Mechanical Reinforcement of Polymers Using Carbon N

Advanced Materials 18, 689-706 DOI: 10.1002/adma.200501851

Citation Report

#	Article	IF	CITATIONS
1	Mechanics of prestressed polydimethylsiloxane-carbon nanotube composite. Applied Physics Letters, 2006, 89, 184101.	1.5	20
2	Carbon nanotubes: enhancing the polymer building blocks for intelligent materials. Journal of Materials Chemistry, 2006, 16, 3598.	6.7	64
3	Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. Journal of Materials Chemistry, 2006, 16, 4206.	6.7	90
4	Boron nitride nanotubes/polystyrene composites. Journal of Materials Research, 2006, 21, 2794-2800.	1.2	142
5	Debundling of Single-Walled Nanotubes by Dilution:Â Observation of Large Populations of Individual Nanotubes in Amide Solvent Dispersions. Journal of Physical Chemistry B, 2006, 110, 15708-15718.	1.2	330
6	Carbon nanotube-reinforced composites as structural materials for microactuators in microelectromechanical systems. Nanotechnology, 2006, 17, 4895-4903.	1.3	106
7	Dispersing and Functionalizing Multiwalled Carbon Nanotubes in TiO2Sol. Journal of Physical Chemistry B, 2006, 110, 25844-25849.	1.2	91
8	Carbon sheet solutions. Nature, 2006, 442, 254-255.	13.7	243
9	Proteins downhill all the way. Nature, 2006, 442, 255-256.	13.7	12
11	Functionalization of carbon nanotubes using a silane coupling agent. Carbon, 2006, 44, 3232-3238.	5.4	524
12	Reinforcement of polymers with carbon nanotubes. The role of an orderedÂpolymer interfacial region. Experiment and modeling. Polymer, 2006, 47, 8556-8561.	1.8	224
13	Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules, 2006, 39, 5194-5205.	2.2	3,134
14	Enhancement of Modulus, Strength, and Toughness in Poly(methyl methacrylate)-Based Composites by the Incorporation of Poly(methyl methacrylate)-Functionalized Nanotubes. Advanced Functional Materials, 2006, 16, 1608-1614.	7.8	219
15	Effect of sonication on the mechanical properties of poly (vinyl alcohol)/carbon nanotube composites. , 2006, 6415, 27.		3
16	Effect of Functionalization on the Crystallization Behavior of MWNT-PBT Nanocomposites. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	0
17	Multiwalled Carbon Nanotube-Reinforced Poly(vinyl chloride). Macromolecular Symposia, 2007, 249-250, 259-264.	0.4	12
18	The present status and key problems of carbon nanotube based polymer composites. EXPRESS Polymer Letters, 2007, 1, 253-273.	1.1	408
19	Microbeam WAXD Study of Orientated Crystalline Arrays in Carbon Fiber/CNT – Nylon 66 Extruded/drawn Composites. Journal of Macromolecular Science - Physics, 2007, 46, 111-117.	0.4	10

#	Article	IF	CITATIONS
20	Carbon nanotube and nanofibre reinforced polymer fibres. , 2007, , 194-234.		1
21	Electrochemical capacitance of MWCNT/polyaniline composite coatings grown in acidic MWCNT suspensions by microwave-assisted hydrothermal digestion. Nanotechnology, 2007, 18, 385603.	1.3	21
22	Solubilization of Carbon Nanotubes and Their Applications. Kobunshi Ronbunshu, 2007, 64, 539-552.	0.2	4
23	Conducting textiles from single-walled carbon nanotubes. Synthetic Metals, 2007, 157, 358-362.	2.1	76
24	Single-Walled Carbon Nanotubes Functionalized with High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites. Macromolecules, 2007, 40, 3296-3305.	2.2	117
25	Functionalized Single-Walled Carbon Nanotubes for Carbon Fiberâ^'Epoxy Compositesâ€. Journal of Physical Chemistry C, 2007, 111, 17865-17871.	1.5	141
26	Characterization of CNTs-Reinforced Interfaces for Surface Mounted Piezoelectric Actuators. , 2007, ,		0
27	Spontaneous Debundling of Single-Walled Carbon Nanotubes in DNA-Based Dispersions. Journal of Physical Chemistry C, 2007, 111, 66-74.	1.5	93
28	Neue Kohlenstoffmaterialien. , 2007, , .		0
29	Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes. Nanotechnology, 2007, 18, 125606.	1.3	80
30	Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions. Nanotechnology, 2007, 18, 225604.	1.3	49
31	Benzoyl Peroxide Initiated In Situ Functionalization, Processing, and Mechanical Properties of Single-Walled Carbon Nanotubeâ^'Polypropylene Composite Fibers. Journal of Physical Chemistry C, 2007, 111, 1592-1600.	1.5	107
32	Polymer Grafting of Carbon Nanotubes Using Living Freeâ€Radical Polymerization. Polymer Reviews, 2007, 47, 265-290.	5.3	115
33	Enhancement of the mechanical performance of poly(vinyl chloride) using poly(<i>n</i> -butyl) Tj ETQq1 1 0.7843	814 rgBT / 1.3	Overlock 10
34	Polymer-masking for controlled functionalization of carbon nanotubes. Chemical Communications, 2007, , 3859.	2.2	20
35	Nanotubes. Annual Reports on the Progress of Chemistry Section A, 2007, 103, 392.	0.8	3
36	Nanometer scale carbon structures for charge-transfer systems and photovoltaic applications. Physical Chemistry Chemical Physics, 2007, 9, 1400.	1.3	123
37	Synthesis of Boron Nitride Nanotubes by a Template-Assisted Polymer Thermolysis Process. Journal of Physical Chemistry C, 2007, 111, 13378-13384.	1.5	74

#	Article	IF	CITATIONS
38	Tuning the Mechanical Properties of SWNT/Nylon 6,10 Composites with Flexible Spacers at the Interface. Nano Letters, 2007, 7, 1178-1185.	4.5	104
39	Particle-Stabilized Surfactant-Free Medium Internal Phase Emulsions as Templates for Porous Nanocomposite Materials:Â poly-Pickering-Foams. Langmuir, 2007, 23, 2398-2403.	1.6	169
40	Improving Electrical Conductivity and Thermal Properties of Polymers by the Addition of Carbon Nanotubes as Fillers. MRS Bulletin, 2007, 32, 348-353.	1.7	209
41	Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology, 2007, 18, 275708.	1.3	196
42	Microstructure, crystallization and dynamic mechanical behaviour of poly(vinylidene fluoride) composites containing poly(methyl methacrylate)-grafted multiwalled carbon nanotubes. Nanotechnology, 2007, 18, 235701.	1.3	83
43	Structure and Photoresponsive Behaviors of Multiwalled Carbon Nanotubes Grafted by Polyurethanes Containing Azobenzene Side Chains. Journal of Physical Chemistry C, 2007, 111, 11231-11239.	1.5	64
44	Synthesis of Polythiophene-graft-PMMA and Its Role as Compatibilizer for Poly(styrene-co-acrylonitrile)/MWCNT Nanocomposites. Macromolecules, 2007, 40, 3708-3713.	2.2	53
45	Ionic Liquids for Soft Functional Materials with Carbon Nanotubes. Chemistry - A European Journal, 2007, 13, 5048-5058.	1.7	504
46	Characterizing composite of multiwalled carbon nanotubes and POE-g-AA prepared via melting method. Journal of Applied Polymer Science, 2007, 104, 1328-1337.	1.3	15
48	Mechanical Reinforcement of Polyethylene Using Polyethyleneâ€Grafted Multiwalled Carbon Nanotubes. Advanced Functional Materials, 2007, 17, 2062-2069.	7.8	227
49	Clay Assisted Dispersion of Carbon Nanotubes in Conductive Epoxy Nanocomposites. Advanced Functional Materials, 2007, 17, 2343-2348.	7.8	276
50	Arbitrarily Shaped Fiber Assemblies from Spun Carbon Nanotube Gel Fibers. Advanced Functional Materials, 2007, 17, 2918-2924.	7.8	55
51	An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al-Matrix Composites. Advanced Materials, 2007, 19, 1128-1132.	11.1	321
52	Water-Redispersible Isolated Single-Walled Carbon Nanotubes Fabricated by In Situ Polymerization of Micelles. Advanced Materials, 2007, 19, 929-933.	11.1	80
53	Tensile Mechanics of Electrospun Multiwalled Nanotube/Poly(methyl methacrylate) Nanofibers. Advanced Materials, 2007, 19, 1228-1233.	11.1	115
54	Bridging the Gap: Polymer Nanowire Devices. Advanced Materials, 2007, 19, 2634-2638.	11.1	54
55	Thermoplastic Soy Protein Nanocomposites Reinforced by Carbon Nanotubes. Macromolecular Materials and Engineering, 2007, 292, 780-788.	1.7	41
56	Carbon allotropes: beyond graphite and diamond. Journal of Chemical Technology and Biotechnology, 2007, 82, 524-531.	1.6	215

#	Article	IF	CITATIONS
57	The effect of solvent choice on the mechanical properties of carbon nanotube–polymer composites. Composites Science and Technology, 2007, 67, 3158-3167.	3.8	56
58	Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon, 2007, 45, 1880-1890.	5.4	175
59	Thermal oxidative cutting of multi-walled carbon nanotubes. Carbon, 2007, 45, 2341-2350.	5.4	78
60	Reinforcement of styrene–butadiene–styrene tri-block copolymer by multi-walled carbon nanotubes via melt mixing. Carbon, 2007, 45, 2621-2627.	5.4	66
61	Probing buried carbon nanotubes within polymer–nanotube composite matrices by atomic force microscopy. European Polymer Journal, 2007, 43, 4136-4142.	2.6	20
62	Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding. Acta Materialia, 2007, 55, 6372-6382.	3.8	135
63	Thermodynamic study on aniline adsorption on chemical modified multi-walled carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 308, 54-59.	2.3	61
64	Conductivity spectroscopy on melt processed polypropylene–multiwalled carbon nanotube composites: Recovery after shear and crystallization. Polymer, 2007, 48, 1020-1029.	1.8	211
65	Sorting out left from right. Nature Nanotechnology, 2007, 2, 340-341.	15.6	29
66	Nanotechnology meets bubbleology. Nature Nanotechnology, 2007, 2, 339-340.	15.6	5
66 67	Nanotechnology meets bubbleology. Nature Nanotechnology, 2007, 2, 339-340. Stabilization and "Debundling―of Single-Wall Carbon Nanotube Dispersions in <i>N</i> -Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP). Journal of Physical Chemistry C, 2007, 111, 12594-12602.	15.6 1.5	5
66 67 68	Nanotechnology meets bubbleology. Nature Nanotechnology, 2007, 2, 339-340. Stabilization and "Debundling―of Single-Wall Carbon Nanotube Dispersions in <i>N</i> Mcthyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP). Journal of Physical Chemistry C, 2007, 111, 12594-12602. Functionalized carbon nanotubes for polymeric nanocomposites. Journal of Materials Chemistry, 2007, 17, 1143.	15.6 1.5 6.7	5 158 153
66 67 68 69	Nanotechnology meets bubbleology. Nature Nanotechnology, 2007, 2, 339-340. Stabilization and "Debundling―of Single-Wall Carbon Nanotube Dispersions in <i>N</i> Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP). Journal of Physical Chemistry C, 2007, 111, 12594-12602. Functionalized carbon nanotubes for polymeric nanocomposites. Journal of Materials Chemistry, 2007, 17, 1143. Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt. Rheologica Acta, 2007, 46, 889-898.	15.6 1.5 6.7 1.1	5 158 153 51
 66 67 68 69 70 	Nanotechnology meets bubbleology. Nature Nanotechnology, 2007, 2, 339-340. Stabilization and "Debundling―of Single-Wall Carbon Nanotube Dispersions in <i>N</i> Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP). Journal of Physical Chemistry C, 2007, 111, 12594-12602. Functionalized carbon nanotubes for polymeric nanocomposites. Journal of Materials Chemistry, 2007, 17, 1143. Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt. Rheologica Acta, 2007, 46, 889-898. Radical functionalization of single-walled carbon nanotubes with azo(bisisobutyronitrile). Applied Surface Science, 2007, 253, 7435-7437.	15.6 1.5 6.7 1.1 3.1	5 158 153 51 19
 66 67 68 69 70 71 	Nanotechnology meets bubbleology. Nature Nanotechnology, 2007, 2, 339-340. Stabilization and "Debundlingâ€-of Single-Wall Carbon Nanotube Dispersions in (i)N (i)N (i)-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP). Journal of Physical Chemistry C, 2007, 111, 12594-12602. Functionalized carbon nanotubes for polymeric nanocomposites. Journal of Materials Chemistry, 2007, 17, 1143. Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt. Rheologica Acta, 2007, 46, 889-898. Radical functionalization of single-walled carbon nanotubes with azo(bisisobutyronitrile). Applied Surface Science, 2007, 253, 7435-7437. Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Composites Science and Technology, 2007, 67, 1509-1517.	15.6 1.5 6.7 1.1 3.1 3.8	5 158 153 51 19 303
 66 67 68 69 70 71 72 	Nanotechnology meets bubbleology. Nature Nanotechnology, 2007, 2, 339-340. Stabilization and "Debundling―of Single-Wall Carbon Nanotube Dispersions in (1) N<(1) - Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP). Journal of Physical Chemistry C, 2007, 111, 12594-12602.	15.6 1.5 6.7 1.1 3.1 3.8 3.8	5 158 153 51 19 303 543
 66 67 68 69 70 71 72 73 	Nanotechnology meets bubbleology. Nature Nanotechnology, 2007, 2, 339-340. Stabilization and "Debundlingâ€of Single-Wall Carbon Nanotube Dispersions in (1>N./I)>-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP). Journal of Physical Chemistry C, 2007, 111, 12594-12602. Functionalized carbon nanotubes for polymeric nanocomposites. Journal of Materials Chemistry, 2007, 17, 1143. Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt. Rheologica Acta, 2007, 46, 889-898. Radical functionalization of single-walled carbon nanotubes with azo(bisisobutyronitrile). Applied Surface Science, 2007, 253, 7435-7437. Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Composites Science and Technology, 2007, 67, 1509-1517. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Composites Science and Technology, 2007, 67, 2965-2972. Preparation and characterization of conductive carbon nanotubeâ€"polystyrene nanocomposites using latex technology. Composites Science and Technology, 2008, 68, 2254-2259.	15.6 1.5 6.7 1.1 3.1 3.8 3.8 3.8	5 158 153 51 303 543 51

#	Article	IF	CITATIONS
75	Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. Journal of Materials Science, 2008, 43, 33-37.	1.7	198
76	Effect of acid and TETA modification on mechanical properties of MWCNTs/epoxy composites. Journal of Materials Science, 2008, 43, 2653-2658.	1.7	59
77	Nanocomposites of poly(<scp>L</scp> â€lysine) and singleâ€walled carbon nanotubes. Polymer International, 2008, 57, 311-315.	1.6	10
78	Nanocomposites based on polyolefins and functional thermoplastic materials. Polymer International, 2008, 57, 805-836.	1.6	124
79	Mechanism of carbon nanotube dispersion and precipitation during treatment with poly(acrylic acid). Surface and Interface Analysis, 2008, 40, 1294-1298.	0.8	11
80	Carbon Nanotubes as Liquid Crystals. Small, 2008, 4, 1270-1283.	5.2	136
81	The Role of Interfacial Oxygen Atoms in the Enhanced Mechanical Properties of Carbonâ€Nanotubeâ€Reinforced Metal Matrix Nanocomposites. Small, 2008, 4, 1936-1940.	5.2	177
82	Multiâ€walled carbon nanotubes encapsulated with polyurethane and its nanocomposites. Journal of Polymer Science Part A, 2008, 46, 4857-4865.	2.5	34
83	Electrically conductive transparent papers using multiwalled carbon nanotubes. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1235-1242.	2.4	72
84	Improving the dispersion and interfaces in polymerâ€carbon nanotube nanocomposites by sample preparation choice. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1747-1759.	2.4	10
85	Preparation and characterization of meltâ€processed polycarbonate/multiwalled carbon nanotube composites. Polymer Engineering and Science, 2008, 48, 1369-1375.	1.5	41
86	Challenges of shape memory polymers: A review of the progress toward overcoming SMP's limitations. Polymer Engineering and Science, 2008, 48, 2075-2089.	1.5	368
87	Manufacturing Carbon Nanotube/PVDF Nanocomposite Powders. Macromolecular Materials and Engineering, 2008, 293, 188-193.	1.7	33
88	Use of Singleâ€Walled Carbon Nanotubes as Reinforcing Fillers in UV urable Epoxy Systems. Macromolecular Materials and Engineering, 2008, 293, 708-713.	1.7	20
89	A Novel Strategy to Incorporate Carbon Nanotubes into Thermoplastic Matrices. Macromolecular Rapid Communications, 2008, 29, 244-251.	2.0	155
90	Antistatic Epoxy Coatings With Carbon Nanotubes Obtained by Cationic Photopolymerization. Macromolecular Rapid Communications, 2008, 29, 396-400.	2.0	77
91	Functionalization of Multiâ€Walled Carbon Nanotubes by Thermoâ€Grafting with <i>α</i> â€Methylstyreneâ€Containing Copolymers. Macromolecular Rapid Communications, 2008, 29, 1521-1526.	2.0	15
92	Photopatterning of tough singleâ€walled carbon nanotube composites in microfluidic channels and their application in gelâ€free separations. Electrophoresis, 2008, 29, 2458-2465.	1.3	16

#	Article	IF	CITATIONS
93	Crystallization behavior of poly(ethylene terephthalate)/multiwalled carbon nanotubes composites. Journal of Applied Polymer Science, 2008, 108, 4080-4089.	1.3	31
94	Poly(ethylene terephthalate) nanocomposite fibers with functionalized multiwalled carbon nanotubes via <i>inâ€situ</i> polymerization. Journal of Applied Polymer Science, 2008, 109, 638-646.	1.3	29
95	Oneâ€Step Ionicâ€Liquidâ€Assisted Electrochemical Synthesis of Ionicâ€Liquidâ€Functionalized Graphene Sheets Directly from Graphite. Advanced Functional Materials, 2008, 18, 1518-1525.	7.8	945
96	Reactive Spinning of Cyanate Ester Fibers Reinforced with Aligned Aminoâ€Functionalized Single Wall Carbon Nanotubes. Advanced Functional Materials, 2008, 18, 888-897.	7.8	25
97	Individual Dissolution of Singleâ€Walled Carbon Nanotubes by Using Polybenzimidazole, and Highly Effective Reinforcement of Their Composite Films. Advanced Functional Materials, 2008, 18, 1776-1782.	7.8	92
98	Charged Rodâ€Like Nanoparticles Assisting Singleâ€Walled Carbon Nanotube Dispersion in Water. Advanced Functional Materials, 2008, 18, 2685-2691.	7.8	32
99	A Molecular Mechanism for Toughening and Strengthening Waterborne Nanocomposites. Advanced Materials, 2008, 20, 90-94.	11.1	33
100	Development of Novel Carbon Nanotube/Photopolymer Nanocomposites with High Conductivity and their Application to Nanoimprint Photolithography. Advanced Materials, 2008, 20, 2151-2155.	11.1	52
101	Towards Solutions of Singleâ€Walled Carbon Nanotubes in Common Solvents. Advanced Materials, 2008, 20, 1876-1881.	11.1	333
102	Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments. Polymer, 2008, 49, 1902-1909.	1.8	147
103	In situ preparation and continuous fiber spinning of poly(p-phenylene benzobisoxazole) composites with oligo-hydroxyamide-functionalized multi-walled carbon nanotubes. Polymer, 2008, 49, 2520-2530.	1.8	85
104	Cure behavior of epoxy/MWCNT nanocomposites: The effect of nanotube surface modification. Polymer, 2008, 49, 3310-3317.	1.8	189
105	Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst. Journal of Solid State Chemistry, 2008, 181, 432-438.	1.4	138
106	Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes. Composites Science and Technology, 2008, 68, 2490-2497.	3.8	175
107	The influence of functionalized MWCNT reinforcement on the thermomechanical properties and morphology of epoxy nanocomposites. Composites Science and Technology, 2008, 68, 2535-2542.	3.8	37
108	Effects of dispersion techniques of carbon nanofibers on the thermo-physical properties of epoxy nanocomposites. Composites Science and Technology, 2008, 68, 2722-2730.	3.8	96
109	Preparation of short and water-dispersible carbon nanotubes by solid-state cutting. Carbon, 2008, 46, 117-125.	5.4	19
110	Mechanical and electrical properties of cross-linked carbon nanotubes. Carbon, 2008, 46, 482-488.	5.4	82

#	Article	IF	CITATIONS
111	The effect of electro-degradation processing on microstructure of polyaniline/single-wall carbon nanotube composite films. Carbon, 2008, 46, 1145-1151.	5.4	18
112	Enhanced conductivity in polybenzoxazoles doped with carboxylated multi-walled carbon nanotubes. Carbon, 2008, 46, 1232-1240.	5.4	68
113	Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge. Carbon, 2008, 46, 1384-1392.	5.4	70
114	The preparation of multi-walled carbon nanotubes encapsulated by poly(3-acrylaminopropylsiloxane) with silica nanospheres on the polymer surface. Carbon, 2008, 46, 1670-1677.	5.4	21
115	Reinforcement of hydrogenated carboxylated nitrile–butadiene rubber by multi-walled carbon nanotubes. Applied Surface Science, 2008, 255, 2162-2166.	3.1	68
116	The quantitative characterization of the dispersion state of single-walled carbon nanotubes using Raman spectroscopy and atomic force microscopy. Carbon, 2008, 46, 1530-1534.	5.4	23
117	Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets. European Polymer Journal, 2008, 44, 2790-2797.	2.6	118
118	Methodology for Homogeneous Dispersion of Single-walled Carbon Nanotubes by Physical Modification. Polymer Journal, 2008, 40, 577-589.	1.3	130
119	Phenolic Resin-MWNT Nanocomposites Prepared through an in situ Polymerization Method. Polymer Journal, 2008, 40, 1067-1073.	1.3	32
120	Noncovalent functionalization of multi-walled carbon nanotubes with siloxane polyether copolymer. Materials Letters, 2008, 62, 2585-2588.	1.3	28
121	Direct Measurement of the Wetting Behavior of Individual Carbon Nanotubes by Polymer Melts: The Key to Carbon Nanotubeâ^'Polymer Composites. Nano Letters, 2008, 8, 2744-2750.	4.5	64
122	A Mechanochemical Model of Growth Termination in Vertical Carbon Nanotube Forests. ACS Nano, 2008, 2, 53-60.	7.3	46
123	Dimethylformamide: an effective dispersant for making ceramic–carbon nanotube composites. Nanotechnology, 2008, 19, 195710.	1.3	114
125	Properties of Membranes Containing Semi-dispersed Carbon Nanotubes. Environmental Engineering Science, 2008, 25, 565-576.	0.8	95
126	In Situ Cationic Ring-Opening Polymerization and Quaternization Reactions To Confine Ferricyanide onto Carbon Nanotubes: A General Approach to Development of Integrative Nanostructured Electrochemical Biosensors. Analytical Chemistry, 2008, 80, 6587-6593.	3.2	33
127	Large Populations of Individual Nanotubes in Surfactant-Based Dispersions without the Need for Ultracentrifugation. Journal of Physical Chemistry C, 2008, 112, 972-977.	1.5	75
128	Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites. Nanotechnology, 2008, 19, 415707.	1.3	39
129	Isotactic Polypropylene/Carbon Nanotube Composites Prepared by Latex Technology. Thermal Analysis of Carbon Nanotube-Induced Nucleation. Macromolecules, 2008, 41, 5753-5762.	2.2	126

#	Article	IF	CITATIONS
130	Kevlar coated carbon nanotubes for reinforcement of polyvinylchloride. Journal of Materials Chemistry, 2008, 18, 5585.	6.7	45
131	Ordered DNA Wrapping Switches on Luminescence in Single-Walled Nanotube Dispersions. Journal of the American Chemical Society, 2008, 130, 12734-12744.	6.6	119
132	Functionalization of cotton with carbon nanotubes. Journal of Materials Chemistry, 2008, 18, 3454.	6.7	169
133	Aggregation and Coarsening of Ligand-Stabilized Gold Nanoparticles in Poly(methyl methacrylate) Thin Films. ACS Nano, 2008, 2, 1305-1312.	7.3	94
134	Pristine Multiwalled Carbon Nanotube/Polyethylene Nanocomposites by Immobilized Catalysts. Chemistry of Materials, 2008, 20, 4588-4594.	3.2	44
135	Kinetically Controlled Side-Wall Functionalization of Carbon Nanotubes by Nitric Acid Oxidation. Journal of Physical Chemistry C, 2008, 112, 6758-6763.	1.5	128
136	Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation. Journal of Materials Chemistry, 2008, 18, 1865.	6.7	95
137	Organic Solvent-Redispersible Isolated Single Wall Carbon Nanotubes Coated by in-Situ Polymerized Surfactant Monolayer. Macromolecules, 2008, 41, 3261-3266.	2.2	35
138	Largely Improved Tensile Properties of Chitosan Film via Unique Synergistic Reinforcing Effect of Carbon Nanotube and Clay. Journal of Physical Chemistry B, 2008, 112, 3876-3881.	1.2	141
139	Effects of Multiwalled Carbon Nanotubes on the Shear-Induced Crystallization Behavior of Poly(butylene terephthalate). Macromolecules, 2008, 41, 8103-8113.	2.2	53
140	Toughness Enhancement in ROMP Functionalized Carbon Nanotube/Polydicyclopentadiene Composites. Chemistry of Materials, 2008, 20, 7060-7068.	3.2	149
141	Chemical Modification of Single-Walled Carbon Nanotubes for the Reinforcement of Precursor-Derived Ceramics. Chemistry of Materials, 2008, 20, 5593-5599.	3.2	35
142	Chirality-Resolved Length Analysis of Single-Walled Carbon Nanotube Samples through Shear-Aligned Photoluminescence Anisotropy. ACS Nano, 2008, 2, 1738-1746.	7.3	31
143	The Quest for Stronger, Tougher Materials. Science, 2008, 320, 448-448.	6.0	29
144	Nanocomposites I: Current developments in nanocomposites as novel flame retardants. , 2008, , 95-123.		5
145	Structural Nanocomposites. Science, 2008, 319, 419-420.	6.0	201
146	Adhesion and friction between individual carbon nanotubes measured using force-versus-distance curves in atomic force microscopy. Physical Review B, 2008, 78, .	1.1	37
147	Single-walled Carbon Nanotube Modification into a Photograft-polymerized Polymer Film via Polyion-complexation. Chemistry Letters, 2008, 37, 546-547.	0.7	1

#	Article	IF	CITATIONS
148	Present Status and Key Challenges of Carbon Nanotubes Reinforced Polyolefins: A Review on Nanocomposites Manufacturing and Performance Issues. Polymers and Polymer Composites, 2009, 17, 205-245.	1.0	30
149	Multifunctional Nanomaterial-Enabled Membranes for Water Treatment. , 2009, , 59-75.		14
151	Fabrication of a nanocomposite from <i>in situ</i> iron nanoparticle reinforced copper alloy. Nanotechnology, 2009, 20, 075605.	1.3	37
152	3-Aminopropyltriethoxysilane Effect on Thermal and Mechanical Properties of Multi-walled Carbon Nanotubes Reinforced Epoxy Composites. Journal of Composite Materials, 2009, 43, 2533-2541.	1.2	14
153	EFFICIENT LOAD TRANSFER TO FUNCTIONALIZED CARBON NANOTUBES AS REINFORCEMENT IN POLYMER NANOCOMPOSITES. International Journal of Modern Physics B, 2009, 23, 1401-1406.	1.0	4
154	Electrical and mechanical properties of carbon nanotube-polyimide composites. Journal of Vacuum Science & Technology B, 2009, 27, 3139.	1.3	27
155	The effects of boron doping and boron grafts on the mechanical properties of single-walled carbon nanotubes. Journal Physics D: Applied Physics, 2009, 42, 225402.	1.3	11
156	Characterization of Quasi-static Mechanical Properties of Polymer Nanocomposites Using a New Combinatorial Approach. Journal of Composite Materials, 2009, 43, 2587-2598.	1.2	5
157	A carbon nanotube–alumina network structure for fabricating epoxy composites. Scripta Materialia, 2009, 61, 285-288.	2.6	25
158	Liquidâ€Phase Exfoliation of Nanotubes and Graphene. Advanced Functional Materials, 2009, 19, 3680-3695.	7.8	588
159	Production of Ultrahighâ€Molecularâ€Weight Polyethylene/Pristine MWCNT Composites by Halfâ€Titanocene Catalysts. Advanced Materials, 2009, 21, 902-905.	11.1	38
160	A Combined Process of In Situ Functionalization and Microwave Treatment to Achieve Ultrasmall Thermal Expansion of Aligned Carbon Nanotube–Polymer Nanocomposites: Toward Applications as Thermal Interface Materials. Advanced Materials, 2009, 21, 2421-2424.	11.1	178
161	The Effect of Stress Transfer Within Doubleâ€Walled Carbon Nanotubes Upon Their Ability to Reinforce Composites. Advanced Materials, 2009, 21, 3591-3595.	11.1	71
162	Nanotube–Polymer Composites for Ultrafast Photonics. Advanced Materials, 2009, 21, 3874-3899.	11.1	778
163	Reactive polyurethane carbon nanotube foams and their interactions with osteoblasts. Journal of Biomedical Materials Research - Part A, 2009, 88A, 65-73.	2.1	57
164	A Novel Concept for Highly Oriented Carbon Nanotube Composite Tapes or Fibres with High Strength and Electrical Conductivity. Macromolecular Materials and Engineering, 2009, 294, 749-755.	1.7	56
165	Large Deformable Multiwalled Carbon Nanotube Core–Shell Structure on Polystyrene Beads. Macromolecular Rapid Communications, 2009, 30, 52-56.	2.0	11
166	Comparison of Covalently and Noncovalently Functionalized Carbon Nanotubes in Epoxy. Macromolecular Rapid Communications, 2009, 30, 627-632.	2.0	69

