Hutchinson–Gilford progeria syndrome: Review of th

American Journal of Medical Genetics, Part A 140A, 2603-2624

DOI: 10.1002/ajmg.a.31346

Citation Report

#	Article	IF	CITATIONS
1	Genetic determinants of exceptional human longevity: insights from the Okinawa Centenarian Study. Age, 2006, 28, 313-332.	3.0	77
2	Molecular bases of progeroid syndromes. Human Molecular Genetics, 2006, 15, R151-R161.	2.9	162
3	New Metabolic Phenotypes in Laminopathies: <i>LMNA</i> Mutations in Patients with Severe Metabolic Syndrome. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 4835-4844.	3.6	136
4	Disease Progression in Hutchinson-Gilford Progeria Syndrome: Impact on Growth and Development. Pediatrics, 2007, 120, 824-833.	2.1	105
5	New Approaches to Progeria. Pediatrics, 2007, 120, 834-841.	2.1	83
6	Thematic review series: Adipocyte Biology. Lipodystrophies: windows on adipose biology and metabolism. Journal of Lipid Research, 2007, 48, 1433-1444.	4.2	122
8	Mechanisms of Cardiovascular Disease in Accelerated Aging Syndromes. Circulation Research, 2007, 101, 13-26.	4.5	119
9	An association of Hutchinson–Gilford progeria and malignancy. American Journal of Medical Genetics, Part A, 2007, 143A, 1821-1826.	1.2	38
10	Body fat distribution and metabolic variables in patients with neonatal progeroid syndrome. American Journal of Medical Genetics, Part A, 2007, 143A, 1421-1430.	1.2	33
11	Nuclear architecture: Is it important for genome function and can we prove it?. Journal of Cellular Biochemistry, 2007, 102, 1067-1075.	2.6	35
12	Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nature Reviews Molecular Cell Biology, 2007, 8, 394-404.	37.0	272
13	The role of nuclear architecture in genomic instability and ageing. Nature Reviews Molecular Cell Biology, 2007, 8, 692-702.	37.0	256
14	Hutchinson–Gilford progeria syndrome: clinical findings in three patients carrying the G608G mutation in LMNA and review of the literature. British Journal of Dermatology, 2007, 156, 1308-1314.	1.5	40
15	Human progeroid syndromes, aging and cancer: new genetic and epigenetic insights into old questions. Cellular and Molecular Life Sciences, 2007, 64, 155-170.	5.4	77
16	Effects of prelamin A processing inhibitors on the differentiation and activity of human osteoclasts. Journal of Cellular Biochemistry, 2008, 105, 34-40.	2.6	21
17	Association of homozygous <i>LMNA</i> mutation R471C with new phenotype: Mandibuloacral dysplasia, progeria, and rigid spine muscular dystrophy. American Journal of Medical Genetics, Part A, 2008, 146A, 1049-1054.	1.2	38
18	Phenotype and Course of Hutchinson–Gilford Progeria Syndrome. New England Journal of Medicine, 2008, 358, 592-604.	27.0	610
19	Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nature Cell Biology, 2008, 10, 452-459.	10.3	465

#	Article	IF	CITATIONS
20	Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nature Medicine, 2008, 14, 767-772.	30.7	355
21	Microcephalia with mandibular and dental dysplasia in adult Zmpste24â€deficient mice. Journal of Anatomy, 2008, 213, 509-519.	1.5	14
22	Increased mechanosensitivity and nuclear stiffness in Hutchinson–Gilford progeria cells: effects of farnesyltransferase inhibitors. Aging Cell, 2008, 7, 383-393.	6.7	179
23	Prelamin A is involved in early steps of muscle differentiation. Experimental Cell Research, 2008, 314, 3628-3637.	2.6	35
24	Progeria caused by a rare LMNA mutation p.S143F associated with mild myopathy and atrial fibrillation. European Journal of Paediatric Neurology, 2008, 12, 427-430.	1.6	15
25	Cellular senescence and organismal aging. Mechanisms of Ageing and Development, 2008, 129, 467-474.	4.6	325
26	HGPS and related premature aging disorders: From genomic identification to the first therapeutic approaches. Mechanisms of Ageing and Development, 2008, 129, 449-459.	4.6	81
27	Vascular aging: insights from studies on cellular senescence, stem cell aging, and progeroid syndromes. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, 637-648.	3.3	92
29	Gone with the Wnt/Notch: stem cells in laminopathies, progeria, and aging. Journal of Cell Biology, 2008, 181, 9-13.	5.2	75
30	Heart-hand syndrome of Slovenian type: a new kind of laminopathy. Journal of Medical Genetics, 2008, 45, 666-671.	3.2	47
31	Severe Mandibuloacral Dysplasia-Associated Lipodystrophy and Progeria in a Young Girl with a Novel Homozygous Arg527Cys LMNA Mutation. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4617-4623.	3.6	50
32	Premature aging in mice activates a systemic metabolic response involving autophagy induction. Human Molecular Genetics, 2008, 17, 2196-2211.	2.9	141
34	Progeria., 0,, 145-148.		0
36	Model of human aging: Recent findings on Werner's and Hutchinson-Gilford progeria syndromes. Clinical Interventions in Aging, 2008, Volume 3, 431-444.	2.9	59
37	A Promoter Polymorphism of Lamin A/C Gene is an Independent Genetic Predisposition to Arterial Stiffness in a Japanese General Population (The Tanno and Sobetsu Study). Journal of Atherosclerosis and Thrombosis, 2009, 16 , $404-409$.	2.0	10
38	Altered Nuclear Functions in Progeroid Syndromes: a Paradigm for Aging Research. Scientific World Journal, The, 2009, 9, 1449-1462.	2.1	7
39	Implant Supported Prosthesıs in a Patıent wıth Progerıa: Case Report. Bosnian Journal of Basic Medical Sciences, 2009, 9, 210-214.	1.0	0
40	<i>LMNA</i> , <i>ZMPSTE24</i> , and <i>LBR</i> Are Not Mutated in Scleroderma. Genetic Testing and Molecular Biomarkers, 2009, 13, 635-639.	0.7	2

