Perceptual Issues in the Use of Head-Mounted Visual D

Human Factors 48, 555-573 DOI: 10.1518/001872006778606877

Citation Report

#	Article	IF	CITATIONS
1	Head-Worn Displays: A Review. Journal of Display Technology, 2006, 2, 199-216.	1.3	399
2	Visual suppression of monocularly presented symbology against a fused background in a simulation and training environment. , 2006, , .		2
3	Binocular Rivalry and Attention in Helmet-Mounted Display Applications. Proceedings of the Human Factors and Ergonomics Society, 2006, 50, 2061-2065.	0.2	4
4	Motion Sickness, Console Video Games, and Head-Mounted Displays. Human Factors, 2007, 49, 920-934.	2.1	188
5	Effects of Field-of-View Restrictions on Speed and Accuracy of Manoeuvring. Perceptual and Motor Skills, 2007, 105, 1245-1256.	0.6	22
6	Depth of Focus and Visual Recognition of Imagery Presented on Simultaneously Viewed Displays: Implications for Head-Mounted Displays. Human Factors, 2007, 49, 907-919.	2.1	7
7	Binocular Rivalry and Head-Worn Displays. Human Factors, 2007, 49, 1083-1096.	2.1	37
8	A Survey of 3DTV Displays: Techniques and Technologies. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17, 1647-1658.	5.6	187
9	Human factors of 3â€D displays. Journal of the Society for Information Display, 2007, 15, 861-871.	0.8	85
10	Effects of horizontal field-of-view restriction on manoeuvring performance through complex structured environments. , 2008, , .		2
11	Effects of field-of-view restriction on manoeuvring in a 3-D environment. Ergonomics, 2008, 51, 385-394.	1.1	12
12	Locomotion through a Complex Environment with Limited Field-of-View. Perceptual and Motor Skills, 2008, 107, 811-826.	0.6	1
13	Multisensory Integration with a Head-Mounted Display and Auditory Display. Proceedings of the Human Factors and Ergonomics Society, 2008, 52, 1292-1296.	0.2	0
14	Field of View Requirements for Deployable Training Systems: Effect of Field of View on Roll Control. Proceedings of the Human Factors and Ergonomics Society, 2008, 52, 1560-1564.	0.2	0
15	Multisensory Integration with a Head-Mounted Display: Sound Delivery and Self-Motion. Human Factors, 2008, 50, 789-800.	2.1	15
16	Motion Sickness and Postural Sway in Console Video Games. Human Factors, 2008, 50, 322-331.	2.1	111
17	Effects of field of view on human locomotion. , 2008, , .		8
18	Training Robust Decision Making in Immersive Environments. Journal of Cognitive Engineering and Decision Making, 2009, 3, 331-361.	0.9	33

ATION REDO

#	Article	IF	CITATIONS
19	Near-to-Eye Display—An Accessory for Handheld Multimedia Devices: Subjective Studies. Journal of Display Technology, 2009, 5, 358-367.	1.3	15
20	<i>Review Paper:</i> Human factors of stereo displays: An update. Journal of the Society for Information Display, 2009, 17, 987-996.	0.8	84
21	Immersive stereo displays, intuitive reasoning, and cognitive engineering. Journal of the Society for Information Display, 2009, 17, 443-448.	0.8	34
22	Stereoscopic depth perception survives significant interocular luminance differences. Journal of the Society for Information Display, 2009, 17, 467-471.	0.8	14
23	Patient monitoring with head-mounted displays. Current Opinion in Anaesthesiology, 2009, 22, 796-803.	0.9	24
24	54.4: Stereoscopic Depth Perception and Interocular Luminance Differences. Digest of Technical Papers SID International Symposium, 2009, 40, 815-818.	0.1	3
25	Pâ€31: Selective Attention Effects on Binocular Rivalry to Simple and Complex Dynamic Imagery. Digest of Technical Papers SID International Symposium, 2009, 40, 1204-1207.	0.1	0
26	Combined Pitch and Roll and Cybersickness in a Virtual Environment. Aviation, Space, and Environmental Medicine, 2009, 80, 941-945.	0.6	76
27	A design of near-eye 3D display based on dual-OLED. , 2010, , .		5
28	Performance and comfort of monocular head-mounted displays in flight simulators. Proceedings of SPIE, 2010, , .	0.8	3
29	Part-task simulation of synthetic and enhanced vision concepts for lunar landing. , 2010, , .		5
30	Aviation Displays. , 2010, , 439-478.		7
31	Measurement and reduction of system latency in see-through helmet mounted display (HMD) systems. , 2010, , .		1
32	Obstacle Crossing With Lower Visual Field Restriction: Shifts in Strategy. Journal of Motor Behavior, 2010, 43, 55-62.	0.5	13
33	Improved Visibility of Monocular Head-Mounted Displays Through the Bright Control of Backlighting. Journal of Display Technology, 2010, 6, 367-373.	1.3	2
34	Optical characterization and ergonomical factors of nearâ€ŧoâ€eye displays. Journal of the Society for Information Display, 2010, 18, 285-292.	0.8	11
35	Human-machine interface issues in the use of helmet-mounted displays in short conjugate simulators. Proceedings of SPIE, 2011, , .	0.8	1
36	Mitigation of System Latency in Next Generation Helmet Mounted Display Systems (Nghmds). Proceedings of the Human Factors and Ergonomics Society, 2011, 55, 2163-2167.	0.2	7

