TLR3 Deletion Limits Mortality and Disease Severity du

Journal of Immunology 177, 6301-6307 DOI: 10.4049/jimmunol.177.9.6301

Citation Report

#	Article	IF	CITATIONS
1	TLR3 Is Essential for the Induction of Protective Immunity against Punta Toro Virus Infection by the Double-Stranded RNA (dsRNA), Poly(I:C12U), but not Poly(I:C): Differential Recognition of Synthetic dsRNA Molecules. Journal of Immunology, 2007, 178, 5200-5208.	0.4	103
2	Cutting Edge: Influenza A Virus Activates TLR3-Dependent Inflammatory and RIC-I-Dependent Antiviral Responses in Human Lung Epithelial Cells. Journal of Immunology, 2007, 178, 3368-3372.	0.4	355
3	Therapeutic Use of Molecules that Mimic Pathogen Danger Signals. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2007, 7, 177-186.	0.6	1
4	Type I Interferon During Viral Infections: Multiple Triggers for a Multifunctional Mediator. , 2007, 316, 337-357.		44
5	Innate Recognition of Viruses. Immunity, 2007, 27, 370-383.	6.6	614
6	RIG-I: tri-ing to discriminate between self and non-self RNA. Trends in Immunology, 2007, 28, 147-150.	2.9	53
7	TLR3 Deficiency in Patients with Herpes Simplex Encephalitis. Science, 2007, 317, 1522-1527.	6.0	970
8	Translational Mini-Review Series on Toll-like Receptors:†Recent advances in understanding the role of Toll-like receptors in anti-viral immunity. Clinical and Experimental Immunology, 2007, 147, 217-226.	1.1	38
9	Tollâ€like receptors, RIGâ€lâ€like RNA helicases and the antiviral innate immune response. Immunology and Cell Biology, 2007, 85, 435-445.	1.0	209
10	Recognition of viruses by innate immunity. Immunological Reviews, 2007, 220, 214-224.	2.8	305
11	Human Tollâ€like receptorâ€dependent induction of interferons in protective immunity to viruses. Immunological Reviews, 2007, 220, 225-236.	2.8	147
12	TLR3: Interferon induction by double-stranded RNA including poly(I:C)â~†. Advanced Drug Delivery Reviews, 2008, 60, 805-812.	6.6	557
13	Toll-like receptors regulation of viral infection and diseaseâ~†. Advanced Drug Delivery Reviews, 2008, 60, 786-794.	6.6	73
14	Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nature Medicine, 2008, 14, 1077-1087.	15.2	339
15	Viral evasion and subversion of pattern-recognition receptor signalling. Nature Reviews Immunology, 2008, 8, 911-922.	10.6	616
16	Animal models of highly pathogenic RNA viral infections: Hemorrhagic fever viruses. Antiviral Research, 2008, 78, 79-90.	1.9	77
17	Prophylactic and therapeutic intervention of Punta Toro virus (Phlebovirus, Bunyaviridae) infection in hamsters with interferon alfacon-1. Antiviral Research, 2008, 77, 215-224.	1.9	8
18	Differential pathogenesis of cowpox virus intranasal infections in mice induced by low and high inoculum volumes and effects of cidofovir treatment. International Journal of Antimicrobial Agents, 2008, 31, 352-359.	1.1	27

