tubular symplectic inclusions in olivine from the Fukang pallasite. Meteoritics and Planetary Science, 2010, 45, 899-910.	0.7	7
27	Kâ€Thâ€Ti systematics and new threeâ€component mixing model of HED meteorites: Prospective study for interpretation of gammaâ€ray and neutron spectra for the Dawn mission. Meteoritics and Planetary Science, 2010, 45, 1170-1190.	0.7	14
28	MIL 03443, a dunite from asteroid 4 Vesta: Evidence for its classification and cumulate origin. Meteoritics and Planetary Science, 2011, 46, 1133-1151.	0.7	42
29	HED Meteorites and Their Relationship to the Geology of Vesta and the Dawn Mission. Space Science Reviews, 2011, 163, 141-174.	3.7	192
30	The Maria asteroid family: Genetic relationships and a plausible source of mesosiderites near the 3:1 Kirkwood Gap. Icarus, 2011, 213, 524-537.	1.1	20
31	An Ancient Core Dynamo in Asteroid Vesta. Science, 2012, 338, 238-241.	6.0	81
31 32	An Ancient Core Dynamo in Asteroid Vesta. Science, 2012, 338, 238-241. Zinc isotopes in HEDs: Clues to the formation of 4-Vesta, and the unique composition of Pecora Escarpment 82502. Geochimica Et Cosmochimica Acta, 2012, 86, 76-87.	6.0 1.6	81 50
31 32 33	An Ancient Core Dynamo in Asteroid Vesta. Science, 2012, 338, 238-241. Zinc isotopes in HEDs: Clues to the formation of 4-Vesta, and the unique composition of Pecora Escarpment 82502. Geochimica Et Cosmochimica Acta, 2012, 86, 76-87. A petrological and chemical reexamination of Main Group pallasite formation. Geochimica Et Cosmochimica Acta, 2012, 89, 134-158.	6.0 1.6 1.6	81 50 69
31 32 33 34	An Ancient Core Dynamo in Asteroid Vesta. Science, 2012, 338, 238-241. Zinc isotopes in HEDs: Clues to the formation of 4-Vesta, and the unique composition of Pecora Escarpment 82502. Geochimica Et Cosmochimica Acta, 2012, 86, 76-87. A petrological and chemical reexamination of Main Group pallasite formation. Geochimica Et Cosmochimica Acta, 2012, 89, 134-158. Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochimica Et Cosmochimica Acta, 2012, 94, 146-163.	6.0 1.6 1.6 1.6	81 50 69 93
 31 32 33 34 35 	An Ancient Core Dynamo in Asteroid Vesta. Science, 2012, 338, 238-241. Zinc isotopes in HEDs: Clues to the formation of 4-Vesta, and the unique composition of Pecora Escarpment 82502. Geochimica Et Cosmochimica Acta, 2012, 86, 76-87. A petrological and chemical reexamination of Main Group pallasite formation. Geochimica Et Cosmochimica Acta, 2012, 89, 134-158. Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochimica Et Cosmochimica Acta, 2012, 94, 146-163. Chronology and sources of lunar impact bombardment. Icarus, 2012, 218, 69-79.	6.0 1.6 1.6 1.6	81 50 69 93 51
 31 32 33 34 35 36 	An Ancient Core Dynamo in Asteroid Vesta. Science, 2012, 338, 238-241. Zinc isotopes in HEDs: Clues to the formation of 4-Vesta, and the unique composition of Pecora Escarpment 82502. Geochimica Et Cosmochimica Acta, 2012, 86, 76-87. A petrological and chemical reexamination of Main Group pallasite formation. Geochimica Et Cosmochimica Acta, 2012, 89, 134-158. Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochimica Et Cosmochimica Acta, 2012, 94, 146-163. Chronology and sources of lunar impact bombardment. Icarus, 2012, 218, 69-79. Mid-infrared spectra of differentiated meteorites (achondrites): Comparison with astronomical observations of dust in protoplanetary and debris disks. Icarus, 2012, 219, 48-56.	6.0 1.6 1.6 1.6 1.1	 81 50 69 93 51 10
