Elemental Mercury Spills

Environmental Health Perspectives 114, 147-152

DOI: 10.1289/ehp.7048

Citation Report

#	Article	IF	Citations
1	Selective Gold-Nanoparticle-Based "Turn-On―Fluorescent Sensors for Detection of Mercury(II) in Aqueous Solution. Analytical Chemistry, 2006, 78, 8332-8338.	3.2	449
2	Lymphohematopoietic Malignancies and Oil Exploitation in Koprivnica-Krizevci County, Croatia. International Journal of Occupational and Environmental Health, 2007, 13, 258-267.	1.2	12
3	Electrochemical behaviors of sulfhydryl compounds in the presence of elemental mercury. Chemosphere, 2007, 69, 534-539.	4.2	11
4	Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo. Genome Biology, 2007, 8, R227.	13.9	166
5	Socioeconomic Consequences of Mercury Use and Pollution. Ambio, 2007, 36, 45-61.	2.8	187
6	Mercury Exposure and Public Health. Pediatric Clinics of North America, 2007, 54, 237.e1-237.e45.	0.9	161
7	Osmotic water permeability of rat intestinal brush border membrane vesicles: involvement of aquaporin-7 and aquaporin-8 and effect of metal ions. Biochemistry and Cell Biology, 2007, 85, 675-684.	0.9	27
8	Exposure assessment of household mercury spills. Journal of Chemical Health and Safety, 2007, 14, 17-21.	1.1	4
9	Nano-selenium captures mercury. Nature Nanotechnology, 2008, 3, 527-528.	15.6	48
10	Mercury intoxication and neuropathic pain. Paediatric Anaesthesia, 2008, 18, 440-442.		10
		0.6	10
11	Mercury Vapor Release from Broken Compact Fluorescent Lamps and In Situ Capture by New Nanomaterial Sorbents. Environmental Science & Environmental Sc	4.6	125
11	Mercury Vapor Release from Broken Compact Fluorescent Lamps and In Situ Capture by New		
	Mercury Vapor Release from Broken Compact Fluorescent Lamps and In Situ Capture by New Nanomaterial Sorbents. Environmental Science & Environmental S	4.6	125
12	Mercury Vapor Release from Broken Compact Fluorescent Lamps and In Situ Capture by New Nanomaterial Sorbents. Environmental Science & Environmental S	4.6 3.2	125 468
12	Mercury Vapor Release from Broken Compact Fluorescent Lamps and In Situ Capture by New Nanomaterial Sorbents. Environmental Science & Environmental Probe for Mercury(II) Ions in Aqueous Solution. Analytical Chemistry, 2008, 80, 9021-9028. Mercury in Traditional Medicines: Is Cinnabar Toxicologically Similar to Common Mercurials?. Experimental Biology and Medicine, 2008, 233, 810-817.	4.6 3.2 1.1	125 468 184
12 13	Mercury Vapor Release from Broken Compact Fluorescent Lamps and In Situ Capture by New Nanomaterial Sorbents. Environmental Science & Description of Mercury (II) Ions in Aqueous Solution. Analytical Chemistry, 2008, 80, 9021-9028. Mercury in Traditional Medicines: Is Cinnabar Toxicologically Similar to Common Mercurials?. Experimental Biology and Medicine, 2008, 233, 810-817. Elemental mercury exposure: An evidence-based consensus guideline for out-of-hospital management. Clinical Toxicology, 2008, 46, 1-21. Oligonucleotide-Based Fluorescence Probe for Sensitive and Selective Detection of Mercury(II) in	4.6 3.2 1.1 0.8	125 468 184 51
12 13 14 15	Mercury Vapor Release from Broken Compact Fluorescent Lamps and In Situ Capture by New Nanomaterial Sorbents. Environmental Science & Description of Mercury (II) Ions in Aqueous Solution. Analytical Chemistry, 2008, 80, 9021-9028. Mercury in Traditional Medicines: Is Cinnabar Toxicologically Similar to Common Mercurials?. Experimental Biology and Medicine, 2008, 233, 810-817. Elemental mercury exposure: An evidence-based consensus guideline for out-of-hospital management. Clinical Toxicology, 2008, 46, 1-21. Oligonucleotide-Based Fluorescence Probe for Sensitive and Selective Detection of Mercury(II) in Aqueous Solution. Analytical Chemistry, 2008, 80, 3716-3721.	4.6 3.2 1.1 0.8	125 468 184 51 307