#	Article	IF	CITATIONS
37	Simulator and Scenario Factors Influencing Simulator Sickness. , 2011, , .		37
38	Intra-visual conflict in visually induced motion sickness. Displays, 2011, 32, 181-188.	2.0	49
39	Effect of ambient illumination level on perceived autostereoscopic display quality and depth perception. Displays, 2011, 32, 135-141.	2.0	24
40	Benefits of Matching Accommodative Demands to Vergence Demands in a Binocular Head-Mounted Display: A Study on Stereo Fusion Times. Presence: Teleoperators and Virtual Environments, 2011, 20, 545-558.	0.3	14
41	CyberWalk. ACM Transactions on Applied Perception, 2011, 8, 1-22.	1.2	100
42	Robotic Displays for Dismounted Warfighters. Journal of Cognitive Engineering and Decision Making, 2011, 5, 29-54.	0.9	14
43	Sensor and Display Human Factors Based Design Constraints for Head Mounted and Tele-Operation Systems. Sensors, 2011, 11, 1589-1606.	2.1	4
44	Virtual Eye: A sensor based mobile viewer to aid collaborative decision making in virtual environments. , 2012, , .		1
45	Substitutional Reality System: A Novel Experimental Platform for Experiencing Alternative Reality. Scientific Reports, 2012, 2, 459.	1.6	45
46	Audiovisual reproduction in surrounding display: Effect of spatial width of audio and video. , 2012, , .		0
47	Reading e-books on a near-to-eye display: Comparison between a small-sized multimedia display and a hard copy. Displays, 2012, 33, 157-167.	2.0	14
48	Designing an obstacle display for helicopter operations in degraded visual environment. , 2013, , .		1
49	Simultaneous measurement of lens accommodation and convergence in natural and artificial 3D vision. Journal of the Society for Information Display, 2013, 21, 120-128.	0.8	31
50	Hands-Free Control Interfaces for an Extra Vehicular Jetpack. , 2013, , .		3
51	Visual task performance using a monocular see-through head-mounted display (HMD) while walking Journal of Experimental Psychology: Applied, 2013, 19, 333-344.	0.9	27
52	The personal cockpit. , 2014, , .		70
53	User centered design of a hybrid-reality display for weld monitoring. , 2014, , .		4
54	fMRI analysis of excessive binocular disparity on the human brain. International Journal of Imaging Systems and Technology, 2014, 24, 94-102.	2.7	12