 31 32 33 34 35 36 37 	An Ancient Core Dynamo in Asteroid Vesta. Science, 2012, 338, 238-241.Zinc isotopes in HEDs: Clues to the formation of 4-Vesta, and the unique composition of Pecora Escarpment 82502. Geochimica Et Cosmochimica Acta, 2012, 86, 76-87.A petrological and chemical reexamination of Main Group pallasite formation. Geochimica Et Cosmochimica Acta, 2012, 89, 134-158.Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochimica Et Cosmochimica Acta, 2012, 94, 146-163.Chronology and sources of lunar impact bombardment. Icarus, 2012, 218, 69-79.Mid-infrared spectra of differentiated meteorites (achondrites): Comparison with astronomical observations of dust in protoplanetary and debris disks. Icarus, 2012, 219, 48-56.SIMS Pbå&C*Pb and Uå&*Pb age determination of eucrite zircons at<5l¼m scale and the first 50Ma of the thermal history of Vesta. Geochimica Et Cosmochimica Acta, 2013, 110, 152-175.	6.0 1.6 1.6 1.1 1.1 1.1	 81 50 69 93 51 10 74
 31 32 33 34 35 36 37 38 	An Ancient Core Dynamo in Asteroid Vesta. Science, 2012, 338, 238-241. Zinc isotopes in HEDs: Clues to the formation of 4-Vesta, and the unique composition of Pecora Escarpment 82502. Geochimica Et Cosmochimica Acta, 2012, 86, 76-87. A petrological and chemical reexamination of Main Group pallasite formation. Geochimica Et Cosmochimica Acta, 2012, 89, 134-158. Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochimica Et Cosmochimica Acta, 2012, 94, 146-163. Chronology and sources of lunar impact bombardment. Icarus, 2012, 218, 69-79. Mid-infrared spectra of differentiated meteorites (achondrites): Comparison with astronomical observations of dust in protoplanetary and debris disks. Icarus, 2012, 219, 48-56. SIMS Pbà€"Pb and Uã€"Pb age determination of eucrite zircons at<5î}/am scale and the first 50Ma of the thermal history of Vesta. Geochimica Et Cosmochimica Acta, 2013, 110, 152-175. Vesta and extensively melted asteroids: Why HED meteorites are probably not from Vesta. Earth and Planetary Science Letters, 2013, 381, 138-146.	 6.0 1.6 1.6 1.1 1.1 1.6 1.8 	 81 50 69 93 51 10 74 44

#	Article	IF	CITATIONS
40	Classification of Meteorites and Their Genetic Relationships. , 2014, , 1-63.		76
41	Iron and Stony-Iron Meteorites. , 2014, , 267-285.		30
42	Composition and mineralogy of dark material units on Vesta. Icarus, 2014, 240, 58-72.	1.1	41
43	Lithium systematics in howardite–eucrite–diogenite meteorites: Implications for crust–mantle evolution of planetary embryos. Geochimica Et Cosmochimica Acta, 2014, 125, 131-145.	1.6	13
44	The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body. Earth and Planetary Science Letters, 2014, 390, 165-174.	1.8	50
45	Nanopaleomagnetism of meteoritic Fe–Ni studied using X-ray photoemission electron microscopy. Earth and Planetary Science Letters, 2014, 396, 125-133.	1.8	29
46	Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chemie Der Erde, 2015, 75, 155-183.	0.8	134
47	Cosmicâ€ray exposure ages of pallasites. Meteoritics and Planetary Science, 2015, 50, 86-111.	0.7	10
48	Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus, 2015, 245, 367-378.	1.1	32
49	Early stages of core segregation recorded by Fe isotopes in an asteroidal mantle. Earth and Planetary Science Letters, 2015, 419, 93-100.	1.8	44
50	Crustal differentiation in the early solar system: Clues from the unique achondrite Northwest Africa 7325 (NWA 7325). Geochimica Et Cosmochimica Acta, 2015, 168, 280-292.	1.6	28
51	Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: Implications for the "Great Dunite Shortage―and HED-mesosiderite connection. Geochimica Et Cosmochimica Acta, 2015, 169, 115-136.	1.6	48