#	Article	IF	CITATIONS
167	Surfaceâ€Initiated PLPâ€SEC of Butyl Acrylate and Styrene from Silica Nanoparticles. Macromolecular Rapid Communications, 2009, 30, 1989-1994.	2.0	5
168	Thermal degradation behavior of styreneâ€butadieneâ€styrene triâ€block copolymer/multiwalled carbon nanotubes composites. Journal of Applied Polymer Science, 2009, 112, 524-531.	1.3	33
169	Polypropylene/clay nanocomposites: Effect of different clays and compatibilizers on their morphology. Journal of Applied Polymer Science, 2009, 112, 1278-1286.	1.3	23
170	Conductive polymer tape containing highly oriented carbon nanofillers. Journal of Applied Polymer Science, 2009, 113, 742-751.	1.3	82
171	Ethylene vinyl acetate copolymer (EVA)/multiwalled carbon nanotube (MWCNT) nanocomposite foams. Journal of Applied Polymer Science, 2009, 112, 1845-1849.	1.3	43
172	Mechanical reinforcement of poly(1â€butene) using polypropyleneâ€grafted multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2009, 113, 1165-1172.	1.3	19
173	Polymer crystallization and precipitationâ€induced wrapping of carbon nanofibers with PBT. Journal of Applied Polymer Science, 2009, 114, 1312-1319.	1.3	20
174	Surface functionalization of multiwalled carbon nanotubes with poly(3,4-propylenedioxythiophene) and preparation of its random copolymers: new hybrid materials. Colloid and Polymer Science, 2009, 287, 97-102.	1.0	25
175	Magnetic field alignment and electrical properties of solution cast PET–carbon nanotube composite films. Polymer, 2009, 50, 898-904.	1.8	122
176	Design and fabrication of colloidal polymer nanocomposites. Advances in Colloid and Interface Science, 2009, 147-148, 319-332.	7.0	80
177	Thermo-physical characterisation of epoxy resin reinforced by amino-functionalized carbon nanofibers. Composites Science and Technology, 2009, 69, 349-357.	3.8	101
178	Properties of composites of carbon nanotube fibres. Composites Science and Technology, 2009, 69, 1558-1563.	3.8	102
179	Curved-fiber pull-out model for nanocomposites. Part 1: Bonded stage formulation. Mechanics of Materials, 2009, 41, 279-292.	1.7	50
180	Processing and characterization of nanostructured Cu-carbon nanotube composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 523, 60-64.	2.6	86
181	Ultrasonic-assisted chemical oxidative cutting of multiwalled carbon nanotubes with ammonium persulfate in neutral media. Applied Physics A: Materials Science and Processing, 2009, 97, 771-775.	1.1	23
182	Carbon nanotube synthesis via ceramic catalysts. Physica Status Solidi (B): Basic Research, 2009, 246, 2486-2489.	0.7	7
183	Morphology, thermal, and rheological behavior of nylon 11/multiâ€walled carbon nanotube nanocomposites prepared by melt compounding. Polymer Engineering and Science, 2009, 49, 1063-1068.	1.5	66
184	Immobilization of RAFT agents on silica nanoparticles utilizing an alternative functional group and subsequent surfaceâ€initiated RAFT polymerization. Journal of Polymer Science Part A, 2009, 47, 467-484.	2.5	39

#	Article	IF	CITATIONS
185	Preparation and characterization of nematic polyazomethine/singleâ€walled carbon nanotube composites prepared by <i>in situ</i> polymerization. Journal of Polymer Science Part A, 2009, 47, 2361-2372.	2.5	12
186	Grafting of aldehyde structures to singleâ€walled carbon nanotubes for application in phenolic resinâ€based composites. Journal of Polymer Science Part A, 2009, 47, 6135-6144.	2.5	8
187	Noncovalent functionalization of multiwalled and doubleâ€walled carbon nanotubes: Positive effect of the filler functionalization on high glass transition temperature epoxy resins. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1860-1868.	2.4	15
188	Photoemission and absorption spectroscopy of carbon nanotube interfacial interaction. Advances in Colloid and Interface Science, 2009, 145, 23-41.	7.0	32
189	Curved-fiber pull-out model for nanocomposites. Part 2: Interfacial debonding and sliding. Mechanics of Materials, 2009, 41, 293-307.	1.7	41
190	Water transport behavior of chitosan porous membranes containing multi-walled carbon nanotubes (MWNTs). Journal of Membrane Science, 2009, 337, 240-247.	4.1	74
191	Interfacial properties and microstructure of multiwalled carbon nanotubes/epoxy composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 17-23.	2.6	20
192	Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions. Polymer Degradation and Stability, 2009, 94, 124-131.	2.7	117
193	Transesterification-controlled compatibility and microfibrillation in PC–ABS composites reinforced by phosphorus-containing thermotropic liquid crystalline polyester. Polymer, 2009, 50, 3037-3046.	1.8	30
194	Effect of melting and crystallization on the conductive network in conductive polymer composites. Polymer, 2009, 50, 3747-3754.	1.8	132
195	Electrically conductive and super-tough polyamide-based nanocomposites. Polymer, 2009, 50, 4112-4121.	1.8	104
196	Nanotubes as polymers. Polymer, 2009, 50, 4979-4997.	1.8	182
197	Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Composites Science and Technology, 2009, 69, 1564-1569.	3.8	272
198	Simulation of interphase percolation and gradients in polymer nanocomposites. Composites Science and Technology, 2009, 69, 491-499.	3.8	255
199	Influence of preparation procedure on the conductivity and transparency of SWCNT-polymer nanocomposites. Composites Science and Technology, 2009, 69, 1867-1872.	3.8	65
200	Synthesis of poly(3-hexylthiophene)-graft-poly(t-butyl acrylate-co-acrylic acid) and its role of compatibilizer for enhancement of mechanical and electrical properties of Nylon 66/multi-walled carbon nanotube composites. Composites Science and Technology, 2009, 69, 2205-2211.	3.8	14
201	Functionalization of carbon nanofibers with elastomeric block copolymer using carbodiimide chemistry. Applied Surface Science, 2009, 255, 4806-4813.	3.1	32
202	A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon, 2009, 47, 2-22.	5.4	978

#	Article	IF	CITATIONS
203	A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon, 2009, 47, 1126-1134.	5.4	96
204	Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon, 2009, 47, 1779-1798.	5.4	311
205	Effect of functionalized MWCNTs on the thermo-mechanical properties of poly(5-ethylidene-2-norbornene) composites produced by ring-opening metathesis polymerization. Carbon, 2009, 47, 2406-2412.	5.4	41
206	Preparation and properties of multi-walled carbon nanotube/carbon/polystyrene composites. Carbon, 2009, 47, 2733-2741.	5.4	44
207	Enhanced mechanical strength of chitosan hydrogel beads by impregnation with carbon nanotubes. Carbon, 2009, 47, 2933-2936.	5.4	92
208	A new parameter based on graphene for characterizing transparent, conductive materials. Carbon, 2009, 47, 2936-2939.	5.4	35
209	The high dispersion of DNA–multiwalled carbon nanotubes and their properties. Analytical Biochemistry, 2009, 387, 267-270.	1.1	51
210	Degradable particulate composite reinforced with nanofibres for biomedical applications. Acta Biomaterialia, 2009, 5, 1104-1114.	4.1	43
211	One-step preparation of water-soluble single-walled carbon nanotubes. Applied Surface Science, 2009, 255, 7095-7099.	3.1	50
212	An insight review on the application of polymer-carbon nanotubes based composite material in sensor technology. Russian Journal of General Chemistry, 2009, 79, 2685-2694.	0.3	21
213	Functionalized Few-Walled Carbon Nanotubes for Mechanical Reinforcement of Polymeric Composites. ACS Nano, 2009, 3, 1057-1062.	7.3	152
214	Strategy for High Concentration Nanodispersion of Single-Walled Carbon Nanotubes with Diameter Selectivity. Journal of Physical Chemistry C, 2009, 113, 10044-10051.	1.5	17
215	Thermally Switchable One- and Two-Dimensional Arrays of Single-Walled Carbon Nanotubes in a Polymeric System. Journal of the American Chemical Society, 2009, 131, 16568-16572.	6.6	29
216	Design and characterization of a carbon-nanotube-reinforced adhesive coating for piezoelectric ceramic discs. Smart Materials and Structures, 2009, 18, 125001.	1.8	11
217	Tensile Loading of Double-Walled and Triple-Walled Carbon Nanotubes and their Mechanical Properties. Journal of Physical Chemistry C, 2009, 113, 17002-17005.	1.5	47
218	Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 800-809.	3.8	173
219	Sol–gel route to carbon nanotube borosilicate glass composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 837-845.	3.8	34
220	Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 932-937.	3.8	80

#	Article	IF	CITATIONS
221	Basalt fiber–epoxy laminates with functionalized multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1082-1089.	3.8	66
222	Reinforcement and toughening of poly(vinyl chloride) with poly(caprolactone) grafted carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1476-1481.	3.8	21
223	Improvement of the properties of PC/LCP blends in the presence of carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1291-1298.	3.8	30
224	Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1606-1614.	3.8	129
225	Characteristics of the nucleation and growth of template-free polyaniline nanowires and fibrils. Synthetic Metals, 2009, 159, 435-444.	2.1	41
226	Evaluation of dispersion state and thermal conductivity measurement of carbon nanotubes/UV-curable resin nanocomposites. Synthetic Metals, 2009, 159, 827-830.	2.1	19
227	In situ synthesis of carbon onion/nanotube reinforcements in copper powders. Journal of Alloys and Compounds, 2009, 476, 869-873.	2.8	16
228	A carbon nanotube/alumina network structure for fabricating alumina matrix composites. Journal of Alloys and Compounds, 2009, 478, 816-819.	2.8	40
229	Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition. Journal of Alloys and Compounds, 2009, 487, 258-262.	2.8	124
230	Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. Journal of Materials Chemistry, 2009, 19, 5027.	6.7	287
231	Static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation. Physical Chemistry Chemical Physics, 2009, 11, 11365.	1.3	60
232	Theoretical analysis of carbon nanotube wetting in polystyrene nanocomposites. Physical Chemistry Chemical Physics, 2009, 11, 11121.	1.3	3
233	Effect of carbon nanotube surface modification on dispersion and structural properties of electrospun fibers. Applied Physics Letters, 2009, 95, .	1.5	54
234	Carbon Nanotubes and Their Polymer-Based Composites in Space Environment. , 2009, , .		3
235	Inverse Gas Chromatography of As-Received and Modified Carbon Nanotubes. Langmuir, 2009, 25, 8340-8348.	1.6	52
236	Carbon Nanotubesâ^'Polypropylene Nanocomposites for Electrostatic Discharge Applications. Macromolecules, 2009, 42, 8328-8334.	2.2	62
237	Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions. Biomacromolecules, 2009, 10, 1992-1996.	2.6	665
238	Polymer Reinforcement with Kevlar-Coated Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 20184-20192.	1.5	38

#	Article	IF	Citations
239	Multiparameter Structural Optimization of Single-Walled Carbon Nanotube Composites: Toward Record Strength, Stiffness, and Toughness. ACS Nano, 2009, 3, 1711-1722.	7.3	141
240	Cleaning and Functionalization of Polymer Surfaces and Nanoscale Carbon Fillers by UV/Ozone Treatment: A Review. Journal of Composite Materials, 2009, 43, 1537-1564.	1.2	80
241	Epoxy Composite Fibers Reinforced with Aligned Single-Walled Carbon Nanotubes Functionalized with Generation 0â ^{~2} Dendritic Poly(amidoamine). Chemistry of Materials, 2009, 21, 1471-1479.	3.2	75
242	Carbon nanotube/polysulfone soft composites: preparation, characterization and application for electrochemical sensing of biomarkers. Physical Chemistry Chemical Physics, 2009, 11, 7721.	1.3	23
243	Significant Improvement of Mechanical Properties Observed in Highly Aligned Carbon-Nanotube-Reinforced Nanofibers. Journal of Physical Chemistry C, 2009, 113, 4779-4785.	1.5	109
244	Influence of the graphitisation of hollow carbon nanofibers on their functionalisation and subsequent filling with metal nanoparticles. Chemical Communications, 2009, , 7158.	2.2	31
245	Reinforcing and Flame-Retardant Effects of Halloysite Nanotubes on LLDPE. Polymer-Plastics Technology and Engineering, 2009, 48, 607-613.	1.9	123
246	A hybrid functional nanomaterial: POSS functionalized carbon nanofiber. Nanotechnology, 2009, 20, 325603.	1.3	28
247	Carbon nanotube reservoirs for self-healing materials. Nanotechnology, 2009, 20, 335704.	1.3	85
249	Creep and Fatigue Behavior of Polymer Nanocomposites. , 2009, , 301-339.		12
251	Soluble Carbon Nanotubes and Application to Electrochemistry. Electrochemistry, 2010, 78, 2-15.	0.6	5
252	Covalent Attachment of Organic Groups onto Single-walled Carbon Nanotubes via Copper(I)-promoted Radical Addition. Chemistry Letters, 2010, 39, 1000-1001.	0.7	4
253	Chemical Functionalization of Ultrathin Carbon Nanosheets. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 87-95.	1.0	6
254	Organic functionalisation of graphenes. Chemical Communications, 2010, 46, 1766.	2.2	254
255	Influence of single-walled carbon nanotubes on the effective elastic constants of poly(ethylene) Tj ETQq0 0 0 rg	BT /Oyerlc	ock 10 Tf 50 18
256	The sintering and grain growth behaviour of ceramic–carbon nanotube nanocomposites. Composites Science and Technology, 2010, 70, 947-952.	3.8	105
257	Novel ultrafiltration membranes prepared from a multi-walled carbon nanotubes/polymer composite. Journal of Membrane Science, 2010, 362, 374-383.	4.1	147

²⁵⁸ Solubilization of carbon nanoparticles, nanotubes, nano-onions, and nanodiamonds through covalent functionalization with sucrose. Russian Chemical Bulletin, 2010, 59, 1495-1505.).4	14
---	-----	----

#	Article	IF	CITATIONS
259	Optimization of the chemical vapor deposition process for fabrication of carbon nanotube/Al composite powders. Materials Research Bulletin, 2010, 45, 1182-1188.	2.7	3
260	Green and Highly Efficient Functionalization of Carbon Nanotubes by Combination of 1,3â€Dipolar Cycloaddition and Curtius Rearrangement Reactions. Chinese Journal of Chemistry, 2010, 28, 1223-1228.	2.6	2
261	Graphene–Polymer Nanofiber Membrane for Ultrafast Photonics. Advanced Functional Materials, 2010, 20, 782-791.	7.8	434
262	Preparation of Highâ€Performance Conductive Polymer Fibers through Morphological Control of Networks Formed by Nanofillers. Advanced Functional Materials, 2010, 20, 1424-1432.	7.8	117
263	Carbon Nanotubes on Polymeric Microcapsules: Freeâ€Standing Structures and Pointâ€Wise Laser Openings. Advanced Functional Materials, 2010, 20, 3136-3142.	7.8	66
264	Axial Compression of Hierarchically Structured Carbon Nanotube Fiber Embedded in Epoxy. Advanced Functional Materials, 2010, 20, 3797-3803.	7.8	43
265	Recent Advances in Research on Carbon Nanotube–Polymer Composites. Advanced Materials, 2010, 22, 1672-1688.	11.1	788
266	Ultravioletâ€Assisted Directâ€Write Fabrication of Carbon Nanotube/Polymer Nanocomposite Microcoils. Advanced Materials, 2010, 22, 592-596.	11.1	175
267	Continuous Multilayered Carbon Nanotube Yarns. Advanced Materials, 2010, 22, 692-696.	11.1	258
269	Effective reinforcement of carbon nanotubes in polypropylene matrices. Journal of Applied Polymer Science, 2010, 118, 30-41.	1.3	54
270	Effect of the processing parameters on the surface resistivity of acrylonitrile–butadiene rubber/multiwalled carbon nanotube nanocomposites. Journal of Applied Polymer Science, 2010, 116, 555-561.	1.3	10
271	Electrical and thermal conductivity and tensile and flexural properties of carbon nanotube/polycarbonate resins. Journal of Applied Polymer Science, 2010, 118, 2512-2520.	1.3	29
272	Mechanical and functional properties of composites based on graphite and carboxylated acrylonitrile butadiene rubber. Journal of Applied Polymer Science, 2010, 116, 2706-2713.	1.3	10
273	Hydrogelâ€MWCNT nanocomposites: Synthesis, characterization, and heating with radiofrequency fields. Journal of Applied Polymer Science, 2010, 117, 1813-1819.	1.3	31
274	The effect of different modified multiwalled carbon nanotubes on tribological behaviors of poly(furfuryl alcohol) composite coatings. Journal of Applied Polymer Science, 2010, 118, 2881-2889.	1.3	3
275	Effects of carbon fillers on tensile and flexural properties in polypropyleneâ€based resins. Journal of Applied Polymer Science, 2010, 118, 1620-1633.	1.3	8
276	Cellulose acetate/multiwalled carbon nanotube nanocomposites with improved mechanical, thermal, and electrical properties. Journal of Applied Polymer Science, 2010, 118, 2475-2481.	1.3	21
277	Chargeâ€transfer behavior of polyaniline single wall carbon nanotubes nanocomposites monitored by resonance Raman spectroscopy. Journal of Raman Spectroscopy, 2010, 41, 1587-1593.	1.2	31

#	Article	IF	CITATIONS
278	Surfaceâ€Induced Polymer Crystallization in High Volume Fraction Aligned Carbon Nanotube–Polymer Composites. Macromolecular Chemistry and Physics, 2010, 211, 1003-1011.	1.1	41
279	Inâ€situâ€Synthetized Silver/Epoxy Nanocomposites: Electrical Characterization by Means of Dielectric Spectroscopy. Macromolecular Chemistry and Physics, 2010, 211, 1933-1939.	1.1	26
280	A Solventâ€Free Dispersion Method for the Preparation of PET/MWCNT Composites. Macromolecular Materials and Engineering, 2010, 295, 652-659.	1.7	16
281	Colloidâ€Assisted Selfâ€Assembly of Robust, Threeâ€Dimensional Networks of Carbon Nanotubes over Large Areas. Macromolecular Rapid Communications, 2010, 31, 609-615.	2.0	25
282	Green chemical functionalization of multiwalled carbon nanotubes with poly(É›-caprolactone) in ionic liquids. Applied Surface Science, 2010, 257, 1010-1014.	3.1	32
283	Dispersion of single walled carbon nanotubes in organogels by incorporation into organogel fibers. Journal of Colloid and Interface Science, 2010, 352, 121-127.	5.0	19
284	Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers. Journal of Industrial and Engineering Chemistry, 2010, 16, 10-14.	2.9	39
285	Rheological behaviors and mechanical properties of graphite nanoplate/carbon nanotube-filled epoxy nanocomposites. Journal of Industrial and Engineering Chemistry, 2010, 16, 572-576.	2.9	59
286	Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Materials Science and Engineering Reports, 2010, 70, 63-91.	14.8	118
287	Magnetically processed carbon nanotube/epoxy nanocomposites: Morphology, thermal, and mechanical properties. Polymer, 2010, 51, 1614-1620.	1.8	149
288	Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review. Polymer, 2010, 51, 975-993.	1.8	306
289	Characterization of the adhesion of single-walled carbon nanotubes in poly(p-phenylene) Tj ETQq1 1 0.784314 rg	gBT /Overlo	ock 10 Tf 5(
290	The effect of carbon nanotube properties on the degree of dispersion and reinforcement of high density polyethylene. Polymer, 2010, 51, 3540-3550.	1.8	63
291	Characterization of melt flow instabilities in polyethylene/carbon nanotube composites. Polymer, 2010, 51, 3753-3761.	1.8	40
292	Surfactant-modified multiscale composites for improved tensile fatigue and impact damage sensing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7340-7352.	2.6	24
293	Dispersion of carbon nanotubes in hydroxyapatite powder by in situ chemical vapor deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 166, 19-23.	1.7	24
294	Boron nitride nanotubes. Materials Science and Engineering Reports, 2010, 70, 92-111.	14.8	400
295	Dispersion of pristine single-walled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites. Carbon, 2010, 48, 2603-2612.	5.4	67

#	Article	IF	CITATIONS
296	Functionalization of carbon nanotubes with biodegradable supramolecular polypseudorotaxanes from grafted-poly(Îμ-caprolactone) and α-cyclodextrins. European Polymer Journal, 2010, 46, 145-155.	2.6	31
297	Synthesis of multi-wall carbon nanotubes by the pyrolysis of ethanol on Fe/MCM-41 mesoporous molecular sieves. Superlattices and Microstructures, 2010, 47, 432-441.	1.4	14
298	Fabrication and characterisation of protein fibril–elastomer composites. Acta Biomaterialia, 2010, 6, 1337-1341.	4.1	19
299	Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction. Applied Catalysis A: General, 2010, 380, 72-80.	2.2	196
300	Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes. Composites Science and Technology, 2010, 70, 343-349.	3.8	159
301	Investigation of carbon nanotube reinforced aluminum matrix composite materials. Composites Science and Technology, 2010, 70, 546-550.	3.8	214
302	Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon, 2010, 48, 1289-1297.	5.4	119
303	Production of a cellular structure in carbon nanotube/natural rubber composites revealed by nanomechanical mapping. Carbon, 2010, 48, 3708-3714.	5.4	50
304	Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper. Carbon, 2010, 48, 3916-3930.	5.4	47
305	Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. Carbon, 2010, 48, 4074-4080.	5.4	291
306	Single-walled carbon nanotube buckypaper and mesophase pitch carbon/carbon composites. Carbon, 2010, 48, 4276-4282.	5.4	32
307	Increasing the toughness of nylon 12 by the incorporation of functionalized graphene. Carbon, 2010, 48, 4309-4314.	5.4	131
308	Probing the presence and distribution of single-wall carbon nanotubes in polyvinylidene difluoride 1D nanocomposites by confocal Raman spectroscopy. Chemical Physics Letters, 2010, 484, 290-294.	1.2	19
309	Preparation and electrochemical properties of polyaniline doped with benzenesulfonic functionalized multi-walled carbon nanotubes. Electrochimica Acta, 2010, 55, 2311-2318.	2.6	44
310	Qualitative assessment of nanofiller dispersion in poly(ε-caprolactone) nanocomposites by mechanical testing, dynamic rheometry and advanced thermal analysis. European Polymer Journal, 2010, 46, 984-996.	2.6	33
311	Noncovalent functionalization of multiwalled carbon nanotubes using graft copolymer with naphthalene and its application as a reinforcing filler for poly(styreneâ€ <i>co</i> â€acrylonitrile). Journal of Polymer Science Part A, 2010, 48, 4184-4191.	2.5	35
312	The effect of different treatment methods of multiwalled carbon nanotubes on thermal and flexural properties of their epoxy nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1175-1184.	2.4	15
313	Selective distribution, reinforcement, and toughening roles of MWCNTs in immiscible polypropylene/ethyleneâ€ <i>co</i> â€vinyl acetate blends. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1882-1892.	2.4	23

#	Article	IF	CITATIONS
314	Functionalization of Carbon Nanotubes by Coronaâ€Discharge Induced Graft Polymerization for the Reinforcement of Epoxy Nanocomposites. Plasma Processes and Polymers, 2010, 7, 785-793.	1.6	43
315	Grafting polyamide 6 onto multi-walled carbon nanotubes using microwave irradiation. Polymer International, 2010, 59, 1346-1349.	1.6	10
316	Elastic Deformation of Carbonâ€Nanotube Nanorings. Small, 2010, 6, 1647-1655.	5.2	31
317	Mechanical Peeling of Freeâ€Standing Singleâ€Walled Carbonâ€Nanotube Bundles. Small, 2010, 6, 438-445.	5.2	52
318	Effect of cooling rate on the surface resistivity of polymer/multiâ€walled carbon nanotube nanocomposites. Polymer Engineering and Science, 2010, 50, 290-294.	1.5	9
319	On the possible developments for the structural materials relevant for future mobile devices. , 0, , 21-50.		1
320	Effective Modulus of Single- and Multi-Walled Carbon Nanotubes in Melt-Compounded Polycarbonate Nanocomposites. Advanced Composites Letters, 2010, 19, 096369351001900.	1.3	2
321	Carbon Nanotubes Reinforced Electrospun Polymer Nanofibres. , 0, , .		19
322	Debundling and Selective Enrichment of SWNTs for Applications in Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2010, 2010, 1-14.	1.4	19
323	Metal Nanoparticles and Carbon-Based Nanostructures as Advanced Materials for Cathode Application in Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2010, 2010, 1-15.	1.4	57
325	Adhesion-driven buckling of single-walled carbon nanotube bundles. Journal of Applied Physics, 2010, 107, 104305.	1.1	14
326	Morphology and thermal behavior of polymer/carbon nanotube composites. , 2010, , 529-562.		2
327	Fibre reinforced polymer composite materials for building and construction. , 2010, , 69-128.		17
328	The Curing Behavior and Properties of Diglycidyl Ether of 4,4′-Bis(4-hydroxybenzoyloxy)-3,3′,5,5′-tetramethylbiphenyl and its Composites with Multi-Wall Carbon Nanotubes. Polymer-Plastics Technology and Engineering, 2010, 49, 1428-1432.	1.9	7
330	Polymers Grafted to Singleâ€walled Carbon Nanotubes by Radical Polymerization. Macromolecular Symposia, 2010, 297, 18-24.	0.4	4
331	Hydrogenation of Multiâ€walled Carbon Nanotubes in Ethylenediamine. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 14-23.	1.0	13
332	Water-Dispersible Multi-Walled Carbon Nanotubes and Novel Hybrid Nanostructures. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2010, 40, 216-224.	0.6	9
333	Load transfer between cross-linked walls of a carbon nanotube. Physical Review B, 2010, 81, .	1.1	39

#	Article	IF	CITATIONS
335	High frequency carbon nanomechanical resonators embedded with carbon nanotube stiffening layers. Applied Physics Letters, 2010, 97, .	1.5	4
336	On Viscoelasticity in CNT-Reinforced Polymer Composites. , 2010, , .		0
337	Environmental, health, and safety effects of engineered nanomaterials: challenges and research needs. , 2010, , .		1
338	Stress Transfer and Fracture Mechanisms in Carbon Nanotube-Reinforced Polymer Nanocomposites. , 0, , 139-172.		0
339	Order–disorder transition induced by surfactant micelles in single-walled carbon nanotubes dispersions. Soft Matter, 2010, 6, 5289.	1.2	16
340	Nanocomposite Latex Films and Control of Their Properties. Springer Laboratory, 2010, , 213-259.	0.2	1
341	MWNTs/Polyester Thin Film Nanocomposite Membrane: An Approach To Overcome the Trade-Off Effect between Permeability and Selectivity. Journal of Physical Chemistry C, 2010, 114, 16395-16400.	1.5	116
342	A Promising Way To Enhance the Electrochemical Behavior of Flexible Single-Walled Carbon Nanotube/Polyaniline Composite Films. Journal of Physical Chemistry C, 2010, 114, 19614-19620.	1.5	103
343	Pyridine-Functionalized Single-Walled Carbon Nanotubes as Gelators for Poly(acrylic acid) Hydrogels. Journal of the American Chemical Society, 2010, 132, 15814-15819.	6.6	80
344	Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. Journal of Materials Chemistry, 2010, 20, 4409.	6.7	135
345	Towards free-standing graphene/carbon nanotube composite films via acetylene-assisted thermolysis of organocobalt functionalized graphene sheets. Chemical Communications, 2010, 46, 8279.	2.2	85
346	Single wall carbon nanotubes deposited on stainless steel sheet substrates as novel counter electrodes for ruthenium polypyridine based dye sensitized solar cells. Dalton Transactions, 2010, 39, 2903.	1.6	48
347	Dispersing Individual Single-Wall Carbon Nanotubes in Aqueous Surfactant Solutions below the cmc. Journal of Physical Chemistry C, 2010, 114, 2-9.	1.5	74
348	A versatile, solvent-free methodology for the functionalisation of carbon nanotubes. Chemical Science, 2010, 1, 603.	3.7	36
349	Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. Journal of Materials Chemistry, 2010, 20, 9635.	6.7	250
350	Influence of Alumina Type on the Evolution and Activity of Alumina-Supported Fe Catalysts in Single-Walled Carbon Nanotube Carpet Growth. ACS Nano, 2010, 4, 895-904.	7.3	201
351	Kevlar Functionalized Carbon Nanotubes for Next-Generation Composites. Chemistry of Materials, 2010, 22, 2164-2171.	3.2	42
352	An easy approach to encapsulating Fe3O4 nanoparticles in multiwalled carbon nanotubes. New Carbon Materials, 2010, 25, 192-198.	2.9	50

#	Article	IF	CITATIONS
353	Fabrication of Triacetylcelluloseâ^'SiO ₂ Nanocomposites by Surface Modification of Silica Nanoparticles. Langmuir, 2010, 26, 7555-7560.	1.6	41
354	Photopolymerized Lipids Self-Assembly for the Solubilization of Carbon Nanotubes. Journal of Physical Chemistry B, 2010, 114, 5718-5722.	1.2	18
355	Liquid-Crystal Phase Reinforced Carbon Nanotube Fibers. Journal of Physical Chemistry C, 2010, 114, 4923-4928.	1.5	15
356	Crystal-like Growth of a Metal Oxide/CNT Composite Fiber with Electroplated "Seed―from a CNT-Dispersed Nonaqueous Electrolyte. Langmuir, 2010, 26, 15701-15705.	1.6	4
357	Polymer-Derived Ceramic Composite Fibers with Aligned Pristine Multiwalled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2010, 2, 1150-1156.	4.0	53
358	SANS Investigation of Selectively Distributed Single-Walled Carbon Nanotubes in a Polymeric Lamellar Phase. Macromolecules, 2010, 43, 5411-5416.	2.2	15
359	Theoretical Investigations on the Healing of Monovacancies in Single-Walled Carbon Nanotubes by Adsorption of Carbon Monoxide. Journal of Physical Chemistry C, 2010, 114, 21322-21326.	1.5	8
360	The Differences in Surfactant Adsorption on Carbon Nanotubes and Their Bundles. Langmuir, 2010, 26, 899-907.	1.6	33
361	Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating: Effects of CNT morphology and dispersion state. Composites Part A: Applied Science and Manufacturing, 2010, 41, 539-548.	3.8	86
362	Curing effects of single-wall carbon nanotube reinforcement on mechanical properties of filled epoxy adhesives. Composites Part A: Applied Science and Manufacturing, 2010, 41, 729-736.	3.8	36
363	Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1345-1367.	3.8	2,787
364	Effect of thermal annealing on the electrical conductivity of high-strength bicomponent polymer tapes containing carbon nanofillers. Synthetic Metals, 2010, 160, 337-344.	2.1	37
365	Introduction to Carbon Nanotubes. , 2010, , 47-118.		26
366	<i>In situ</i> Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules, 2010, 43, 6716-6723.	2.2	629
367	Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Applied Materials & Interfaces, 2010, 2, 1707-1713.	4.0	681
368	Preparation of Amphiphilic Polymer-Functionalized Carbon Nanotubes for Low-Protein-Adsorption Surfaces and Protein-Resistant Membranes. ACS Applied Materials & Interfaces, 2010, 2, 3642-3647.	4.0	28
369	Integrated biomimetic carbon nanotube composites for in vivo systems. Nanoscale, 2010, 2, 2855.	2.8	35
370	Biodegradable Nanofibers-Reinforced Microfibrous Composite Scaffolds for Bone Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 3599-3609.	1.6	42