#	Article	IF	CITATIONS
55	Towards virtualized welding: Visualization and monitoring of remote welding. , 2014, , .		4
56	Development of a Hybrid Reality Display for Welders through Applied Cognitive Task Analysis. Proceedings of the Human Factors and Ergonomics Society, 2014, 58, 1174-1178.	0.2	2
57	How to Build an Embodiment Lab: Achieving Body Representation Illusions in Virtual Reality. Frontiers in Robotics and Al, 2014, 1, .	2.0	174
58	Pleasant music as a countermeasure against visually induced motion sickness. Applied Ergonomics, 2014, 45, 521-527.	1.7	78
59	Differential effects of head-mounted displays on visual performance. Ergonomics, 2014, 57, 1-11.	1.1	25
60	The effect of eye position on the view of virtual geometry. , 2014, , .		Ο
61	Virtual Reality for Fire Evacuation Research. , 0, , .		131
62	Simulation of Driving in Low-Visibility Conditions: Does Stereopsis Improve Speed Perception?. Perception, 2015, 44, 145-156.	O.5	18
63	Nutzerzentrierte Gestaltung von VR-Systemen für die motorische Neurorehabilitation. , 2015, , 141-144.		1
64	Correction of geometric distortions and the impact of eye position in virtual reality displays. , 2015, , .		6
65	Texting while driving using Google Glassâ"¢: Promising but not distraction-free. Accident Analysis and Prevention, 2015, 81, 218-229.	3.0	59
66	Visibility of monocular symbology in transparent head-mounted display applications. Proceedings of SPIE, 2015, , .	0.8	1
67	A review of head-worn display research at NASA Langley Research Center. , 2015, , .		4
68	Visually induced motion sickness can be alleviated by pleasant odors. Experimental Brain Research, 2015, 233, 1353-1364.	0.7	57
69	Human Factors of Stereoscopic 3D Displays. , 2015, , .		19
70	Exploring humanoid factors of robots through transparent and reflective interactions. , 2015, , .		4
71	Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment. Engineering Structures, 2015, 105, 62-76.	2.6	24
72	Internet addiction disorder and problematic use of Google Glassâ"¢ in patient treated at a residential substance abuse treatment program. Addictive Behaviors, 2015, 41, 58-60.	1.7	21

#	Article	IF	CITATIONS
73	Evaluating the Authenticity of Virtual Environments: Comparison of Three Devices. Advances in Human-Computer Interaction, 2016, 2016, 1-14.	1.8	16
74	Ambiculus. , 2016, , .		8
75	Virtual, Augmented and Mixed Reality. Lecture Notes in Computer Science, 2016, , .	1.0	9
76	Moving Ahead with Peephole Pointing. , 2016, , .		13
77	Head Mounted Projection Display & amp; Visual Attention. , 2016, , .		7
78	HMD-enabled Virtual Screens as Alternatives to Large Physical Displays. , 2016, , .		6
79	Exploring Behavioral Methods to Reduce Visually Induced Motion Sickness in Virtual Environments. Lecture Notes in Computer Science, 2016, , 147-155.	1.0	22
80	A compact, wide-FOV optical design for head-mounted displays. , 2016, , .		9
81	Humans and Intelligent Vehicles: The Hope, the Help, and the Harm. IEEE Transactions on Intelligent Vehicles, 2016, 1, 56-67.	9.4	36
82	Human guidance of mobile robots in complex 3D environments using smart glasses. Proceedings of SPIE, 2016, , .	0.8	0
83	Taking Immersive VR Leap in Training of Landing Signal Officers. IEEE Transactions on Visualization and Computer Graphics, 2016, 22, 1482-1491.	2.9	17
84	In the eye of the beholder: A simulator study of the impact of Google Glass on driving performance. Accident Analysis and Prevention, 2016, 86, 68-75.	3.0	14
85	Review of head-worn displays for the Next Generation Air Transportation System. Optical Engineering, 2017, 56, 051405.	0.5	15
86	Conformal displays: human factor analysis of innovative landing aids. Optical Engineering, 2017, 56, 051407.	0.5	11
87	Review of colored conformal symbology in head-worn displays. , 2017, , .		0
88	How much is enough? the human factors of field of view in head-mounted displays. , 2017, , .		1
89	Field-of-view extension for VR viewers. , 2017, , .		9
90	58â€2: Color Appearance Comparison between Headâ€Mounted Display and Monitor. Digest of Technical Papers SID International Symposium, 2017, 48, 860-863.	0.1	2