#	ARTICLE	IF	CITATIONS
19	Accumulation of Mercury in Ovaries of Mice After the Application of Skin-lightening Creams. Biological Trace Element Research, 2009, 131, 43-54.	1.9	26
20	Mercury fatal intoxication: Two case reports. Forensic Science International, 2009, 184, e1-e6.	1.3	33
21	Highly Selective Phthalocyanineâ^Thymine Conjugate Sensor for Hg ²⁺ Based on Target Induced Aggregation. Analytical Chemistry, 2009, 81, 3699-3704.	3.2	88
22	Contaminated Soils (II): <i>In Vitro</i> Dermal Absorption of Nickel (Ni-63) and Mercury (Hg-203) in Human Skin. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 551-559.	1.1	14
23	Highly selective fluorescent sensors for Hg2+ based on bovine serum albumin-capped gold nanoclusters. Analyst, The, 2010, 135, 1411.	1.7	188
24	DNA/Single-Walled Carbon Nanotubes Based Fluorescence Detection of Hg ²⁺ . Analytical Letters, 2010, 43, 2432-2439.	1.0	14
25	Monitoring of mercury, arsenic, and lead in traditional Asian herbal preparations on the Dutch market and estimation of associated risks. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27, 190-205.	1.1	61
26	Recognition of Hg ²⁺ Using Diametrically Disubstituted Cyclam Unit. Inorganic Chemistry, 2010, 49, 11485-11492.	1.9	54
27	A New Approach to Design Ratiometric Fluorescent Probe for Mercury(II) Based on the Hg ²⁺ -Promoted Deprotection of Thioacetals. ACS Applied Materials & Deprotection of Thioacetals.	4.0	134
28	Metal-induced aggregation of mononucleotides-stabilized gold nanoparticles: an efficient approach for simple and rapid colorimetric detection of Hg(ii). Chemical Communications, 2011, 47, 6039.	2.2	49
29	Oligonucleotide-based label-free Hg2+ assay with a monomer–excimer fluorescence switch. Analyst, The, 2011, 136, 4284.	1.7	22
30	Label-free emission assay of mercuric ions using DNA duplexes of poly(dT). Dalton Transactions, 2011, 40, 6494.	1.6	15
31	Label-free supersandwich electrochemiluminescence assay for detection of sub-nanomolar Hg2+. Chemical Communications, 2011, 47, 11951.	2.2	84
32	Photonic crystal hydrogel material for the sensing of toxic mercury ions (Hg2+) in water. Soft Matter, 2011, 7, 2592.	1.2	90
33	Colorimetric probing of Hg2+ in both solution and thin film. Analytical Methods, 2011, 3, 557.	1.3	10
34	A one-step colorimetric method of analysis detection of Hg2+ based on an in situ formation of Au@HgS core–shell structures. Analyst, The, 2011, 136, 2825.	1.7	53
35	Metallic mercury vapour poisoning revisited. Australasian Journal of Dermatology, 2011, 52, e5-e7.	0.4	4
36	QCM based mercury vapor sensor modified with polypyrrole supported palladium. Sensors and Actuators B: Chemical, 2011, 160, 616-622.	4.0	28