#	Article	IF	Citations
41	Atypical Progeroid Syndrome due to Heterozygous Missense LMNA Mutations. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4971-4983.	3.6	113
42	Hutchinson-Gilford Progeria Syndrome: Its Presentation in F. Scott Fitzgerald's Short Story â€~The Curious Case of Benjamin Button' and Its Oral Manifestations. Journal of Dental Research, 2009, 88, 873-876.	5.2	5
43	The glycosaminoglycan-binding domain of PRELP acts as a cell type–specific NF-κB inhibitor that impairs osteoclastogenesis. Journal of Cell Biology, 2009, 187, 669-683.	5.2	72
44	Telomere length in Hutchinson-Gilford Progeria Syndrome. Mechanisms of Ageing and Development, 2009, 130, 377-383.	4.6	134
45	Homozygous LMNA mutation R527C in atypical Hutchinson–Gilford progeria syndrome: evidence for autosomal recessive inheritance. Acta Paediatrica, International Journal of Paediatrics, 2009, 98, 1365-1368.	1.5	31
46	Is Intraorbital Fat Extraorbital? Results of Cross-Sectional Anatomy of the Lower Eyelid Fat Pads. Aesthetic Surgery Journal, 2009, 29, 189-193.	1.6	20
47	Progeroid syndrome with sclerodermaâ€like skin changes associated with homozygous R435C <i>LMNA</i> mutation. American Journal of Medical Genetics, Part A, 2009, 149A, 2387-2392.	1,2	28
48	Accelerated ageing: from mechanism to therapy through animal models. Transgenic Research, 2009, 18, 7-15.	2.4	41
49	Premature aging. Cellular and Molecular Life Sciences, 2009, 66, 3091-3094.	5 . 4	6
50	Hutchinsonâ€Gilford progeria syndrome: oral and craniofacial phenotypes. Oral Diseases, 2009, 15, 187-195.	3.0	24
51	Lipodystrophies: Disorders of adipose tissue biology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 507-513.	2.4	153
52	The ageing epigenome: Damaged beyond repair?. Ageing Research Reviews, 2009, 8, 189-198.	10.9	77
54	Nuclear DNA Damage as a Direct Cause of Aging. Rejuvenation Research, 2009, 12, 199-208.	1.8	94
55	A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20788-20793.	7.1	185
56	Transient monoparesis after blade plate removal in a Hutchinsonâ€"Gilford progeria syndrome patient: a case report. Journal of Pediatric Orthopaedics Part B, 2009, 18, 151-156.	0.6	1
57	Lamin A/C Gene Mutations in Familial Cardiomyopathy with Advanced Atrioventricular Block and Arrhythmia. Tohoku Journal of Experimental Medicine, 2009, 218, 309-316.	1.2	23
58	Lamin A-linked progerias: is farnesylation the be all and end all?. Biochemical Society Transactions, 2010, 38, 281-286.	3.4	12
59	Audiologic and Otologic Manifestations of Hutchinson-Gilford Progeria Syndrome. Laryngoscope, 2010, 120, S71-S71.	2.0	8

#	Article	IF	CITATIONS
60	Early onset mandibuloacral dysplasia due to compound heterozygous mutations in <i>ZMPSTE24</i> American Journal of Medical Genetics, Part A, 2010, 152A, 2703-2710.	1.2	45
61	Elbow deformities in a patient with mandibuloacral dysplasia type A. American Journal of Medical Genetics, Part A, 2010, 152A, 2711-2713.	1.2	7
62	1Novel MEFV transcripts in Familial Mediterranean fever patients and controls. BMC Medical Genetics, 2010, 11, 87.	2.1	15
63	Promotion of tumor development in prostate cancer by progerin. Cancer Cell International, 2010, 10, 47.	4.1	20
64	Nuclear envelope alterations generate an agingâ€ike epigenetic pattern in mice deficient in Zmpste24 metalloprotease. Aging Cell, 2010, 9, 947-957.	6.7	50
65	Progeria syndromes and ageing: what is the connection?. Nature Reviews Molecular Cell Biology, 2010, 11, 567-578.	37.0	339
66	Rejuvenating somatotropic signaling: a therapeutical opportunity for premature aging?. Aging, 2010, 2, 1017-1022.	3.1	13
67	The Premature Aging Syndrome Hutchinson-Gilford Progeria: Insights Into Normal Aging. , 2010, , 66-72.		2
68	Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. Journal of Cell Science, 2010, 123, 2605-2612.	2.0	147
69	Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16268-16273.	7.1	124
70	Nurturing the genome. Nucleus, 2010, 1, 129-135.	2.2	34
71	A Translational View of the Genetics of Lipodystrophy and Ectopic Fat Deposition. Progress in Molecular Biology and Translational Science, 2010, 94, 159-196.	1.7	14
72	An Autosomal Recessive Syndrome of Joint Contractures, Muscular Atrophy, Microcytic Anemia, and Panniculitis-Associated Lipodystrophy. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E58-E63.	3.6	88
73	Cardiovascular Pathology in Hutchinson-Gilford Progeria: Correlation With the Vascular Pathology of Aging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2301-2309.	2.4	332
74	From Genes to Genomics to Proteomics. , 2010, , 139-163.		1
75	Interactions Between Nuclei and the Cytoskeleton Are Mediated by SUN-KASH Nuclear-Envelope Bridges. Annual Review of Cell and Developmental Biology, 2010, 26, 421-444.	9.4	497
76	Dedifferentiation rescues senescence of progeria cells but only while pluripotent. Stem Cell Research and Therapy, 2011, 2, 28.	5.5	9
77	Muscular laminopathies: Role of prelamin A in early steps of muscle differentiation. Advances in Enzyme Regulation, 2011, 51, 246-256.	2.6	7

