Regulated expression of hypoxia-inducible factors during postpneumonectomy lung growth

American Journal of Physiology - Lung Cellular and Molecular F 290, L880-L889

DOI: 10.1152/ajplung.00213.2005

Citation Report

#	Article	IF	CITATIONS
1	Quantitative morphology of compensatory lung growth. European Respiratory Review, 2006, 15, 148-156.	7.1	20
2	Deconvoluting lung evolution: from phenotypes to gene regulatory networks. Integrative and Comparative Biology, 2007, 47, 601-609.	2.0	18
3	Postpneumonectomy lung expansion elicits hypoxia-inducible factor-1α signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L497-L504.	2.9	36
4	Hypoxia and chronic lung disease. Journal of Molecular Medicine, 2007, 85, 1317-1324.	3.9	115
5	Synergistic upregulation of erythropoietin receptor (EPO-R) expression by sense and antisense EPO-R transcripts in the canine lung. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7612-7617.	7.1	24
6	Extra-Hematopoietic Action of Erythropoietin. , 2009, , 27-33.		0
7	Physiological and Pathological Angiogenesis in the Adult Pulmonary Circulation. , 2011, 1, 1473-1508.		11
8	Klotho Deficiency Causes Vascular Calcification in Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2011, 22, 124-136.	6.1	787
9	Hypoxiaâ€inducible factors – regulation, role and comparative aspects in tumourigenesis. Veterinary and Comparative Oncology, 2011, 9, 16-37.	1.8	17
10	Hypoxia Up-Regulates Expression of Hemoglobin in Alveolar Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 439-447.	2.9	73
11	Compensatory Lung Growth After Pneumonectomy. , 2012, , .		0
12	Daily Light–Dark Cycles Influence Hypoxiaâ€Inducible Factor 1 and Heat Shock Protein Levels in the Pacemakers of Crayfish. Photochemistry and Photobiology, 2012, 88, 81-89.	2.5	4
13	Significant role of bone marrow–derived cells inÂcompensatory regenerative lung growth. Journal of Surgical Research, 2013, 183, 84-90.	1.6	9
14	Separating in vivo mechanical stimuli for postpneumonectomy compensation: physiological assessment. Journal of Applied Physiology, 2013, 114, 99-106.	2.5	30
15	Stretch and Grow. , 2014, , 233-250.		0
16	Autocrine vascular endothelial growth factor signaling promotes cell proliferation and modulates sorafenib treatment efficacy in hepatocellular carcinoma. Hepatology, 2014, 60, 1264-1277.	7.3	77
17	Autocrine VEGF Signaling Promotes Proliferation of Neoplastic Barrett's Epithelial Cells Through a PLC-Dependent Pathway. Gastroenterology, 2014, 146, 461-472.e6.	1.3	45
18	The pneumonectomy model of compensatory lung growth: Insights into lung regeneration. , 2014, 142, 196-205.		18

CITATION REPORT

#	Article	IF	CITATIONS
19	Lung regeneration and translational implications of the postpneumonectomy model. Translational Research, 2014, 163, 363-376.	5.0	24
20	Persistent structural adaptation in the lungs of guinea pigs raised at high altitude. Respiratory Physiology and Neurobiology, 2015, 208, 37-44.	1.6	4
21	Alveolar–capillary adaptation to chronic hypoxia in the fatty lung. Acta Physiologica, 2015, 213, 933-946.	3.8	10
22	Lung Structure and the Intrinsic Challenges of Gas Exchange. , 2016, 6, 827-895.		127
23	Nanoparticle facilitated inhalational delivery of erythropoietin receptor cDNA protects against hyperoxic lung injury. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 811-821.	3.3	29
24	Comparative analysis of the mechanical signals in lung development and compensatory growth. Cell and Tissue Research, 2017, 367, 687-705.	2.9	26
25	SLC2A9 (GLUT9) mediates urate reabsorption in the mouse kidney. Pflugers Archiv European Journal of Physiology, 2018, 470, 1739-1751.	2.8	32
26	Erythropoietin inhalation enhances adult canine alveolar-capillary formation following pneumonectomy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L936-L945.	2.9	8
27	Dietary vitamin D interacts with high phosphate-induced cardiac remodeling in rats with normal renal function. Nephrology Dialysis Transplantation, 2020, 35, 411-421.	0.7	7
28	Role of Mechanical Stress in Lung Repair and Regeneration. Pancreatic Islet Biology, 2015, , 191-210.	0.3	4
29	Development of the Lung: Clues for Regeneration and Repair. , 2010, , 53-89.		0
30	Regenerative Cells in the Ageing Lung. Pancreatic Islet Biology, 2015, , 127-145.	0.3	Ο