52	Variations of Stable Isotope Ratios in Nature. , 2015, , 191-383.		0
53	Effect of parent body evolution on equilibrium and kinetic isotope fractionation: a combined Ni and Fe isotope study of iron and stony-iron meteorites. Geochimica Et Cosmochimica Acta, 2016, 186, 168-188.	1.6	26
54	Siderophile element systematics of IAB complex iron meteorites: New insights into the formation of an enigmatic group. Geochimica Et Cosmochimica Acta, 2016, 188, 261-283.	1.6	27
55	The origin of aubrites: Evidence from lithophile trace element abundances and oxygen isotope compositions. Geochimica Et Cosmochimica Acta, 2016, 192, 29-48.	1.6	25
56	Magnesium isotopic composition of achondrites. Geochimica Et Cosmochimica Acta, 2016, 174, 167-179.	1.6	14
57	Siderophile elements in brecciated HED meteorites and the nature of projectile materials in HED meteorites. Farth and Planetary Science Letters, 2016, 437, 57-65	1.8	6

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
58	Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies. Chemie Der Erde, 2017, 77, 1-43.	0.8	132
59	Petrogenesis of the <scp>EET</scp> 92023 achondrite and implications for early impact events. Meteoritics and Planetary Science, 2017, 52, 709-721.	0.7	7
60	Silicate–SiO reaction in a protoplanetary disk recorded by oxygen isotopes in chondrules. Nature Astronomy, 2017, 1, .	4.2	9
61	Iron and Stony-iron Meteorites: Evidence for the Formation, Crystallization, and Early Impact Histories of Differentiated Planetesimals. , 2017, , 136-158.		5
62	Thermal equilibration of iron meteorite and pallasite parent bodies recorded at the mineral scale by Fe and Ni isotope systematics. Geochimica Et Cosmochimica Acta, 2017, 217, 95-111.	1.6	15
63	Trace element composition and U-Pb age of zircons from Estherville: Constraints on the timing of the metal-silicate mixing event on the mesosiderite parent body. Geochimica Et Cosmochimica Acta, 2017, 215, 76-91.	1.6	13
64	The oxygen isotope compositions of olivine in main group (<scp>MG</scp>) pallasites: New measurements by adopting an improved laser fluorination approach. Meteoritics and Planetary Science, 2018, 53, 1223-1237.	0.7	6
65	Multiple sulfur isotopic composition of main group pallasites support genetic links to IIIAB iron meteorites. Geochimica Et Cosmochimica Acta, 2018, 224, 276-281.	1.6	13
66	Basaltic volcanism on the angrite parent body: Comparison with 4 Vesta. Meteoritics and Planetary Science, 2018, 53, 375-393.	0.7	5
67	Petrogenesis of D'Orbignyâ€like angrite meteorites and the role of spinel in the angrite source. Meteoritics and Planetary Science, 2018, 53, 306-325.	0.7	6
68	Liquid properties in the Fe-FeS system under moderate pressure: Tool box to model small planetary cores. American Mineralogist, 2018, , .	0.9	12
69	Experimental insights into Stannern-trend eucrite petrogenesis. Meteoritics and Planetary Science, 2018, 53, 2122-2137.	0.7	4
70	Variations of Stable Isotope Ratios in Nature. Springer Textbooks in Earth Sciences, Geography and Environment, 2018, , 229-432.	0.1	4
71	Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collision. Nature Geoscience, 2019, 12, 510-515.	5.4	51
72	Oxygen isotopes in HED meteorites and their constraints on parent asteroids. Planetary and Space Science, 2019, 168, 83-94.	0.9	11
73	Insights into the formation of silicaâ€rich achondrites from impact melts in Rumurutiâ€type chondrites. Meteoritics and Planetary Science, 2020, 55, 130-148.	0.7	22
74	Hadean Earth. , 2020, , .		21