# 19	ARTICLE Innate recognition of non-self nucleic acids. Genome Biology, 2008, 9, 211.	IF 13.9	CITATIONS 36
20	Hepatitis C virus (HCV) employs multiple strategies to subvert the host innate antiviral response. Biological Chemistry, 2008, 389, 1283-98.	1.2	37
21	Sensing of Viral Infection and Activation of Innate Immunity by Toll-Like Receptor 3. Clinical Microbiology Reviews, 2008, 21, 13-25.	5.7	274
22	Toll-Like Receptor 3 Has a Protective Role against West Nile Virus Infection. Journal of Virology, 2008, 82, 10349-10358.	1.5	298
23	TLR3 Increases Disease Morbidity and Mortality from Vaccinia Infection. Journal of Immunology, 2008, 180, 483-491.	0.4	72
24	West Nile Virus Nonstructural Protein 1 Inhibits TLR3 Signal Transduction. Journal of Virology, 2008, 82, 8262-8271.	1.5	147
25	Targeting Poly(I:C) to the TLR3-Independent Pathway Boosts Effector CD8 T Cell Differentiation through IFN-α/β. Journal of Immunology, 2008, 181, 7670-7680.	0.4	64
26	Activation of Innate Immune System During Viral Infection: Role of Pattern-recognition Receptors (PRRs) in Viral Infection. Journal of Bacteriology and Virology, 2009, 39, 145.	0.0	6
27	The Innate Immune Response: An Important Partner in Shaping Coxsackievirus-Mediated Autoimmunity. Journal of Innate Immunity, 2009, 1, 421-434.	1.8	12
28	Beneficial effects of a low-protein diet on host resistance to Paracoccidioides brasiliensis in mice. Nutrition, 2009, 25, 954-963.	1.1	17
29	Punta Toro virus (Bunyaviridae, Phlebovirus) infection in mice: Strain differences in pathogenesis and host interferon response. Virology, 2009, 395, 143-151.	1.1	15
30	A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology, 2009, 395, 210-222.	1.1	129
31	Prophylaxis with cationic liposome–DNA complexes protects hamsters from phleboviral disease: Importance of liposomal delivery and CpG motifs. Antiviral Research, 2009, 81, 37-46.	1.9	22
32	Characterization of equine and other vertebrate TLR3, TLR7, and TLR8 genes. Immunogenetics, 2009, 61, 529-539.	1.2	35
33	Viral sensors: diversity in pathogen recognition. Immunological Reviews, 2009, 227, 87-94.	2.8	64
34	Effect of Dietary Oils on Host Resistance to Fungal Infection in Psychologically Stressed Mice. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1994-1998.	0.6	5
35	The dsRNA-mimetic poly (I:C) and IL-18 synergize for IFNγ and TNFα expression. Biochemical and Biophysical Research Communications, 2009, 389, 628-633.	1.0	1
36	Genomic organization and expression analysis of Toll-like receptor 3 in grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 2009, 27, 433-439.	1.6	57

#	Article	IF	CITATIONS
37	Bunyaviruses and the Type I Interferon System. Viruses, 2009, 1, 1003-1021.	1.5	51
38	Hantaan Virus Triggers TLR3-Dependent Innate Immune Responses. Journal of Immunology, 2009, 182, 2849-2858.	0.4	59
39	Recent insights into the role of Toll-like receptors in viral infection. Clinical and Experimental Immunology, 2010, 161, 397-406.	1.1	110
40	TLR3 agonists as immunotherapeutic agents. Immunotherapy, 2010, 2, 137-140.	1.0	53
41	High-Throughput Screening for TLR3–IFN Regulatory Factor 3 Signaling Pathway Modulators Identifies Several Antipsychotic Drugs as TLR Inhibitors. Journal of Immunology, 2010, 184, 5768-5776.	0.4	50
42	TLRs and chronic inflammation. International Journal of Biochemistry and Cell Biology, 2010, 42, 495-505.	1.2	157
43	Innate immune recognition of poxviral vaccine vectors. Expert Review of Vaccines, 2011, 10, 1435-1449.	2.0	18
44	Small-Molecule Inhibitors of the TLR3/dsRNA Complex. Journal of the American Chemical Society, 2011, 133, 3764-3767.	6.6	117
45	Pattern Recognition Receptors and the Innate Immune Response to Viral Infection. Viruses, 2011, 3, 920-940.	1.5	645
46	TLR Signaling Is Required for Salmonella typhimurium Virulence. Cell, 2011, 144, 675-688.	13.5	217
47	Host genetic variation in susceptibility to Punta Toro virus. Virus Research, 2011, 157, 71-75.	1.1	6
48	The Pathogenesis of Rift Valley Fever. Viruses, 2011, 3, 493-519.	1.5	282
49	dsRNA sensors and plasmacytoid dendritic cells in host defense and autoimmunity. Immunological Reviews, 2011, 243, 74-90.	2.8	44
50	Novel antagonist antibody to TLR3 blocks poly(I:C)-induced inflammation in vivo and in vitro. Cellular Immunology, 2011, 267, 9-16.	1.4	19
51	Antiviral responses induced by the TLR3 pathway. Reviews in Medical Virology, 2011, 21, 67-77.	3.9	132
52	Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. Journal of Experimental Medicine, 2011, 208, 2083-2098.	4.2	262
53	Toll-like Receptor 3 (TLR3) Induces Apoptosis via Death Receptors and Mitochondria by Up-regulating the Transactivating p63 Isoform α (TAP63α). Journal of Biological Chemistry, 2011, 286, 15918-15928.	1.6	108
54	Integration of large-scale metabolic, signaling, and gene regulatory networks with application to infection responses. , 2011, , .		5