#	Article	IF	CITATIONS
371	Thermal and Tensile Properties of Epoxy Nanocomposites Reinforced by Silane-functionalized Multiwalled Carbon Nanotubes. Journal of Macromolecular Science - Physics, 2010, 49, 132-142.	0.4	10
372	Simple Approach for Preparation of Epoxy Hybrid Nanocomposites Based on Carbon Nanotubes and a Model Clay. Chemistry of Materials, 2010, 22, 3773-3778.	3.2	78
373	Use of Polyimide- <i>graft</i> -Bisphenol A Diglyceryl Acrylate as a Reactive Noncovalent Dispersant of Single-Walled Carbon Nanotubes for Reinforcement of Cyanate Ester/Epoxy Composite. Chemistry of Materials, 2010, 22, 6542-6554.	3.2	52
374	Fundamentals of Latex Film Formation. Springer Laboratory, 2010, , .	0.2	193
375	Tensile Strength and Young's Modulus of Polyisoprene/Single-Wall Carbon Nanotube Composites Increased by High Pressure Cross-linking Macromolecules, 2010, 43, 7680-7688.	2.2	33
376	Unzipped Multiwalled Carbon Nanotubes for Mechanical Reinforcement of Polymer Composites. Journal of Physical Chemistry C, 2010, 114, 19621-19628.	1.5	72
378	Covalent crosslinking of single-walled carbon nanotubes with poly(allylamine) to produce mechanically robust composites. Journal of Materials Chemistry, 2010, 20, 7941.	6.7	24
379	Quantifying the degree of nanofiller dispersion by advanced thermal analysis: application to polyester nanocomposites prepared by various elaboration methods. Journal of Materials Chemistry, 2010, 20, 9531.	6.7	22
380	Diffusion of vitamin B <inf>12</inf> in gellan gum-carbon nanotube hydrogels. , 2010, , .		1
381	Controlling the wettability properties of polyester fibers using grafted functional nanomaterials. Journal of Materials Chemistry, 2011, 21, 10304.	6.7	31
382	Journal of Materials Chemistry: Developing to serve the materials chemistry community. Journal of Materials Chemistry, 2011, 21, 17-19.	6.7	1
383	Polyolefin–carbon nanotube composites by in-situ polymerization. , 2011, , 3-24.		3
384	Preparation of high performance conductive polymer fibres from double percolated structure. Journal of Materials Chemistry, 2011, 21, 6401.	6.7	71
385	Functionalization of carbon nanotubes for polymer nanocomposites. , 2011, , 55-91.		3
386	Stretch-Modulated Carbon Nanotube Alignment in Ferroelectric Polymer Composites: Characterization of the Orientation State and Its Influence on the Dielectric Properties. Journal of Physical Chemistry C, 2011, 115, 20011-20017.	1.5	72
387	Modeling of Ostwald Ripening of Metal Clusters Attached to Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 24454-24462.	1.5	12
388	Interface Applications in Nanomaterials. Interface Science and Technology, 2011, 18, 333-429.	1.6	2
389	Isolated single-walled carbon nanotubes in a gel as a molecular reservoir and its application to controlled drug release triggered by near-IR laser irradiation. Soft Matter, 2011, 7, 2647	1.2	19

#	Article	IF	Citations
390	Role of Different Nanoparticles in Elastomeric Nanocomposites. Advanced Structured Materials, 2011, , 3-55.	0.3	6
391	Characterizing the viscoelastic properties of layer-by-layer carbon nanotube–polyelectrolyte thin films. Smart Materials and Structures, 2011, 20, 075020.	1.8	7
392	Physical properties of poly(vinylidene fluoride) composites with polymer functionalized multiwalled carbon nanotubes using nitrene chemistry. Journal of Materials Chemistry, 2011, 21, 15752.	6.7	64
393	Poly(butylene terephthalate) - Synthesis, Properties, Application. , 0, , 127-180.		6
394	Tunable mechanical properties of self-assembled SWNT/polymer nanocomposite films for MEMS. , 2011, , .		1
395	Nanotechnology Research Directions for Societal Needs in 2020. , 2011, , .		202
396	CHEMISTRY OF VERTICALLY-ALIGNED CARBON NANOTUBES. , 2011, , 219-243.		0
397	First Principles Studies of the Effect of Ostwald Ripening on Carbon Nanotube Chirality Distributions. ACS Nano, 2011, 5, 771-779.	7.3	27
399	A Facile Route to Isotropic Conductive Nanocomposites by Direct Polymer Infiltration of Carbon Nanotube Sponges. ACS Nano, 2011, 5, 4276-4283.	7.3	58
400	Evaluation of affinity of molecules for carbon nanotubes. Nanoscale, 2011, 3, 2517.	2.8	97
401	Pre-hydrolysed ethyl silicate as an alternative precursor for SiO2-coated carbon nanofibers. Applied Surface Science, 2011, 258, 1212-1216.	3.1	9
402	Review of the mechanical properties of carbon nanofiber/polymer composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 2126-2142.	3.8	383
403	Micro-infiltration of three-dimensional porous networks with carbon nanotube-based nanocomposite for material design. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1910-1919.	3.8	12
404	Strong and bioactive gelatin–graphene oxide nanocomposites. Soft Matter, 2011, 7, 6159.	1.2	144
405	Physics and applications of aligned carbon nanotubes. Advances in Physics, 2011, 60, 553-678.	35.9	128
406	PVK/MWNT Electrodeposited Conjugated Polymer Network Nanocomposite Films. ACS Applied Materials & amp; Interfaces, 2011, 3, 2300-2308.	4.0	45
407	Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement. Physical Chemistry Chemical Physics, 2011, 13, 518-529.	1.3	94
409	Solvent-Free Preparation of High-Toughness Epoxyâ^'SWNT Composite Materials. ACS Applied Materials & Interfaces, 2011, 3, 1441-1450.	4.0	70

#	Article	IF	CITATIONS
410	Sidewall alkylcarboxylation of carbon nanotubes through reactions of fluoronanotubes with functional free radicals. Russian Chemical Bulletin, 2011, 60, 2212-2221.	0.4	2
411	Multidirectional Hierarchical Nanocomposites Made by Carbon Nanotube Growth within Layer-by-Layer-Assembled Films. Chemistry of Materials, 2011, 23, 1023-1031.	3.2	21
412	Poly(vinyl alcohol) Nanocomposites with Nanodiamond. Macromolecules, 2011, 44, 4415-4421.	2.2	222
413	Manufacturing and characterization of carbon fibre/epoxy composite prepregs containing carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1412-1420.	3.8	92
414	The Improvement of Wettability, Mechanical and Thermo-mechanical Performances of PBO Fiber/Epoxy Composites by Adding Reactive Carbon Nanotubes. Polymers and Polymer Composites, 2011, 19, 391-396.	1.0	3
415	Development of Tunable Nanocomposites Made from Carbon Nanotubes for Electrochemical Applications. , 2011, , .		2
417	Characterization of Nanotube- Reinforced Polymer Composites. , 0, , .		5
419	Functionalization of Carbon Nanotubes. , 0, , .		43
420	Water dispersibility of gluconate functionalised multiwalled carbon nanotubes and facile strategy for construction of hybrid nanostructures. Materials Technology, 2011, 26, 80-86.	1.5	0
422	Mechanical and Electrical Properties of Multiwalled <scp>CNT</scp> â€Alumina Nanocomposites Prepared by a Sequential Twoâ€Step Processing of Ultrasonic Spray Pyrolysis and Spark Plasma Sintering. Journal of the American Ceramic Society, 2011, 94, 3774-3779.	1.9	62
423	Carbon nanotube integrated 3-dimensional carbon microelectrode array by modified SU-8 photoresist photolithography and pyrolysis. Thin Solid Films, 2011, 520, 1041-1047.	0.8	16
424	Multifilament fibres of poly(É-caprolactone)/poly(lactic acid) blends with multiwalled carbon nanotubes as sensor materials for ethyl acetate and acetone. Sensors and Actuators B: Chemical, 2011, 160, 22-31.	4.0	28
425	Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes. Polymer, 2011, 52, 3835-3845.	1.8	156
426	High performance polyimide composite films prepared by homogeneity reinforcement of electrospun nanofibers. Composites Science and Technology, 2011, 71, 1556-1562.	3.8	87
427	Electrical and dielectric properties of polypropylene nanocomposites based on carbon nanotubes and barium titanate nanoparticles. Composites Science and Technology, 2011, 71, 1706-1712.	3.8	75
428	Epoxy composite sheets with a large interfacial area from a high surface area-supplying single-walled carbon nanotube scaffold filler. Carbon, 2011, 49, 5090-5098.	5.4	33
429	Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites. Nanotechnology, 2011, 22, 275714.	1.3	122
430	Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics. , 2011, , 279-354.		7

#	Article	IF	CITATIONS
431	Epoxy-amine composites with ultralow concentrations of single-layer carbon nanotubes. Polymer Science - Series A, 2011, 53, 502-509.	0.4	14
432	Noncovalent Functionalization of SWNTs with Azobenzene-Containing Polymers: Solubility, Stability, and Enhancement of Photoresponsive Properties. Journal of Physical Chemistry C, 2011, 115, 4533-4539.	1.5	59
433	Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers. Journal of Materials Science, 2011, 46, 659-669.	1.7	83
434	Carbon Nanotube/Carbon Fiber Multiscale Composite: Influence of Interfacial Strength on Mechanical Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 937-940.	1.9	16
435	New poly (urethane-methacrylate)s obtained by adjusting the structure of the polyols moieties: synthesis, transparent, thermal and mechanical properties. Journal of Polymer Research, 2011, 18, 833-841.	1.2	10
436	Crystallinity of biodegradable polymers reinforced with functionalized carbon nanotubes. Journal of Polymer Research, 2011, 18, 1249-1259.	1.2	27
437	Synthesis and characterization of "mulberry―like Fe3O4/multiwalled carbon nanotube nanocomposites. Journal of Nanoparticle Research, 2011, 13, 5457-5464.	0.8	7
438	Synthesis of novel single-walled carbon nanotubes/poly (p-phenylene benzobisoxazole) nanocomposite. Polymer Bulletin, 2011, 67, 1731-1739.	1.7	8
439	Electrically conductive carbon nanofiber/polyethylene composite: effect of melt mixing conditions. Polymers for Advanced Technologies, 2011, 22, 246-253.	1.6	32
440	Uncrossâ€linked polypropylene (PP)/ethyleneâ€propyleneâ€diene (EPDM)/multi walled carbon nanotube (MWCNT) and dynamically vulcanized PP/EPDM/MWCNT nanocomposites. Polymers for Advanced Technologies, 2011, 22, 2273-2278.	1.6	21
441	Electrospun nanofibers for enhancing structural performance of composite materials. Polymers for Advanced Technologies, 2011, 22, 339-349.	1.6	171
442	Development of conductive network of multiwalled carbon nanotubes in polycarbonate melt. Polymer Composites, 2011, 32, 97-102.	2.3	33
443	Multiâ€scale hybrid compositesâ€based carbon nanotubes. Polymer Composites, 2011, 32, 159-167.	2.3	26
444	Effect of the resin/hardener ratio on curing, structure and glass transition temperature of nanofilled epoxies. Polymer Composites, 2011, 32, 1034-1048.	2.3	25
445	Effects of carbon nanotubes on glass transition and crystallization behaviors in immiscible polystyrene/polypropylene blends. Polymer Engineering and Science, 2011, 51, 585-591.	1.5	12
446	Thermal properties of polypropylene nanocomposites: Effects of carbon nanomaterials and processing. Polymer Engineering and Science, 2011, 51, 460-473.	1.5	3
447	Polypropylene nanocomposites with various functionalizedâ€multiwalled nanotubes: thermomechanical properties, morphology, gas permeation, and optical transparency. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 244-254.	2.4	8
448	Nanocomposites of polyamideâ€11 and carbon nanostructures: Development of microstructure and ultimate properties following solution processing. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1311-1321.	2.4	46

# 449	ARTICLE Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polymer International, 2011, 60, 816-822.	IF 1.6	CITATIONS 270
450	Synthesis of pyrene apped polystyrene for dispersion of pristine singleâ€walled carbon nanotubes. Polymer International, 2011, 60, 1425-1433.	1.6	24
451	Preparation, structure and properties of thermoplastic olefin nanocomposites containing functionalized carbon nanotubes. Polymer International, 2011, 60, 1629-1637.	1.6	29
452	Extensionâ€induced mechanical reinforcement in meltâ€spun fibers of polyamide 66/multiwalled carbon nanotube composites. Polymer International, 2011, 60, 1646-1654.	1.6	30
453	Macroscopic Carbon Nanotube Assemblies: Preparation, Properties, and Potential Applications. Small, 2011, 7, 1504-1520.	5.2	291
454	Semiconducting Singleâ€Walled Carbon Nanotubes as Radical Photoinitiators. Macromolecular Chemistry and Physics, 2011, 212, 1469-1473.	1.1	12
455	Thermoplastic Polyurethane Nanocomposites Produced via Impregnation of Long Carbon Nanotube Forests. Macromolecular Materials and Engineering, 2011, 296, 53-58.	1.7	13
456	Poly(propylene)/Carbon Nanofiber Nanocomposites: Ex Situ Solventâ€Assisted Preparation and Analysis of Electrical and Electronic Properties. Macromolecular Materials and Engineering, 2011, 296, 434-443.	1.7	74
457	Fabrication of Nanofillers into a Granular "Nanosupport―for Zieglerâ€Natta Catalysts: Towards Scalable in situ Preparation of Polyolefin Nanocomposites. Macromolecular Rapid Communications, 2011, 32, 1052-1059.	2.0	19
458	Carbon Nanomaterials for Dye ensitized Solar Cell Applications: A Bright Future. Advanced Energy Materials, 2011, 1, 472-485.	10.2	196
459	Flammability of thermoplastic carbon nanofiber nanocomposites. Fire and Materials, 2011, 35, 43-60.	0.9	14
460	Effect of carbon nanotube purification on the electrical and mechanical properties of poly(ethylene) Tj ETQq1 1 0. Science, 2011, 119, 3360-3371.	784314 rg 1.3	gBT /Overloo 21
461	Effect of the viscosity and processing parameters on the surface resistivity of polypropylene/multiwalled carbon nanotube and ethylene–propylene–diene/multiwalled carbon nanotube nanocomposites. Journal of Applied Polymer Science, 2011, 120, 95-100.	1.3	9
462	Layerâ€structured poly(vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties. Journal of Applied Polymer Science, 2011, 120, 1355-1360.	1.3	67
463	Comparison of rheological properties of carbon nanotube/polycarbonate and carbon black/polycarbonate composites. Journal of Applied Polymer Science, 2011, 121, 1040-1051.	1.3	17
464	Strengthening and toughening of thermoplastic polyolefin elastomer using polypropyleneâ€grafted multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2011, 121, 2104-2112.	1.3	24
465	Crystallization behavior of polyamide 11/multiwalled carbon nanotube composites. Journal of Applied Polymer Science, 2011, 122, 551-560.	1.3	27
466	Properties and degradation behavior of surface functionalized MWCNT/poly(<scp>L</scp> â€lactideâ€coâ€iµâ€caprolactone) biodegradable nanocomposites. Journal of Applied Polymer Science, 2011, 122, 3133-3144.	1.3	8

#	Article	IF	CITATIONS
467	Supramolecular bionanocomposites 3: Effects of surface functionality on electrical and mechanical percolation. Journal of Applied Polymer Science, 2011, 122, 2563-2572.	1.3	12
468	Directed assembly of carbon nanocones into wires with an epoxy coating in thin films by a combination of electric field alignment and subsequent pyrolysis. Carbon, 2011, 49, 3171-3178.	5.4	8
469	Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 2011, 49, 3274-3283.	5.4	45
470	The strain sensing and thermal–mechanical behavior of flexible multi-walled carbon nanotube/polystyrene composite films. Carbon, 2011, 49, 3928-3936.	5.4	57
471	Direct measurements of interfacial shear strength of multi-walled carbon nanotube/PEEK composite using a nano-pullout method. Composites Science and Technology, 2011, 71, 1295-1300.	3.8	122
472	On the role of the filament length distribution in the mechanics of semiflexible networks. Acta Biomaterialia, 2011, 7, 2109-2118.	4.1	27
473	Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination, 2011, 272, 46-50.	4.0	221
474	Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon, 2011, 49, 1919-1930.	5.4	230
475	Dispersion, hybrid interconnection and heat dissipation properties of functionalized carbon nanotubes in epoxy composites for electrically conductive adhesives (ECAs). Microelectronics Reliability, 2011, 51, 812-818.	0.9	32
476	Synthesis of multi-wall carbon nanotubes by Ni-substituted (loading) MCM-41 mesoporous molecular sieve catalyzed pyrolysis of ethanol. Journal of Industrial and Engineering Chemistry, 2011, 17, 218-222.	2.9	17
477	A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science, 2011, 36, 638-670.	11.8	1,055
478	Graphene-based polymer nanocomposites. Polymer, 2011, 52, 5-25.	1.8	2,746
479	Crystallization and unusual rheological behavior in poly(ethylene oxide)–clay nanocomposites. Polymer, 2011, 52, 2221-2227.	1.8	32
480	Multiwalled Carbon Nanotube/Polysulfone Composites. Journal of Thermoplastic Composite Materials, 2011, 24, 499-515.	2.6	14
481	Mechanical properties of polymer–polymer-grafted carbon nanotube composites. , 2011, , 347-375.		4
483	Effect of Surfactants on the Dispersion of Multi-Walled Carbon Nanotubes in Epoxy Resin. Advanced Materials Research, 0, 221, 1-7.	0.3	3
484	The use of polymer–carbon nanotube composites in fibres. , 2011, , 657-675.		6
487	Epoxy-Layered Silicate and Epoxy MWCNTs Nanocomposites. Applied Mechanics and Materials, 0, 146, 160-169.	0.2	10

#	Article	IF	CITATIONS
488	Poly(vinylidene Fluoride)/Microcrystalline Cellulose Nanocomposites with Enhanced Compatibility and Properties. Key Engineering Materials, 0, 471-472, 355-360.	0.4	6
489	Natural rubber/carbon black/carbon nanotubes composites prepared through ultrasonic assisted latex mixing process. Plastics, Rubber and Composites, 2011, 40, 32-39.	0.9	46
490	Thermal degradation of polymer–carbon nanotube composites. , 2011, , 482-510.		9
491	Electron Beam Curing of Epoxide Modified MWNTs/Epoxy Composites. Materials Science Forum, 2011, 688, 69-73.	0.3	0
492	Fabrication of high aspect ratio carbon nanotube-carbon composite microstructures based on silicon molding technique. , 2011, , .		1
493	Thermal and Mechanical Characterizations of Nanomaterial-Modified Adhesive Used in Bonding CFRP to Concrete. Journal of Adhesion, 2011, 87, 842-857.	1.8	11
494	Introduction of Multiple Hydrogen Bonding for Enhanced Mechanical Performance of Polymer-Carbon Nanotube Composites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 1016-1021.	1.2	12
495	Effects of Deformation and Aging on Microstructure and Performances of CuSn ₁₀ Zn ₂ FeCo Alloy by Centrifugal Casting. Materials Science Forum, 0, 688, 62-68.	0.3	0
496	Enhancing Crystallinity and Orientation by Hot-Stretching to Improve the Mechanical Properties of Electrospun Partially Aligned Polyacrylonitrile (PAN) Nanocomposites. Materials, 2011, 4, 621-632.	1.3	64
497	Studies on Thermal Conductivity of MWNTs/EPDM Composites by the Heat Probe Method. Applied Mechanics and Materials, 0, 184-185, 1221-1225.	0.2	0
498	Current Advances in the Carbon Nanotube/Thermotropic Main-Chain Liquid Crystalline Polymer Nanocomposites and Their Blends. Polymers, 2012, 4, 889-912.	2.0	54
499	Self-Healing Materials Systems: Overview of Major Approaches and Recent Developed Technologies. Advances in Materials Science and Engineering, 2012, 2012, 1-17.	1.0	126
500	Damping Properties of Cups-Stacked Carbon Nanotubes (CSCNTs)/RTM6 Composites. Advanced Materials Research, 2012, 535-537, 210-213.	0.3	0
501	Fabrication, Morphologies and Mechanical Properties of Carbon Nanotube Based Polymer Nanocomposites. , 2012, , 225-250.		1
502	Branched carbon nanotube reinforcements for improved strength of polyethylene nanocomposites. Applied Physics Letters, 2012, 101, .	1.5	16
503	In Situ Synthetized Silver/Epoxy Nanocomposites: Electrical Characterization in Terms of Dielectric Relaxation Spectroscopy. Macromolecular Symposia, 2012, 321-322, 112-117.	0.4	6
504	Pull-In Analysis of a Nonlinear Viscoelastic Nanocomposite Microplate Under an Electrostatic Actuation. Journal of Mechanics, 2012, 28, 179-189.	0.7	3
505	Analysis of nanoâ€reinforced layered plates via classical and refined twoâ€dimensional theories. Multidiscipline Modeling in Materials and Structures, 2012, 8, 4-31.	0.6	15

#	Article	IF	CITATIONS
506	Nonlinear Vibration Response Analysis on a Composite Plate Reinforced With Carbon Nanotubes. , 2012, , .		0
507	Carbon nanotube induced structure and phase evolution in polypropylene crystallised at elevated pressures: effect on physical properties. Materials Technology, 2012, 27, 289-294.	1.5	2
508	Molecular response of polyethylene nanocomposites to high velocity impact: a Raman observation. Nanomaterials and Energy, 2012, 1, 107-110.	0.1	12
510	Functionalization of Carbon Nanotubes with Ionic Liquids. , 2012, , 399-434.		2
511	Dispersion monitoring of carbon nanotube modified epoxy systems. Proceedings of SPIE, 2012, , .	0.8	2
512	Functionalization of unzipped carbon nanotube via in situ polymerization for mechanical reinforcement of polymer. Journal of Materials Chemistry, 2012, 22, 17663.	6.7	23
513	Controlling the doping of single-walled carbon nanotube networks by proton irradiation. Applied Physics Letters, 2012, 101, 103111.	1.5	4
514	A polymer/solvent synergetic effect to improve the solubility of modified multi-walled carbon nanotubes. Journal of Materials Chemistry, 2012, 22, 7020.	6.7	13
515	Mechanical and electrical properties of poly(vinyl chloride) loaded with carbon nanotubes and carbon nanopowder. Journal of Thermoplastic Composite Materials, 2012, 25, 679-699.	2.6	24
516	Exploiting high quality PEDOT:PSS–SWNT composite formulations for wet-spinning multifunctional fibers. Journal of Materials Chemistry, 2012, 22, 25174.	6.7	58
517	Covalent cum Noncovalent Functionalizations of Carbon Nanotubes for Effective Reinforcement of a Solution Cast Composite Film. ACS Applied Materials & amp; Interfaces, 2012, 4, 2065-2073.	4.0	33
518	SiO ₂ /MgO coated multiwalled carbon nanotubes in polymer composites. Physica Status Solidi (B): Basic Research, 2012, 249, 2333-2336.	0.7	2
519	Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Progress in Polymer Science, 2012, 37, 1425-1455.	11.8	355
520	Structures, electrical, and dielectric properties of PVDF-based nanocomposite films reinforced with neat multi-walled carbon nanotube. Macromolecular Research, 2012, 20, 920-927.	1.0	47
521	Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization. Journal of the Iranian Chemical Society, 2012, 9, 877-887.	1.2	34
523	Mechanical properties of carbon nanotube–PMMA based hybrid coatings: the importance of surface chemistry. RSC Advances, 2012, 2, 2462.	1.7	23
524	Unusual reinforcement of silicone rubber compounds containing mesoporous silica particles as inorganic fillers. Physical Chemistry Chemical Physics, 2012, 14, 3400.	1.3	42
525	Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers. Physical Chemistry Chemical Physics, 2012, 14, 7427.	1.3	49

#	Article	IF	CITATIONS
526	A templating effect of carbon nanomaterials on the synthesis of Pd nanoparticles by covalent grafting onto surface O-groups. Journal of Materials Chemistry, 2012, 22, 14479.	6.7	16
527	Effects of multivalent counterions on the morphology and interactions of polyelectrolyte chains grafted on carbon nanotubes. Soft Matter, 2012, 8, 660-666.	1.2	7
528	Structural, Dynamical, and Thermodynamical Properties of Carbon Nanotube Polycarbonate Composites: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2012, 116, 3083-3091.	1.2	20
529	Importance of Capillary Forces in the Assembly of Carbon Nanotubes in a Polymer Colloid Lattice. Langmuir, 2012, 28, 8266-8274.	1.6	8
530	One-pot preparation and continuous spinning of carbon nanotube/poly(p-phenylene benzobisoxazole) copolymer fibers. Journal of Materials Chemistry, 2012, 22, 19863.	6.7	49
531	Direct grafting of carbon nanotubes with ethylenediamine. Journal of Materials Chemistry, 2012, 22, 21242.	6.7	10
532	Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: structures, properties and application. Nanoscale, 2012, 4, 6118.	2.8	95
533	Properties and Applications of Aligned Carbon Nanotube Arrays. Nanoscience and Technology, 2012, , 183-253.	1.5	0
534	Mechanical property enhancement of kinetic sprayed Al coatings reinforced by multi-walled carbon nanotubes. Acta Materialia, 2012, 60, 5031-5039.	3.8	29
535	Effect of percolation on the electrical conductivity of amino molecules non-covalently coated multi-walled carbon nanotubes/epoxy composites. Applied Surface Science, 2012, 258, 8492-8497.	3.1	32
536	Manufacturing composite beams reinforced with three-dimensionally patterned-oriented carbon nanotubes through microfluidic infiltration. Materials & Design, 2012, 41, 214-225.	5.1	12
537	A new silver(I)-selective electrode based on derivatized MWCNTs@SiO2 nanocomposites as a neutral carrier. Materials Science and Engineering C, 2012, 32, 1352-1357.	3.8	15
538	Cooperative deformation of carboxyl groups in functionalized carbon nanotubes. International Journal of Solids and Structures, 2012, 49, 2418-2423.	1.3	14
539	Thickness, stability and contact angle of liquid films on and inside nanofibres, nanotubes and nanochannels. Journal of Colloid and Interface Science, 2012, 384, 149-156.	5.0	46
540	Poly(vinyl alcohol) reinforced with large-diameter carbon nanotubes via spray winding. Composites Part A: Applied Science and Manufacturing, 2012, 43, 587-592.	3.8	30
541	Effect of pyrene-modified multiwalled carbon nanotubes on the properties of epoxy composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1032-1037.	3.8	22
542	A novel optical technique for observation of global particle distribution in toughened composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1523-1529.	3.8	2
543	Reinforcing epoxy nanocomposites with functionalized carbon nanotubes via biotin–streptavidin interactions. Composites Science and Technology, 2012, 72, 1387-1395.	3.8	31

#	Article	IF	CITATIONS
544	Pyrene-POSS nanohybrid as a dispersant for carbon nanotubes in solvents of various polarities: its synthesis and application in the preparation of a composite membrane. Nanoscale Research Letters, 2012, 7, 296.	3.1	37
545	Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties. Nanotechnology, 2012, 23, 285702.	1.3	14
546	Fabrication of a multifunctional carbon nanotube "cotton―yarn by the direct chemical vapor deposition spinning process. Nanoscale, 2012, 4, 5614.	2.8	34
547	Functionalized Carbon Nanotubes and Their Enhanced Polymers. , 2012, , 439-478.		5
548	Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon, 2012, 50, 5380-5386.	5.4	537
549	Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity. Journal of Materials Chemistry, 2012, 22, 903-908.	6.7	91
550	Thermal and Mechanical Properties of Epoxy/Carbon Fiber Composites Reinforced with Multi-walled Carbon Nanotubes. Journal of Macromolecular Science - Physics, 2012, 51, 358-367.	0.4	29
553	Double Stimuli-Responsive Copolymer Stabilizers for Multiwalled Carbon Nanotubes. ACS Macro Letters, 2012, 1, 84-87.	2.3	72
554	Utilizing real and statistically reconstructed microstructures for the viscoelastic modeling of polymer nanocomposites. Composites Science and Technology, 2012, 72, 1725-1732.	3.8	40
555	Tunable mechanical properties of layer-by-layer self-assembled carbon nanotube/polymer nanocomposite membranes for M/NEMS. Sensors and Actuators A: Physical, 2012, 185, 101-108.	2.0	17
556	Solvent exfoliated graphene for reinforcement of PMMA composites prepared by in situ polymerization. Materials Chemistry and Physics, 2012, 136, 43-50.	2.0	50
557	Superior Reinforcement Effect of TEMPO-Oxidized Cellulose Nanofibrils in Polystyrene Matrix: Optical, Thermal, and Mechanical Studies. Biomacromolecules, 2012, 13, 2188-2194.	2.6	148
558	Oxygen Radical Functionalization of Boron Nitride Nanosheets. Journal of the American Chemical Society, 2012, 134, 18758-18771.	6.6	464
559	Noncovalent Functionalization of Multiwalled Carbon Nanotube by a Polythiophene-Based Compatibilizer: Reinforcement and Conductivity Improvement in Poly(vinylidene fluoride) Films. Journal of Physical Chemistry C, 2012, 116, 9360-9371.	1.5	74
560	Interface molecular engineering of single-walled carbon nanotube/epoxy composites. Journal of Materials Chemistry, 2012, 22, 1928-1936.	6.7	40
561	Surfactant-Based Dispersant for Multiwall Carbon Nanotubes to Prepare Ceramic Composites by a Sol–Gel Method. Langmuir, 2012, 28, 1447-1452.	1.6	27
562	Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. Journal of Materials Chemistry, 2012, 22, 7050.	6.7	63
563	Optimizing electrophoretic deposition conditions for enhancement in electrical conductivity of carbon fiber/carbon nanotube/epoxy hybrid composites. Journal of Central South University, 2012, 19, 3017-3022	1.2	2