		ATION REPORT	
#	Article	IF	CITATIONS
91	Use of cues in virtual reality depends on visual feedback. Scientific Reports, 2017, 7, 16009.	1.6	26
92	Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays, 2017, 46 1-8.	, 2.0	137
93	Extreme field-of-view for head-mounted displays. , 2017, , .		3
94	ARClassNote: Augmented Reality Based Remote Education Solution with Tag Recognition and Shared Hand-Written Note. , 2017, , .		6
95	The initial effects of hyperstereopsis on visual perception in helicopter pilots flying with see-through helmet-mounted displays. Displays, 2018, 51, 1-8.	2.0	7
96	Eyestrain impacts on learning job interview with a serious game in virtual reality. , 2018, , .		7
97	Understanding Head-Mounted Display FOV in Maritime Search and Rescue Object Detection. , 2018, , .		3
98	Dynamic Deep Octree for Highâ€resolution Volumetric Painting in Virtual Reality. Computer Graphics Forum, 2018, 37, 179-190.	1.8	15
99	The Impact of Head-Worn Displays on Strategic Alarm Management and Situation Awareness. Human Factors, 2019, 61, 537-563.	2.1	27
100	The Effect of Retinal Eccentricity on Visually Induced Motion Sickness and Postural Control. Applied Sciences (Switzerland), 2019, 9, 1919.	1.3	10
101	Supporting multiple patient monitoring with head-worn displays and spearcons. Applied Ergonomics, 2019, 78, 86-96.	1.7	22
102	Effect of outside view on attentiveness in using see-through type augmented reality device. Displays, 2019, 57, 1-6.	2.0	3
103	Using Multisensory Haptic Integration to Improve Monitoring in the Intensive Care Unit. Auditory Perception & Cognition, 2019, 2, 188-206.	0.5	6
104	Locating nearby physical objects in augmented reality. , 2019, , .		10
105	Influences of augmented reality head-worn display type and user interface design on performance and usability in simulated warehouse order picking. Applied Ergonomics, 2019, 74, 186-193.	1.7	86
106	Visual Distortions in 360° Videos. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30, 2524-2537.	5.6	44
107	Comparison of in-sight and handheld navigation devices toward supporting industry 4.0 supply chains: First and last mile deliveries at the human level. Applied Ergonomics, 2020, 82, 102928.	1.7	15
108	Visual dependence affects the motor behavior of older adults during the Timed Up and Go (TUG) test. Archives of Gerontology and Geriatrics, 2020, 87, 104004.	1.4	16

#	Article	IF	Citations
109	With flying colours: Pilot performance with colour-coded head-up flight symbology. Displays, 2020, 61, 101932.	2.0	6
110	Game play in virtual reality driving simulation involving head-mounted display and comparison to desktop display. Virtual Reality, 2020, 24, 503-513.	4.1	20
111	Virtual and augmented reality in a simulated naval engagement: Preliminary comparisons of simulator sickness and human performance. Applied Ergonomics, 2020, 89, 103200.	1.7	19
112	Workload benefits of colour coded head-up flight symbology during high workload flight. Displays, 2020, 65, 101973.	2.0	9
113	A Comparative Usability Study of Bare Hand Three-Dimensional Object Selection Techniques in Virtual Environment. Symmetry, 2020, 12, 1723.	1.1	5
114	Performance and Usability of Smartglasses for Augmented Reality in Precision Livestock Farming Operations. Applied Sciences (Switzerland), 2020, 10, 2318.	1.3	23
115	Implementation of Helmet Mounted Display system to Control Missile 3D Movement and Object Detection. , 2020, , .		1
116	Smart Glasses: Digital Assistance in Industry. Lecture Notes in Electrical Engineering, 2021, , 169-182.	0.3	2
117	Effects of wearing a head-mounted display during a standard clinical test of dynamic balance. Gait and Posture, 2021, 85, 78-83.	0.6	11
118	Cyber sickness in low-immersive, semi-immersive, and fully immersive virtual reality. Virtual Reality, 2022, 26, 15-32.	4.1	58
119	Effective selection of the optimal virtual reality (VR) lens interval of VR devices using the test patterns of the different shapes for the left and right eyes. Journal of the Society for Information Display, 2021, 29, 793.	0.8	2
120	Short- and long-term learning of job interview with a serious game in virtual reality: influence of eyestrain, stereoscopy, and apparatus. Virtual Reality, 2022, 26, 583-600.	4.1	8
121	A review of the effects of head-worn displays on teamwork for emergency response. Ergonomics, 2022, 65, 188-218.	1.1	7
122	Interocular conflict from a monocular augmented reality display: Impact of visual characteristics on performance. PLoS ONE, 2021, 16, e0256766.	1.1	1
123	Can Secondary Traffic Alerts Improve the Latent Hazard Anticipation Ability of Novice and Experienced Drivers? A Simulator Study. Advances in Intelligent Systems and Computing, 2016, , 715-726.	0.5	2
124	Lens Accommodation While Viewing 3D Video Clips. Current Topics in Environmental Health and Preventive Medicine, 2019, , 13-24.	0.1	2
125	Binocular rivalry in monocular augmented reality devices: a review. , 2019, , .		3
126	Information Processing in Real and in Stereoscopic Environments. , 2019, , .		3