#	Article	IF	CITATIONS
78	Cell autonomous and systemic factors in progeria development. Biochemical Society Transactions, 2011, 39, 1710-1714.	3.4	20
79	Induced pluripotent stem cells — opportunities for disease modelling and drug discovery. Nature Reviews Drug Discovery, 2011, 10, 915-929.	46.4	417
80	Nuclear Mechanics in Disease. Annual Review of Biomedical Engineering, 2011, 13, 397-428.	12.3	126
82	LMNA mutation in progeroid syndrome in association with strokes. European Journal of Medical Genetics, 2011, 54, e576-e579.	1.3	6
83	Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CARASIL): From Discovery to Gene Identification. Journal of Stroke and Cerebrovascular Diseases, 2011, 20, 85-93.	1.6	130
84	A Human iPSC Model of Hutchinson Gilford Progeria Reveals Vascular Smooth Muscle and Mesenchymal Stem Cell Defects. Cell Stem Cell, 2011, 8, 31-45.	11.1	415
85	HGPS-Derived iPSCs For The Ages. Cell Stem Cell, 2011, 8, 4-6.	11.1	7
86	Adipokines and Aging. Journal of Atherosclerosis and Thrombosis, 2011, 18, 545-550.	2.0	71
87	Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria. European Journal of Histochemistry, 2011, 55, e36.	1.5	80
88	Discordant Gene Expression Signatures and Related Phenotypic Differences in Lamin A- and A/C-Related Hutchinson-Gilford Progeria Syndrome (HGPS). PLoS ONE, 2011, 6, e21433.	2.5	14
89	In vitro pathological modelling using patient-specific induced pluripotent stem cells: the case of progeria. Biochemical Society Transactions, 2011, 39, 1775-1779.	3.4	13
90	Defective DNA-damage repair induced by nuclear lamina dysfunction is a key mediator of smooth muscle cell aging. Biochemical Society Transactions, 2011, 39, 1780-1785.	3.4	16
91	Comparative Endocrinology of Aging and Longevity Regulation. Frontiers in Endocrinology, 2011, 2, 75.	3.5	25
92	Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation. European Journal of Human Genetics, 2011, 19, 647-654.	2.8	44
93	Prelamin A-mediated recruitment of SUN1 to the nuclear envelope directs nuclear positioning in human muscle. Cell Death and Differentiation, 2011, 18, 1305-1315.	11.2	72
94	A review and appraisal of the DNA damage theory of ageing. Mutation Research - Reviews in Mutation Research, 2011, 728, 12-22.	5.5	177
95	Chromatin structure as a mediator of aging. FEBS Letters, 2011, 585, 2041-2048.	2.8	167
96	RNA splicing: disease and therapy. Briefings in Functional Genomics, 2011, 10, 151-164.	2.7	79

#	ARTICLE	IF	CITATIONS
97	Otologic and audiologic manifestations of hutchinsonâ€gilford progeria syndrome. Laryngoscope, 2011, 121, 2250-2255.	2.0	13
98	Néstor–Guillermo progeria syndrome: A novel premature aging condition with early onset and chronic development caused by ⟨i⟩BANF1⟨ i⟩ mutations. American Journal of Medical Genetics, Part A, 2011, 155, 2617-2625.	1.2	128
99	Cellular Senescence, Vascular Disease, and Aging. Circulation, 2011, 123, 1650-1660.	1.6	163
100	The Defective Nuclear Lamina in Hutchinson-Gilford Progeria Syndrome Disrupts the Nucleocytoplasmic Ran Gradient and Inhibits Nuclear Localization of Ubc9. Molecular and Cellular Biology, 2011, 31, 3378-3395.	2.3	91
101	Splicing-Directed Therapy in a New Mouse Model of Human Accelerated Aging. Science Translational Medicine, 2011, 3, 106ra107.	12.4	334
102	Insights into intermediate filament regulation from development to ageing. Journal of Cell Science, 2011, 124, 1363-1372.	2.0	47
103	Nuclear and Chromatin Reorganization during Cell Senescence and Aging $\hat{a} \in A$ Mini-Review. Gerontology, 2011, 57, 76-84.	2.8	40
104	Age-Dependent Loss of MMP-3 in Hutchinson-Gilford Progeria Syndrome. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 1201-1207.	3.6	13
105	Ocular manifestations in the Hutchinson-Gilford progeria syndrome. Indian Journal of Ophthalmology, 2011, 59, 509.	1.1	7
106	Hutchinson-Gilford progeria syndrome with severe calcific aortic valve stenosis. Annals of Pediatric Cardiology, 2011, 4, 204.	0.5	24
107	Animal Models of Human Pathology 2012. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-2.	3.0	2
108	Mechanisms of Premature Vascular Aging in Children With Hutchinson-Gilford Progeria Syndrome. Hypertension, 2012, 59, 92-97.	2.7	125
109	Skin signs as early manifestations of Hutchinson-Gilford progeria syndrome. Archives of Disease in Childhood, 2012, 97, 806-807.	1.9	6
110	Think Small: Zebrafish as a Model System of Human Pathology. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-12.	3.0	154
111	Craniofacial Abnormalities in Hutchinson-Gilford Progeria Syndrome. American Journal of Neuroradiology, 2012, 33, 1512-1518.	2.4	24
112	Hip pathology in Hutchinson–Gilford progeria syndrome. Journal of Pediatric Orthopaedics Part B, 2012, 21, 563-566.	0.6	2
113	Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E423-31.	7.1	185
114	Laminopathies. , 2012, , 375-409.		0