#	Article	IF	CITATIONS
565	The origin of the electric and dielectric behavior of expanded graphite–carbon nanotube/cyanate ester composites with very high dielectric constant and low dielectric loss. Carbon, 2012, 50, 4995-5007.	5.4	94
566	Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology. Jom, 2012, 64, 793-801.	0.9	18
567	Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: a review. International Journal of Energy and Environmental Engineering, 2012, 3, 32.	1.3	98
568	Nanostructured multi-walled carbon nanotubes derivate based on carbon paste electrode for potentiometric detection of Ag+ ions. Analytical Methods, 2012, 4, 454.	1.3	12
569	Unzipped Multiwalled Carbon Nanotube Oxide/Multiwalled Carbon Nanotube Hybrids for Polymer Reinforcement. ACS Applied Materials & Interfaces, 2012, 4, 5956-5965.	4.0	48
570	Large-Scale Production of PMMA/SWCNT Composites Based on SWCNT Modified with PMMA. ACS Applied Materials & Interfaces, 2012, 4, 1990-1997.	4.0	24
571	Formation of "fuzzy―phases with high proton conductivities in the composites of polyphosphoric acid and metal oxide nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 11135.	1.3	7
572	Green Solvents II. , 2012, , .		48
573	Improvement of Mechanical Properties and Ultraviolet Resistance of Polyethylene Pipe Materials Using High Density Polyethylene Matrix Grafted Carbon Black. Journal of Macromolecular Science - Physics, 2012, 51, 298-312.	0.4	7
574	Ultrahigh Torsional Stiffness and Strength of Boron Nitride Nanotubes. Nano Letters, 2012, 12, 6347-6352.	4.5	72
575	Long-Term Durability of Polymeric Matrix Composites. , 2012, , .		32
576	Conducting composite materials from the biopolymer kappa-carrageenan and carbon nanotubes. Beilstein Journal of Nanotechnology, 2012, 3, 415-427.	1.5	21
577	Molecular Simulations on Interfacial Sliding of Carbon Nanotube Reinforced Alumina Composites. , 2012, , .		0
578	Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites. Materials Research, 2012, 15, 510-516.	0.6	33
579	Integrated Biomimemic Carbon Nanotube Composites for Biomedical Applications. , 0, , .		2
580	Improved polyvinylpyrrolidone (PVP)/graphite nanocomposites by solution compounding and spray drying. Polymers for Advanced Technologies, 2012, 23, 652-659.	1.6	35
581	Morphology and mechanical property changes in compatibilized high density polyethylene/polyamide 6 nanocomposites induced by carbon nanotubes. Polymer International, 2012, 61, 1334-1343.	1.6	18
582	Superior reinforcement in polyamide 1010/multiwalled carbon nanotube composites realized by highâ€rate drawing and incorporation of compatibilizer. Polymer International, 2012, 61, 1400-1410.	1.6	4

#	Article	IF	CITATIONS
583	Synthesis and characterization of pyrene bearing amphiphilic miktoarm star polymer and its noncovalent interactions with multiwalled carbon nanotubes. Journal of Polymer Science Part A, 2012, 50, 2406-2414.	2.5	28
584	Influence of multiwall carbon nanotubes on morphological and structural changes during UV irradiation of syndiotactic polypropylene films. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 963-975.	2.4	20
585	Matrixâ€polymerâ€functionalized multiwalled carbon nanotubes as a highly efficient toughening agent for matrix polymers. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1151-1155.	2.4	10
586	Nanoscale Robust Architecture of Organic–Inorganic Hybrid Materials Comprising Different Forms of Nanostructured Carbon. Macromolecular Chemistry and Physics, 2012, 213, 1321-1329.	1.1	5
587	Ethyleneâ€vinyl acetate copolymer/multiwalled carbon nanotube/organoclay nanocomposites. Polymer Composites, 2012, 33, 484-488.	2.3	2
588	Study on the photoinduced electronâ€transfer activity of poly(<i>p</i> â€phenylene) Tj ETQq1 1 0.784314 rgBT polymerization. Polymer Composites, 2012, 33, 1295-1301.	/Overlock 2.3	10 Tf 50 547 5
589	Effect of maleic anhydride grafted polypropylene compatibilizer on the morphology and properties of polypropylene/multiwalled carbon nanotube composite. Polymer Composites, 2012, 33, 1376-1386.	2.3	38
590	The rheological, thermostable, and mechanical properties of polypropylene/fullerene C ₆₀ nanocomposites with improved interfacial interaction. Polymer Engineering and Science, 2012, 52, 1457-1463.	1.5	12
591	Filler reaggregation and network formation time scale in extruded highâ€density polyethylene/multiwalled carbon nanotube composites. Polymer Engineering and Science, 2012, 52, 1761-1774.	1.5	8
592	Ultrahigh Electrical Resistance of Poly(cyclohexyl methacrylate)/Carbon Nanotube Composites Prepared Using Surfaceâ€Initiated Polymerization. Advanced Functional Materials, 2012, 22, 2338-2344.	7.8	38
593	The preparation, structures, and properties of poly(vinylidene fluoride)/multiwall carbon nanotubes nanocomposites. Journal of Applied Polymer Science, 2012, 125, E592.	1.3	19
594	Preparation and properties of polyurethane/multiwalled carbon nanotube nanocomposites by a spray drying process. Journal of Applied Polymer Science, 2012, 126, 789-795.	1.3	8
595	Effect of annealing treatment on the structure and properties of polyurethane/multiwalled carbon nanotube nanocomposites. Journal of Applied Polymer Science, 2012, 126, 845-852.	1.3	25
596	Poly(trimethylene terephthalateâ€ <i>block</i> â€ŧetramethylene oxide) elastomer/singleâ€walled carbon nanotubes nanocomposites: Synthesis, structure, and properties. Journal of Applied Polymer Science, 2012, 126, 796-807.	1.3	28
597	Nanocarbon Composites and Hybrids in Sustainability: A Review. ChemSusChem, 2012, 5, 456-478.	3.6	157
598	In vitro degradation of poly(l-lactide)/poly(ε-caprolactone) blend reinforced with MWCNTs. Iranian Polymer Journal (English Edition), 2012, 21, 165-174.	1.3	6
599	Microstructure of low temperature processed CNFs/glass nanocomposites. Journal of Materials Science, 2012, 47, 5169-5180.	1.7	4
600	Preparation and tribological properties of graphene/poly(ether ether ketone) nanocomposites. Journal of Materials Science, 2012, 47, 6436-6443.	1.7	72

#	Article	IF	CITATIONS
601	Enhanced mechanical and photoluminescence effect of poly(l-lactide) reinforced with functionalized multiwalled carbon nanotubes. Polymer Bulletin, 2012, 68, 1747-1763.	1.7	17
602	Increased response/recovery lifetimes and reinforcement of polyaniline nanofiber films using carbon nanotubes. Carbon, 2012, 50, 1447-1454.	5.4	29
603	Electrical and mechanical characteristics of buckypapers and evaporative cast films prepared using single and multi-walled carbon nanotubes and the biopolymer carrageenan. Carbon, 2012, 50, 1197-1208.	5.4	41
604	The hierarchical structure and properties of multifunctional carbon nanotube fibre composites. Carbon, 2012, 50, 1227-1234.	5.4	68
605	Multifunctional materials based on iron/iron oxide-filled carbon nanotubes/natural rubber composites. Carbon, 2012, 50, 4685-4695.	5.4	31
606	Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids and Surfaces B: Biointerfaces, 2012, 93, 226-234.	2.5	177
607	Toughening and reinforcement of poly(vinylidene fluoride) nanocomposites with "bud-branched― nanotubes. Composites Science and Technology, 2012, 72, 263-268.	3.8	17
608	Influence of single wall carbon nanotubes and thermal treatment on the morphology of polymer thin films. Composites Science and Technology, 2012, 72, 421-427.	3.8	16
609	Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chemical Physics Letters, 2012, 531, 6-10.	1.2	326
610	Classical and refined shell models for the analysis of nano-reinforced structures. International Journal of Mechanical Sciences, 2012, 55, 104-117.	3.6	17
611	Template effect of hydrolysis of the catalyst precursor on growth of carbon nanotube arrays. Journal of Colloid and Interface Science, 2012, 374, 34-39.	5.0	1
612	Layer-by-layer self-assembly and electrochemistry: Applications in biosensing and bioelectronics. Biosensors and Bioelectronics, 2012, 31, 1-10.	5.3	201
613	Unzipped multiwalled carbon nanotubes-incorporated poly(l-lactide) nanocomposites with enhanced interface and hydrolytic degradation. Materials Chemistry and Physics, 2012, 134, 1059-1066.	2.0	26
614	Noncovalent functionalization of multi-walled carbon nanotubes with amphiphilic polymers containing pyrene pendants. Materials Letters, 2012, 67, 283-285.	1.3	15
615	Electrical and mechanical properties of multi-walled carbon nanotube reinforced Al composite coatings fabricated by high velocity oxygen fuel spraying. Surface and Coatings Technology, 2012, 206, 4060-4067.	2.2	10
616	Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer, 2012, 53, 4-28.	1.8	468
617	Benzoxazine-functionalized multi-walled carbon nanotubes for preparation of electrically-conductive polybenzoxazines. Polymer, 2012, 53, 106-112.	1.8	66
618	Mechanical reinforcement of chitosan using unzipped multiwalled carbon nanotube oxides. Polymer, 2012, 53, 657-664.	1.8	39

#	Article	IF	CITATIONS
619	Preparation and characterization of poly (butylene terephthalate)/graphene composites by in-situ polymerization of cyclic butylene terephthalate. Polymer, 2012, 53, 897-902.	1.8	84
620	Micro-drawing of glassy polybenzoxazole rigid rods and the molecular interactions with carbon nanotubes. Polymer, 2012, 53, 1951-1959.	1.8	4
621	Crystallization kinetics and anisotropic properties of polyethylene oxide/magnetic carbon nanotubes composite films. Polymer, 2012, 53, 2402-2411.	1.8	36
622	Carbon nanotubes: Amino functionalization and its application in the fabrication of Al-matrix composites. Powder Technology, 2012, 215-216, 254-263.	2.1	47
623	Modifications of carbon for polymer composites and nanocomposites. Progress in Polymer Science, 2012, 37, 781-819.	11.8	256
624	Modification of carbon nano-objects in low-temperature plasma for use in polymer nanocomposites. High Energy Chemistry, 2012, 46, 219-228.	0.2	2
625	Tunable Nanometerâ€Scale Architecture of Organic–Inorganic Hybrid Nanostructured Materials for Structural and Functional Applications. Macromolecular Chemistry and Physics, 2012, 213, 315-323.	1.1	13
626	Hierarchical Nanocomposites Derived from Nanocarbons and Layered Double Hydroxides ―Properties, Synthesis, and Applications. Advanced Functional Materials, 2012, 22, 675-694.	7.8	537
627	Amyloid fibrils as functionalizable components of nanocomposite materials. Biotechnology Progress, 2012, 28, 248-256.	1.3	30
628	Effect of processing parameters on the surface resistivity of ethylene–vinyl acetate copolymer/multiwalled carbon nanotube nanocomposites. Journal of Applied Polymer Science, 2012, 124, 2962-2967.	1.3	5
629	Freestanding single-walled carbon nanotube bundle networks: Fabrication, properties and composites. Science Bulletin, 2012, 57, 205-224.	1.7	25
630	Direct electrochemistry and electrocatalysis of horseradish peroxidase on a gold electrode modified with a polystyrene and multiwalled carbon nanotube composite film. Mikrochimica Acta, 2012, 176, 177-184.	2.5	18
631	Surface modification of multiwalled carbon nanotubes via gliding arc plasma for the reinforcement of polypropylene. Journal of Applied Polymer Science, 2013, 127, 4756-4763.	1.3	12
632	Pressureâ€activated microsyringe composite scaffold of poly(<scp>L</scp> â€lactic acid) and carbon nanotubes for bone tissue engineering. Journal of Applied Polymer Science, 2013, 129, 528-536.	1.3	32
633	Mechanical and thermal properties of multiwalled carbon nanotube/polypropylene composites using itaconic acid as compatibilizer and coupling agent. Macromolecular Research, 2013, 21, 153-160.	1.0	18
634	Oxidized Multiwalled Carbon Nanotubes as Adsorbents for Kinetic and Equilibrium Study of Removal of 5-(4-Dimethyl Amino Benzylidene)Rhodanine. Arabian Journal for Science and Engineering, 2013, 38, 1691-1699.	1.1	27
635	Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering Reports, 2013, 74, 211-232.	14.8	975
636	Preparation and Characterization of Polycarbonate-Blend-Raw/Functionalized Multi-Walled Carbon Nano Tubes Mixed Matrix Membrane for CO ₂ Separation. Separation Science and Technology, 2013, 48, 1261-1271.	1.3	35

			2
#	ARTICLE	IF	CITATIONS
637	New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russian Chemical Reviews, 2013, 82, 303-332.	2.5	96
638	Enhancement of the solubility, thermal stability, and electronic properties of carbon nanotubes functionalized with MEH-PPV: a combined experimental and computational study. Monatshefte Für Chemie, 2013, 144, 925-935.	0.9	9
639	Lower electrical conductive percolation threshold of multiwall carbon nanotube reinforced poly(vinylidene fluoride) induced by nano-clay and coupling agent. Journal of Materials Science: Materials in Electronics, 2013, 24, 4170-4174.	1.1	5
640	Polyvinylferrocene for Noncovalent Dispersion and Redox-Controlled Precipitation of Carbon Nanotubes in Nonaqueous Media. Langmuir, 2013, 29, 9626-9634.	1.6	46
641	Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyping Journal, 2013, 19, 353-364.	1.6	358
642	Multifunctional CNTâ€Polymer Composites for Ultraâ€Tough Structural Supercapacitors and Desalination Devices. Advanced Materials, 2013, 25, 6625-6632.	11.1	140
643	Recent progress in interfacial toughening and damage selfâ€healing of polymer composites based on electrospun and solutionâ€blown nanofibers: An overview. Journal of Applied Polymer Science, 2013, 130, 2225-2237.	1.3	79
644	Thermo-mechanical properties of MWCNT-g-poly (l-lactide)/poly (l-lactide) nanocomposites. Polymer Bulletin, 2013, 70, 2741-2754.	1.7	14
645	Dispersion of carbon nanotubes in polypropylene via multilayer coextrusion: Influence on the mechanical properties. Polymer, 2013, 54, 4290-4297.	1.8	34
646	Formation of high loading flexible carbon nanofiber network composites. Composites Science and Technology, 2013, 75, 1-6.	3.8	17
647	Reinforced Polymer Matrix Syntactic Foams. SpringerBriefs in Materials, 2013, , .	0.1	53
648	Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes. Applied Surface Science, 2013, 266, 219-224.	3.1	51
649	Carbon Nanotube-Based Materials—Preparation, Biocompatibility, and Applications in Dentistry. , 2013, , 37-67.		3
650	Amorphous-to-crystalline transition of Polyetheretherketone–carbon nanotube composites via resistive heating. Composites Science and Technology, 2013, 89, 110-119.	3.8	15
651	Kevlar nanofiber-functionalized multiwalled carbon nanotubes forÂpolymer reinforcement. Materials Chemistry and Physics, 2013, 141, 861-868.	2.0	44
652	Effective reinforcement of electrical conductivity and strength of carbon nanotube fibers by silver-paste-liquid infiltration processing. Physical Chemistry Chemical Physics, 2013, 15, 3861.	1.3	16
653	Carbon Nanotube Buckypaper Reinforced Acrylonitrile–Butadiene–Styrene Composites for Electronic Applications. ACS Applied Materials & Interfaces, 2013, 5, 12107-12119.	4.0	44
654	Carbon Nanotube Enhanced Aerospace Composite Materials. Solid Mechanics and Its Applications, 2013,	0.1	12
#	Article	IF	CITATIONS
-----	--	-----	-----------
655	A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus, and High Strength. Science, 2013, 339, 1191-1194.	6.0	241
656	Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties. RSC Advances, 2013, 3, 20816.	1.7	74
657	Functionalization of multiwalled carbon nanotubes with S-valine amino acid and its reinforcement on amino acid-containing poly(amide-imide) bionanocomposites. High Performance Polymers, 2013, 25, 966-979.	0.8	16
658	Interactions between Multiwall Carbon Nanotubes and Poly(diallyl dimethylammonium) Chloride: Effect of the Presence of a Surfactant. Journal of Physical Chemistry B, 2013, 117, 3161-3166.	1.2	29
659	Thermally mendable epoxy resin strengthened with carbon nanofibres. Composites Part A: Applied Science and Manufacturing, 2013, 55, 45-52.	3.8	5
660	Facile preparation of a novel high performance benzoxazine–CNT based nano-hybrid network exhibiting outstanding thermo-mechanical properties. Chemical Communications, 2013, 49, 9543.	2.2	41
661	Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing–Structure–Performance Relationship. Materials, 2013, 6, 2543-2577.	1.3	220
662	Calorimetric study of nanocomposites of multiwalled carbon nanotubes and isotactic polypropylene polymer. Journal of Applied Polymer Science, 2013, 130, 587-594.	1.3	13
663	Wood plastic composite using graphene nanoplatelets. International Journal of Biological Macromolecules, 2013, 58, 1-6.	3.6	67
664	Experimental torsional shear properties of carbon fiber reinforced epoxy composites containing carbon nanotubes. Composite Structures, 2013, 104, 230-238.	3.1	47
665	Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tuneable sensing behaviour. Composites Science and Technology, 2013, 74, 85-90.	3.8	149
666	Numerical investigation on the influence factors of the electrical properties of carbon nanotubes-filled composites. Journal of Applied Physics, 2013, 113, .	1.1	44
667	Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers. Chemical Physics Letters, 2013, 557, 92-96.	1.2	51
668	Wet-spinning of PEDOT:PSS/Functionalized-SWNTs Composite: a Facile Route Toward Production of Strong and Highly Conducting Multifunctional Fibers. Scientific Reports, 2013, 3, 3438.	1.6	64
669	Modulating the cytocompatibility of tridimensional carbon nanotube-based scaffolds. Journal of Materials Chemistry B, 2013, 1, 3064.	2.9	29
670	Dispersion of multiwalled carbon nanotubes in polyacrylonitrileâ€ <i>co</i> â€starch copolymer matrix for enhancement of electrical, thermal, and gas barrier properties. Polymer Composites, 2013, 34, 330-334.	2.3	22
671	Novel Hybrids Derived from Poly(thiourea-amide)/Epoxy and Carbon Nanotubes. Polymer-Plastics Technology and Engineering, 2013, 52, 1169-1174.	1.9	16
672	Anomalous transmittance of polystyrene–ceria nanocomposites at high particle loadings. Journal of Materials Chemistry C, 2013, 1, 290-298.	2.7	12

#	Article	IF	CITATIONS
673	The effect of dimensionality of nanostructured carbon on the architecture of organic–inorganic hybrid materials. Physical Chemistry Chemical Physics, 2013, 15, 12988.	1.3	26
674	Dielectric properties of polymethacrylate-grafted carbon nanotube composites. RSC Advances, 2013, 3, 221-227.	1.7	26
675	Incorporation of Multiwalled Carbon Nanotubes into Electrospun Softwood Kraft Lignin-Based Fibers. Journal of Wood Chemistry and Technology, 2013, 33, 299-316.	0.9	45
676	Azobenzene-based supramolecular polymers for processing MWCNTs. Nanoscale, 2013, 5, 634-645.	2.8	16
677	Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Composites Science and Technology, 2013, 74, 1-5.	3.8	221
678	Ionic Liquid Integrated Multiwalled Carbon Nanotube in a Poly(vinylidene fluoride) Matrix: Formation of a Piezoelectric β-Polymorph with Significant Reinforcement and Conductivity Improvement. ACS Applied Materials & Interfaces, 2013, 5, 747-760.	4.0	111
679	Chitosan nanocomposite films: Enhanced electrical conductivity, thermal stability, and mechanical properties. Carbohydrate Polymers, 2013, 92, 1783-1791.	5.1	152
680	Shape memory properties of multi-walled carbon nanotube/polyurethane composites prepared by in situ polymerization. Journal of Materials Science, 2013, 48, 2207-2214.	1.7	16
681	Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein–nanotube composite biomaterials. Journal of Biomedical Materials Research - Part A, 2013, 101A, 231-238.	2.1	39
682	Highly enhanced dielectric constants of barium titanate-filled polymer composites using polymer-grafted carbon nanotube matrix. Carbon, 2013, 60, 506-513.	5.4	34
683	Hindered phenol grafted carbon nanotubes for enhanced thermal oxidative stability of polyethylene. Polymer, 2013, 54, 1167-1176.	1.8	56
684	Enhancement of pullout energy in a single-walled carbon nanotube-polyethylene composite system via auxetic effect. Composites Part A: Applied Science and Manufacturing, 2013, 55, 188-194.	3.8	18
685	One-pot growth of free-standing CNTs/TiO2 nanofiber membrane for enhanced photocatalysis. Materials Letters, 2013, 95, 13-16.	1.3	27
686	Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes. Carbohydrate Polymers, 2013, 92, 865-871.	5.1	59
687	Utilization of silane functionalized carbon nanotubesâ€silica hybrids as novel reinforcing fillers for solution styrene butadiene rubber. Polymer Composites, 2013, 34, 690-696.	2.3	32
688	The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology, 2013, 24, 305704.	1.3	97
689	Elastic-resilience-induced dispersion of carbon nanotubes: a novel way of fabricating high performance elastomer. Nanotechnology, 2013, 24, 465708.	1.3	8
690	A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water. Scientific Reports, 2013, 3, 1509.	1.6	108

#	Article	IF	CITATIONS
691	Microstructure and mechanical properties of ultrafine bamboo-shaped SiC rod-reinforced HfC ceramic coating. Surface and Coatings Technology, 2013, 235, 577-581.	2.2	32
692	Thermoset curing through Joule heating of nanocarbons for composite manufacture, repair and soldering. Carbon, 2013, 63, 523-529.	5.4	68
693	Exponentially increased nucleation ability for poly(L-lactide) by adding acid-oxidized multiwalled carbon nanotubes with reduced aspect ratios. Science China Chemistry, 2013, 56, 181-194.	4.2	16
694	Single-walled carbon nanotube induced re-entrant hexagonal phases in a Pluronic block copolymer system. Soft Matter, 2013, 9, 3050.	1.2	28
695	Elastomeric biomaterials for tissue engineering. Progress in Polymer Science, 2013, 38, 584-671.	11.8	450
696	Hydration forces between surfaces of surfactant coated single-walled carbon nanotubes. Journal of Chemical Physics, 2013, 138, 114701.	1.2	4
697	Temperature Dependence of Polymer Diffusion in MWCNT/PS Nanocomposites. Macromolecules, 2013, 46, 2317-2322.	2.2	28
698	Chemical Functionalization of Carbon Nanotubes for Dispersion in Epoxy Matrices. Solid Mechanics and Its Applications, 2013, , 155-183.	0.1	2
699	Optimization, characterization and nanofiltration properties test of MWNTs/polyester thin film nanocomposite membrane. Journal of Membrane Science, 2013, 428, 425-433.	4.1	98
700	Synthesis and Characterization of Polysulfone/ <scp>POSS</scp> Hybrid Networks by Photoinduced Crosslinking Polymerization. Macromolecular Materials and Engineering, 2013, 298, 1117-1123.	1.7	25
701	Sub-surface imaging of carbon nanotube–polymer composites using dynamic AFM methods. Nanotechnology, 2013, 24, 135706.	1.3	50
702	Effect of Multi-walled Carbon Nanotubes on Morphology, Mechanical and Thermal Properties of Poly(ethylene Terephthalate) Nanocomposites. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 701-711.	1.0	13
703	Surface Engineering of Ultrafine Cellulose Nanofibrils toward Polymer Nanocomposite Materials. Biomacromolecules, 2013, 14, 1541-1546.	2.6	173
704	A comparative study of polyethylene and polyethylene/C ₆₀ nanocomposites modified with organic peroxide. Journal of Applied Polymer Science, 2013, 129, 371-382.	1.3	4
705	Morphology and Dynamics of Carbon Nanotube in Polycarbonate Carbon Nanotube Composite from Dissipative Particle Dynamics Simulation. Macromolecules, 2013, 46, 3631-3638.	2.2	19
706	A review on the evolution of ethyl tert-butyl ether (ETBE) and its future prospects. Renewable and Sustainable Energy Reviews, 2013, 22, 604-620.	8.2	78
707	Nanostructured thermosetting epoxy systems modified with poly(isopreneâ€ <i>b</i> â€methyl metacrylate) diblock copolymer and polyisopreneâ€grafted carbon nanotubes. Journal of Applied Polymer Science, 2013, 129, 1060-1067.	1.3	10
708	Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method. Nanoscale, 2013, 5, 4422.	2.8	38

ARTICLE IF CITATIONS # Effect of carbon nanotube reinforcement on the properties of the recycled poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 747 Td (709 5.1 18 Materials & Design, 2013, 52, 693-705. Electrical and flame-retardant properties of carbon nanotube/poly(ethylene terephthalate) 1.8 29 composites containing bisphenol A bis(diphenyl phosphate). Polymer, 2013, 54, 3334-3340. Continuous electrodeposition of polypyrrole on carbon nanotube–carbon fiber hybrids as a 711 5.4 10 protective treatment against nanotube dispersion. Carbon, 2013, 51, 20-26. Functional polymer–clay nanotube composites with sustained release of chemical agents. Progress in 11.8 480 Polymer Science, 2013, 38, 1690-1719. Transparent, Conductive, and Printable Composites Consisting of TEMPO-Oxidized Nanocellulose and 713 2.6 257 Carbon Nanotube. Biomacromolecules, 2013, 14, 1160-1165. Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites. Progress in Polymer Science, 2013, 38, 1163-1231. 714 11.8 154 A novel high mechanical strength shape memory polymer based on ethyl cellulose and polycaprolactone. Carbohydrate Polymers, 2013, 96, 522-527. 715 5.1 53 Halloysite clay nanotubes as a ceramic "skeleton―for functional biopolymer composites with 716 2.9 208 sustained drug release. Journal of Materials Chemistry B, 2013, 1, 2894. Effect of organoclay content on the mechanical properties of ethyleneâ€vinyl acetate copolymer/ 717 2.3 2 multiâ€walled carbón nanotube/organoclay foams. Polymer Composites, 2013, 34, 665-670. Thin boron nitride nanotubes with exceptionally high strength and toughness. Nanoscale, 2013, 5, 2.8 4840 Polymer Chain Conformations in CNT/PS Nanocomposites from Small Angle Neutron Scattering. 719 2.2 50 Macromolecules, 2013, 46, 5345-5354. Mechanical Reinforcement of Polybenzoxazole by Carbon Nanotubes through Noncovalent 2.2 Functionalization. Macromoleculés, 2013, 46, 4034-4040. Developing Polymer Composite Materials: Carbon Nanotubes or Graphene?. Advanced Materials, 2013, 721 11.1 398 25, 5153-5176. Chapter 4. Chemical Functionalisation of Carbon Nanotubes for Polymer Reinforcement. RSC 0.2 Nanoscience and Nanotechnology, 2013, , 72-119. Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes 723 3.8 156 and spherical particles. Composites Part A: Applied Science and Manufacturing, 2013, 45, 95-101. Cryomilling application of graphene to improve material properties of graphene/chitosan 724 79 nanocomposites. Composites Part B: Engineering, 2013, 45, 682-687. Fabrication and mechanical properties of hybrid multi-scale epoxy composites reinforced with conventional carbon fiber fabrics surface-attached with electrospun carbon nanofiber mats. 725 5.980 Composites Part B: Engineering, 2013, 44, 1-7. Morphology of Blends with Cross-Linked PMMA Microgels and Linear PMMA Chains. Macromolecules, 2.2 2013, 46, 9091-9103.