#	Article	IF	CITATIONS
37	Aligned nanogold assisted one step sensing and removal of heavy metal ions. Journal of Colloid and Interface Science, 2011, 363, 42-50.	5.0	35
38	Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens. Journal of Hazardous Materials, 2011, 189, 660-669.	6.5	50
39	Azobenzeneâ€Based Colorimetric Chemosensors for Rapid Nakedâ€Eye Detection of Mercury(II). Chemistry - A European Journal, 2011, 17, 7276-7281.	1.7	108
40	Application of rhodamine B thiolactone to fluorescence imaging of Hg2+ in Arabidopsis thaliana. Sensors and Actuators B: Chemical, 2011, 153, 261-265.	4.0	24
41	The Use of Mercury-Based Medical Devices Across Croatian Healthcare Facilities. Arhiv Za Higijenu Rada I Toksikologiju, 2012, 63, 41-47.	0.4	3
42	Case Series of Mercury Toxicity Among Children in a Hot, Closed Environment. Pediatric Emergency Care, 2012, 28, 254-258.	0.5	15
43	Visual and On-site Detection of Mercury(II) Ions on Lateral Flow Strips Using DNA-functionalized Gold Nanoparticles. Analytical Sciences, 2012, 28, 333-338.	0.8	13
44	Ultrasensitive electrochemiluminescence detection of mercury ions based on DNA oligonucleotides and cysteamine modified gold nanoparticles probes. Sensors and Actuators B: Chemical, 2012, 171-172, 860-865.	4.0	20
45	A new disubstituted polyacetylene bearing DDTC moieties: Postfunctional synthetic strategy, selective and sensitive chemosensor towards mercury ions. Polymer, 2012, 53, 5691-5698.	1.8	9
46	Study of Surface Morphology Effects on Hg Sorption–Desorption Kinetics on Gold Thin-Films. Journal of Physical Chemistry C, 2012, 116, 2483-2492.	1.5	28
47	Gold nanorod-based mercury sensor using functionalized glass substrates. Sensors and Actuators B: Chemical, 2012, 173, 322-328.	4.0	55
48	Highly sensitive, selective, and rapid fluorescence Hg2+ sensor based on DNA duplexes of poly(dT) and graphene oxide. Analyst, The, 2012, 137, 3300.	1.7	57
49	A simple and sensitive colorimetric method for detection of mercury ions based on anti-aggregation of gold nanoparticles. Analytical Methods, 2012, 4, 488.	1.3	85
50	Estimating human indoor exposure to elemental mercury from broken compact fluorescent lamps (CFLs). Indoor Air, 2012, 22, 289-298.	2.0	14
51	Spectrophotometric determination of mercury(II) ion using gold nanorod as probe. Sensors and Actuators B: Chemical, 2012, 166-167, 766-771.	4.0	49
52	Exploiting the Higher Specificity of Silver Amalgamation: Selective Detection of Mercury(II) by Forming Ag/Hg Amalgam. Analytical Chemistry, 2013, 85, 8594-8600.	3.2	146
53	Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	28
54	Acute mercury poisoning among children in two provinces of Turkey. European Journal of Pediatrics, 2013, 172, 821-827.	1.3	19

#	ARTICLE	IF	CITATIONS
55	Electrochemiluminescent polymer films with a suitable redox "turn-off―absorbance window for remote selective sensing of Hg2+. Analyst, The, 2013, 138, 4500.	1.7	10
56	Metal ions triggered ligase activity for rolling circle amplification and its application in molecular logic gate operations. Chemical Science, 2013, 4, 1858.	3.7	77
57	Carbamodithioate-Based Dual Functional Fluorescent Probe for Hg2+ and S2â^'. Journal of Fluorescence, 2014, 24, 1727-1733.	1.3	3
58	Detection of Hg2+ using molecular beacon-based fluorescent sensor with high sensitivity and tunable dynamic range. Sensors and Actuators B: Chemical, 2014, 195, 623-629.	4.0	25
59	Biological monitoring involving children exposed to mercury from a barometer in a private residence. Toxicology Letters, 2014, 231, 365-373.	0.4	9
60	Ultrasensitive detection and co-stability of mercury(<scp>ii</scp>) ions based on amalgam formation with Tween 20-stabilized silver nanoparticles. RSC Advances, 2014, 4, 59275-59283.	1.7	30
61	A nano-graphite–DNA hybrid sensor for magnified fluorescent detection of mercury(ii) ions in aqueous solution. Analyst, The, 2014, 139, 1618.	1.7	17
62	Development of a gold nanoparticle based anti-aggregation method for rapid detection of mercury(ii) in aqueous solutions. Analytical Methods, 2014, 6, 5690-5696.	1.3	11
63	A simple visual and highly selective colorimetric detection of Hg2+ based on gold nanoparticles modified by 8-hydroxyquinolines and oxalates. Chemical Communications, 2014, 50, 6447.	2.2	53
64	Extending an In Vitro Panel for Estrogenicity Testing: The Added Value of Bioassays for Measuring Antiandrogenic Activities and Effects on Steroidogenesis. Toxicological Sciences, 2014, 141, 78-89.	1.4	27
65	Direct colorimetric biosensing of mercury(II) ion based on aggregation of poly-(\hat{l}^3 -glutamic) Tj ETQq0 0 0 rgBT /O Spectroscopy, 2014, 121, 527-532.	verlock 10 2.0) Tf 50 347 To 30
66	Sensitive pseudobienzyme electrocatalytic DNA biosensor for mercury(II) ion by using the autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification. Analytica Chimica Acta, 2014, 811, 23-28.	2.6	36
67	Eco-friendly colorimetric detection of mercury(II) ions using label-free anisotropic nanogolds in ascorbic acid solution. Sensors and Actuators B: Chemical, 2014, 195, 239-245.	4.0	34
68	Mercury Toxicity and Contamination of Households from the Use of Skin Creams Adulterated with Mercurous Chloride (Calomel). International Journal of Environmental Research and Public Health, 2015, 12, 10943-10954.	1.2	41
69	Highly sensitive colorimetric sensor for Hg2+ detection based on cationic polymer/DNA interaction. Biosensors and Bioelectronics, 2015, 69, 174-178.	5.3	46
70	Ophthalmic findings in acute mercury poisoning in adults. Toxicology and Industrial Health, 2015, 31, 691-695.	0.6	3
71	Mercury–DNA interaction based detection of mercury ions by DNA amplification with high sensitivity and selectivity. Food and Agricultural Immunology, 2015, 26, 512-520.	0.7	4
72	DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution. Applied Surface Science, 2015, 347, 505-513.	3.1	58