#	Article	IF	CITATIONS
115	Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16666-16671.	7.1	315
116	Chromatin Remodeling, DNA Damage Repair and Aging. Current Genomics, 2012, 13, 533-547.	1.6	51
117	Lamins in development, tissue maintenance and stress. EMBO Reports, 2012, 13, 1070-1078.	4.5	61
118	Skeletal muscle contractile function and neuromuscular performance in Zmpste24 â^'/â^' mice, a murine model of human progeria. Age, 2012, 34, 805-819.	3.0	28
119	Unique Preservation of Neural Cells in Hutchinson- Gilford Progeria Syndrome Is Due to the Expression of the Neural-Specific miR-9 MicroRNA. Cell Reports, 2012, 2, 1-9.	6.4	149
120	Complicated Osteoporosis in Progeroid Syndrome: Treatment With Teriparatide. Journal of Clinical Densitometry, 2012, 15, 116-119.	1.2	2
121	Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response. Genes and Development, 2012, 26, 2311-2324.	5.9	224
122	Structural and physiological phenotypes of disease-linked lamin mutations in C. elegans. Journal of Structural Biology, 2012, 177, 106-112.	2.8	35
123	An inherited <i>LMNA</i> gene mutation in atypical Progeria syndrome. American Journal of Medical Genetics, Part A, 2012, 158A, 2881-2887.	1.2	40
124	Premature Aging Syndrome. Advances in Experimental Medicine and Biology, 2012, 724, 317-331.	1.6	29
125	Syndromes progéroïdes. , 2012, , 203-209.		0
126	Aging and reprogramming: a two-way street. Current Opinion in Cell Biology, 2012, 24, 744-756.	5.4	136
127	A novel homozygous p.Arg527Leu LMNA mutation in two unrelated Egyptian families causes overlapping mandibuloacral dysplasia and progeria syndrome. European Journal of Human Genetics, 2012, 20, 1134-1140.	2.8	31
128	Progeroide Erkrankungen und ihre Mechanismen. Medizinische Genetik, 2012, 24, 253-256.	0.2	0
129	Stem Cell Epigenetics and Human Disease. , 2012, , 481-501.		0
130	A prospective study of radiographic manifestations in Hutchinson-Gilford progeria syndrome. Pediatric Radiology, 2012, 42, 1089-1098.	2.0	26
131	HIV Protease Inhibitors Do Not Cause the Accumulation of Prelamin A in PBMCs from Patients Receiving First Line Therapy: The ANRS EP45 "Aging―Study. PLoS ONE, 2012, 7, e53035.	2.5	13
132	Progeria: Pathogenesis and Oral Manifestation- A Review. Kathmandu University Medical Journal, 2012, 10, 88-90.	0.2	5

#	Article	IF	Citations
133	Atypical presentation of scleroderma in infancy. Rheumatology International, 2012, 32, 1069-1074.	3.0	3
134	Lamin a deregulation in human mesenchymal stem cells promotes an impairment in their chondrogenic potential and imbalance in their response to oxidative stress. Osteoarthritis and Cartilage, 2012, 20, S270.	1.3	1
135	Lamin A, farnesylation and aging. Experimental Cell Research, 2012, 318, 1-7.	2.6	85
136	Partial lipodystrophy with severe insulin resistance and adult progeria Werner syndrome. Orphanet Journal of Rare Diseases, 2013, 8, 106.	2.7	43
137	Hutchinson-Gilford progeria syndrome accompanied by severe skeletal abnormalities in two Chinese siblings: two case reports. Journal of Medical Case Reports, 2013, 7, 63.	0.8	12
138	The Transcription Factor FOXM1 (Forkhead box M1). Advances in Cancer Research, 2013, 118, 97-398.	5.0	135
139	Hutchinson–Gilford progeria syndrome through the lens of transcription. Aging Cell, 2013, 12, 533-543.	6.7	76
141	Human iPSC-Based Modeling of Late-Onset Disease via Progerin-Induced Aging. Cell Stem Cell, 2013, 13, 691-705.	11.1	613
142	Lamin A deregulation in human mesenchymal stem cells promotes an impairment in their chondrogenic potential and imbalance in their response to oxidative stress. Stem Cell Research, 2013, 11, 1137-1148.	0.7	50
143	<i>LMNA</i> â€associated cardiocutaneous progeria: An inherited autosomal dominant premature aging syndrome with late onset. American Journal of Medical Genetics, Part A, 2013, 161, 1599-1611.	1.2	25
144	Hutchinson-Gilford progeria syndrome: Report of 2 cases and a novel LMNA mutation of HGPS in China. Journal of the American Academy of Dermatology, 2013, 69, e175-e176.	1.2	3
145	Accumulation of prelamin A compromises NF-κB-regulated B-lymphopoiesis in a progeria mouse model. Longevity & Healthspan, 2013, 2, 1.	6.7	6
146	Detection of Nuclear Envelope Alterations in Senescence. Methods in Molecular Biology, 2013, 965, 243-251.	0.9	3
147	Prenyltransferase inhibitors: treating human ailments from cancer to parasitic infections. MedChemComm, 2013, 4, 476-492.	3.4	54
148	Vascular Cell Physiology Under Shear Flow: Role of Cell Mechanics and Mechanotransduction. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2013, , 121-141.	1.0	0
149	The Fruit Fly Drosophila melanogaster as a Model for Aging Research. Advances in Biochemical Engineering/Biotechnology, 2013, 135, 63-77.	1.1	22
150	Neurologic features of Hutchinson-Gilford progeria syndrome after lonafarnib treatment. Neurology, 2013, 81, 427-430.	1.1	52
151	Imaging Characteristics of Cerebrovascular Arteriopathy and Stroke in Hutchinson-Gilford Progeria Syndrome. American Journal of Neuroradiology, 2013, 34, 1091-1097.	2.4	49