#	Article	IF	CITATIONS
727	Structural and elastic properties of carbon nanotubes containing Fe atoms using first principles. Superlattices and Microstructures, 2013, 64, 220-226.	1.4	12
728	Mechanical & Cell Culture Properties of Elastin-Like Polypeptide, Collagen, Bioglass, and Carbon Nanosphere Composites. Annals of Biomedical Engineering, 2013, 41, 2042-2055.	1.3	35
729	Rheological studies of semidilute polyacrylamide/carbon nanotube nanofluids. Journal of Polymer Research, 2013, 20, 1.	1.2	6
730	Polymer Grafting to Singleâ€Walled Carbon Nanotubes: Effect of Chain Length on Solubility, Graft Density and Mechanical Properties of Macroscopic Structures. Small, 2013, 9, 552-560.	5.2	42
731	Microphase Separation in Unsaturated Polyester/ PEOâ€PPOâ€PEO Block Copolymer Mixtures Containing Carbon Nanotubes. Advances in Polymer Technology, 2013, 32, .	0.8	2
732	Preparation, structure, and properties of chitosan/cellulose/multiwalled carbon nanotube composite membranes and fibers. Journal of Applied Polymer Science, 2013, 128, 1193-1199.	1.3	30
733	Improvement in Elastic Modulus of MWCNT/Epoxy Nanocomposites. Applied Mechanics and Materials, 2013, 300-301, 1250-1253.	0.2	0
734	Thermal Stability of MWCNTs Reinforced Nanocomposites. Advanced Materials Research, 0, 634-638, 2307-2310.	0.3	0
735	Properties of POSS blends with pCBT, PMMA, PC and POM thermoplastics. International Journal of Materials and Structural Integrity, 2013, 7, 48.	0.1	1
736	Thermal Properties of Multiwalled Carbon Nanotubes-Alumina (MWCNT-Al ₂ O ₃) Hybrid Filled Silicone Rubber Composites. Advanced Materials Research, 2013, 844, 330-333.	0.3	2
737	Influence of Processing on the Properties of Carbon Nanotubes/Alumina Hybrid Compound Filled PDMS Composites. Advanced Materials Research, 2013, 812, 198-203.	0.3	1
738	Fabrication of micro pillars using multiwall carbon nanotubes/polymer nanocomposites. Journal of Micromechanics and Microengineering, 2013, 23, 055012.	1.5	7
739	Synthesis and Characterization of Functionalized Multi-Walled Carbon Nanotubes. Applied Mechanics and Materials, 2013, 307, 377-380.	0.2	2
740	Application of melt-blown technology in the manufacturing of a solvent vapor-sensitive, non-woven fabric composed of poly(lactic acid) loaded with multi-walled carbon nanotubes. Textile Reseach Journal, 2013, 83, 859-870.	1.1	21
741	Effects of microsized and nanosized carbon fillers on the thermal and electrical properties of polyphenylene sulfide based composites. Polymer Engineering and Science, 2013, 53, 2398-2406.	1.5	40
742	Protein Multilayer Architectures on Electrodes for Analyte Detection. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 253-298.	0.6	4
743	From Safe Nanomanufacturing to Nanosafe-by-Design processes. Journal of Physics: Conference Series, 2013, 429, 012054.	0.3	6
744		1.0	30

#	Article	IF	CITATIONS
745	Polymer Composites Reinforced by Nanotubes as Scaffolds for Tissue Engineering. International Journal of Polymer Science, 2014, 2014, 1-14.	1.2	18
746	Non-covalent and reversible functionalization of carbon nanotubes. Beilstein Journal of Nanotechnology, 2014, 5, 1675-1690.	1.5	114
750	Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. Journal of Applied Polymer Science, 2014, 131, .	1.3	44
751	Progress in Carbon Fiber and Its Polypropylene- and Polyethylene-Based Composites. Polymer-Plastics Technology and Engineering, 2014, 53, 1845-1860.	1.9	30
753	Study on Tensile and Impact Performance for the MWCNTs/EP Composite. Advanced Materials Research, 2014, 936, 390-393.	0.3	0
754	Observation of strong nano-effect via tuning distributed architecture of graphene oxide in poly(propylene carbonate). Nanotechnology, 2014, 25, 025702.	1.3	21
755	Strain Localisation in iPP/MWCNT Nanocomposites Using Digital Image Correlation. Strain, 2014, 50, 37-47.	1.4	5
756	Kinetic Polymer Arrest in Percolated SWNT Networks. ACS Macro Letters, 2014, 3, 1262-1265.	2.3	16
757	Multifunctional polymer nanocomposites with uniaxially aligned liquid crystal polymer fibrils and graphene nanoplatelets. Applied Physics Letters, 2014, 104, .	1.5	14
758	Printed dipole antennas on substrates reinforced with unidirectional conducting fiber. , 2014, , .		0
760	One-step fabrication of free-standing flexible membranes reinforced with self-assembled arrays of carbon nanotubes. Applied Physics Letters, 2014, 105, 153101.	1.5	6
761	Comparison and analysis of physical properties of carbon nanomaterial-doped polymer composites. High Performance Polymers, 2014, 26, 953-960.	0.8	14
762	Novel conductive nanocomposites from perfluoropolyether waterborne polyurethanes and carbon nanotubes. Polymers for Advanced Technologies, 2014, 25, 1082-1088.	1.6	12
763	Effective Use of Mesoporous Silica Filler: Comparative Study on Thermal Stability and Transparency of Silicone Rubbers Loaded with Various Kinds of Silica Particles. European Journal of Inorganic Chemistry, 2014, 2014, 2773-2778.	1.0	24
764	Properties and Applications of Polymer Nanocomposites. , 2014, , 1-46.		0
765	Electrostatic Layer-by-Layer Assembly of Hierarchical Structure of Multi-Walled Carbon Nanotubes With Glass Fiber Cloth Reinforced Epoxy Composites. Journal of Macromolecular Science - Physics, 2014, 53, 673-682.	0.4	10
766	Covalent incorporation of aminated carbon nanotubes into epoxy resin network. High Performance Polymers, 2014, 26, 892-899.	0.8	24
767	Modeling the electromechanical and strain response of carbon nanotube-based nanocomposites. Proceedings of SPIE, 2014, , .	0.8	5

# 768	ARTICLE Size Also Matters in Biodegradable Composite Microfiber Reinforced by Chitosan Nanofibers. Materials Research Society Symposia Proceedings, 2014, 1621, 59-69.	IF 0.1	CITATIONS
769	8. Nanocarbon-based composites. , 2014, , 227-254.		1
770	Carbon Nanotube Sheet. , 2014, , 349-387.		3
771	Improved of the wear resistance of carbon nanofiber/epoxy nanocomposite by a surface functionalization of the reinforcement. Applied Surface Science, 2014, 289, 124-128.	3.1	22
772	Supercritical CO2 and polycarbonate based nanocomposites: A critical issue for foaming. Polymer, 2014, 55, 2422-2431.	1.8	25
773	Modeling the tensile stress–strain response of carbon nanotube/polypropylene nanocomposites using nonlinear representative volume element. Materials & Design, 2014, 58, 36-42.	5.1	56
774	Interface enhancement of carbon nanotube/mesocarbon microbead isotropic composites. Composites Part A: Applied Science and Manufacturing, 2014, 56, 44-50.	3.8	10
775	Enhanced processability of MWCNT through surface treatment by octa(phenol) polyhedral oligomeric silsesquioxane nano-crosslinking. Journal of Molecular Structure, 2014, 1056-1057, 299-306.	1.8	7
776	Fabrication and modification of cellulose acetate based mixed matrix membrane: Gas separation and physical properties. Journal of Industrial and Engineering Chemistry, 2014, 20, 1050-1060.	2.9	76
777	Cation exchange resin nanocomposites based on multi-walled carbon nanotubes. Applied Nanoscience (Switzerland), 2014, 4, 103-112.	1.6	23
778	Fabrication of CNT-carbon composite microstructures using Si micromolding and pyrolysis. Microsystem Technologies, 2014, 20, 201-208.	1.2	22
779	Microwave sintering and characterization of polypropylene/multi-walled carbon nanotube/hydroxyapatite composites. Composites Part B: Engineering, 2014, 56, 504-511.	5.9	33
780	Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	15
781	A study on high-performance poly(azo-pyridine-benzophenone-imide) nanocomposites via self-reinforcement of electrospun nanofibers. Iranian Polymer Journal (English Edition), 2014, 23, 127-136.	1.3	8
782	Combined effects of stretching and nanofillers on the crystalline structure and mechanical properties of polypropylene and single-walled carbon nanotube composite fibers. Chinese Journal of Polymer Science (English Edition), 2014, 32, 245-254.	2.0	19
783	A review on electrically conductive polypropylene and polyethylene. Polymer Composites, 2014, 35, 900-914.	2.3	100
784	Cationic UV-Curing: Technology and Applications. Macromolecular Materials and Engineering, 2014, 299, 775-793.	1.7	233
785	Poly(azo-ether-imide) nanocomposite films reinforced with nanofibers electrospun from multi-walled carbon nanotube filled poly(azo-ether-imide). Journal of Plastic Film and Sheeting, 2014, 30, 266-283.	1.3	10

#	Article	IF	CITATIONS
786	Synthesis and properties of poly(thiourea-azo-naphthyl)/multi-walled carbon nanotube composites. Journal of Plastic Film and Sheeting, 2014, 30, 6-27.	1.3	12
787	Release characteristics of selected carbon nanotube polymer composites. Carbon, 2014, 68, 33-57.	5.4	216
788	Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Progress in Polymer Science, 2014, 39, 1448-1471.	11.8	78
789	A simple one-step fabrication of short polymer nanofibers via electrospinning. Journal of Materials Science, 2014, 49, 3519-3528.	1.7	15
790	Combined effect of expanded graphite and multiwall carbon nanotubes on the thermo mechanical, morphological as well as electrical conductivity of in situ bulk polymerized polystyrene composites. Composites Part A: Applied Science and Manufacturing, 2014, 56, 181-191.	3.8	41
791	Tensile behavior of heat welded CNT network structures. Computational Materials Science, 2014, 88, 14-21.	1.4	19
793	Polymer/Nanodiamond Composites in Li-Ion Batteries: A Review. Polymer-Plastics Technology and Engineering, 2014, 53, 550-563.	1.9	33
794	Studies of nanocomposites of carbon nanotubes and a negative dielectric anisotropy liquid crystal. Journal of Chemical Physics, 2014, 140, 104908.	1.2	23
795	YSZ fiber-reinforced porous YSZ ceramics with lowered thermal conductivity: Influence of the sintering temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 76-81.	2.6	20
796	Nylon 6/multiwalled carbon nanotube composites: Effect of the meltâ€compounding conditions and nanotube content on the morphology, mechanical properties, and rheology. Journal of Applied Polymer Science, 2014, 131, .	1.3	9
797	Fine dispersion of phosphazene-amines and silicate platelets in epoxy nanocomposites and the synergistic fire-retarding effect. Journal of Polymer Research, 2014, 21, 1.	1.2	7
798	Resonance tracking atomic force acoustic microscopy quantitative modulus mapping of carbon nanotubesâ€reinforced acrylonitrile–butadiene–styrene polymer. Journal of Applied Polymer Science, 2014, 131, .	1.3	3
799	The Colloidal Stabilization of Carbon with Carbon: Carbon Nanobubbles as both Dispersant and Glue for Carbon Nanotubes. Angewandte Chemie - International Edition, 2014, 53, 1062-1066.	7.2	23
800	Mechanical and electrical properties of aligned carbon nanotube/carbon matrix composites. Carbon, 2014, 75, 307-313.	5.4	49
801	Polycaprolactone–thiopheneâ€conjugated carbon nanotube meshes as scaffolds for cardiac progenitor cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1553-1561.	1.6	42
802	Aspect ratio effects of multiâ€walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 73-83.	2.4	101
803	Influence of the catalyst-nanotube spacing on the synthesis of polymer-functionalized multiwalled carbon nanotubes by "grafting from―approach. Journal of Polymer Research, 2014, 21, 1.	1.2	6
804	Polymer Microstructures Self-Assemble on Single-Walled Carbon Nanotube Thin Films. ACS Macro Letters, 2014, 3, 35-39.	2.3	1

CITATION REPORT ARTICLE IF CITATIONS Hybrid ferroelectric–polymer microfluidic device for dielectrophoretic self-assembling of 1.7 29 nánoparticles. RSC Advances, 2014, 4, 2851-2857. Preparation and characterization of novel polyethylene/carbon nanotubes nanocomposites with core–shell structure. Journal of Industrial and Engineering Chemistry, 2014, 20, 1804-1811. Stabilizing carbon nanotube yarns using chemical vapor infiltration. Composites Science and 3.8 26 Technology, 2014, 90, 82-87. Chondroitin sulphate-based 3D scaffolds containing MWCNTs for nervous tissue repair. Biomaterials, 2014, 35, 1543-1551. Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs. 0.8 74 Materials Research Express, 2014, 1, 035003. Enhanced sensitivity of a microfabricated resonator using a graphene-polystyrene bilayer membrane. 1.5 Applied Physics Letters, 2014, 105, 073116. Vibration Analysis of Carbon Nanotube Reinforced Composite Plates. Applied Mechanics and Materials, 0.2 5 2014, 553, 681-686. Regulating the mechanical properties of poly(1,8-octanediol citrate) bioelastomer via loading of chitin nanocrystals. RSC Advances, 2014, 4, 41357-41363. 1.7 14 Formation of interconnected morphologies via nanorod inclusion in the confined assembly of 7 1.3 symmetric block copolymers. Physical Chemistry Chemical Physics, 2014, 16, 8865-8871. Multifunctional materials and nanotechnology for assessing and monitoring civil infrastructures. 1 2014, , 295-326. The effect of tungsten disulfide nanotubes on the properties of silicone adhesives. International 1.4 6 Journal of Adhesion and Adhesives, 2014, 55, 77-81. Understanding the mechanical and thermal property reinforcement of crosslinked polyethylene by 1.7 nanodiamonds and carbon nanotubes. RSC Advancés, 2014, 4, 45522-45534. Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular 1.3 33 dynamics simulation. Physical Chemistry Chemical Physics, 2014, 16, 16039. The effect of multiwall carbon nanotubes on the properties of room temperature-vulcanized silicone adhesives. Journal of Adhesion Science and Technology, 2014, 28, 1661-1676. 1.4 Supramolecular structures fabricated through the epitaxial growth of semiconducting poly(3-hexylthiophene) on carbon nanotubes as building blocks of nanoscale electronics. Physical 20 1.3 Chemistry Chemical Physics, 2014, 16, 19122-19129. Development of epoxy mixtures for application in aeronautics and aerospace. RSC Advances, 2014, 4, 133 15474-15488. Anomalous glass transition behavior of SBRâ€"Al2O3nanocomposites at small filler concentrations. 1.37 Nanotechnology, 2014, 25, 425704.

822	Influences of high aspect ratio carbon nanotube network on normal stress difference measurements and extrusion behaviors for isotactic polypropylene nanocomposite melts. RSC Advances, 2014, 4, 1246-1255.	1	1.7	20
-----	---	---	-----	----

805

806

807

808

809

811

813

814

815

816

817

819

ARTICLE IF CITATIONS # Simulation and experimental characterization of polymer/carbon nanotubes composites for strain 823 1.1 71 sensor applications. Journal of Applied Physics, 2014, 116, . Molecular Dynamics of Spherical Nanoparticles in Dense Polymer Melts. Journal of Physical Chemistry 824 1.2 B, 2014, 118, 3731-3742 Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of 825 1.8 87 polybenzimidazole. Polymer, 2014, 55, 4990-5000. Morphology and dynamic-mechanical properties of PVC/NBR blends reinforced with two types of 1.2 826 nanoparticles. Journal of Composite Materials, 2014, 48, 131-141. The synergistic effect of the combined thin multi-walled carbon nanotubes and reduced graphene oxides on photothermally actuated shape memory polyurethane composites. Journal of Colloid and 827 5.0 75 Interface Science, 2014, 432, 128-134. Preparation of carbon nanotube monoliths by high-pressure compaction. New Carbon Materials, 2014, 29, 193-202. Reinforcing polyamide 1212 nanocomposites with aligned carbon nanofibers. Materials & Design, 2014, 829 5.1 6 63, 691-698. Thermo-Sensitive Polymer-Grafted Carbon Nanotubes with Temperature-Controlled Phase Transfer Behavior between Water and a Hydrophobic Ionic Liquid. ACS Applied Materials & amp; Interfaces, 2014, 830 4.0 6, 4143-4148. Catalytic activity of graphite-based nanofillers on cure reaction of epoxy resins. Polymer, 2014, 55, 831 1.8 56 5612-5615. Tensile Properties of Polyimide Composites Incorporating Carbon Nanotubes-Grafted and 1.2 Polyimide-Coated Carbon Fibers. Journal of Materials Engineering and Performance, 2014, 23, 3245-3256. High mechanical performance polyurea/organoclay nanocomposites. Composites Science and 833 3.8 23 Technology, 2014, 103, 44-48. Preparation and properties of polyamide/epoxy/multi-walled carbon nanotube nanocomposite. Journal 1.3 of Plastic Film and Sheeting, 2014, 30, 205-224. On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and 835 3.8 669 Technology, 2014, 105, 15-27. High-temperature deformation behavior of carbon nanotube (CNT)-reinforced aluminum composites and prediction of their high-temperature strength. Composites Part A: Applied Science and Manufacturing, 2014, 67, 308-315. 3.8 Synthesis and properties of melt processed poly(thiourea-azosulfone)/carbon nanotubes 837 2.0 10 nanocomposites. Chinese Journal of Polymer Science (English Edition), 2014, 32, 64-72. Synergistic effect of carbon nanotubes and layered double hydroxides on the mechanical reinforcement of nylon-6 nanocomposites. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1276-1285. Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. 839 1.7 92 Polymer Bulletin, 2014, 71, 337-349. Preparation and characterization of water soluble and conducting poly(sodium 4-styrenesulfonate) doped poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotubes core–shell nanocomposites 840 1.1 by in situ polymerization. Journal of Materials Science: Materials in Electronics, 2014, 25, 3233-3241.

#	ARTICLE	IF	CITATIONS
841	Nitrile functionalized Al2O3 reinforced polyarylene ether nitriles terminated with phthalonitrile composites. Journal of Polymer Research, 2014, 21, 1.	1.2	11
842	Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications. Applied Surface Science, 2014, 314, 510-515.	3.1	63
843	Controlling the dispersion and orientation of nanorods in polymer melt under shear: Coarse-grained molecular dynamics simulation study. Journal of Chemical Physics, 2014, 140, 124903.	1.2	15
844	Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Progress in Aerospace Sciences, 2014, 70, 42-68.	6.3	189
845	Structure, electrical and mechanical properties of polyamide 66/acid-treated MWCNT composite films prepared by solution mixing in the presence of nonionic surfactant. Fibers and Polymers, 2014, 15, 1010-1016.	1.1	6
846	Effect of multilayer carbon nanotubes on mechanical properties and phase transformations of ultra-high-molecular-weight polyethylene during drawing. Nanotechnologies in Russia, 2014, 9, 269-273.	0.7	0
847	Multifunctional Nanomaterial-Enabled Membranes for Water Treatment. , 2014, , 155-171.		4
848	Polybenzimidazole assisted fabrication of multiwalled carbon nanotube buckypapers and their silver nanoparticle hybrids. RSC Advances, 2014, 4, 35904-35913.	1.7	6
849	Electrically conductive multiphase polymer blend carbon-based composites. Polymer Engineering and Science, 2014, 54, 1-16.	1.5	120
850	Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. RSC Advances, 2014, 4, 29393-29428.	1.7	100
851	Compositing Polyetherimide with Polyfluorene Wrapped Carbon Nanotubes for Enhanced Interfacial Interaction and Conductivity. ACS Applied Materials & Interfaces, 2014, 6, 9013-9022.	4.0	19
852	Effect of carbon nanotube addition on friction coefficient of nanotubes/hydroxyapatite composites. Journal of Industrial and Engineering Chemistry, 2014, 20, 544-548.	2.9	31
853	Interfacial engineering of polypropylene/graphene nanocomposites: improvement of graphene dispersion by using tryptophan as a stabilizer. RSC Advances, 2014, 4, 8799.	1.7	36
854	Interface analysis and design in carbon nanotube array composite based on cohesive finite element approach. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 592, 83-87.	2.6	15
855	Facile preparation and characterization of free-standing stiff carbon-based composite films with excellent performance. Composites Part A: Applied Science and Manufacturing, 2014, 56, 72-79.	3.8	2
856	Morphology and tensile properties of unreinforced and short carbon fibre reinforced Nylon 6/multiwalled carbon nanotube-composites. Polymer, 2014, 55, 3015-3025.	1.8	46
857	Exploring interfacial enhancement in polystyrene/multiwalled carbon nanotube monofilament induced by stretching. Composites Part A: Applied Science and Manufacturing, 2014, 61, 84-90.	3.8	11
858	A facile, efficient, and rapid covalent functionalization of multi-walled carbon nanotubes with natural amino acids under microwave irradiation. Progress in Organic Coatings, 2014, 77, 679-684.	1.9	55

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
859	Kevlar®-functionalized graphene nanoribbon for polymer reinforcement. Polymer, 2014, 55, 2578-2587.	1.8	62
860	A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared by in situ biosynthesis. RSC Advances, 2014, 4, 14369-14372.	1.7	56
861	Chemical sensors based on polymer composites with carbon nanotubes and graphene: the role of the polymer. Journal of Materials Chemistry A, 2014, 2, 14289-14328.	5.2	190
862	Three dimensional cluster distributions in processed multi-wall carbon nanotube polymer composites. Polymer, 2014, 55, 3270-3277.	1.8	9
863	Self-Healing Materials Systems as a Way for Damage Mitigation in Composites Structures Caused by Orbital Space Debris. Advances in Chemical and Materials Engineering Book Series, 2014, , 1-25.	0.2	2
864	Release of Carbon Nanotubes from Polymer Nanocomposites. Fibers, 2014, 2, 108-127.	1.8	74
869	Manufacturing of Three-dimensionally Microstructured Nanocomposites through Microfluidic Infiltration. Journal of Visualized Experiments, 2014, , .	0.2	3
870	Plasma Functionalization of Nanotubes. , 2015, , 484-513.		0
871	HALLOYSITE TUBULE NANOREACTORS FOR INDUSTRIAL AND AGRICULTURAL APPLICATIONS. , 2015, , 363-382.		1
872	Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect. Scientific Reports, 2015, 5, 8892.	1.6	16
873	Sound absorbent, flame retardant warp knitting spacer fabrics: Manufacturing techniques and characterization evaluations. Fibers and Polymers, 2015, 16, 2682-2688.	1.1	18
874	On the multi-scale description of electrical conducting suspensions involving perfectly dispersed rods. Advanced Modeling and Simulation in Engineering Sciences, 2015, 2, .	0.7	4
875	Textile supercapacitors-based on MnO2/SWNT/conducting polymer ternary composites. International Journal of Energy Research, 2015, 39, 2042-2052.	2.2	46
876	Mechanical and thermal properties of biphenyldiol formaldehyde resin/gallic acid epoxy composites enhanced by graphene oxide. Journal of Applied Polymer Science, 2015, 132, .	1.3	9
877	Oriented Poly(lactic acid)/Carbon Nanotube Composite Tapes with High Electrical Conductivity and Mechanical Properties. Macromolecular Materials and Engineering, 2015, 300, 1257-1267.	1.7	17
878	Batch foaming of carboxylated multiwalled carbon nanotube/poly(ether imide) nanocomposites: The influence of the carbon nanotube aspect ratio on the cellular morphology. Journal of Applied Polymer Science, 2015, 132, .	1.3	7
879	<i>In vitro</i> cytocompatibility of one-dimensional and two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites. Journal of Biomedical Materials Research - Part A, 2015, 103, 2309-2321.	2.1	33
880	Superior Performance Nanocomposites from Uniformly Dispersed Octadecylamine Functionalized Multi-Walled Carbon Nanotubes. Journal of Carbon Research, 2015, 1, 58-76.	1.4	15

#	Article	IF	CITATIONS
881	Polymer Nanocomposites based on in situ reduced graphene oxide for photovoltaic applications in in innovative hybrid solar cells. , 2015, , .		0
882	MWCNTs/Cellulose Hydrogels Prepared from NaOH/Urea Aqueous Solution with Improved Mechanical Properties. Journal of Chemistry, 2015, 2015, 1-8.	0.9	16
883	Towards a Kinetic Theory Description of Electrical Conduction in Perfectly Dispersed CNT Nanocomposites. , 2015, , 167-202.		0
884	Electrospinning of functional materials for biomedicine and tissue engineering. Russian Chemical Reviews, 2015, 84, 251-274.	2.5	28
885	Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Science and Technology of Advanced Materials, 2015, 16, 024802.	2.8	279
886	Enhanced mechanical properties of ammonia-modified graphene nanosheets/epoxy nanocomposites. RSC Advances, 2015, 5, 28098-28104.	1.7	17
887	Electrochemical Hierarchical Composites. , 2015, , 239-286.		1
888	Polymer-based composites with improved energy density and dielectric constants by monoaxial hot-stretching for organic film capacitor applications. RSC Advances, 2015, 5, 51975-51982.	1.7	9
889	Cyanate ester filled with graphene nanosheets and multi-walled carbon nanotubes as a microwave absorber. Journal of Polymer Research, 2015, 22, 1.	1.2	5
890	Orientation and thermal properties of carbon nanotube/polyacrylonitrile nascent composite fibers. Journal of Polymer Research, 2015, 22, 1.	1.2	7
892	Carbon and titanium dioxide nanotube polymer composite manufacturing – characterization and interphase modeling. , 2015, , 735-761.		1
893	Carbon Nanotubes Enhanced Fluorinated Polyurethane Macroporous Membranes for Waterproof and Breathable Application. ACS Applied Materials & amp; Interfaces, 2015, 7, 13538-13546.	4.0	173
894	Molecular dynamics studies of interfacial crystallization behaviors in polyethylene/carbon nanotube composites. RSC Advances, 2015, 5, 102219-102227.	1.7	8
895	Synthesis of Fibrous Complex Structures: Designing Microstructure to Deliver Targeted Macroscale Response. Applied Mechanics Reviews, 2015, 67, .	4.5	101
896	Preparation of oleic acid modified multi-walled carbon nanotubes for polystyrene matrix and enhanced properties by solution blending. Journal of Materials Science: Materials in Electronics, 2015, 26, 8667-8675.	1.1	9
897	A 2D percolation-based model for characterizing the piezoresistivity of carbon nanotube-based films. Journal of Materials Science, 2015, 50, 2973-2983.	1.7	51
898	Microstructure and phase stress partition of Mo fiber reinforced CuZnAl composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 419-422.	2.6	10
899	More Dominant Shear Flow Effect Assisted by Added Carbon Nanotubes on Crystallization Kinetics of Isotactic Polypropylene in Nanocomposites. ACS Applied Materials & amp; Interfaces, 2015, 7, 1364-1375.	4.0	33

#	ARTICLE	IF	CITATIONS
900	Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon panotubes. Biomaterials Science, 2015, 3, 46-58	2.6	33 85
902	Important factors for effective use of carbon nanotube matrices in electrochemical capacitor hybrid electrodes without binding additives. RSC Advances, 2015, 5, 16101-16111.	1.7	12
903	Properties and Applications of Polymer Nanocomposite. , 2015, , 43-98.		3
904	Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane. Materials & Design, 2015, 69, 105-113.	5.1	74
905	Energy absorption capability of carbon nanotubes dispersed in resins under compressive high strain rate loading. Composites Part B: Engineering, 2015, 72, 40-44.	5.9	10
906	Electrical interfaces for recording, stimulation, and sensing. , 2015, , 13-38.		2
907	MAX phase ternary carbide derived 2-D ceramic nanostructures [CDCN] as chemically interactive functional fillers for damage tolerant epoxy polymer nanocomposites. RSC Advances, 2015, 5, 16521-16531.	1.7	13
908	The role of crystallinity in SWCNT–polyetherimide nanocomposites. Composites Science and Technology, 2015, 110, 176-187.	3.8	33
909	Application and Uses of Graphene. , 2015, , 1-38.		27
910	Elastomeric composites based on carbon nanomaterials. Nanotechnology, 2015, 26, 112001.	1.3	119
911	Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Carbohydrate Polymers, 2015, 131, 208-217.	5.1	60
912	Molecular-Level Engineering of Adhesion in Carbon Nanomaterial Interfaces. Nano Letters, 2015, 15, 4504-4516.	4.5	25
913	Silane modification on mesoporous silica coated carbon nanotubes for improving compatibility and dispersity in epoxy matrices. Composites Part A: Applied Science and Manufacturing, 2015, 78, 1-9.	3.8	15
914	Preparation, characterization, electrical and dielectric properties of (1â^'x) (PbI2–Ag2CrO4)–xTiO2 composite solid electrolytes. Ceramics International, 2015, 41, 13650-13657.	2.3	10
915	Measuring Nanomaterial Release from Carbon Nanotube Composites: Review of the State of the Science. Journal of Physics: Conference Series, 2015, 617, 012026.	0.3	50
916	Honeycomb carbon foams with tunable pore structures prepared from liquefied larch sawdust by self-foaming. Industrial Crops and Products, 2015, 64, 215-223.	2.5	35
917	Interfacial Interactions in 1D and 2D Nanostructure-Based Material Systems. Nanoscience and Technology, 2015, , 379-424.	1.5	1

#	Article	IF	CITATIONS
918	Effect of Sr2TiMnO6 fillers on mechanical, dielectric and thermal behaviour of PMMA polymer. Journal of Advanced Dielectrics, 2015, 05, 1550018.	1.5	17
919	A Review on Properties and Fabrication Techniques of Polymer/Carbon Nanotube Composites and Polymer Intercalated Buckypapers. Polymer-Plastics Technology and Engineering, 2015, 54, 1524-1539.	1.9	22
920	Hyperbranched Triazine Compounds Grafted Carbon Nanotubes for Improved Tribological Performance of Bismaleimides Composites. Advanced Materials Research, 2015, 1088, 472-478.	0.3	0
921	Tunable thermal, flame retardant and toxic effluent suppression properties of polystyrene based on alternating graphitic carbon nitride and multi-walled carbon nanotubes. Journal of Materials Chemistry A, 2015, 3, 17064-17073.	5.2	61
922	Stable and solid pellets of functionalized multi-walled carbon nanotubes produced under high pressure and temperature. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	3
923	Mechanical properties of CNT–Bisphenol E cyanate ester-based CFRP nanocomposite developed through VARTM process. Journal of Reinforced Plastics and Composites, 2015, 34, 1000-1014.	1.6	11
924	Thermal, mechanical and electrical properties of highly loaded CNT-epoxy composites – A model for the electric conductivity. Composites Science and Technology, 2015, 117, 183-190.	3.8	54
925	Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites. Scientific Reports, 2015, 5, 11533.	1.6	58
926	Nanocomposites of Polyhydroxyalkanoates Reinforced with Carbon Nanotubes: Chemical and Biological Properties. Advanced Structured Materials, 2015, , 79-108.	0.3	13
927	Preparation of carbon nanotubes/waterborne polyurethane composites with the emulsion particles assisted dispersion of carbon nanotubes. Composites Science and Technology, 2015, 114, 50-56.	3.8	33
928	Combined and Distinct Contributions of Different Carbon Nano-Forms in Polypropylene. Macromolecular Materials and Engineering, 2015, 300, 611-626.	1.7	3
929	Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid—carbon nanotube composites using atomic force microscopy. Nanotechnology, 2015, 26, 105702.	1.3	25
930	A nano lamella NbTi–NiTi composite with high strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 633, 121-124.	2.6	12
931	Interface engineering of ionic liquid integrated graphene in poly(vinylidene fluoride) matrix yielding magnificent improvement in mechanical, electrical and dielectric properties. Polymer, 2015, 65, 154-167.	1.8	65
932	Strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 43-47.	2.6	53
933	Fluorinated liquid crystalline surfactants for dispersion and alignment of carbon nanotubes. Journal of Materials Science, 2015, 50, 4187-4199.	1.7	7
934	Molecular dynamics simulations of orientation induced interfacial enhancement between single walled carbon nanotube and aromatic polymers chains. Composites Part A: Applied Science and Manufacturing, 2015, 73, 155-165.	3.8	54
935	Effect of carbon nanotube on the mechanical, plasticizing behavior and thermal stability of PVC/poly(acrylonitrile–styrene–acrylate) nanocomposites. Polymer Bulletin, 2015, 72, 1849-1861.	1.7	12