#	Article	IF	CITATIONS
73	Preparation of orange-red fluorescent gold nanoclusters using denaturedÂcasein as a reductant and stabilizing agent, and their application to imaging of HeLa cells and for the quantitation of mercury(II). Mikrochimica Acta, 2015, 182, 2577-2584.	2.5	15
74	Synthesis of a carbon-dot-based photoluminescent probe for selective and ultrasensitive detection of Hg ²⁺ in water and living cells. Analyst, The, 2015, 140, 1221-1228.	1.7	151
75	Determination of Mercury in Food and Water Samples by Displacement-Dispersive Liquid-Liquid Microextraction Coupled with Graphite Furnace Atomic Absorption Spectrometry. Food Analytical Methods, 2015, 8, 236-242.	1.3	20
76	Mercury Vapour Long-Lasting Exposure: Lymphocyte Muscarinic Receptors as Neurochemical Markers of Accidental Intoxication. Case Reports in Medicine, 2016, 2016, 1-8.	0.3	0
77	Are higher blood mercury levels associated with dry eye symptoms in adult Koreans? A population-based cross-sectional study. BMJ Open, 2016, 6, e010985.	0.8	10
78	Acute Mercury Poisoning in a Group of School Children. Pediatric Emergency Care, 2016, Publish Ahead of Print, 696-699.	0.5	6
79	Aptamer-functionalized P(NIPAM-AA) hydrogel fabricated one-dimensional photonic crystals (1DPCs) for colorimetric sensing. RSC Advances, 2016, 6, 36827-36833.	1.7	19
80	Determination of 6-Benzylaminopurine and Hg2+ in Bean Sprouts and Drinking Mineral Water by Surface-Enhanced Raman Spectroscopy. Food Analytical Methods, 2016, 9, 934-941.	1.3	13
81	Nanosurface Energy Transfer Based Highly Selective and Ultrasensitive "Turn on―Fluorescence Mercury Sensor. ACS Sensors, 2016, 1, 789-797.	4.0	53
82	Prenatal Maternal Occupational Exposure and Postnatal Child Exposure to Elemental Mercury. Pediatric Emergency Care, 2016, 32, 175-179.	0.5	4
83	High-Performance Colorimetric Detection of Hg ²⁺ Based on Triangular Silver Nanoprisms. ACS Sensors, 2016, 1, 521-527.	4.0	98
84	Highly selective colorimetric sensing of Hg2+ ions by label free AuNPs in aqueous medium across wide pH range. Sensors and Actuators B: Chemical, 2016, 225, 413-419.	4.0	19
85	Plasmonic detection of mercury via amalgam formation on surface-immobilized single Au nanorods. Science and Technology of Advanced Materials, 2017, 18, 60-67.	2.8	23
86	Geochemical interactions study in surface river sediments at an artisanal mining area by means of Canonical (MANOVA)-Biplot. Journal of Geochemical Exploration, 2017, 175, 72-81.	1.5	23
87	A new rhodamine derived fluorescent sensor: Detection of Hg 2+ at cellular level. Chemical Physics Letters, 2017, 673, 84-88.	1.2	16
88	Indoor and outdoor elemental mercury: a comparison of three different cases. Environmental Monitoring and Assessment, 2017, 189, 72.	1.3	6
89	Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 2017, 47, 693-794.	6.6	419
90	An excellent stable fluorescent probe: Selective and sensitive detection of trace amounts of Hg +2 ions in natural source of water. Chemical Physics Letters, 2017, 676, 39-45.	1.2	17