#	Article	IF	CITATIONS
152	The epidemiology of premature aging and associated comorbidities. Clinical Interventions in Aging, 2013, 8, 1023.	2.9	38
153	Moving from gene discovery to clinical trials in Hutchinson-Gilford progeria syndrome. Neurology, 2013, 81, 408-409.	1.1	2
154	How plants LINC the SUN to KASH. Nucleus, 2013, 4, 206-215.	2.2	45
155	Hutchinson-Gilford Progeria Syndrome. , 0, , .		3
156	Hutchinson-Gilford Progeria Syndrome: A Rare Genetic Disorder. Case Reports in Dentistry, 2013, 2013, 1-4.	0.5	5
157	Splicing modulation therapy in the treatment of genetic diseases. The Application of Clinical Genetics, 2014, 7, 245.	3.0	33
159	Mandibuloacral dysplasia type A-associated progeria caused by homozygous LMNA mutation in a family from Southern China. BMC Pediatrics, 2014, 14, 256.	1.7	25
160	Familial 1q22 microduplication associated with psychiatric disorders, intellectual disability and late-onset autoimmune inflammatory response. Molecular Cytogenetics, 2014, 7, 90.	0.9	5
161	New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update. European Journal of Human Genetics, 2014, 22, 1002-1011.	2.8	51
162	Induced Pluripotent Stem Cells Reveal Functional Differences Between Drugs Currently Investigated in Patients With Hutchinson-Gilford Progeria Syndrome. Stem Cells Translational Medicine, 2014, 3, 510-519.	3.3	44
163	DNA Damage and Lamins. Advances in Experimental Medicine and Biology, 2014, 773, 377-399.	1.6	74
164	Mandibuloacral Dysplasia Caused by LMNAMutations and Uniparental Disomy. Case Reports in Genetics, 2014, 2014, 1-5.	0.2	8
166	Genome regulation at the peripheral zone: lamina associated domains in development and disease. Current Opinion in Genetics and Development, 2014, 25, 50-61.	3.3	66
167	Initial Cutaneous Manifestations of Hutchinsonâ€Gilford Progeria Syndrome. Pediatric Dermatology, 2014, 31, 196-202.	0.9	32
168	DNA Damage Response and Metabolic Disease. Cell Metabolism, 2014, 20, 967-977.	16.2	203
169	Alteration of splice site selection in the LMNA gene and inhibition of progerin production via AMPK activation. Medical Hypotheses, 2014, 83, 580-587.	1.5	11
170	TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends. Nature Communications, 2014, 5, 5467.	12.8	111
171	An Encouraging Progress Report on the Treatment of Progeria and Its Implications for Atherogenesis. Circulation, 2014, 130, 4-6.	1.6	9

#	Article	IF	Citations
172	Dental and craniofacial characteristics in a patient with Hutchinson–Gilford progeria syndrome. Journal of Orofacial Orthopedics, 2014, 75, 251-263.	1.3	8
173	Impact of Farnesylation Inhibitors on Survival in Hutchinson-Gilford Progeria Syndrome. Circulation, 2014, 130, 27-34.	1.6	186
174	Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Seminars in Cell and Developmental Biology, 2014, 29, 125-147.	5.0	63
175	Antagonistic functions of <i> <scp>LMNA</scp> </i> isoforms in energy expenditure and lifespan. EMBO Reports, 2014, 15, 529-539.	4.5	47
176	Role of DNA Damage in Cardiovascular Disease. Circulation Journal, 2014, 78, 42-50.	1.6	26
177	Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair. Cell Reports, 2015, 13, 1396-1406.	6.4	117
178	Lamin A/C Acts as an Essential Factor in Mesenchymal Stem Cell Differentiation Through the Regulation of the Dynamics of the Wnt/l²â€Catenin Pathway. Journal of Cellular Biochemistry, 2015, 116, 2344-2353.	2.6	68
179	Nucleoskeleton dynamics and functions in health and disease. Cell Health and Cytoskeleton, 2015, , 55.	0.7	2
180	Mutant lamin A links prophase to a p53 independent senescence program. Cell Cycle, 2015, 14, 2408-2421.	2.6	17
181	Hutchinson–Gilford progeria syndrome. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 132, 249-264.	1.8	101
182	iTRAQ-based analysis of progerin expression reveals mitochondrial dysfunction, reactive oxygen species accumulation and altered proteostasis. Stem Cell Research and Therapy, 2015, 6, 119.	5.5	28
183	DNA repair defects and genome instability in Hutchinson–Gilford Progeria Syndrome. Current Opinion in Cell Biology, 2015, 34, 75-83.	5.4	108
184	Reactivation of latently infected HIV-1 viral reservoirs and correction of aberrant alternative splicing in the LMNA gene via AMPK activation: Common mechanism of action linking HIV-1 latency and Hutchinson–Gilford progeria syndrome. Medical Hypotheses, 2015, 85, 320-332.	1.5	8
185	Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects. FASEB Journal, 2015, 29, 3193-3205.	0.5	21
186	<i>LMNA</i> Mutation c.917T>G (p.L306R) Leads to Deleterious Hyper-Assembly of Lamin A/C and Associates with Severe Right Ventricular Cardiomyopathy and Premature Aging. Human Mutation, 2015, 36, 694-703.	2.5	14
187	Biomolecular bases of the senescence process and cancer. A new approach to oncological treatment linked to ageing. Ageing Research Reviews, 2015, 23, 125-138.	10.9	20
188	Infection susceptibility and immune senescence with advancing age replicated in accelerated aging L mna Dhe mice. Aging Cell, 2015, 14, 1122-1126.	6.7	10
189	Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects. Cell Stem Cell, 2015, 17, 705-718.	11.1	545