#	Article	IF	CITATIONS
55	MDA5 and TLR3 Initiate Pro-Inflammatory Signaling Pathways Leading to Rhinovirus-Induced Airways Inflammation and Hyperresponsiveness. PLoS Pathogens, 2011, 7, e1002070.	2.1	107
56	Identifying a Role for Toll-Like Receptor 3 in the Innate Immune Response to Chlamydia muridarum Infection in Murine Oviduct Epithelial Cells. Infection and Immunity, 2012, 80, 254-265.	1.0	37
57	Sensing of RNA Viruses: a Review of Innate Immune Receptors Involved in Recognizing RNA Virus Invasion. Journal of Virology, 2012, 86, 2900-2910.	1.5	506
58	A Common Polymorphism in <i>TLR3</i> Confers Natural Resistance to HIV-1 Infection. Journal of Immunology, 2012, 188, 818-823.	0.4	104
59	Polycation-based nanoparticle delivery of RNAi therapeutics: Adverse effects and solutions. Advanced Drug Delivery Reviews, 2012, 64, 1717-1729.	6.6	136
60	Single-stranded DNA oligonucleotides inhibit TLR3-mediated responses in human monocyte-derived dendritic cells and in vivo in cynomolgus macaques. Blood, 2012, 120, 768-777.	0.6	26
61	Controlling the Outcome of the Toll-Like Receptor Signaling Pathways. PLoS ONE, 2012, 7, e31341.	1.1	5
62	Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. Journal of Clinical Investigation, 2012, 122, 2741-2748.	3.9	134
63	Chaeoglobosin Fex inhibits poly(I:C)-induced activation of bone marrow-derived dendritic cells. Molecular Immunology, 2012, 51, 150-158.	1.0	9
64	Ultrastructural study of Rift Valley fever virus in the mouse model. Virology, 2012, 431, 58-70.	1.1	28
65	Urban particulate matter activates Akt in human lung cells. Archives of Toxicology, 2012, 86, 121-135.	1.9	21
66	Tollâ€like receptor 3 in viral pathogenesis: friend or foe?. Immunology, 2013, 140, 153-167.	2.0	103
67	TLR3 immunity to infection in mice and humans. Current Opinion in Immunology, 2013, 25, 19-33.	2.4	141
68	Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nature Communications, 2013, 4, 1833.	5.8	106
69	Molecular characterization and functional analysis of Toll-like receptor 3 gene in orange-spotted grouper (Epinephelus coioides). Gene, 2013, 527, 174-182.	1.0	12
70	Toll-IL-1-Receptor-Containing Adaptor Molecule-1. Progress in Molecular Biology and Translational Science, 2013, 117, 487-510.	0.9	10
71	Recognition of pathogen-associated nucleic acids by endosomal nucleic acid-sensing toll-like receptors. Acta Biochimica Et Biophysica Sinica, 2013, 45, 241-258.	0.9	30
72	Distinct Dictation of Japanese Encephalitis Virus-Induced Neuroinflammation and Lethality via Triggering TLR3 and TLR4 Signal Pathways. PLoS Pathogens, 2014, 10, e1004319.	2.1	90