#	ARTICLE	IF	CITATIONS
936	The effects of carbon nanotubes with acid-groups on the structural evolution and cyclization kinetics of poly(acrylonitrile-co-itaconic acid) composite microspheres. Fibers and Polymers, 2015, 16, 263-270.	1.1	6
937	Effects of the surface modification of carbon fiber by growing different types of carbon nanomaterials on the mechanical and thermal properties of polypropylene. RSC Advances, 2015, 5, 28822-28831.	1.7	37
938	Carbon Nanotubes Grafted with Hyperbranched Triazine Compounds. Nano, 2015, 10, 1550012.	0.5	2
939	Influence of Multiwalled Carbon Nanotubes on Mechanical, Thermal and Electrical Behavior of Polybenzoxazine-Epoxy Nanocomposites. Polymer-Plastics Technology and Engineering, 2015, 54, 68-80.	1.9	17
940	Improving the fracture toughness and the strength of epoxy using nanomaterials – a review of the current status. Nanoscale, 2015, 7, 10294-10329.	2.8	613
941	Amino-Functionalized Multiwalled Carbon Nanotubes Lead to Successful Ring-Opening Polymerization of Poly(ε-caprolactone): Enhanced Interfacial Bonding and Optimized Mechanical Properties. ACS Applied Materials & Interfaces, 2015, 7, 11683-11694.	4.0	21
942	Advances in the Organometallic Chemistry of Carbon Nanomaterials. Organometallics, 2015, 34, 2086-2097.	1.1	20
943	<i>In situ</i> polymerization, thermal, damping, and mechanical properties of multiwalled carbon nanotubes/polyisobutyleneâ€based polyurethane nanocomposites. Polymer Composites, 2015, 36, 198-203.	2.3	11
944	Preparation of Multiwalled Carbon Nanotubes Embedded in Copper Composite Powders. Integrated Ferroelectrics, 2015, 164, 122-130.	0.3	1
945	Comparative Failure Analysis of PLA, PLA/GNP and PLA/CNT-COOH Biodegradable Nanocomposites thin Films. Procedia Engineering, 2015, 114, 635-642.	1.2	40
946	Liquid Crystal Polymers as Matrices for Arrangement of Inorganic Nanoparticles. , 2015, , 369-387.		0
947	Electrical and mechanical properties of polyethylene/MWCNT composites produced by polymerization using Cp2ZrCl2 supported on MWCNTs. Macromolecular Research, 2015, 23, 713-718.	1.0	7
948	Anisotropic Polymer Conformations in Aligned SWCNT/PS Nanocomposites. ACS Macro Letters, 2015, 4, 916-920.	2.3	11
949	Synthesis of carrageenan/multi-walled carbon nanotube hybrid hydrogel nanocomposite for adsorption of crystal violet from aqueous solution. Polish Journal of Chemical Technology, 2015, 17, 70-76.	0.3	32
950	Liquid Crystalline Polymers. , 2015, , .		12
951	Detailed study on interfacial interactions in epoxy composites cured with 1-buthylimidazole containing functionalized carbon nanotubes. Composite Interfaces, 2015, 22, 629-649.	1.3	8
952	Bistable electrical switching and nonvolatile memory effect based on the thin films of polyurethane-carbon nanotubes blends. Sensors and Actuators A: Physical, 2015, 234, 282-289.	2.0	12
953	Polytellurophenes provide imaging contrast towards unravelling the structure–property–function relationships in semiconductor:insulator polymer blends. Journal of Materials Chemistry C, 2015, 3, 3767-3773.	2.7	23

#	Article	IF	CITATIONS
954	Properties of Natural Rubber Nanocomposites Reinforced with Carbon Nanotubes. Advanced Materials Research, 2015, 1109, 195-199.	0.3	3
955	Biaxial reinforcements for polybutene-1 medical-tubes achieved via flow-design controlled morphological development of incorporated polystyrene: In-situ microfibrillation, alignment manipulation and performance optimization. Composites Science and Technology, 2015, 119, 124-130.	3.8	23
956	Enhancement of electrical and thermal conductivity of Su-8 photocrosslinked coatings containing graphene. Progress in Organic Coatings, 2015, 86, 143-146.	1.9	25
957	Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review. Separation and Purification Technology, 2015, 156, 861-874.	3.9	70
958	Aligned ZnO nanorods as effective reinforcing material for obtaining high performance polyamide fibers. Composites Science and Technology, 2015, 120, 58-65.	3.8	8
959	Low-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer composites. Carbon, 2015, 84, 327-334.	5.4	105
960	Electromechanical Properties of Carbon Nanotube Infused Polyacrylamide Hydrogel. Advances in Polymer Technology, 2015, 34, .	0.8	5
961	Cut growth and abrasion behaviour, and morphology of natural rubber filled with MWCNT and MWCNT/carbon black. Polymer Testing, 2015, 41, 172-183.	2.3	25
962	Strategy of tailoring the interface between multiwalled carbon nanotube and fluoroelastomer. Polymer Composites, 2015, 36, 257-263.	2.3	14
963	Effect of proton irradiation on mechanical properties of lowâ€density polyethylene/multiwalled carbon nanotubes composites. Polymer Composites, 2015, 36, 278-286.	2.3	7
964	Improved recovery stress in multi-walled-carbon-nanotubes reinforced polyurethane. Materials & Design, 2015, 67, 492-500.	5.1	41
965	Encapsulating carbon nanotubes with SiO ₂ : a strategy for applying them in polymer nanocomposites with high mechanical strength and electrical insulation. Journal of Materials Chemistry C, 2015, 3, 187-195.	2.7	40
966	Effects of surface modification of carbon nanofibers on the mechanical properties of polyamide 1212 composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	6
967	Carbon Nanotube Reinforced Titanium Metal Matrix Composites Prepared by Powder Metallurgy—A Review. Critical Reviews in Solid State and Materials Sciences, 2015, 40, 38-55.	6.8	137
968	Ultraâ€high enhancement in the toughness of polyethylene by exfoliated natural clay nanosheets. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
969	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
970	Correlation Between Periodicity and Catalytic Growth Activity of Bimetallic Co-group VI/MgO Catalysts for Production of Carbon Nanotubes by Acetylene Using Chemical Vapor Deposition. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 591-598.	1.0	5
971	Synthesis and properties of polyimide nanocomposites self-reinforced with electrospun poly(azo-naphthyl-imide)/carbon nanotube nanofibers. Journal of Thermoplastic Composite Materials, 2016, 29, 312-326.	2.6	9

#	Article	IF	CITATIONS
972	Mechanical Properties of Carbon Nanotubes-Polymer Composites. , 0, , .		15
973	Effect of Elastomeric Nanoparticles on Polystyrene/Organic Nanocomposites. International Journal of Polymer Science, 2016, 2016, 1-9.	1.2	5
975	Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials, 2016, 9, 262.	1.3	547
976	Hydrophilic Modification of Multi-Walled Carbon Nanotube for Building Photonic Crystals with Enhanced Color Visibility and Mechanical Strength. Molecules, 2016, 21, 547.	1.7	22
977	Bio-inspired Design and Fabrication of Super-Strong and Multifunctional Carbon Nanotube Composites. , 2016, , .		2
978	Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites. Proceedings of SPIE, 2016, , .	0.8	9
979	Threeâ€Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications. Advanced Materials, 2016, 28, 5794-5821.	11.1	470
980	Toward Ambient Armor: Can New Materials Change Longstanding Concepts of Projectile Protection?. Advanced Functional Materials, 2016, 26, 943-954.	7.8	18
981	Catalystâ€related Dispersion of Multiwalled Carbon Nanotubes by Simple Ultrasonication. Bulletin of the Korean Chemical Society, 2016, 37, 174-178.	1.0	2
982	Laserâ€Directed Assembly of Aligned Carbon Nanotubes in Three Dimensions for Multifunctional Device Fabrication. Advanced Materials, 2016, 28, 2002-2009.	11.1	119
983	Mechanisms for Imparting Conductivity to Nonconductive Polymeric Biomaterials. Macromolecular Bioscience, 2016, 16, 1103-1121.	2.1	12
984	Effect of nano-modified SiO ₂ /Al ₂ O ₃ mixed-matrix micro-composite fillers on thermal, mechanical, and tribological properties of epoxy polymers. Polymers for Advanced Technologies, 2016, 27, 905-914.	1.6	29
985	Flexible polymer-multiwall carbon nanotubes composite developed by in situ polymerization technique. Polymer Composites, 2016, 37, 2860-2870.	2.3	6
986	Effective reinforcement of epoxy composites with hyperbranched liquid crystals grafted on microcrystalline cellulose fibers. Journal of Materials Science, 2016, 51, 8888-8899.	1.7	14
987	Dispersion and shear-induced orientation of anisotropic nanoparticle filled polymer nanocomposites: insights from molecular dynamics simulation. Nanotechnology, 2016, 27, 265704.	1.3	16
988	Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 035005.	0.7	8
989	Radical scavenging properties of piperidine derivatives of fullerene C60/C70 and multi-walled carbon nanotubes. Molecular Crystals and Liquid Crystals, 2016, 640, 152-157.	0.4	3
990	Assessing the compression after impact behaviour of innovative multifunctional composites. Nanomaterials and Nanotechnology, 2016, 6, 184798041667962.	1.2	8

#	Article	IF	CITATIONS
991	Investigation of Carbon Nanotubes in Mixed Matrix Membranes for Gas Separation: A Review. ChemBioEng Reviews, 2016, 3, 276-298.	2.6	46
992	Plasma engineering of graphene. Applied Physics Reviews, 2016, 3, 021301.	5.5	123
993	Novel porous nanohybrid materials with unexpected mechanical and electrical performance by pyrolysis of carbon nanotube-filled benzoxazine thermosets. Nanocomposites, 2016, 2, 169-175.	2.2	3
994	Fabrication of sisal fibers/epoxy composites with liquid crystals polymer grafted on sisal fibers. IOP Conference Series: Materials Science and Engineering, 2016, 137, 012052.	0.3	1
995	Recent Advances in Shape Memory Soft Materials for Biomedical Applications. ACS Applied Materials & Interfaces, 2016, 8, 10070-10087.	4.0	313
996	Green synthesis of polymer monoliths incorporated with carbon nanotubes in room temperature ionic liquid and deep eutectic solvents. Talanta, 2016, 154, 335-340.	2.9	30
997	An experimental and numerical study on the mechanical properties of carbon nanotube-latex thin films. Journal of the European Ceramic Society, 2016, 36, 2255-2262.	2.8	16
998	Synthesis of Carbon Nanotubes and Their Relevant Properties. , 2016, , 139-168.		0
999	Electrical conductivity of melt-spun thermoplastic poly(hydroxy ether of bisphenol A) fibres containing multi-wall carbon nanotubes. Polymer, 2016, 97, 80-94.	1.8	22
1000	Carbon fibers modified with silicone peroxide containing vinyl groups for silicone rubber reinforcement. Materials Letters, 2016, 176, 38-41.	1.3	10
1001	Chitosan-dithiooxamide-grafted rGO sheets decorated with Au nanoparticles: Synthesis, characterization and properties. European Polymer Journal, 2016, 78, 153-162.	2.6	9
1002	Synthesis and characterization of ultra-long straight carbon wires. Materials Letters, 2016, 175, 40-43.	1.3	0
1003	Compressive properties and thermal stability of hybrid carbon nanotube-alumina filled epoxy nanocomposites. Composites Part B: Engineering, 2016, 91, 235-242.	5.9	20
1004	Synthesis of ferrocenyl hyper-branched polyethylene for non-covalent dispersion of multi-walled carbon nanotubes and fabrication of flexible carbon nanotubes-based conductive films. RSC Advances, 2016, 6, 29663-29668.	1.7	5
1005	Polymer and Graphite-Derived Nanofiller Composite: An Overview of Functional Applications. Polymer-Plastics Technology and Engineering, 2016, 55, 1765-1784.	1.9	22
1006	The effect of filler functionalization on dispersion and thermal conductivity of polypropylene/multi wall carbon nanotubes composites. Composites Part B: Engineering, 2016, 94, 350-359.	5.9	65
1007	Magical Allotropes of Carbon: Prospects and Applications. Critical Reviews in Solid State and Materials Sciences, 2016, 41, 257-317.	6.8	167
1008	Deterioration of the Strong sp ² Carbon Network in Carbon Nanotubes during the Mechanical Dispersion Processing—A Review. Critical Reviews in Solid State and Materials Sciences, 2016, 41, 347-366.	6.8	42

ARTICLE IF CITATIONS Carbon nanofibersâ€"SiO2 composites: Preparation and characterization. Russian Journal of Inorganic 1009 0.3 1 Chemistry, 2016, 61, 273-278. Experimental determination of mechanical properties of PMMA reinforced with functionalized CNTs. Composites Part B: Engineering, 2016, 95, 335-345. Scales of Structure in Polymers., 2016, , 1-28. 2 1011 High-performance and multifunctional epoxy composites filled with epoxide-functionalized graphene. European Polymer Journal, 2016, 84, 300-312. Preparation and characterization of wood plastic composite reinforced by organoclay. Journal of the 1014 0.3 5 Indian Academy of Wood Science, 2016, 13, 118-131. Dynamic mechanical properties of elastomeric nanoparticle composites. Macromolecular Research, 1.0 2016, 24, 915-923. Recent key developments in isotactic polypropylene in-reactor alloy and in-reactor nanocomposite 1016 4.2 8 technology. Science China Chemistry, 2016, 59, 1231-1239. In Situ Reduction of Graphene Oxide Nanosheets in Poly(vinyl alcohol) Hydrogel by Î³-Ray Irradiation and Its Influence on Mechanical and Tribological Properties. Journal of Physical Chemistry C, 2016, 1.5 120, 19442-19453. <i>In situ</i>TEM tensile testing of carbon-linked graphene oxide nanosheets using a MEMS device. 1018 20 1.3 Nanotechnology, 2016, 27, 28LT01. Hydrodynamic description of elastic or viscoelastic composite materials: Relative strains as 0.8 macroscopic variables. Physical Review E, 2016, 94, 023003. Synthesis and characterization of CdS nanocrystallites and OMWCNT-supported cadmium sulfide composite and their photocatalytic activity under visible light irradiation. Materials Chemistry and 1020 2.0 16 Physics, 2016, 183, 366-374. Functionalization of Carbon Nanotube and Applications. SpringerBriefs in Applied Sciences and Technology, 2016, , 31-61. Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor 1022 4.0 251 for Human Motion Detection. ACS Applied Materials & amp; Interfaces, 2016, 8, 24837-24843. Composite films combining electrospun fiber network and epitaxial oxide by chemical solution 1.1 deposition. Journal of Sol-Gel Science and Technology, 2016, 80, 277-284. Handspinning Enabled Highly Concentrated Carbon Nanotubes with Controlled Orientation in 1024 1.6 28 Nanofibers. Scientific Reports, 2016, 6, 37590. Mechanically Robust 3D Nanostructure Chitosan-Based Hydrogels with Autonomic Self-Healing 114 Properties. ÁCS Applied Materials & amp; Interfaces, 2016, 8, 27254-27263. Fabrication of 3D carbon nanotube networks. Materials Research Express, 2016, 3, 085007. 1026 0.8 2 Influence of carbon nanotubes functionalization on the mechanical properties of polymethacrylate 2.3 nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 169-175.

#	Article	IF	CITATIONS
1028	Threading through Macrocycles Enhances the Performance of Carbon Nanotubes as Polymer Fillers. ACS Nano, 2016, 10, 8012-8018.	7.3	30
1029	Toughness Reinforcement in Carbon Nanotube-Filled High Impact Polypropylene Copolymer with β-Nucleating Agent. Industrial & Engineering Chemistry Research, 2016, 55, 8733-8742.	1.8	16
1030	Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography. Scientific Reports, 2016, 6, 31733.	1.6	13
1031	High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers. Advanced Functional Materials, 2016, 26, 8435-8445.	7.8	115
1032	From nano to giant? Designing carbon nanotubes for rubber reinforcement and their applications for high performance tires. Composites Science and Technology, 2016, 137, 94-101.	3.8	58
1033	Preparation and properties of polypropylene-carbon nanotubes nanocomposites for application in bipolar plates. , 2016, , .		2
1034	Effects of carbon nanotube on mechanical, crystallization, and electrical properties of binary blends of poly(phenylene sulfide) and polyphthalamide. Journal of Thermal Analysis and Calorimetry, 2016, 125, 927-934.	2.0	8
1035	Novel Three-Dimensional Carbon Nanotube–Graphene Architecture with Abundant Chambers and Its Application in Lithium–Silicon Batteries. Journal of Physical Chemistry C, 2016, 120, 13807-13814.	1.5	24
1036	Effects of morphologies of carbon nanofillers on the interfacial and deformation behavior of polymer nanocomposites – A molecular dynamics study. Carbon, 2016, 107, 510-524.	5.4	41
1037	Multiscale Modeling of Nanoreinforced Composites. , 2016, , 1-39.		1
1038	A flexible humidity sensor based on KC–MWCNTs composites. Applied Surface Science, 2016, 387, 149-154.	3.1	41
1039	Free vibration of in-plane-aligned membranes of single-walled carbon nanotubes in the presence of in-plane-unidirectional magnetic fields. JVC/Journal of Vibration and Control, 2016, 22, 3736-3766.	1.5	26
1040	Mechanical and damping properties of carbon nanotube-modified polyisobutylene-based polyurethane composites. Journal of Composite Materials, 2016, 50, 929-936.	1.2	14
1041	Construction of advanced poly(arylene ether nitrile)/multi-walled carbon nanotubes nanocomposites by controlling the precise interface. Journal of Materials Science, 2016, 51, 2090-2100.	1.7	9
1042	Preparation of acrylic/MWNTs nanocomposite latexes via ultrasonically-assisted emulsion polymerization: A comparative study. European Polymer Journal, 2016, 75, 104-115.	2.6	5
1043	Carbon Nanotubes and Nanotube-Based Composites: Deformation Micromechanics. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2016, , 51-74.	0.3	0
1044	Interfacial engineering of epoxy/carbon nanotubes using reactive glue for effective reinforcement of the composite. Polymer Journal, 2016, 48, 183-188.	1.3	8
1045	Spider silk as a blueprint for greener materials: a review. International Materials Reviews, 2016, 61, 127-153.	9.4	54

#	Article	IF	CITATIONS
1046	A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. Smart Materials and Structures, 2016, 25, 035015.	1.8	45
1047	Cavitation-Induced Stiffness Reductions in Quantum Dot–Polymer Nanocomposites. Chemistry of Materials, 2016, 28, 2540-2549.	3.2	22
1048	Excellent mechanical properties of carbon fiber semi-aligned electrospun carbon nanofiber hybrid polymer composites. RSC Advances, 2016, 6, 36715-36722.	1.7	44
1049	Influence of adding multiwalled carbon nanotubes on the adhesive strength of composite epoxy/sol–gel materials. Journal of Coatings Technology Research, 2016, 13, 325-332.	1.2	7
1050	Immunoassay for troponin I using a glassy carbon electrode modified with a hybrid film consisting of graphene and multiwalled carbon nanotubes and decorated with platinum nanoparticles. Mikrochimica Acta, 2016, 183, 1375-1384.	2.5	29
1051	UV Reduced Graphene Oxide PEDOT:PSS Nanocomposite for Perovskite Solar Cells. IEEE Nanotechnology Magazine, 2016, 15, 725-730.	1.1	19
1052	Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading. Composites Part B: Engineering, 2016, 91, 119-125.	5.9	145
1053	A facile Friedel–Crafts acylation for the synthesis of polyethylenimine-grafted multi-walled carbon nanotubes as efficient gene delivery vectors. International Journal of Pharmaceutics, 2016, 502, 125-137.	2.6	27
1054	Influence of a liquid-like MWCNT reinforcement on interfacial and mechanical properties of carbon fiber filament winding composites. Polymer, 2016, 90, 193-203.	1.8	26
1055	Non-covalent dispersion of multi-walled carbon nanotubes in aqueous solution with hyperbranched polyethylene-g-poly(methacrylic acid). RSC Advances, 2016, 6, 27682-27689.	1.7	7
1056	Hierarchical reinforcement of randomly-oriented carbon nanotube mats by ion irradiation. Carbon, 2016, 99, 491-501.	5.4	7
1057	LCP Based Polymer Blend Nanocomposites. , 2016, , 251-272.		1
1058	Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing, 2016, 41, 67-82.	1.9	408
1059	Nonlinear vibrations of a reinforced composite plate with carbon nanotubes. Composite Structures, 2016, 135, 96-108.	3.1	72
1060	Load transfer in phase transforming matrix–nanowire composite revealing the significant load carrying capacity of the nanowires. Materials and Design, 2016, 89, 721-726.	3.3	13
1061	Preparation and properties characterization of gallic acid epoxy resin/succinic anhydride bionanocomposites modified by green reduced graphene oxide. Soft Materials, 2016, 14, 27-37.	0.8	12
1062	Synthesis, characterization, electrical and dielectric studies of AgCuI and Co-SnO 2 composite solid electrolytes. Materials Research Bulletin, 2016, 73, 296-301.	2.7	6
1063	Exploitation of Carbon Nanotubes in High Performance Polyvinylidene Fluoride Matrix Composite: A Review. Polymer-Plastics Technology and Engineering, 2016, 55, 199-222.	1.9	10

#	Article	IF	CITATIONS
1064	Structure and properties of buckypapers based on poly(methyl methacrylate- <i>co</i> -methacrylic) Tj ETQq0 0 0 Materials, 2016, 50, 1021-1030.	rgBT /C 1.2	Overlock 10 Tf 5 3
1065	Investigation of the properties of PAN/f-MWCNTs/AgNPs composite nanofibers. Journal of Industrial Textiles, 2017, 47, 149-172.	1.1	11
1066	A Review of the Recent Advances in Cyclic Butylene Terephthalate Technology and its Composites. Critical Reviews in Solid State and Materials Sciences, 2017, 42, 173-217.	6.8	22
1067	MWCNT-reinforced polyarylene ether nitrile nanocomposites. High Performance Polymers, 2017, 29, 441-449.	0.8	5
1068	Periodic Crystallisation of Polymers on Carbon Nanotubes: Geometrical Confinement versus Epitaxy. Materials Technology, 2017, 32, 109-115.	1.5	4
1069	Effect of functionalization of multi-walled carbon nanotube on mechanical and viscoelastic properties of polysulfide-modified epoxy nanocomposites. High Performance Polymers, 2017, 29, 151-160.	0.8	11
1070	The role of multi-walled carbon nanotubes in epoxy nanocomposites and resin transfer molded glass fiber hybrid composites: Dispersion, local distribution, thermal, and fracture/mechanical properties. Polymer Composites, 2017, 38, 1849-1863.	2.3	16
1071	Fabrication of robust multiwalled carbon nanotube buckypapers through crosslinking reaction of epoxy chains with its curing agent. Polymer Composites, 2017, 38, 2727-2733.	2.3	3
1072	Pressure-activated microsyringe (PAM) fabrication of bioactive glass-poly(lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1986-1997.	1.3	18
1073	Properties of polypropylene/multiwall carbon nanotube composite films prepared by microlayer extrusion. Journal of Plastic Film and Sheeting, 2017, 33, 191-206.	1.3	4
1074	Numerical and Experimental Investigation of the Piezoresistive Behavior of Hybrid Carbon Nanotube Sheet - Graphene Nanocomposites. , 2017, , .		2
1075	Functionalized multiwalled carbon nanotubes for UV coating. Pigment and Resin Technology, 2017, 46, 1-13.	0.5	0
1076	Anisotropic compressive properties of CNT/SiC composites produced by direct matrix infiltration of vertically aligned CNT forests. Journal of Alloys and Compounds, 2017, 701, 722-726.	2.8	21
1077	In situ repair of graphene defects and enhancement of its reinforcement effect in polyvinyl alcohol hydrogels. RSC Advances, 2017, 7, 1045-1055.	1.7	54
1078	Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 88, 259-264.	1.3	32
1079	Reinforced Natural Rubber Nanocomposites: Next Generation Advanced Material. Green Energy and Technology, 2017, , 309-345.	0.4	7
1080	Simultaneous Enhancements in Toughness and Electrical Conductivity of Polypropylene/Carbon Nanotube Nanocomposites by Incorporation of Electrically Inert Calcium Carbonate Nanoparticles. Industrial & Engineering Chemistry Research, 2017, 56, 2783-2788.	1.8	30
1081	Optimization of Buckypaper-enhanced Multifunctional Thermoplastic Composites. Scientific Reports, 2017, 7, 42423.	1.6	15

#	Article	IF	CITATIONS
1082	Direct visualization of percolation paths in carbon nanotube/polymer composites. Organic Electronics, 2017, 45, 151-158.	1.4	12
1083	Fracture toughness of epoxy-based stepped functionally graded materials reinforced with carbon nanotubes. Iranian Polymer Journal (English Edition), 2017, 26, 253-260.	1.3	12
1084	Application of nanocomposite-based sorbents in microextraction techniques: a review. Analyst, The, 2017, 142, 721-739.	1.7	34
1085	Influence of carbon black and carbon nanotubes on the conductivity, morphology, and rheology of conductive ternary polymer blends. Polymer Engineering and Science, 2017, 57, 1329-1339.	1.5	21
1086	Using graphene networks to build bioinspired self-monitoring ceramics. Nature Communications, 2017, 8, 14425.	5.8	99
1087	Polybenzoxazine Nanocomposites. , 2017, , 767-800.		6
1088	Influence of interwall interaction in double-walled aluminogermanate nanotubes on mechanical properties. Computational Materials Science, 2017, 135, 54-63.	1.4	4
1089	Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites. Scientific Reports, 2017, 7, 46360.	1.6	12
1090	Properties and Applications of Polymer Nanocomposites. , 2017, , .		16
1091	Experimental evaluations and modeling of the tensile behavior of polypropylene/single-walled carbon nanotubes fibers. Composite Structures, 2017, 174, 12-18.	3.1	70
1092	N -Epoxypropyl poly(p -phenylene terephthalamide) covalently and non-covalently coated multi-walled carbon nanotubes for PVC reinforcement. Applied Surface Science, 2017, 416, 225-233.	3.1	14
1093	Characteristics of hydrogen plasma treated carbon nanotubes and their influence on the mechanical properties of polyetherimide-based nanocomposites. Carbon, 2017, 118, 650-658.	5.4	8
1094	Polymer Nanocomposites for Electronics, Dielectrics, and Microwave Applications. , 2017, , 25-36.		1
1095	Polypropylene composites with finely dispersed multi-walled carbon nanotubes covered with an aluminum oxide shell. Polymer, 2017, 120, 164-175.	1.8	10
1096	Double-layer core/shell-structured nanoparticles in polyarylene ether nitrile-based nanocomposites as flexible dielectric materials. RSC Advances, 2017, 7, 29306-29311.	1.7	36
1097	3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Materials and Design, 2017, 131, 394-401.	3.3	352
1098	Exploring the <i>in vitro</i> and <i>in vivo</i> compatibility of PLA, PLA/GNP and PLA/CNT OOH biodegradable nanocomposites: Prospects for tendon and ligament applications. Journal of Biomedical Materials Research - Part A, 2017, 105, 2182-2190.	2.1	20
1099	Nucleation efficiency of fillers in polymer crystallization studied by fast scanning calorimetry: Carbon nanotubes in polypropylene. Polymer, 2017, 116, 160-172.	1.8	48

#	Article	IF	CITATIONS
1100	Pyrene-functionalized PAEKs prepared from C–H borylation and Suzuki coupling reactions for the dispersion of single-walled carbon nanotubes. Composites Science and Technology, 2017, 143, 82-88.	3.8	15
1101	In-situ pressing synthesis of densely compacted carbon nanotubes reinforced nanocomposites with outstanding mechanical performance. Composites Science and Technology, 2017, 146, 131-138.	3.8	7
1102	Silanol‫scp>POSS as dispersing agents for carbon nanotubes in polyamide. Polymer Engineering and Science, 2017, 57, 588-594.	1.5	5
1103	Multifunctional Nano-engineered Polymer Surfaces with Enhanced Mechanical Resistance and Superhydrophobicity. Scientific Reports, 2017, 7, 43450.	1.6	17
1104	Transformation of the released asbestos, carbon fibers and carbon nanotubes from composite materials and the changes of their potential health impacts. Journal of Nanobiotechnology, 2017, 15, 15.	4.2	32
1105	Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures. Journal of Materials Chemistry A, 2017, 5, 6740-6746.	5.2	98
1106	Enhancing Mechanical Properties of Nanocomposites Using Interconnected Carbon Nanotubes (<i>i</i> CNT) as Reinforcement. Advanced Engineering Materials, 2017, 19, 1600499.	1.6	7
1107	Interfacially reinforced carbon fiber composites by grafting modified methylsilicone resin. Composites Science and Technology, 2017, 140, 39-45.	3.8	66
1108	Multiscale benzoxazine composites: The role of pristine CNTs as efficient reinforcing agents for high-performance applications. Composites Part B: Engineering, 2017, 112, 57-65.	5.9	23
1109	Tunable softening and toughening of individualized cellulose nanofibers-polyurethane urea elastomer composites. Carbohydrate Polymers, 2017, 159, 125-135.	5.1	33
1110	Effect of Multi-Walled Carbon Nanotubes on Viscoelastic Properties of PP/Reed Flour Composites. Journal of Polymers and the Environment, 2017, 25, 1313-1320.	2.4	6
1111	Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 2017, 71, 91-143.	11.8	497
1112	Hierarchical self-entangled carbon nanotube tube networks. Nature Communications, 2017, 8, 1215.	5.8	120
1113	Dielectric Properties of Nanocarbon Polymer Composites with Binary Filler. Springer Proceedings in Physics, 2017, , 855-871.	0.1	2
1114	Morphology Analysis and Mechanical Properties of MWCNT Reinforced Nylon-6,6 Nanofiber Mats by Electrospun Method. Solid State Phenomena, 0, 267, 23-27.	0.3	3
1115	Reactive supramolecular filler for elastomer reinforcement. Polymer, 2017, 129, 12-20.	1.8	3
1116	Autonomous self-healing multiwalled carbon nanotube nanocomposites with piezoresistive effect. RSC Advances, 2017, 7, 20422-20429.	1.7	22
1117	Experimental and modeling analysis of mechanical-electrical behaviors of polypropylene composites filled with graphite and MWCNT fillers. Polymer Testing, 2017, 63, 467-474.	2.3	113