#	Article	IF	Citations
190	Vascular Aging: Implications for Cardiovascular Disease and Therapy. Translational Medicine (Sunnyvale, Calif), $2016, 06, .$	0.4	53
191	Antisense-Based Progerin Downregulation in HGPS-Like Patients' Cells. Cells, 2016, 5, 31.	4.1	34
192	Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses. PLoS ONE, 2016, 11, e0146791.	2.5	10
193	Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase. Aging, 2016, 8, 366-381.	3.1	20
194	Lipodystrophies. , 2016, , 325-339.		2
195	Novel <i>LMNA</i> mutations cause an aggressive atypical neonatal progeria without progerin accumulation. Journal of Medical Genetics, 2016, 53, 776-785.	3.2	17
196	Mammalian telomeres and their partnership with lamins. Nucleus, 2016, 7, 187-202.	2.2	45
197	Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. DMM Disease Models and Mechanisms, 2016, 9, 719-735.	2.4	117
198	Anti-Aging Strategies Based on Cellular Reprogramming. Trends in Molecular Medicine, 2016, 22, 725-738.	6.7	63
199	Diseases of the Nucleoskeleton. , 2016, 6, 1655-1674.		4
200			
	Vascular Disease in Hutchinson Gilford Progeria Syndrome and Aging. , 2016, , 433-457.		0
201	Vascular Disease in Hutchinson Gilford Progeria Syndrome and Aging., 2016, , 433-457. Speeding up the clock: The past, present and future of progeria. Development Growth and Differentiation, 2016, 58, 116-130.	1.5	15
201	Speeding up the clock: The past, present and future of progeria. Development Growth and	1.5	
	Speeding up the clock: The past, present and future of progeria. Development Growth and Differentiation, 2016, 58, 116-130. Pathologically Relevant Prelamin A Interactions with Transcription Factors. Methods in Enzymology,		15
202	Speeding up the clock: The past, present and future of progeria. Development Growth and Differentiation, 2016, 58, 116-130. Pathologically Relevant Prelamin A Interactions with Transcription Factors. Methods in Enzymology, 2016, 569, 485-501. iPSCs-based anti-aging therapies: Recent discoveries and future challenges. Ageing Research Reviews,	1.0	15
202	Speeding up the clock: The past, present and future of progeria. Development Growth and Differentiation, 2016, 58, 116-130. Pathologically Relevant Prelamin A Interactions with Transcription Factors. Methods in Enzymology, 2016, 569, 485-501. iPSCs-based anti-aging therapies: Recent discoveries and future challenges. Ageing Research Reviews, 2016, 27, 37-41. Understanding Vascular Diseases: Lessons From PrematureÂAging Syndromes. Canadian Journal of	1.0	15 4 7
202 203 204	Speeding up the clock: The past, present and future of progeria. Development Growth and Differentiation, 2016, 58, 116-130. Pathologically Relevant Prelamin A Interactions with Transcription Factors. Methods in Enzymology, 2016, 569, 485-501. iPSCs-based anti-aging therapies: Recent discoveries and future challenges. Ageing Research Reviews, 2016, 27, 37-41. Understanding Vascular Diseases: Lessons From PrematureÂAging Syndromes. Canadian Journal of Cardiology, 2016, 32, 650-658. Hutchinson–Gilford progeria syndrome as a model for vascular aging. Biogerontology, 2016, 17,	1.0 10.9 1.7	15 4 7 9