#	Article	IF	CITATIONS
73	Beyond dsRNA: Toll-like receptor 3 signalling in RNA-induced immune responses. Biochemical Journal, 2014, 458, 195-201.	1.7	56
74	Toll-Like Receptors in Antiviral Innate Immunity. Journal of Molecular Biology, 2014, 426, 1246-1264.	2.0	570
75	Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virology, 2014, 9, 811-829.	0.9	76
76	The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nature Reviews Immunology, 2014, 14, 686-698.	10.6	193
77	Highly pathogenic avian influenza A H5N1 and pandemic H1N1 virus infections have different phenotypes in Toll-like receptor 3 knockout mice. Journal of General Virology, 2014, 95, 1870-1879.	1.3	34
78	Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virusâ€specific neutralizing antibody response. EMBO Molecular Medicine, 2015, 7, 24-41.	3.3	81
79	Reservoir Host Immune Responses to Emerging Zoonotic Viruses. Cell, 2015, 160, 20-35.	13.5	114
80	Association of Symptoms and Severity of Rift Valley Fever with Genetic Polymorphisms in Human Innate Immune Pathways. PLoS Neglected Tropical Diseases, 2015, 9, e0003584.	1.3	30
81	The Role of Toll-Like Receptor Polymorphisms in Acute Pancreatitis Occurrence and Severity. Pancreas, 2015, 44, 429-433.	0.5	25
82	Role of Toll-Like Receptors in Hepatitis C Virus Pathogenesis and Treatment. Critical Reviews in Eukaryotic Gene Expression, 2016, 26, 353-362.	0.4	9
83	Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators. International Journal of Molecular Sciences, 2016, 17, 1508.	1.8	32
84	Phleboviruses and the Type I Interferon Response. Viruses, 2016, 8, 174.	1.5	76
85	Is there any relationship between Tollâ€like receptor 3 c.1377C/T and â^'7C/A polymorphisms and susceptibility to Crimean Congo hemorrhagic fever?. Journal of Medical Virology, 2016, 88, 1690-1696.	2.5	16
86	Development of real-time reverse transcriptase qPCR assays for the detection of Punta Toro virus and Pichinde virus. Virology Journal, 2016, 13, 54.	1.4	4
87	TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. Journal of Leukocyte Biology, 2016, 100, 27-45.	1.5	138
88	Importance of Nucleic Acid Recognition in Inflammation and Autoimmunity. Annual Review of Medicine, 2016, 67, 323-336.	5.0	135
89	Advances in Antiviral Therapies Targeting Toll-like Receptors. Expert Opinion on Investigational Drugs, 2016, 25, 437-453.	1.9	20
90	Prophylactic and therapeutic intranasal administration with an immunomodulator, Hiltonol® (Poly) Tj ETQq1 1	0.784314	rgBT /Over o

#	Article	IF	CITATIONS
91	Association of Respiratory Syncytial Virus Toll-Like Receptor 3-Mediated Immune Response with COPD Exacerbation Frequency. Inflammation, 2018, 41, 654-666.	1.7	17
92	TLR3 deficiency exacerbates the loss of epithelial barrier function during genital tract Chlamydia muridarum infection. PLoS ONE, 2019, 14, e0207422.	1.1	12
93	A RIC-l–like receptor directs antiviral responses to a bunyavirus and is antagonized by virus-induced blockade of TRIM25-mediated ubiquitination. Journal of Biological Chemistry, 2020, 295, 9691-9711.	1.6	39
94	Detection of Viral Infections by Innate Immunity. Biochemical Pharmacology, 2021, 183, 114316.	2.0	216
95	Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain, Behavior, and Immunity, 2021, 91, 740-755.	2.0	143
96	TLR3 controls constitutive IFN- \hat{l}^2 antiviral immunity in human fibroblasts and cortical neurons. Journal of Clinical Investigation, 2021, 131, .	3.9	64
97	TLR3-Activated Monocyte-Derived Dendritic Cells Trigger Progression from Acute Viral Infection to Chronic Disease in the Lung. Journal of Immunology, 2021, 206, 1297-1314.	0.4	13
99	Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. Journal of Zhejiang University: Science B, 2021, 22, 609-632.	1.3	65
100	Sandfly Fever Sicilian Virus-Leishmania major co-infection modulates innate inflammatory response favoring myeloid cell infections and skin hyperinflammation. PLoS Neglected Tropical Diseases, 2021, 15, e0009638.	1.3	11
101	Bunyaviruses and Innate Immunity. , 0, , 287-299.		2
102	Toll-Like Receptor 3 Signaling on Macrophages Is Required for Survival Following Coxsackievirus B4 Infection. PLoS ONE, 2009, 4, e4127.	1.1	136
103	TLR3 Sensing of Viral Infection~!2009-10-01~!2010-03-30~!2010-04-28~!. The Open Infectious Diseases Journal, 2010, 4, 1-10.	0.6	12
104	RNA Virus Families: Distinguishing Characteristics, Differences, and Similarities. , 0, , 195-210.		0
105	Role of Toll-Like Receptors in the Innate Immune Response to RNA Viruses. , 0, , 7-27.		0
105 107	Role of Toll-Like Receptors in the Innate Immune Response to RNA Viruses. , 0, , 7-27. NSG-Mice Reveal the Importance of a Functional Innate and Adaptive Immune Response to Overcome RVFV Infection. Viruses, 2022, 14, 350.	1.5	0
	NSG-Mice Reveal the Importance of a Functional Innate and Adaptive Immune Response to Overcome	1.5	
107	NSG-Mice Reveal the Importance of a Functional Innate and Adaptive Immune Response to Overcome RVFV Infection. Viruses, 2022, 14, 350. Regulation of antiviral innate immunity by chemical modification of viral <scp>RNA</scp> . Wiley		6