#	Article	IF	CITATIONS
91	One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions. Talanta, 2017, 164, 458-462.	2.9	37
92	Development of Highly Selective and Efficient Prototype Sensor for Potential Application in Environmental Mercury Pollution Monitoring. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	22
93	Through-bond energy transfer based dyad and triad shape fluorescence "OFF-ON-OFF―probes for Hg2+ions and their application in live HeLa cells and Zebrafish. Sensors and Actuators B: Chemical, 2017, 240, 1272-1282.	4.0	20
94	Electrochemical determination of trace mercury in water sample using EDTA-CPE modified electrode. Sensing and Bio-Sensing Research, 2018, 17, 30-35.	2.2	41
95	FRET based integrated pyrene-AgNPs system for detection of Hg (II) and pyrene dimer: Applications to environmental analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 198, 168-176.	2.0	16
96	Utilization of aptamer-functionalized magnetic beads for highly accurate fluorescent detection of mercury (II) in environment and food. Sensors and Actuators B: Chemical, 2018, 255, 775-780.	4.0	45
97	One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection. New Carbon Materials, 2018, 33, 333-340.	2.9	36
98	Sensitive Colorimetric Hg2+ Detection via Amalgamation-Mediated Shape Transition of Gold Nanostars. Frontiers in Chemistry, 2018, 6, 566.	1.8	28
99	Dispersion-aggregation-dispersion colorimetric detection for mercury ions based on an assembly of gold nanoparticles and carbon nanodots. Analyst, The, 2018, 143, 4741-4746.	1.7	30
100	Radial Flow Assay Using Gold Nanoparticles and Rolling Circle Amplification to Detect Mercuric Ions. Nanomaterials, 2018, 8, 81.	1.9	21
101	Acute respiratory syndrome following accidental inhalation of mercury vapor. Clinical Case Reports (discontinued), 2018, 6, 1535-1537.	0.2	9
102	Cholesterol linked benzothiazole: a versatile gelator for detection of picric acid and metal ions such as Ag ⁺ , Hg ²⁺ , Fe ³⁺ and Al ³⁺ under different conditions. New Journal of Chemistry, 2019, 43, 10509-10516.	1.4	12
103	On-site quantitative Hg2+ measurements based on selective and sensitive fluorescence biosensor and miniaturized smartphone fluorescence microscope. Biosensors and Bioelectronics, 2019, 132, 238-247.	5.3	67
104	4-Hydroxybenzaldehyde derived Schiff base gelators: case of the sustainability or rupturing of imine bonds towards the selective sensing of Ag ⁺ and Hg ²⁺ ions <i>via</i> sol–gel methodology. New Journal of Chemistry, 2019, 43, 5139-5149.	1.4	25
105	Directly writing flexible temperature sensor with graphene nanoribbons for disposable healthcare devices. RSC Advances, 2020, 10, 22222-2229.	1.7	42
106	Concurrently Measured Concentrations of Atmospheric Mercury in Indoor (household) and Outdoor Air of Basel, Switzerland. Environmental Science and Technology Letters, 2020, 7, 234-239.	3.9	13
107	Enhanced oxidase-like activity of Ag@Ag2WO4 nanorods for colorimetric detection of Hg2+. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125203.	2.3	16
108	Colorimetric determination of Hg2+ based on the mercury-stimulated oxidase mimetic activity of Ag3PO4 microcubes. Mikrochimica Acta, 2020, 187, 422.	2.5	13