#	ARTICLE	IF	CITATIONS
208	Disruption of transforming growth factor- \hat{l}^2 superfamily signaling: A shared mechanism underlying hereditary cerebral small vessel disease. Neurochemistry International, 2017, 107, 211-218.	3.8	11
209	Inherited Arterial Calcification Syndromes: Etiologies and Treatment Concepts. Current Osteoporosis Reports, 2017, 15, 255-270.	3.6	54
210	Lamins and metabolism. Clinical Science, 2017, 131, 105-111.	4.3	19
211	The clinical characteristics of Asian patients with classical-type Hutchinson–Gilford progeria syndrome. Journal of Human Genetics, 2017, 62, 1031-1035.	2.3	9
212	Genética en dermatologÃa. EMC - DermatologÃa, 2017, 51, 1-11.	0.1	0
213	The emerging role of alternative splicing in senescence and aging. Aging Cell, 2017, 16, 918-933.	6.7	141
214	Ophthalmologic Features of Progeria. American Journal of Ophthalmology, 2017, 182, 126-132.	3.3	7
215	Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nature Reviews Molecular Cell Biology, 2017, 18, 595-609.	37.0	217
216	Emerging candidate treatment strategies for Hutchinson-Gilford progeria syndrome. Biochemical Society Transactions, 2017, 45, 1279-1293.	3.4	18
217	Hutchinson–Gilford Progeria Syndrome: A Premature Aging Disease. Molecular Neurobiology, 2017, 55, 4417-4427.	4.0	57
218	Coronary artery stenting in a patient with progeria. Catheterization and Cardiovascular Interventions, 2017, 90, E38-E40.	1.7	3
219	RISK FACTORS, PREVALENCE AND DIAGNOSIS OF HUTCHISON GILFORD SYNDROME WITH SPECIAL REFERENCE TO CASE REPORTS. International Journal of Pharmacy and Pharmaceutical Sciences, 2017, 9, 1.	0.3	2
220	Radiological Diagnosis of a Rare Premature Aging Genetic Disorder: Progeria (Hutchinson-Gilford) Tj ETQq0 0 0 rgE	BT/Overlo	сķ 10 Tf 50 2
221	Farnesyltransferase inhibitors prevent HIV protease inhibitor (lopinavir/ritonavir)-induced lipodystrophy and metabolic syndrome in mice. Experimental and Therapeutic Medicine, 2017, 15, 1314-1320.	1.8	1
222	Cardiac Abnormalities in Patients With Hutchinson-Gilford Progeria Syndrome. JAMA Cardiology, 2018, 3, 326.	6.1	67
223	Left Ventricular Diastolic Dysfunction in Hutchinson-Gilford Progeria Syndrome. JAMA Cardiology, 2018, 3, 334.	6.1	0
224	Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein and Cell, 2018, 9, 333-350.	11.0	56
225	Microbiome at sites of gingival recession in children with Hutchinson–Gilford progeria syndrome. Journal of Periodontology, 2018, 89, 635-644.	3.4	0

#	Article	IF	CITATIONS
226	Vascular Smooth Muscle–Specific Progerin Expression Accelerates Atherosclerosis and Death in a Mouse Model of Hutchinson-Gilford Progeria Syndrome. Circulation, 2018, 138, 266-282.	1.6	102
227	Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome. JAMA - Journal of the American Medical Association, 2018, 319, 1687.	7.4	159
228	An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. Nucleus, 2018, 9, 265-276.	2.2	68
229	Mice with reduced expression of the telomereâ€associated protein Ft1 develop p53â€sensitive progeroid traits. Aging Cell, 2018, 17, e12730.	6.7	24
230	Overexpression of the lamina proteins Lamin and Kugelkern induces specific ultrastructural alterations in the morphology of the nuclear envelope of intestinal stem cells and enterocytes. European Journal of Cell Biology, 2018, 97, 102-113.	3.6	6
231	Recent insights into the cellular and molecular determinants of aging. Journal of Cell Science, 2018, 131, .	2.0	21
232	Survey of plasma proteins in children with progeria pre-therapy and on-therapy with lonafarnib. Pediatric Research, 2018, 83, 982-992.	2.3	11
233	p53 isoforms regulate premature aging in human cells. Oncogene, 2018, 37, 2379-2393.	5.9	45
234	Elixir of Life. Circulation Research, 2018, 122, 128-141.	4.5	9
235	Orofacial signs and dental abnormalities in patients with Mulvihill–Smith syndrome. Medicine (United) Tj ETQq1	1.8.7843 1.8	14 rgBT /0
236	Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nature Communications, 2018, 9, 1700.	12.8	103
237	Mecanismos de envejecimiento vascular: ¿Qué podemos aprender del sÃndrome de progeria de Hutchinson-Gilford?. ClÃnica E Investigación En Arteriosclerosis, 2018, 30, 120-132.	0.8	4
238	A Novel Generalized Lipodystrophy-Associated Progeroid Syndrome Due to Recurrent Heterozygous LMNA p.T10I Mutation. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1005-1014.	3.6	47
239	Lipodystrophic laminopathies: Diagnostic clues. Nucleus, 2018, 9, 277-288.	2.2	23
240	Secretome analysis of in vitro aged human mesenchymal stem cells reveals IGFBP7 as a putative factor for promoting osteogenesis. Scientific Reports, 2018, 8, 4632.	3.3	30
241	Sex Differences in Aging: Genomic Instability. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 166-174.	3.6	66
242	Bone mineral density in familial partial lipodystrophy. Clinical Endocrinology, 2018, 88, 44-50.	2.4	7
243	Aging in the Cardiovascular System: Lessons from Hutchinson-Gilford Progeria Syndrome. Annual Review of Physiology, 2018, 80, 27-48.	13.1	81