#	Article	IF	CITATIONS
1118	Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells. Biomacromolecules, 2017, 18, 3060-3072.	2.6	144
1119	Nature Inspired Strategy to Enhance Mechanical Properties via Liquid Reinforcement. Advanced Materials Interfaces, 2017, 4, 1700240.	1.9	30
1120	Grafting of trifluoromethylated poly(phenylene oxide)s on a singleâ€walled carbon nanotube via surfaceâ€initiated chainâ€growth condensation polymerization. Journal of Polymer Science Part A, 2017, 55, 3180-3184.	2.5	2
1121	Production of rotary jet spun ultrathin fibers of poly-butylene adipate-co-terephthalate (PBAT) filled with nanocomposites. , 2017, , .		0
1122	Fabrication of an <scp>l</scp> -glutathione sensor based on PEG-conjugated functionalized CNT nanocomposites: a real sample analysis. New Journal of Chemistry, 2017, 41, 10761-10772.	1.4	18
1123	Superhydrophobic/Superoleophilic and Reinforced Ethyl Cellulose Sponges for Oil/Water Separation: Synergistic Strategies of Cross-linking, Carbon Nanotube Composite, and Nanosilica Modification. ACS Applied Materials & Interfaces, 2017, 9, 29167-29176.	4.0	107
1124	Covalent derivatization of boron nitride nanotubes with peroxides and their application in polycarbonate composites. New Journal of Chemistry, 2017, 41, 7571-7577.	1.4	16
1125	Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Progress in Polymer Science, 2017, 75, 73-107.	11.8	194
1127	Supramolecular reinforcement of styrene-butadiene rubber composites. Polymer, 2017, 122, 242-248.	1.8	8
1128	CNT-induced morphology and its effect on properties in PLA/PBAT-based nanocomposites. European Polymer Journal, 2017, 93, 545-555.	2.6	71
1129	Multi-scale mechanics and electrical transport in a free-standing 3D architecture of graphene and carbon nanotubes fabricated by pressure assisted welding. Carbon, 2017, 122, 298-306.	5.4	24
1130	Carbon black reinforced polymethyl methacrylate (PMMA)-based composite particles: preparation, characterization, and application. Journal of Geophysics and Engineering, 2017, 14, 1225-1232.	0.7	14
1131	The peculiar behavior of functionalized carbon nanotubes in hydrocarbons and polymeric oxidation environments. Journal of Adhesion Science and Technology, 2017, 31, 988-1006.	1.4	5
1132	Simultaneously improving the mechanical properties and flame retardancy of polypropylene using functionalized carbon nanotubes by covalently wrapping flame retardants followed by linking polypropylene. Materials Chemistry Frontiers, 2017, 1, 716-726.	3.2	30
1133	Crack growth behavior of natural rubber influenced by functionalized carbon nanotubes. Journal of Applied Polymer Science, 2017, 134, .	1.3	7
1134	An updated micromechanical model based on morphological characterization of carbon nanotube nanocomposites. Composites Part B: Engineering, 2017, 115, 70-78.	5.9	39
1135	Conducting Polymer Nanocomposites: Recent Developments and Future Prospects. Springer Series on Polymer and Composite Materials, 2017, , 1-44.	0.5	13
1136	Polyamide/Carbon Nanoparticles Nanocomposites: A Review. Polymer Engineering and Science, 2017, 57, 475-494.	1.5	45

#	Article	IF	CITATIONS
1137	A Two‧tep Method for Transferring Singleâ€Walled Carbon Nanotubes onto a Hydrogel Substrate. Macromolecular Bioscience, 2017, 17, 1600261.	2.1	12
1138	Dispersion and failure analysis of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites by SEM and DIC inspection. Engineering Failure Analysis, 2017, 71, 63-71.	1.8	25
1139	Mechanical properties and interfacial phenomena in aluminum reinforced with carbon nanotubes manufactured by the sandwich technique. Journal of Composite Materials, 2017, 51, 1619-1629.	1.2	17
1140	Molecular dynamics simulations on the effects of carbon nanotubes on mechanical properties of bisphenol E cyanate ester validating experimental results. Journal of Reinforced Plastics and Composites, 2017, 36, 186-195.	1.6	2
1141	Recent advances in hydrophilic modification of PVDF ultrafiltration membranes – a review: part II. Membrane Technology, 2017, 2017, 5-11.	0.5	13
1142	High-resolution 3D printing for healthcare underpinned by small-scale fluidics. , 2017, , 167-206.		18
1143	One-Pot Facile Methodology to Synthesize Chitosan-ZnO-Graphene Oxide Hybrid Composites for Better Dye Adsorption and Antibacterial Activity. Nanomaterials, 2017, 7, 363.	1.9	44
1144	Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review. Polymers, 2017, 9, 269.	2.0	109
1145	Polypropylene Carbon Nanotubes Nanocomposites: Combined Influence of Block Copolymer Compatibilizer and Melt Annealing on Electrical Properties. Journal of Nanomaterials, 2017, 2017, 1-11.	1.5	6
1146	Insight into the Effects of Reinforcement Shape on Achieving Continuous Martensite Transformation in Phase Transforming Matrix Composites. Applied Composite Materials, 2018, 25, 1369-1384.	1.3	2
1147	Nanocellulose reinforced as green agent in polymer matrix composites applications. Polymers for Advanced Technologies, 2018, 29, 1531-1546.	1.6	26
1148	Strong process-structure interaction in stoveable poly(urethane-urea) aligned carbon nanotube nanocomposites. Composites Science and Technology, 2018, 166, 115-124.	3.8	11
1149	Improved acoustic damping in polyurethane foams by the inclusion of silicon dioxide nanoparticles. Advances in Polymer Technology, 2018, 37, 2799-2810.	0.8	15
1150	High-Temperature Dielectric Materials for Electrical Energy Storage. Annual Review of Materials Research, 2018, 48, 219-243.	4.3	540
1151	A review on the processing technologies of carbon nanotube/silicon carbide composites. Journal of the European Ceramic Society, 2018, 38, 3695-3708.	2.8	54
1152	Synergistic effect of CNT films impregnated with CNT modified epoxy solution towards boosted interfacial bonding and functional properties of the composites. Composites Part A: Applied Science and Manufacturing, 2018, 110, 1-10.	3.8	37
1153	A critical review on the development and performance of polymer/graphene nanocomposites. Science and Engineering of Composite Materials, 2018, 25, 1059-1073.	0.6	41
1154	Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Composite Structures, 2018, 194, 80-86.	3.1	44

#	Article	IF	CITATIONS
1155	A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polymers for Advanced Technologies, 2018, 29, 1547-1567.	1.6	94
1156	Mechanical Characterization of Polymer Nanocomposites Reinforced with Graphene Nanoplatelets. , 2018, , 689-695.		3
1157	Enhanced tensile strength and initial modulus of poly(vinyl alcohol)/graphene oxide composite fibers via blending poly(vinyl alcohol) with poly(vinyl alcohol)-grafted graphene oxide. Journal of Polymer Research, 2018, 25, 1.	1.2	27
1158	Effect of Temperature on Creep Behavior in Carbon Nanotube-Reinforced Epoxy Bonded Interface — An Atomistic Investigation. MRS Advances, 2018, 3, 439-444.	0.5	2
1159	Organically modified-grafted mica (OMGM) nanoparticles for reinforcement of polypropylene. Iranian Polymer Journal (English Edition), 2018, 27, 125-135.	1.3	5
1160	Spatial and Contamination-Dependent Electrical Properties of Carbon Nanotubes. Nano Letters, 2018, 18, 695-700.	4.5	16
1161	Laser induced periodic surface structures formation by nanosecond laser irradiation of poly (ethylene terephthalate) reinforced with Expanded Graphite. Applied Surface Science, 2018, 436, 1193-1199.	3.1	13
1162	Comparison of 3D and 2D Monte Carlo Models for Piezoresistive Behavior of Hybrid Nanocomposites. , 2018, , .		2
1163	Methacrylate Functionalized MWCNTs/PDMS-Polyurethane Methacrylate UV-Curable Nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1235-1245.	1.9	2
1164	Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	47
1165	Effects of surfactant treatment on mechanical and microwave absorbing properties of graphene nanosheets/multiwalled carbon nanotubes/cyanate ester composites. Polymer Composites, 2018, 39, 110-118.	2.3	12
1166	Enhanced resin zirconia adhesion with carbon nanotubes-infused silanes: A pilot study. Journal of Adhesion, 2018, 94, 167-180.	1.8	12
1167	Preparation of chitosan/amino multiwalled carbon nanotubes nanocomposite beads for bilirubin adsorption in hemoperfusion. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 96-103.	1.6	29
1168	Recent Progress on the Dispersion and the Strengthening Effect of Carbon Nanotubes and Graphene-Reinforced Metal Nanocomposites: A Review. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 1-46.	6.8	112
1169	Poly(tetramethylene oxide) (<scp>PTMO</scp>)â€grafted carbon nanotubes for preparing <scp>PTMO</scp> â€based polyurethane films with enhanced storage moduli. Advances in Polymer Technology, 2018, 37, 1374-1381.	0.8	1
1170	Processing and characterization of thermoplastic nanocomposite fibers of hot melt copolyamide and carbon nanotubes. Journal of Thermoplastic Composite Materials, 2018, 31, 359-375.	2.6	7
1171	Characterization of nanoparticles doped composites using ultrasound. Ultrasonics, 2018, 83, 68-79.	2.1	5
1172	The microstructure and mechanical properties of 3D printed carbon nanotubeâ€polylactic acid composites. Polymer Composites, 2018, 39, E1060.	2.3	53

#		IF	CITATIONS
"	Investigating the effects of CNT aspect ratio and agglomeration on elastic constants of crosslinked	" 2 2	25
1175	polymer nanocomposite using multiscale modeling. Polymer Composites, 2018, 39, 4513-4523.	2.0	20
1175	Innovative functionalized carbon fibers from waste: How to enhance polymer composites properties. Composites Part B: Engineering, 2018, 139, 31-39.	5.9	20
1176	Effects of accelerated weathering on the chemical, mechanical, thermal and morphological properties of an epoxy/multi-walled carbon nanotube composite. Polymer Testing, 2018, 66, 70-77.	2.3	28
1177	A new electroactive polymer based on carbon nanotubes and carbon grease as compliant electrodes for electroactive actuators. Journal of Intelligent Material Systems and Structures, 2018, 29, 1520-1530.	1.4	10
1178	Thermal and mechanical properties of cyanate ester resin modified with acid-treated multiwalled carbon nanotubes. High Performance Polymers, 2018, 30, 38-46.	0.8	7
1179	Assessment of Mechanical and Morphological Properties of New Poly Lactic Acid (PLA) / Wood Fibers / Nanographene Composite. Drvna Industrija, 2018, 69, 127-134.	0.3	3
1180	Enhanced carbon nanotubes dispersion in epoxy matrices using a CNT tailored block copolymer. Science and Technology of Materials, 2018, 30, 87-92.	0.8	0
1181	Studies of Nanocomposites of Carbon Nanotubes and a Negative Dielectric Anisotropy Liquid Crystal. , 2018, , .		0
1182	Assessments of Secondary Reinforcement of Epoxy Matrix-Glass Fibre Composite Laminates through Nanosilica (SiO2). Materials, 2018, 11, 2186.	1.3	27
1183	Hysteresis Identification of Carbon Nanotube Composite Beams. , 2018, , .		1
1184	Green preparation and characterization of graphene oxide/carbon nanotubes-loaded carboxymethyl cellulose nanocomposites. Scientific Reports, 2018, 8, 17601.	1.6	51
1185	Synthesis, thermal and anticorrosion performance of WPU nanocomposites with low carbon-black content by adding amine-modified multiwall carbon nanotube. Diamond and Related Materials, 2018, 90, 166-171.	1.8	17
1186	Debundling, Dispersion, and Stability of Multiwalled Carbon Nanotubes Driven by Molecularly Designed Electron Acceptors. Langmuir, 2018, 34, 12137-12144.	1.6	7
1187	Graphene oxide reinforced polyamide nanocomposite coated on paper as a novel layered sorbent for microextraction by packed sorbent. International Journal of Environmental Analytical Chemistry, 2018, 98, 1118-1134.	1.8	19
1188	Strengthening of C/SiC Composites by Electrophoretic Deposition of CNTs on a SiC Coating. Journal of Materials Engineering and Performance, 2018, 27, 5762-5768.	1.2	3
1189	Thermal Conductivity of Carbon Nanotubes and Assemblies. Advances in Heat Transfer, 2018, 50, 43-122.	0.4	13
1190	Mechanical and fracture properties of hyperbranched polymer covalent functionalized multiwalled carbon nanotube-reinforced epoxy composites. Chemical Physics Letters, 2018, 706, 31-39.	1.2	33
1191	Polymer Nanocomposite-Based Strain Sensors with Tailored Processability and Improved Device Integration. ACS Applied Nano Materials, 2018, 1, 3015-3025.	2.4	32

#	Article	IF	CITATIONS
1192	Quantitative characterization of nanoindentation properties of CVI gradient SiC ceramic into CNT arrays. Journal of Alloys and Compounds, 2018, 762, 196-202.	2.8	7
1193	Nanotubes from Atlantis: Magnetite in pumice as a catalyst for the growth of carbon nanotubes. Polyhedron, 2018, 152, 90-93.	1.0	9
1194	Enhanced electromagnetic shielding property of C/SiC composites via electrophoretically-deposited CNTs onto SiC coating. Ceramics International, 2018, 44, 20187-20191.	2.3	23
1195	A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Advances, 2018, 8, 28048-28085.	1.7	163
1196	Chemical and Electrochemical Synthesis of Polypyrrole Using Carrageenan as a Dopant: Polypyrrole/Multi-Walled Carbon Nanotube Nanocomposites. Polymers, 2018, 10, 632.	2.0	47
1197	Lignocellulose-Chitosan-Multiwalled Carbon Nanotube Composites with Improved Mechanical Strength, Dimensional Stability and Fire Retardancy. Polymers, 2018, 10, 341.	2.0	10
1198	Effect of milled carbon on interfacial properties of carbon fiber reinforced epoxy-based composites. International Journal of Modern Physics B, 2018, 32, 1840082.	1.0	1
1199	Improved dielectric properties of PVDF nanocomposites: a comparative study of noncovalent and covalent functionalization of MWCNTs. Journal of Materials Science: Materials in Electronics, 2018, 29, 13112-13117.	1.1	2
1200	Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. Journal of Materials Chemistry C, 2018, 6, 8160-8170.	2.7	131
1201	Preparation of novel polyimide nanocomposites with high mechanical and tribological performance using covalent modified carbon nanotubes via Friedel-Crafts reaction. Polymer, 2018, 150, 223-231.	1.8	32
1202	Ultralight Graphene/Carbon Nanotubes Aerogels with Compressibility and Oil Absorption Properties. Materials, 2018, 11, 641.	1.3	24
1203	Preparation of poly(ethylene oxide) brushâ€grafted multiwall carbon nanotubes and their effect on morphology and mechanical properties of rigid polyurethane foam. Polymer International, 2018, 67, 1545-1554.	1.6	8
1204	Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Progress in Polymer Science, 2018, 86, 40-84.	11.8	197
1205	Metal ion effect on the supramolecular structures of metalloporphyrins on single-walled carbon nanotube surface. Applied Surface Science, 2018, 462, 904-912.	3.1	19
1206	Tuned Fabrication of the Aligned and Opened CNT Membrane with Exceptionally High Permeability and Selectivity for Bioalcohol Recovery. Nano Letters, 2018, 18, 6150-6156.	4.5	78
1207	Influence of moisture absorption on electrical properties and charge dynamics of polyethylene silica-based nanocomposites. Journal Physics D: Applied Physics, 2018, 51, 425302.	1.3	5
1208	Contact dynamics of nanodroplets in carbon nanotubes: effects of electric field, tube radius, and salt ions. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	7
1209	Interfacial characteristics of carbon nanotube-polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 2018, 114, 149-169.	3.8	142

		CITATION REPORT		
# 1210	ARTICLE Improving Carbon Nanotube/Polymer Interactions in Nanocomposites. , 2018, , 83-115.		IF	CITATIONS
1211	The effect of MWCNT on dynamic mechanical properties and crystallinity of in situ poly polyamide 12 nanocomposite. Polymers for Advanced Technologies, 2018, 29, 2134-21	merized .46.	1.6	7
1212	Process-Structure-Property Relationship in Polymer Nanocomposites. , 2018, , 25-100.			7
1213	Effect of PA66 nanofiber yarn on tensile fracture toughness of reinforced epoxy nanocc Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Er Science, 2019, 233, 2033-2043.	mposite. ngineering	1.1	18
1214	Effect of PEDOT:PSS content on structure and properties of PEDOT:PSS/poly(vinyl alcol fiber. Polymer Bulletin, 2019, 76, 2097-2111.	hol) composite	1.7	38
1215	Piezoresistive Behaviour of Additively Manufactured Multi-Walled Carbon Nanotube/The Polyurethane Nanocomposites. Materials, 2019, 12, 2613.	ermoplastic	1.3	27
1216	Enhancing the Thermal Stability of Carbon Nanomaterials with DNA. Scientific Reports,	2019, 9, 11926.	1.6	16
1217	Carbon Nanotube Layer for Reduction of Fiber Print-Through in Carbon Fiber Composite Polymer Technology, 2019, 2019, 1-11.	es. Advances in	0.8	6
1218	Controlling the Degree of Functionalization: Inâ€Depth Quantification and Sideâ€Produ Diazonium Chemistry on SWCNTs. Chemistry - A European Journal, 2019, 25, 12761-12	uct Analysis of 2768.	1.7	17
1219	Carbon nanotube-reinforced intermetallic matrix composites: processing challenges, co and mechanical properties. International Journal of Advanced Manufacturing Technolog 3803-3820.	nsolidation, y, 2019, 104,	1.5	7
1220	Creep performance of CNT-based nanocomposites: A parametric study. Carbon, 2019, 2	153, 745-756.	5.4	48
1221	Comprehensive study of effects of filler length on mechanical, electrical, and thermal pr multi-walled carbon nanotube/polyamide 6 composites. Composites Part A: Applied Scie Manufacturing, 2019, 125, 105542.	operties of ence and	3.8	26
1222	Effect of Carbon Nanofillers on the Mechanical and Interfacial Properties of Epoxy Based Nanocomposites: A Review. Polymer Science - Series A, 2019, 61, 439-460.	d	0.4	95
1223	Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites. 2019, 11, 1091.	he Physical Polymers,	2.0	36
1224	Synergetic effects of carbon nanotubes and triblock copolymer on the lap shear streng adhesive joints. Composites Part B: Engineering, 2019, 178, 107457.	th of epoxy	5.9	33
1225	Recent Advances in Characterization Techniques for the Interface in Carbon Nanotube- Polymer Nanocomposites. Advances in Materials Science and Engineering, 2019, 2019,	Reinforced 1-24.	1.0	9
1228	The Influence of Preâ€Electrospinning Plasma Treatment on Physicochemical Character Nanofibers. Macromolecular Materials and Engineering, 2019, 304, 1900391.	istics of PLA	1.7	1
1229	Stochastic Finite Element Modelling of Char Forming Filler Addition and Alignment – Conduction into Polymer Condensed Phase. , 2019, , .	Effects on Heat		1

#	Article	IF	CITATIONS
1230	Investigation on MWCNT-epoxy films at high CPVC for conductive electrodes coating. SN Applied Sciences, 2019, 1, 1.	1.5	0
1231	Stochastic Finite Element Analysis Framework for Modelling Mechanical Properties of Particulate Modified Polymer Composites. Materials, 2019, 12, 2777.	1.3	8
1232	Compression after Impact Behaviour and Failure Analysis of Nanosilica-Toughened Thin Epoxy/GFRP Composite Laminates. Materials, 2019, 12, 3057.	1.3	16
1233	Investigation of the effect of carbon nanotubes on electrical properties of woven fiberglass/epoxy composite laminate. EPJ Web of Conferences, 2019, 196, 00019.	0.1	0
1234	The pervaporative membrane with vertically aligned carbon nanotube nanochannel for enhancing butanol recovery. Journal of Membrane Science, 2019, 577, 51-59.	4.1	49
1235	Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites. Carbon, 2019, 145, 629-639.	5.4	130
1236	Application of machine learning to predict the multiaxial strain-sensing response of CNT-polymer composites. Carbon, 2019, 146, 265-275.	5.4	66
1237	REINFORCEMENT OF RUBBER USING REACTIVE OLIGO (\hat{l}^2 -ALANINE) SUPRAMOLECULAR FILLERS. Rubber Chemistry and Technology, 2019, 92, 198-217.	0.6	2
1238	Sorption and Mechanical Properties of Chitosan/Graphene Oxide Composite Systems. Russian Journal of Applied Chemistry, 2019, 92, 415-422.	0.1	4
1239	Preparation and characterization of electrically conductive multiwalled carbon nanotube/polyoxazoline nanocomposite films using spray coating. Journal of Coatings Technology Research, 2019, 16, 1757-1764.	1.2	2
1240	PPTA-oligomer functionalized multiwalled carbon nanotubes synthesized by "one-pot―method for reinforcement of polyvinyl chloride. Journal of Materials Science, 2019, 54, 11804-11817.	1.7	5
1241	Surfactant-assisted graphene oxide/methylaniline nanocomposites for lead ionic sensor development for the environmental remediation in real sample matrices. International Journal of Environmental Science and Technology, 2019, 16, 8461-8470.	1.8	22
1242	Composites and Nanocomposites. Polymers and Polymeric Composites, 2019, , 447-512.	0.6	2
1243	Composites and Nanocomposites. Polymers and Polymeric Composites, 2019, , 1-67.	0.6	2
1244	Fabrication of a highly tough, strong, and stiff carbon nanotube/epoxy conductive composite with an ultralow percolation threshold <i>via</i> self-assembly. Journal of Materials Chemistry A, 2019, 7, 15731-15740.	5.2	41
1245	Fabrication of a flexible capacitor sensor with surface-fabric-structured conductive silicon rubber. Sensors and Actuators A: Physical, 2019, 295, 141-150.	2.0	9
1246	Selfâ€Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?. Advanced Science, 2019, 6, 1801664.	5.6	314
1247	Preparation and Properties of Polyvinyl Chloride/Carbon Nanotubes Composite. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 516-520.	0.4	4

#	Article	IF	CITATIONS
1248	Synthesis and characterization of high-performance epoxy/ Ti ₃ AlC ₂ -reinforced conductive polymer composites. Journal of Composite Materials, 2019, 53, 3861-3874.	1.2	6
1249	Facile Fabrication of Environmentally-Friendly Hydroxyl-Functionalized Multiwalled Carbon Nanotubes/Soy Oil-Based Polyurethane Nanocomposite Bioplastics with Enhanced Mechanical, Thermal, and Electrical Conductivity Properties. Polymers, 2019, 11, 763.	2.0	6
1250	Tomography of Carbon Nanotube Materials. , 2019, , 185-203.		0
1251	Carbon nanotube-based materials—Preparation, biocompatibility, and applications in dentistry. , 2019, , 41-76.		4
1252	Polymer/nanodiamond composites - a comprehensive review from synthesis and fabrication to properties and applications. Advances in Colloid and Interface Science, 2019, 269, 122-151.	7.0	106
1253	Structure and performance of Si3N4/SiC/CNT composite fibres. Ceramics International, 2019, 45, 12677-12681.	2.3	5
1254	Multi-direction health monitoring with carbon nanotube film strain sensor. International Journal of Distributed Sensor Networks, 2019, 15, 155014771982968.	1.3	14
1255	Structure and properties of Nylon 12/SiC nanocomposites. Materials Research Express, 2019, 6, 065045.	0.8	2
1256	Modified conductive polyaniline-carbon nanotube composite electrodes for bioelectricity generation and waste remediation. Bioresource Technology, 2019, 284, 148-154.	4.8	73
1257	Nonviral Gene Therapy: Design and Application of Inorganic Nanoplexes. , 2019, , 365-390.		2
1258	Preparation of Cellulose-Polyaniline Composite Microspheres via Electron Beam Irradiation Grafting and It's Properties. IOP Conference Series: Materials Science and Engineering, 2019, 493, 012111.	0.3	0
1259	Thermoelastic vibration of doubly-curved nano-composite shells reinforced by graphene nanoplatelets. Journal of Thermal Stresses, 2019, 42, 1-17.	1.1	41
1260	Epitaxial orientation and localized microphase separation prior to formation of nanohybrid shish-kebabs induced by one-dimensional nanofiller in miscible diblock copolymers with selective interaction. Polymer, 2019, 166, 72-80.	1.8	14
1261	Effects of multi-walled carbon nanotubes (MWCNTs) and integrated MWCNTs/SiO2 nano-additives on PVDF polymeric membranes for vacuum membrane distillation. Separation and Purification Technology, 2019, 217, 154-163.	3.9	60
1262	Poly(vinyl alcohol) Fibers with Excellent Mechanical Properties Produced by Reinforcement of Single-walled Graphene Oxide Nanoribbons with Complete Morphology Obtained by Freeze-drying. Fibers and Polymers, 2019, 20, 2637-2645.	1.1	2
1263	DNA Sequence Mediates Apparent Length Distribution in Single-Walled Carbon Nanotubes. ACS Applied Materials & amp; Interfaces, 2019, 11, 2225-2233.	4.0	23
1264	Fabrication of crosslinked single-component polyarylene ether nitrile composite with enhanced dielectric properties. Polymer, 2019, 161, 162-169.	1.8	61
1265	Carbon nanotubes for dental implants. , 2019, , 93-105.		9

#	Article	IF	CITATIONS
1266	Cutting floating single-walled carbon nanotubes with a â€~CO2 blade'. Carbon, 2019, 143, 481-486.	5.4	10
1267	Carbonâ€Based Nanostructured Film Materials for Highâ€Intense Laserâ€Matter Interaction Experiments. Advanced Engineering Materials, 2019, 21, 1800777.	1.6	5
1268	Mechanical and tribological performance of polyamide 12 reinforced with graphene nanoplatelets and paraffin oil nanocomposites. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 74-85.	0.5	6
1269	2D reentrant micro-honeycomb structure of graphene-CNT in polyurethane: High stretchability, superior electrical/thermal conductivity, and improved shape memory properties. Composites Part B: Engineering, 2019, 162, 580-588.	5.9	52
1270	Materials design for robotic platforms enabling unique mechanisms of projectile protection. , 2019, , 493-521.		0
1271	Carbon Nanotubes and Their Polymer Nanocomposites. , 2019, , 145-175.		15
1272	Effect of <i>in situ</i> silanization of multiwalled carbon nanotubes on the properties of NBR/MWCNT-OH composites. Polymer-Plastics Technology and Materials, 2019, 58, 1327-1341.	0.6	7
1273	Preparation of CFRP with modified MWCNT to improve the mechanical properties and torsional fatigue of epoxy/polybenzoxazine copolymer. Composites Part A: Applied Science and Manufacturing, 2019, 118, 30-40.	3.8	29
1274	Ultrathin multifunctional carbon/glass fiber reinforced lossy lattice metastructure for integrated design of broadband microwave absorption and effective load bearing. Carbon, 2019, 144, 449-456.	5.4	62
1275	Morphology, thermal and mechanical properties of epoxy adhesives containing well-dispersed graphene oxide. International Journal of Adhesion and Adhesives, 2019, 88, 11-18.	1.4	32
1276	Thermal conductivity of natural rubber nanocomposites with hybrid fillers. Chinese Journal of Chemical Engineering, 2019, 27, 928-934.	1.7	27
1277	Nanocomposite membranes for organic solvent nanofiltration. Separation and Purification Reviews, 2020, 49, 177-206.	2.8	26
1278	A review of research advances in epoxy-based nanocomposites as adhesive materials. International Journal of Adhesion and Adhesives, 2020, 96, 102454.	1.4	84
1279	3D and 4D printing of polymer/CNTs-based conductive composites. , 2020, , 297-324.		20
1280	The performances of modified single-walled carbon nanotubes/poly(ether ether ketone) composites prepared by solution blending and melt blending. High Performance Polymers, 2020, 32, 276-285.	0.8	5
1281	The recent progress of functionally graded CNT reinforced composites and structures. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	144
1282	Rheology of polymer nanocomposites. , 2020, , 73-96.		5
1283	Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection. Journal of Colloid and Interface Science, 2020, 560, 284-292.	5.0	63