75	Linking asteroids and meteorites to the primordial planetesimal population. Geochimica Et Cosmochimica Acta, 2020, 277, 377-406.	1.6	93

		CITATION REPORT		
#	Article		IF	Citations
76	Oxygen Isotopes and Sampling of the Solar System. Space Science Reviews, 2020, 216	o, 1.	3.7	22
77	Chromium Isotopic Constraints on the Origin of the Ureilite Parent Body. Astrophysical 888, 126.	Journal, 2020,	1.6	28
78	New constraints on the formation of main group pallasites derived from in situ trace el analysis and 2D mapping of olivine and phosphate. Chemical Geology, 2021, 562, 119	ement 996.	1.4	4
79	Precise initial abundance of Niobium-92 in the Solar System and implications for <i>p< nucleosynthesis. Proceedings of the National Academy of Sciences of the United State 2021, 118, .</i>	i> -process s of America,	3.3	15
80	Cosmogenic noble gas nuclides in zircons from the Estherville mesosiderite. Meteoritic Planetary Science, 2021, 56, 992-1004.	s and	0.7	2
81	A Timeâ€Resolved Paleomagnetic Record of Main Group Pallasites: Evidence for a Large Thinâ€Mantled Parent Body. Journal of Geophysical Research E: Planets, 2021, 126, e20	2 ored, D21JE006900.	1.5	10
82	HED Meteorites and Their Relationship to the Geology of Vesta and the Dawn Mission.	, 2010, , 141-174.		8
83	Measuring the level of interstellar inheritance in the solar protoplanetary disk. Meteorit Planetary Science, 2017, 52, 1797-1821.	tics and	0.7	39
84	Variations of Stable Isotope Ratios in Nature. Springer Textbooks in Earth Sciences, Ger Environment, 2021, , 267-498.	ography and	0.1	1
85	Eucriteâ€ŧype achondrites: Petrology and oxygen isotope compositions ^{â€} Planetary Science, 2022, 57, 484-526.	. Meteoritics and	0.7	9
86	Variations of Stable Isotope Ratios in Nature. , 2004, , 77-196.			2
87	Why Do We Need to Teach the Evolution of Photosynthesis?. , 2008, , 1613-1617.			0
88	Paleomagnetic Records of Meteorites and Early Planetesimal Differentiation. Space Sci ISSI, 2009, , 341-390.	ences Series of	0.0	0
89	Hadean Zircons Elsewhere in the Solar System. , 2020, , 179-193.			0
90	Accretion regions of meteorite parent bodies inferred from a two-endmember isotopic Monthly Notices of the Royal Astronomical Society, 2022, 513, 363-373.	mixing model.	1.6	6
91	Isotopic evidence for pallasite formation by impact mixing of olivine and metal during t million years of the Solar System. , 2022, 1, .	he first 10		8
92	The Surface Composition of Vesta. , 2022, , 81-104.			0
93	Giant impact onto a Vesta-like asteroid and formation of mesosiderites through mixing core and surface crust. Icarus, 2022, 379, 114949.	of metallic	1.1	3

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
94	Asteroids accretion, differentiation, and break-up in the Vesta source region: Evidence from cosmochemistry of mesosiderites. Geochimica Et Cosmochimica Acta, 2022, 329, 135-151.	1.6	4
95	Petrology and mineralogy of mesosiderite Northwest Africa 12949: Implications for geological history on its parent body. Meteoritics and Planetary Science, 2023, 58, 341-359.	0.7	2
96	Calcium Isotope Evolution During Differentiation of Vesta and Calcium Isotopic Heterogeneities in the Inner Solar System. Geophysical Research Letters, 2023, 50, .	1.5	4
97	Lead-lead (Pb-Pb) dating of eucrites and mesosiderites: Implications for the formation and evolution of Vesta. Geochimica Et Cosmochimica Acta, 2023, 348, 369-380.	1.6	2
98	Spatial distribution of isotopes and compositional mixing in the inner protoplanetary disk. Astronomy and Astrophysics, 0, , .	2.1	0