#	Article	IF	CITATIONS
109	The kinetics of mercury vaporization in soil during low-temperature thermal treatment. Geoderma, 2020, 363, 114150.	2.3	5
110	Isotopic compositions of atmospheric total gaseous mercury in 10 Chinese cities and implications for land surface emissions. Atmospheric Chemistry and Physics, 2021, 21, 6721-6734.	1.9	20
111	Characteristics and treatment of elemental mercury intoxication: A case series. Health Science Reports, 2021, 4, e293.	0.6	11
112	Interaction of mercury ion (Hg2+) with blood and cytotoxicity attenuation by serum albumin binding. Journal of Hazardous Materials, 2021, 412, 125158.	6.5	27
113	Effective Decontamination and Remediation After Elemental Mercury Exposure: A Case Report in the United States. Journal of Preventive Medicine and Public Health, 2021, 54, 376-379.	0.7	1
114	Naphthyl hydrazone anchored with nitrosalicyl moiety as fluorogenic and chromogenic receptor for heavy metals (Ag+, Hg2+) and biologically important Fâ^' ion and its live cell imaging applications in HeLa cells and Zebrafish embryos. Journal of Molecular Structure, 2020, 1217, 128446.	1.8	14
115	Mercury in the Environment., 2012,,.		19
116	Mercury and Public Health: An Assessment of Human Exposure. , 2012, , 267-288.		6
117	A review of events that expose children to elemental mercury in the United States. Ciencia E Saude Coletiva, 2010, 15, 585-598.	0.1	9
118	Congenital poisoning after maternal parenteral mercury administration., 2018, 1, 001-005.		1
119	Simple Ratiometric Fluorophore for the Selective Detection of Mercury through Hg(II)-Mediated Oxazole Formation. Bulletin of the Korean Chemical Society, 2011, 32, 3959-3962.	1.0	7
120	Emission Detection of Mercuric Ions in Aqueous Media Based-on Dehybridization of DNA Duplexes. Bulletin of the Korean Chemical Society, 2011, 32, 3223-3228.	1.0	1
121	Mercury Exposure Among Artisanal and Small-Scale Gold Miners in Four Regions in Uganda. Journal of Health and Pollution, 2020, 10, 200613.	1.8	10
122	Mapping the scientific study of rituals: a bibliometric analysis of research published 2000–2020. Religion, Brain and Behavior, 2021, 11, 382-402.	0.4	5
124	Ophthalmic Findings of Acute Mercury Poisoning in Primary School Students. , 2013, 03, .		1
125	Mercury toxicity presenting as acrodynia and a papulovesicular eruption in a 5-year-old girl. Dermatology Online Journal, 2016, 22, .	0.2	9
126	Tyndall-Effect-inspired assay with gold nanoparticles for the colorimetric discrimination and quantification of mercury ions and glutathione. Talanta, 2022, 238, 122999.	2.9	13
127	Indium Tin Oxide Based Flexible Temperature Sensor For Human Body Temperature Monitoring. , 2020, , .		2

#	ARTICLE	IF	CITATIONS
128	Multicomponent Synthesis and Investigations Fluorescence Activity of Chromenone–Pyrazole Compounds. Journal of Fluorescence, 2021, , 1.	1.3	1
129	Determination of Total Mercury and Carbon in a National Baseline Study of Urban House Dust. Geosciences (Switzerland), 2022, 12, 52.	1.0	4
130	Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples. Critical Reviews in Analytical Chemistry, 2024, 54, 44-60.	1.8	15
131	Japanese Acupuncture, in the Pacific War and Beyond. Medical Acupuncture, 2021, 33, 378-381.	0.3	O
133	Relationships between House Characteristics and Exposures to Metal(loid)s and Synthetic Organic Contaminants Evaluated Using Settled Indoor Dust. International Journal of Environmental Research and Public Health, 2022, 19, 10329.	1.2	1
135	Development of low-cost copper nanoclusters for highly selective "turn-on―sensing of Hg2+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 297, 122697.	2.0	3
136	Imidazole-based fluorophores: Synthesis and applications. Materials Today Chemistry, 2023, 29, 101453.	1.7	3