#	Article	IF	CITATIONS
1284	Thermo-mechanical properties of epoxy nanocomposites incorporating amino acid and acid functionalized multi-walled carbon nanotubes. Journal of Composite Materials, 2020, 54, 1847-1861.	1.2	7
1285	The effect of compatibility and dimensionality of carbon nanofillers on cement composites. Construction and Building Materials, 2020, 232, 117141.	3.2	47
1286	Impact of PEO structure and formulation on the properties of a Lignin/PEO blend. Industrial Crops and Products, 2020, 143, 111883.	2.5	5
1287	Layered double hydroxide nanocomposites based on carbon nanoforms. , 2020, , 411-460.		5
1288	On the Thermal Stability of Aryl Groups Chemisorbed on Graphite. Journal of Physical Chemistry C, 2020, 124, 1980-1990.	1.5	15
1289	Polylactic acid/graphene nanocomposite consolidated by SPS technique. Journal of Materials Research and Technology, 2020, 9, 11801-11812.	2.6	11
1290	Measurement and evaluation of the grinding bodies' motions in a vibratory disc mill filled with viscous fluids. Advanced Powder Technology, 2020, 31, 4376-4389.	2.0	1
1291	3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics. Materials, 2020, 13, 2879.	1.3	59
1292	Nano-dispersed cellulose nanofibrils-PMMA composite from pickering emulsion with tunable interfacial tensions. Carbohydrate Polymers, 2020, 247, 116762.	5.1	23
1293	Montmorillonite reinforced polystyrene nanocomposite supported on cellulose as a novel layered sorbent for microextraction by packed sorbent for determination of fluoxetine followed by spectrofluorimetry based on multivariate optimisation. International Journal of Environmental Analytical Chemistry. 2022, 102, 5150-5165.	1.8	7
1294	Fiber Composites Made of Low-Dimensional Carbon Materials. , 0, , .		0
1295	Engineering an Injectable Tough Tissue Adhesive through Nanocellulose Reinforcement. ACS Applied Bio Materials, 2020, 3, 9093-9100.	2.3	8
1296	Alkylborane-Initiated Thiol-Ene Networks for the Synthesis of Thick and Highly Loaded Nanocomposites. ACS Applied Materials & Interfaces, 2020, 12, 55262-55268.	4.0	14
1297	Graphene-based printable conductors for cyclable strain sensors on elastomeric substrates. Carbon, 2020, 169, 25-31.	5.4	18
1298	Pyrene-functionalized tetraphenylethylene polybenzoxazine for dispersing single-walled carbon nanotubes and energy storage. Composites Science and Technology, 2020, 199, 108360.	3.8	119
1299	Effects of Plasticizers and Clays on the Physical, Chemical, Mechanical, Thermal, and Morphological Properties of Potato Starch-Based Nanocomposite Films. ACS Omega, 2020, 5, 17543-17552.	1.6	36
1300	The preparation and application of polymer/graphene nanocomposites. Emerging Materials Research, 2020, 9, 943-959.	0.4	0
1301	Defect structure evolution of polyacrylonitrile and single wall carbon nanotube nanocomposites: a molecular dynamics simulation approach. Scientific Reports, 2020, 10, 11816.	1.6	7

#	Article	IF	CITATIONS
1302	Self-Repairing, Large Linear Working Range Shape Memory Carbon Nanotubes/Ethylene Vinyl Acetate Fiber Strain Sensor for Human Movement Monitoring. ACS Applied Materials & Interfaces, 2020, 12, 42179-42192.	4.0	75
1303	Research of new materials and approaches in additive technologies in the manufacture of prototypes in industrial design. IOP Conference Series: Materials Science and Engineering, 2020, 972, 012057.	0.3	0
1304	Capsule-based healing systems in composite materials: a review. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 491-531.	6.8	12
1305	Concrete Durability and Service Life Planning. RILEM Bookseries, 2020, , .	0.2	2
1306	Novel Si-C compounds with semiconducting and metallic properties: A DFT study. Computational Materials Science, 2020, 183, 109800.	1.4	4
1307	Polyvinyl butyralâ€based composites with carbon nanotubes: Efficient dispersion as a key to high mechanical properties. Polymer Composites, 2020, 41, 3627-3637.	2.3	12
1308	Hydrothermal ageing on self-sensing bonded joints with novel carbon nanomaterial reinforced adhesive films. Polymer Degradation and Stability, 2020, 177, 109170.	2.7	12
1309	Advanced polymer dielectrics for high temperature capacitive energy storage. Journal of Applied Physics, 2020, 127, .	1.1	90
1310	Metal Mimics: Lightweight, Strong, and Tough Nanocomposites and Nanomaterial Assemblies. ACS Applied Materials & Interfaces, 2020, 12, 15955-15975.	4.0	20
1311	Nanocomposite materials for nano-electronic-based Internet of things sensors and energy device signaling. , 2020, , 243-290.		2
1312	The forced vibration of infinitely long cylinders reinforced by carbon nanotubes subjected to combined internal and ringâ€shaped compressive pressures. Mathematical Methods in the Applied Sciences, 2020, , .	1.2	9
1313	Impact of interfacial properties on the viscoelastic relaxation of hard–soft block copolymers using finite element analysis. Journal of Materials Research, 2020, 35, 1857-1873.	1.2	1
1314	Highly improved <scp>PP</scp> / <scp>CNTs</scp> sheet prepared by tailoring crystallization morphology through solidâ€phase die drawing and multilayer hot compression. Polymer Crystallization, 2020, 3, e10137.	0.5	1
1315	Engineering of functionalized carbon nano-onions reinforced nanocomposites: Fabrication, biocompatibility, and mechanical properties. Journal of Materials Research, 2020, 35, 922-930.	1.2	14
1316	Porous Carbon Nanofoam Derived From Pitch as Solar Receiver for Efficient Solar Steam Generation. Global Challenges, 2020, 4, 1900098.	1.8	15
1317	Multifunctionality of structural nanohybrids: the crucial role of carbon nanotube covalent and non-covalent functionalization in enabling high thermal, mechanical and self-healing performance. Nanotechnology, 2020, 31, 225708.	1.3	41
1318	Effect of γ-Fe ₂ O ₃ Nanoparticles on the Cross-Linking and Final Properties of PVA/Citric Acid-Based Nanocomposites. Journal of Physical Chemistry C, 2020, 124, 5444-5451.	1.5	5
1319	Metamaterials: What Is Out There and What Is about to Come. , 2020, , 3-51.		1
#	Article	IF	CITATIONS
------	---	-----	-----------
1320	Controlling the Meso-scale Assembly of CNTs/PBI Interlayers for Toughening of Thermoplastic Composites. , 2020, , .		0
1321	A molecular dynamics investigation for predicting the optimum fiber radius and the effect of various parameters on the mechanical properties of carbon nanotube reinforced iron composite. Computational Materials Science, 2020, 174, 109486.	1.4	6
1322	Cellulose Nanocrystals Assisted Process to Integrate Carbon Nanotubes in CFRP Composites. , 2020, , .		1
1323	3D electronic and photonic structures as active biological interfaces. InformaÄnÃ-Materiály, 2020, 2, 527-552.	8.5	17
1324	Polymer nanocomposites for high-energy-density capacitor dielectrics: Fundamentals and recent progress. IEEE Electrical Insulation Magazine, 2020, 36, 7-28.	1.1	38
1325	Differences in Crystallization Behaviors between Cyclic and Linear Polymer Nanocomposites. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1034-1044.	2.0	18
1326	Citric Acid-Modified Cellulose-Based Tough and Self-Healable Composite Formed by Two Kinds of Noncovalent Bonding. ACS Applied Polymer Materials, 2020, 2, 2274-2283.	2.0	27
1327	An Exploration of Electrocatalytic Analysis and Antibacterial Efficacy of Electrically Conductive Poly (D-Glucosamine)/Graphene Oxide Bionanohybrid. Carbohydrate Polymers, 2020, 240, 116242.	5.1	15
1328	Mechanical properties of high density polyethylene matrix composites reinforced with chitosan particles. Materials Today: Proceedings, 2021, 38, 682-687.	0.9	13
1329	The role of carboxylated cellulose nanocrystals placement in the performance of thin-film composite (TFC) membrane. Journal of Membrane Science, 2021, 617, 118581.	4.1	36
1330	Conductive layer-based multifunctional structural composites for electromagnetic interference shielding. Composite Structures, 2021, 261, 113293.	3.1	29
1331	A facile strategy for observation of helical carbon nanofiber fillers in polymer matrix under different stresses. Polymer Testing, 2021, 93, 106977.	2.3	0
1332	A review on tribology of polymer composite coatings. Friction, 2021, 9, 429-470.	3.4	95
1333	PLA/PEG/MWCNT composites with improved processability and mechanical properties. Polymer-Plastics Technology and Materials, 2021, 60, 430-439.	0.6	2
1334	Interface chemistry of atomic-scale structures for building bioinspired 3D light-weight and porous architectures. , 2021, , 115-141.		0
1335	Electrospun nanofibers for interfacial toughening and damage self-healing of polymer composites and surface coatings. , 2021, , 315-359.		1
1336	Nanofunctionalized 3D printing. , 2021, , 457-504.		0
1337	Thiol ligand capped quantum dot as an efficient and oxygen tolerance photoinitiator for aqueous phase radical polymerization and 3D printing under visible light. Polymer Chemistry, 2021, 12, 5106-5116.	1.9	25

#	Article	IF	CITATIONS
1338	Computational investigation of enhanced properties in functionalized carbon nanotube doped polyvinyl alcohol gel electrolyte systems. Physical Chemistry Chemical Physics, 2021, 23, 21286-21294.	1.3	2
1339	Architect of Polymer Nanocomposites for Aerospace Applications. , 2021, , 1319-1352.		1
1340	Graphene Nanocomposite for Biomedical Applications. , 2021, , 1207-1221.		0
1341	Estimation of Tensile Modulus for Cross-Linked Polyethylene/Clay Shape Memory Nanocomposites. Physical Mesomechanics, 2021, 24, 211-218.	1.0	3
1342	High Performance Supercapacitors Based on Mesopore Structured Multiwalled Carbon Nanotubes. ChemistryOpen, 2021, 10, 347-351.	0.9	7
1343	High-strength potato starch/hectorite clay-based nanocomposite film: synthesis and characterization. Iranian Polymer Journal (English Edition), 2021, 30, 513-521.	1.3	9
1344	Mechanical effects of circular liquid inclusions inside soft matrix: role of internal pressure change and surface tension. Applied Mathematics and Mechanics (English Edition), 2021, 42, 501-510.	1.9	2
1345	Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers, 2021, 13, 1047.	2.0	195
1346	Influence of Carbon Primary Nano Materials in Polymer Modified Binders on the Temperature Sensitivity of Asphalt Concrete During Operation. IOP Conference Series: Materials Science and Engineering, 2021, 1079, 052030.	0.3	0
1347	Exfoliation of Quasi-Two-Dimensional Nanosheets of Metal Diborides. Journal of Physical Chemistry C, 2021, 125, 6787-6799.	1.5	32
1348	Determining the Oblique Angle of Vertical Graphene Arrays Using Helicity-Resolved Raman Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 8353-8359.	1.5	5
1349	Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials, 2021, 11, 967.	1.9	132
1350	CNT-sandwiched copper composites as super thermal conductors for heat management. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114557.	1.3	11
1351	Macroscopic behavior of materials composed of two elastic media. Physical Review B, 2021, 103, .	1.1	5
1352	2D boron nitride nanosheets for polymer composite materials. Npj 2D Materials and Applications, 2021, 5, .	3.9	110
1353	Thermotropic liquid crystalline polymer reinforced polypropylene composites enhanced with carbon nanotubes for use in fused filament fabrication. Polymer Composites, 2021, 42, 4115-4127.	2.3	14
1354	Shape memory polymer nanocomposite: a review on structure–property relationship. Polymer Bulletin, 2022, 79, 3437-3493.	1.7	27
1355	Studies on preparation and thermal control behavior of hybrid fillers/binary-polymer composites with positive temperature coefficient characteristic. Science China Technological Sciences, 2021, 64, 1447-1458.	2.0	7

#	Article	IF	CITATIONS
1356	High-grip and hard-wearing graphene reinforced polyurethane coatings. Composites Part B: Engineering, 2021, 213, 108727.	5.9	13
1357	Transferring elastic strain in Mo/Nb/TiNi multilayer nanocomposites by the principle of lattice strain matching. Composites Part B: Engineering, 2021, 215, 108784.	5.9	11
1358	Functionalization as a way to enhance dispersion of carbon nanotubes in matrices: a review. Materials Today Chemistry, 2021, 20, 100477.	1.7	51
1359	MWCNT-Reinforced AA7075 Composites: Effect of Reinforcement Percentage on Mechanical Properties. Metals, 2021, 11, 969.	1.0	11
1360	Carbon Nanotubes for Improved Performances of Endodontic Sealer. Materials, 2021, 14, 4248.	1.3	5
1361	Synergistic effect of carbon nanotube/TiO2 nanotube multi-scale reinforcement on the mechanical properties and hydration process of portland cement paste. Construction and Building Materials, 2021, 293, 123447.	3.2	34
1362	Dental Applications of Carbon Nanotubes. Molecules, 2021, 26, 4423.	1.7	19
1363	A novel theoretical model for predicting the optimum number of layers of multiwall carbon nanotube for reinforcing iron and molecular dynamics investigation of the failure mechanism of multi-grained matrix. Computational Materials Science, 2021, 196, 110558.	1.4	3
1364	A Study on the Stability of Carbon Nanoforms–Polyimidazolium Network Hybrids in the Conversion of CO2 into Cyclic Carbonates: Increase in Catalytic Activity after Reuse. Nanomaterials, 2021, 11, 2243.	1.9	5
1365	Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials, 2021, 11, 2186.	1.9	101
1366	Polarized Raman Spectroscopy for Determining Crystallographic Orientation of Low-Dimensional Materials. Journal of Physical Chemistry Letters, 2021, 12, 7442-7452.	2.1	28
1367	Effect of Coating of Carbon Nanotubes on Mechanical Properties of Polymer Composites: A Review. Materials Performance and Characterization, 2021, 10, 674-699.	0.2	1
1368	Impact of Carbon Fiber Reinforcement on Mechanical and Tribological Behavior of 3D-Printed Polyethylene Terephthalate Glycol Polymer Composites—An Experimental Investigation. Journal of Materials Engineering and Performance, 2022, 31, 1021-1038.	1.2	15
1369	Controlling Magnesium Self-Corrosion in Mg–Air Batteries with the Conductive Nanocomposite PANI@3D-FCNT. ACS Omega, 2021, 6, 26640-26645.	1.6	6
1370	Novel multifunctional lattice composite structures with superior load-bearing capacities and radar absorption characteristics. Composites Science and Technology, 2021, 216, 109064.	3.8	27
1371	Nanostructuring enforced sandwich-tubular CNT-Cu interconnects. Composite Structures, 2021, 278, 114705.	3.1	1
1372	On the low reinforcing efficiency of carbon nanotubes in high-performanceÂpolymer fibres. Nanocomposites, 2021, 7, 53-69.	2.2	13
1373	Direct ink writing of recyclable and <i>in situ</i> repairable photothermal polyurethane for sustainable 3D printing development. Journal of Materials Chemistry A, 2021, 9, 6981-6992.	5.2	23

#	Article	IF	CITATIONS
1375	Additives, Nanocomposites, and Barrier Coatings. , 2012, , 39-75.		3
1376	Carbon Nanotubes and Their Composites: From Synthesis to Applications. Engineering Materials, 2021, , 37-67.	0.3	4
1377	Carbon in Polymer. , 2013, , 695-728.		1
1378	Multi-Walled Carbon Nanotubes. , 2013, , 147-188.		37
1379	Microscopic Analysis of Mechanical Properties of Aligned Carbon Nanotube/Epoxy Composite. Springer Proceedings in Physics, 2013, , 347-365.	0.1	2
1380	Introduction to Clay- and Carbon-Based Polymer Nanocomposites: Materials, Processing, and Characterization. , 2017, , 1-24.		2
1381	Nano-enabled Multifunctional Materials for Aerospace Applications. Indian Institute of Metals Series, 2017, , 439-453.	0.2	6
1382	Study of thermo-kinetic properties of graphite micro-platelet-enriched vinyl ester composites. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1055-1065.	2.0	5
1383	Synthesis and characterisation of MWNT/chitosan and MWNT/chitosan-crosslinked buckypaper membranes for desalination. Desalination, 2017, 418, 60-70.	4.0	43
1384	A photochemical approach for preparing graphene and fabrication of SU-8/graphene composite conductive micropatterns. Materials and Design, 2017, 132, 505-511.	3.3	12
1385	Crystallisation behaviour of composites of HDPE and MWCNTs: The effect of nanotube dispersion, orientation and polymer deformation. Polymer, 2020, 201, 122587.	1.8	34
1387	Polymer Nanocomposites. , 2009, , 261-299.		2
1388	Thermoelastic characterization of carbon nanotube reinforced PDMS elastomer. Journal of Polymer Engineering, 2021, 41, 87-94.	0.6	1
1389	Dynamic Mechanical Analysis of Rubber Mixtures filled by Carbon Nanotubes. Manufacturing Technology, 2018, 18, 345-351.	0.2	6
1390	Carbon Nanostructures in Bone Tissue Engineering. The Open Orthopaedics Journal, 2016, 10, 877-899.	0.1	24
1391	Taguchi analysis of shrinkage and warpage of injection-moulded polypropylene/multiwall carbon nanotubes nanocomposites. EXPRESS Polymer Letters, 2009, 3, 630-638.	1.1	36
1392	Preparation and characterization of nanocomposites based on COOH functionalized multi-walled carbon nanotubes and on poly(trimethylene terephthalate). EXPRESS Polymer Letters, 2011, 5, 977-995.	1.1	55
1393	A METHOD FOR ISOLATING CELLULOSE NANOFIBRILS FROM WOOD AND THEIR MORPHOLOGICAL CHARACTERISTICS. Acta Polymerica Sinica, 2010, 00, 1320-1326.	0.0	5

#	Article	IF	Citations
1394	Property Evaluation of HVOF Sprayed Multi-walled Carbon Nanotube Aluminum Composite Coatings. Journal of the Korean Institute of Surface Engineering, 2012, 45, 1-7.	0.1	2
1395	Preparation and Characterization of Poly(amide imide)-based Carbon Nanofibers/Epoxy Nanocomposites. Carbon Letters, 2009, 10, 329-334.	3.3	5
1396	High Strength Electrospun Nanofiber Mats via CNT Reinforcement: A Review. Composites Research, 2016, 29, 186-193.	0.1	9
1397	Effect of Temperature on Creep behavior of Poly(vinyl chloride) Loaded with Single Walled Carbon Nanotubes. International Journal of Science and Engineering Applications, 2016, 5, 112-120.	0.1	3
1398	SOLUBILITY IMPROVEMENT AND SURFACE FUNCTIONALIZATION OF MULTI-WALLED CARBON NANOTUBES BY A THIOL-FUNCTIONALIZED POLY(PHENYLACETYLENE) DERIVATIVE. Acta Polymerica Sinica, 2009, 007, 897-900.	0.0	0
1399	Polymer Nanocomposites and their Structure and Properties. A Review. International Polymer Science and Technology, 2010, 37, 1-6.	0.1	1
1400	Dispersion of CNTs. , 2011, , 39-67.		0
1402	MODIFICATION OF POLYACRYLONITRILE-BASED CARBON FIBER WITH CARBON NANOTUBES TREATED BY CHITOSAN DERIVATIVES. Acta Polymerica Sinica, 2011, 011, 1166-1172.	0.0	0
1403	Preparation of MWNTs Functionalized with Silica by Covalent Bonding and Their Application to Shear Thickening Fluids. Textile Science and Engineering, 2012, 49, 290-300.	0.4	0
1404	Wetting in Carbon Inorganic and Organic Nanotubes and Nanochannels. , 2013, , .		0
1405	Nanocarbon Polymer Composites. Composites Research, 2013, 26, 147-154.	0.1	2
1407	Carbon nanofiber-reinforced polymeric nanocomposites. Carbon Letters, 2013, 14, 197-205.	3.3	1
1409	Composite Nanofibers of Polyacrylonitrile (PAN) and Amino-functionalized Carbon Nanotubes Electrospun from Dimethylsulfoxide. Marmara Fen Bilimleri Dergisi, 2015, 27, .	0.2	2
1410	Finite Element Analysis of Multi-walled Nanotubes. Engineering Materials, 2016, , 157-163.	0.3	0
1411	Multiwalled Carbon Nanotubes. , 2017, , 97-120.		0
1412	Effect of CNT on the Mechanical Properties of Composite Materials and Structures. , 2017, , 119-143.		0
1413	Elektro-eğirme Yöntemiyle ÇCKNT Takviye Edilerek Güçlendirilmiş Naylon-6,6 Nanoelyafların Üretimi Karakterizasyonu. El-Cezeri Journal of Science and Engineering, 2017, 4, 146-155.	ve 0.1	1
1414	NICKEL-BASED MULTIWALLED CARBON NANOTUBE COMPOSITE COATINGS. Science and Technology, 2018, 56, 144.	0.1	Ο

#	Article	IF	CITATIONS
1415	Architect of Polymer Nanocomposites for Aerospace Applications. Advances in Chemical and Materials Engineering Book Series, 2019, , 163-205.	0.2	1
1417	Effects of nanofiller geometries and interfacial properties on the mechanical performance of polymer nanocomposites—A numerical study. Polymers and Polymer Composites, 0, , 096739112098363.	1.0	3
1418	Room temperature self-healing and recyclable conductive composites for flexible electronic devices based on imine reversible covalent bond. Journal of Alloys and Compounds, 2022, 894, 162433.	2.8	13
1419	Functionalization of Carbon Nanotube. , 2021, , 1-41.		1
1420	High-density polyethylene/carbon nanotubes composites: Investigation on the factors responsible for the fracture formation under tensile loading. Journal of Polymer Research, 2021, 28, 1.	1.2	0
1421	Effect of copper or carbon fiber addition to the 3D printing of polylactid samples. Materialpruefung/Materials Testing, 2020, 62, 727-732.	0.8	3
1422	Electroless nickel–phosphorus and cobalt–phosphorus coatings on multi-walled carbon nanotubes. Materials Research Express, 2020, 7, 115604.	0.8	8
1424	Durable and robust PVDF-HFP/SiO2/CNTs nanocomposites for anti-icing application: Water repellency, icing delay, and ice adhesion. Progress in Organic Coatings, 2022, 163, 106637.	1.9	8
1425	A review of filamentous carbon nanomaterial synthesis via catalytic conversion of waste plastic pyrolysis products. Journal of Environmental Chemical Engineering, 2022, 10, 107049.	3.3	23
1426	Preparation of PEEK/MWCNT nanocomposites via MWCNT-induced interfacial crystallization mediated compatibilization. Composites Science and Technology, 2022, 221, 109298.	3.8	8
1427	Polyindole and polypyrrole as a sustainable platform for environmental remediation and sensor applications. Materials Advances, 2022, 3, 2990-3022.	2.6	28
1428	Flexible piezoresistive strain sensor based on CNTs–polymer composites: a brief review. Carbon Letters, 2022, 32, 713-726.	3.3	15
1430	Dimensional optimization enables high-performance capacitive deionization. Journal of Materials Chemistry A, 2022, 10, 6414-6441.	5.2	43
1431	A two-fluid model for the macroscopic behavior of polar nematic fluids and gels in a nonchiral or a chiral solvent. European Physical Journal E, 2022, 45, 17.	0.7	1
1432	Polymeric Nanofibers of Various Degrees of Crossâ€Linking as Fillers in Poly(styreneâ€ <i>statâ€n</i> â€butyl) Tj I Macromolecular Rapid Communications, 2022, 43, e2100879.	ETQq0 0 0 2.0	rgBT /Overlo 5
1433	Optimising Crystallisation during Rapid Prototyping of Fe3O4-PA6 Polymer Nanocomposite Component. Journal of Composites Science, 2022, 6, 83.	1.4	1
1434	Atomistic simulations of the deformation behavior of an Nb nanowire embedded in a NiTi shape memory alloy. Acta Materialia, 2022, 228, 117764.	3.8	5
1435	Cellulose Nanofiber Composite Polymeric Materials with Reversible and Movable Cross-links and Evaluation of their Mechanical Properties. ACS Applied Polymer Materials, 2022, 4, 403-412.	2.0	13

#	Article	IF	CITATIONS
1436	Artificial Weathering Resistance Test Methods for Building Performance Assessment of Profiles Made of Natural Fibre-Reinforced Polymer Composites. Materials, 2022, 15, 296.	1.3	2
1437	Roadmap of Effects of Biowaste-Synthesized Carbon Nanomaterials on Carbon Nano-Reinforced Composites. Catalysts, 2021, 11, 1485.	1.6	9
1439	Characterization of Paper-Like Material Prepared from Chitosan/Graphene Oxide Composite. Journal of the Turkish Chemical Society, Section A: Chemistry, 0, , 699-708.	0.4	0
1440	Dielectric spectroscopy of poly(ethylene oxide)–carbon nanotube nanocomposites. AIP Advances, 2022, 12, 055309.	0.6	Ο
1441	Co-effect of carbon nanotube and nano-sized silica on dispersion and mechanical performance in cementitious system. Diamond and Related Materials, 2022, 127, 109162.	1.8	3
1442	Bicyclic-ring base doping induces n-type conduction in carbon nanotubes with outstanding thermal stability in air. Nature Communications, 2022, 13, .	5.8	26
1443	Metal–Ligand Complexes as Dynamic Sacrificial Bonds in Elastic Polymers. Macromolecules, 2022, 55, 5164-5175.	2.2	8
1444	Hydroxyapatite nanoparticles in situ grown on carbon nanotube as a reinforcement for poly (ε-caprolactone) bone scaffold. Materials Today Advances, 2022, 15, 100272.	2.5	25
1445	Effects of carbon nanotube (CNT) geometries on the dispersion characterizations and adhesion properties of CNT reinforced epoxy composites. Composite Structures, 2022, 296, 115942.	3.1	9
1446	A Strengthened and Sensorised Custom Silicone Glove for use with an Intelligent Prosthetic Hand. Medical Engineering and Physics, 2022, 107, 103845.	0.8	6
1447	State of the art review on mechanical properties of sandwich composite structures. Polymer Composites, 2022, 43, 5820-5830.	2.3	16
1448	Determination of activation energy for carbon/epoxy prepregs containing carbon nanotubes by differential scanning calorimetry. High Performance Polymers, 0, , 095400832211159.	0.8	0
1449	Superhydrophobic and Low Reflectance Carbon Nanotubes Buckypapers. Materials Research, 2022, 25, .	0.6	1
1450	Multifunctional materials and nanocomposite sensors for civil infrastructure monitoring. , 2022, , 497-553.		0
1451	Versatile Carbon Nanofiber-Based Sensors. ACS Applied Bio Materials, 2022, 5, 4086-4102.	2.3	14
1452	Epidermal Inspired Flexible Sensor with Buckypaper/PDMS Interfaces for Multimodal and Human Motion Monitoring Applications. ACS Omega, 2022, 7, 37674-37682.	1.6	4
1453	Multiwalled Carbon Nanotubes Polylactide Composites for Electrical Engineering—Fabrication and Electrical Properties. Electronics (Switzerland), 2022, 11, 3180.	1.8	1
1454	Polypropylene Filaments Modified with Manganese-Containing Nanoparticles. Mechanics of Composite Materials, 2022, 58, 705-718.	0.9	1

#	Article	IF	CITATIONS
1455	Nanocarbon reinforced aluminium matrix (NRAM) composites: Fabrication, structure and properties. Materials Science and Technology, 2023, 39, 637-651.	0.8	4
1456	Functionalization of Carbon Nanotube. , 2022, , 299-339.		0
1457	Additive Manufacturing of Stretchable Multi-Walled Carbon Nanotubes/Thermoplastic Polyurethanes Conducting Polymers for Strain Sensing. 3D Printing and Additive Manufacturing, 0, , .	1.4	2
1458	Microstructure and mechanical properties of carbon graphite composites reinforced by carbon nanofibers. Carbon Letters, 2023, 33, 561-571.	3.3	16
1459	Dispersion and orientation patterns in nanorod-infused polymer melts. Journal of Chemical Physics, 2023, 158, .	1.2	3
1460	Thermal degradation of organic–inorganic hybrid materials. , 2023, , 227-249.		0
1461	High-resolution 3D printing for healthcare. , 2023, , 225-271.		1
1462	The synergistic effect of bulk-surface modification onto the wear resistance of the ultrahigh molecular weight polyethylene. Polymers and Polymer Composites, 2023, 31, 096739112211501.	1.0	1
1463	3D spirally coiled piezoelectric nanogenerator for large impact energy harvesting. Nano Energy, 2023, 111, 108412.	8.2	7
1464	Processing and properties of a graphene-reinforced superhydrophobic siloxane. Materials and Design, 2023, 229, 111856.	3.3	4
1467	COVIDâ€19: Prevention, Detection, and Treatment by Using Carbon Nanotubesâ€Based Materials. ChemistrySelect, 2023, 8, .	0.7	0
1468	Determination of carbon nanotubes penetration level into epoxy-woven glass fibre composite laminates manufactured with vacuum infusion process via electrical conductivity measurement. Plastics, Rubber and Composites, 2023, 52, 227-237.	0.9	0
1469	Synthetic nanofillers in polymer composites for aerospace industry. , 2023, , 291-311.		1
1470	Influence of graphene oxide on rheology, mechanical, dielectric, and triboelectric properties of poly(vinyl alcohol) nanocomposite hydrogels prepared <i>via</i> a facile one step process. Soft Matter, 0, , .	1.2	0
1471	Vulcanization, compounding, thermo-mechanical properties and surface morphology of montmorillonite nanoclay based nitrile rubber nanocomposites. Materials Today: Proceedings, 2023, , .	0.9	1
1472	Study of the cross-linking density effect on the mechanical properties of h-BNNS reinforced epoxy nanocomposite part-1: a molecular dynamics simulation. Journal of Molecular Modeling, 2023, 29, .	0.8	3
1478	Recent Progress and Perspective of an Evolving Carbon Family From 0D to 3D: Synthesis, Biomedical Applications, and Potential Challenges. ACS Applied Bio Materials, 2023, 6, 2043-2088.	2.3	3
1481	Carbon Nanotubes Particles: Processing, Mechanical Properties and Application. , 2023, , 19-49.		0

#	Article	IF	CITATIONS
1483	Properties, applications and industrialization of carbon nanotube materials from hydrocarbons cracking. Advances in Chemical Engineering, 2023, , 193-251.	0.5	2
1486	Fabrication, Morphologies and Mechanical Properties of Carbon Nanotube Based Polymer Nanocomposites. , 2012, , 225-250.		0
1490	Creep and Fatigue Behavior of Polymer Nanocomposites. , 2009, , 301-339.		0
1492	Functionalization of Biomaterials. , 2023, , 223-243.		0
1498	Polymer nanocomposite films and coatings in aerospace applications. , 2024, , 591-629.		0
1502	Gas-Phase Modifications of Carbon Nanostructures. , 2024, , 1-32.		0