Nutrient Input and Carbon and Microbial Dynamics in a

Geomicrobiology Journal 23, 531-543

DOI: 10.1080/01490450600897278

Citation Report

#	ARTICLE	IF	Citations
1	Summer carbon dioxide and water vapor fluxes across a range of northern peatlands. Journal of Geophysical Research, 2006, 111 , .	3.3	96
2	Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 2007, 13, 1168-1186.	4.2	222
3	Regulation of Decomposition and Methane Dynamics across Natural, Commercially Mined, and Restored Northern Peatlands. Ecosystems, 2007, 10, 1148-1165.	1.6	83
4	Heatwave 2003: high summer temperature, rather than experimental fertilization, affects vegetation and CO ₂ exchange in an alpine bog. New Phytologist, 2008, 179, 142-154.	3.5	52
5	Responses of CO2 Exchange and Primary Production of the Ecosystem Components to Environmental Changes in a Mountain Peatland. Ecosystems, 2009, 12, 590-603.	1.6	45
6	Effects of Air Pollution on Ecosystems and Biological Diversity in the Eastern United States. Annals of the New York Academy of Sciences, 2009, 1162, 99-135.	1.8	151
7	Responses of Vegetation and Ecosystem CO2 Exchange to 9ÂYears of Nutrient Addition at Mer Bleue Bog. Ecosystems, 2010, 13, 874-887.	1.6	69
8	Fungal and Bacterial Activity in Northern Peatlands. Geomicrobiology Journal, 2010, 27, 315-320.	1.0	41
9	Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO& lt; sub& gt; 2& lt; /sub& gt; concentrations in a northern bog. Biogeosciences, 2011, 8, 585-595.	1.3	19
10	Contrasting wetland CH ₄ emission responses to simulated glacial atmospheric CO ₂ in temperate bogs and fens. New Phytologist, 2011, 192, 898-911.	3. 5	16
11	The fate of 15N-nitrate in a northern peatland impacted by long term experimental nitrogen, phosphorus and potassium fertilization. Biogeochemistry, 2011, 103, 281-296.	1.7	33
12	Do Root Exudates Enhance Peat Decomposition?. Geomicrobiology Journal, 2012, 29, 374-378.	1.0	67
13	Microbial activity across a boreal peatland nutrient gradient: the role of fungi and bacteria. Wetlands Ecology and Management, 2012, 20, 77-88.	0.7	43
14	PK additions modify the effects of N dose and form on species composition, species litter chemistry and peat chemistry in a Scottish peatland. Biogeochemistry, 2013, 116, 39-53.	1.7	6
15	Microbial communities in natural and disturbed peatlands: A review. Soil Biology and Biochemistry, 2013, 57, 979-994.	4.2	258
16	The impact of high tephra loading on late-Holocene carbon accumulation and vegetation succession in peatland communities. Quaternary Science Reviews, 2013, 67, 160-175.	1.4	52
17	Insight into the extraction mechanism of polymeric ionic liquid sorbent coatings in solid-phase microextraction. Journal of Chromatography A, 2013, 1298, 146-151.	1.8	34
18	Modeling CO2 and CH4 flux changes in pristine peatlands of Finland under changing climate conditions. Ecological Modelling, 2013, 263, 64-80.	1.2	37

#	ARTICLE	IF	CITATIONS
19	Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology, 2013, 19, 3729-3739.	4.2	84
20	Potential Vulnerability of Deep Carbon Deposits of Forested Swamps to Drought. Soil Science Society of America Journal, 2014, 78, 1097-1107.	1.2	10
21	Climate change reduces the capacity of northern peatlands to absorb the atmospheric carbon dioxide: The different responses of bogs and fens. Global Biogeochemical Cycles, 2014, 28, 1005-1024.	1.9	95
22	Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils. European Journal of Soil Biology, 2015, 68, 9-17.	1.4	103
23	Vegetation Composition in Bogs is Sensitive to Both Load and Concentration of Deposited Nitrogen: A Modeling Analysis. Ecosystems, 2015, 18, 171-185.	1.6	12
24	Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil Biology and Biochemistry, 2016, 98, 42-53.	4.2	55
25	Biodegradability of Vegetation-Derived Dissolved Organic Carbon in a Cool Temperate Ombrotrophic Bog. Ecosystems, 2016, 19, 1023-1036.	1.6	40
26	Effects of long-term fertilization on peat stoichiometry and associated microbial enzyme activity in an ombrotrophic bog. Biogeochemistry, 2016, 129, 149-164.	1.7	42
27	Experimental modeling of thaw lake water evolution in discontinuous permafrost zone: Role of peat, lichen leaching and ground fire. Science of the Total Environment, 2017, 580, 245-257.	3.9	23
28	Transport, anoxia and end-product accumulation control carbon dioxide and methane production and release in peat soils. Biogeochemistry, 2017, 133, 219-239.	1.7	14
29	Long-term nutrient addition increased CH4 emission from a bog through direct and indirect effects. Scientific Reports, 2018, 8, 3838.	1.6	29
30	Nitrogen and phosphorus enrichment effects on CO2 and methane fluxes from an upland ecosystem. Science of the Total Environment, 2018, 618, 1199-1209.	3.9	24
31	Competitive transport processes of chloride, sodium, potassium, and ammonium in fen peat. Journal of Contaminant Hydrology, 2018, 217, 17-31.	1.6	23
32	The effect of soil moisture on the response by fungi and bacteria to nitrogen additions for N2O production. Journal of Forestry Research, 2021, 32, 2037-2045.	1.7	2
33	Quality of the groundwater of the Serra Geral Aquifer System of Santa Catarina west region, Brazil. Groundwater for Sustainable Development, 2020, 10, 100346.	2.3	5
34	Lichen, moss and peat control of C, nutrient and trace metal regime in lakes of permafrost peatlands. Science of the Total Environment, 2021, 782, 146737.	3.9	20
36	Integrating McGill Wetland Model (MWM) with peat cohort tracking and microbial controls. Science of the Total Environment, 2022, 806, 151223.	3.9	5
37	Ericoid mycorrhizal fungi mediate the response of ombrotrophic peatlands to fertilization: a modeling study. New Phytologist, 2023, 238, 80-95.	3.5	6

3

#	Article	IF	CITATIONS
38	Changes in organic matter properties and carbon chemical stability in surface soils associated with	1.7	3