#	Article	IF	CITATIONS
127	Exploring the Use of Olfactory Stimuli Towards Reducing Visually Induced Motion Sickness in Virtual Reality. , 2020, , .		6
129	Restricting the Vertical and Horizontal Extent of the Field-of-View: Effects on Manoeuvring Performance. The Ergonomics Open Journal, 2010, 3, 19-24.	1.8	9
130	EFFECTS OF FIELD-OF-VIEW RESTRICTIONS ON SPEED AND ACCURACY OF MANOEUVRING. Perceptual and Motor Skills, 2007, 105, 1245.	0.6	15
131	Cyber Sickness in Virtual Reality - Literature Review. Annals of DAAAM & Proceedings, 2017, , 0718-0726.	0.1	11
132	Cybersickness in Head-Mounted Displays Is Caused by Differences in the User's Virtual and Physical Head Pose. Frontiers in Virtual Reality, 2020, 1, .	2.5	47
133	LOCOMOTION THROUGH A COMPLEX ENVIRONMENT WITH LIMITED FIELD-OF-VIEW. Perceptual and Motor Skills, 2008, 107, 811.	0.6	1
135	Human Interface Factors Associated with HWDs. , 2012, , 2171-2181.		0
136	Contextual Factors, Continued. , 2015, , 57-62.		0
137	Contextual Factors. , 2015, , 47-56.		0
138	Human Interface Factors Associated with HWDs. , 2015, , 1-11.		0
139	Visual Evoked Potential Using Head-Mounted Display Versus Cathode Ray Tube: A Pilot Study, Annals of		
	Rehabilitation Medicine, 2016, 40, 334.	0.6	2
140	Rehabilitation Medicine, 2016, 40, 334. Human Interface Factors Associated with HWDs. , 2016, , 2963-2975.	0.6	2
140 142	Rehabilitation Medicine, 2016, 40, 334. Human Interface Factors Associated with HWDs. , 2016, , 2963-2975. Short Term Effect of Monocular Wearable Device on Accommodation. The Korean Journal of Vision Science, 2017, 19, 61-68.	0.6	2 0 3
140 142 144	Rehabilitation Medicine, 2016, 40, 334. Human Interface Factors Associated with HWDs. , 2016, , 2963-2975. Short Term Effect of Monocular Wearable Device on Accommodation. The Korean Journal of Vision Science, 2017, 19, 61-68. Externalised Mind 2. Cognitive Computation Trends, 2018, , 163-213.	0.6	2 0 3 1
140 142 144 145	Rehabilitation Medicine, 2016, 40, 334. Human Interface Factors Associated with HWDs., 2016, 2963-2975. Short Term Effect of Monocular Wearable Device on Accommodation. The Korean Journal of Vision Science, 2017, 19, 61-68. Externalised Mind 2. Cognitive Computation Trends, 2018, 163-213. The Effects of Masking Peripheral Visual Field on Visual Search Task Performance. Journal of Social Science, 2018, 29, 59-71.	0.6 0.1 1.7 0.0	2 0 3 1 0
140 142 144 145 146	Rehabilitation Medicine, 2016, 40, 334. Human Interface Factors Associated with HWDs., 2016, 2963-2975. Short Term Effect of Monocular Wearable Device on Accommodation. The Korean Journal of Vision Science, 2017, 19, 61-68. Externalised Mind 2. Cognitive Computation Trends, 2018, 163-213. The Effects of Masking Peripheral Visual Field on Visual Search Task Performance. Journal of Social Science, 2018, 29, 59-71. Virtual and Augmented Reality Displays. Series in Display Science and Technology, 2019, 211-228.	0.6 0.1 1.7 0.0	2 0 3 1 0
140 142 144 145 146 147	Rehabilitation Medicine, 2016, 40, 334. Human Interface Factors Associated with HWDs., 2016, , 2963-2975. Short Term Effect of Monocular Wearable Device on Accommodation. The Korean Journal of Vision Science, 2017, 19, 61-68. Externalised Mind 2. Cognitive Computation Trends, 2018, , 163-213. The Effects of Masking Peripheral Visual Field on Visual Search Task Performance. Journal of Social Science, 2018, 29, 59-71. Virtual and Augmented Reality Displays. Series in Display Science and Technology, 2019, , 211-228. Biodiversity: Climate Change. , 2020, , 23-33.	0.6	2 0 3 1 0 0

#	Article	IF	CITATIONS
149	Bring2Me. , 2020, , .		0
150	Based on Visual Cognition Characteristic of Helmet-mounted Displays a Summary of the Interface Design. , 2021, , .		0
151	Projected Augmented Reality to Guide Manual Precision Tasks: An Alternative to Head Mounted Displays. IEEE Transactions on Human-Machine Systems, 2022, 52, 567-577.	2.5	2
152	The Effects on Driving Behavior When Using a Head-mounted Display in a Dynamic Driving Simulator. ACM Transactions on Applied Perception, 2022, 19, 1-18.	1.2	6
153	Key Ergonomics Requirements and Possible Mechanical Solutions for Augmented Reality Head-Mounted Displays in Surgery. Multimodal Technologies and Interaction, 2022, 6, 15.	1.7	3
154	Reductions in sickness with repeated exposure to HMD-based virtual reality appear to be game-specific. Virtual Reality, 2022, 26, 1373-1389.	4.1	16
155	A review of cybersickness in head-mounted displays: raising attention to individual susceptibility. Virtual Reality, 2022, 26, 1409-1441.	4.1	42
156	Asymmetric Lateral Field-of-View Restriction to Mitigate Cybersickness During Virtual Turns. , 2022, , .		4
158	Human Factors Considerations for Head-Worn Displays in Civil Aviation. Lecture Notes in Computer Science, 2022, , 233-250.	1.0	1
159	A Stray Light Detection Model for VR Head-Mounted Display Based on Visual Perception. Applied Sciences (Switzerland), 2022, 12, 6311.	1.3	4
160	A narrative review of immersive virtual reality's ergonomics and risks at the workplace: cybersickness, visual fatigue, muscular fatigue, acute stress, and mental overload. Virtual Reality, 2023, 27, 19-50.	4.1	33
161	Perceptual Guidelines for Optimizing Field of View in Stereoscopic Augmented Reality Displays. ACM Transactions on Applied Perception, 2022, 19, 1-23.	1.2	2
162	Comparison between wrap around screens and a head mounted display on driver muscle and kinematic responses to a pedestrian hazard. Applied Ergonomics, 2023, 106, 103878.	1.7	0
163	Investigation of Stray Light Threshold for VR Head-Mounted Display. , 2022, , .		0
164	Effects of coordinate system and position of AR notification while walking. Virtual Reality, 2023, 27, 829-848.	4.1	2
165	Effects of using immersive virtual reality on time and steps during a locomotor task in young adults. PLoS ONE, 2022, 17, e0275876.	1.1	2
166	Interface Design of Head-Worn Display Application on Condition Monitoring in Aviation. Sensors, 2023, 23, 736.	2.1	1
167	Virtual Scene Construction of Wetlands: A Case Study of Poyang Lake, China. ISPRS International Journal of Geo-Information, 2023, 12, 49.	1.4	4

		CITATION RE	PORT	
#	Article		IF	CITATIONS
168	Research on the Display Area of Chinese Text Boxes in the Virtual Reality Field of View.	, 2022, , .		0
169	A workflow for viewing biomedical computational fluid dynamics results and correspon within virtual and augmented reality environments. Frontiers in Medical Technology, 0,	ding data 5, .	1.3	1
170	Effect of visual field asymmetries on performance while utilizing aircraft attitude symbo Displays, 2023, 77, 102404.	ology.	2.0	2
171	Like a Rolling Stone: Effects of Space Deformation During Linear Acceleration on Slope Cybersickness. , 2023, , .	Perception and		0
173	Simulation on Natural Disaster Fire Accident Evacuation Using Augmented Virtual Reali Notes in Networks and Systems, 2023, , 343-360.	ty. Lecture	0.5	1