#	Article	IF	CITATIONS
244	Next-Generation Sequencing and Quantitative Proteomics of Hutchinson-Gilford progeria syndrome-derived cells point to a role of nucleotide metabolism in premature aging. PLoS ONE, 2018, 13, e0205878.	2.5	16
245	Predicting age from the transcriptome of human dermal fibroblasts. Genome Biology, 2018, 19, 221.	8.8	143
246	A Rare Case of Hutchä±nson-Gä±lford Progerä±a Syndrome Wä±th Early Dental Loss Wä±thout Decay. Makara Journal of Health Research, 2018, 22, .	0.1	0
247	Disrupting the LINC complex in smooth muscle cells reduces aortic disease in a mouse model of Hutchinson-Gilford progeria syndrome. Science Translational Medicine, 2018, 10, .	12.4	63
248	Mechanisms of allelic and clinical heterogeneity of lamin A/C phenotypes. Physiological Genomics, 2018, 50, 694-704.	2.3	8
249	Upregulation of the aging related LMNA splice variant progerin in dilated cardiomyopathy. PLoS ONE, 2018, 13, e0196739.	2.5	21
250	Endothelial Nuclear Lamina in Mechanotransduction Under Shear Stress. Advances in Experimental Medicine and Biology, 2018, 1097, 83-104.	1.6	6
251	Molecular tools that block maturation of the nuclear lamin A and decelerate cancer cell migration. Bioorganic and Medicinal Chemistry, 2018, 26, 5547-5554.	3.0	13
252	Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. Medical Hypotheses, 2018, 118, 151-162.	1.5	16
253	Genomic instability and DNA replication defects in progeroid syndromes. Nucleus, 2018, 9, 368-379.	2.2	46
254	Mechanisms of vascular aging: What can we learn from Hutchinson-Gilford progeria syndrome?. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2018, 30, 120-132.	0.2	1
255	DNA Methyltransferases, DNA Methylation, and Age-Associated Cognitive Function. International Journal of Molecular Sciences, 2018, 19, 1315.	4.1	105
256	Diminished Canonical \hat{l}^2 -Catenin Signaling During Osteoblast Differentiation Contributes to Osteopenia in Progeria. Journal of Bone and Mineral Research, 2018, 33, 2059-2070.	2.8	29
257	Myotonic Dystrophy—A Progeroid Disease?. Frontiers in Neurology, 2018, 9, 601.	2.4	34
258	Genetics of Progeria and Aging., 2018,, 673-687.		0
259	Global mapping of transcription factor motifs in human aging. PLoS ONE, 2018, 13, e0190457.	2.5	12
260	Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein and Cell, 2019, 10, 417-435.	11.0	88
261	DNA Damage and Associated DNA Repair Defects in Disease and Premature Aging. American Journal of Human Genetics, 2019, 105, 237-257.	6.2	143

#	Article	IF	CITATIONS
262	Metabolomic profiling suggests systemic signatures of premature aging induced by Hutchinson–Gilford progeria syndrome. Metabolomics, 2019, 15, 100.	3.0	4
263	Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10. Cells, 2019, 8, 1035.	4.1	39
264	Hutchinson-Gilford Progeria Syndromeâ€"Current Status and Prospects for Gene Therapy Treatment. Cells, 2019, 8, 88.	4.1	39
265	SOPH syndrome in three affected individuals showing similarities with progeroid cutis laxa conditions in early infancy. Journal of Human Genetics, 2019, 64, 609-616.	2.3	14
266	Progerin accelerates atherosclerosis by inducing endoplasmic reticulum stress in vascular smooth muscle cells. EMBO Molecular Medicine, 2019, 11 , .	6.9	83
267	Vascular smooth muscle cellâ€specific progerin expression in a mouse model of Hutchinson–Gilford progeria syndrome promotes arterial stiffness: Therapeutic effect of dietary nitrite. Aging Cell, 2019, 18, e12936.	6.7	51
268	Telomeropathies: Etiology, diagnosis, treatment and followâ€up. Ethical and legal considerations. Clinical Genetics, 2019, 96, 3-16.	2.0	17
269	Vascular smooth muscle cell loss underpins the accelerated atherosclerosis in Hutchinson-Gilford progeria syndrome. Nucleus, 2019, 10, 48-54.	2.2	20
270	Recognition of Genetic Disorders Based on Deep Features and Geometric Representation. Lecture Notes in Computer Science, 2019, , 665-672.	1.3	1
271	Development of a CRISPR/Cas9-based therapy for Hutchinson–Gilford progeria syndrome. Nature Medicine, 2019, 25, 423-426.	30.7	115
274	Mouse Models of Accelerated Cellular Senescence. Methods in Molecular Biology, 2019, 1896, 203-230.	0.9	30
275	Forced expression of mouse progerin attenuates the osteoblast differentiation interrupting \hat{l}^2 -catenin signal pathway in vitro. Cell and Tissue Research, 2019, 375, 655-664.	2.9	2
276	Diagnosis and treatment of lipodystrophy: a step-by-step approach. Journal of Endocrinological Investigation, 2019, 42, 61-73.	3.3	116
277	Progeria: A Rare Genetic Syndrome. Indian Journal of Clinical Biochemistry, 2020, 35, 3-7.	1.9	1
278	Genetic Cardiomyopathies., 2020,, 77-114.		1
279	Long term breeding of the Lmna G609G progeric mouse: Characterization of homozygous and heterozygous models. Experimental Gerontology, 2020, 130, 110784.	2.8	18
280	Fight to the bitter end: DNA repair and aging. Ageing Research Reviews, 2020, 64, 101154.	10.9	32
281	Premature Vascular Aging with Features of Plaque Vulnerability in an Atheroprone Mouse Model of Hutchinson–Gilford Progeria Syndrome with Ldlr Deficiency. Cells, 2020, 9, 2252.	4.1	13

#	Article	IF	CITATIONS
282	Multisystem Progeroid Syndrome With Lipodystrophy, Cardiomyopathy, and Nephropathy Due to an LMNA p.R349W Variant. Journal of the Endocrine Society, 2020, 4, bvaa104.	0.2	7
283	Alopecia en el niño. EMC - DermatologÃa, 2020, 54, 1-15.	0.1	0
284	Generation of a Hutchinson–Gilford progeria syndrome monkey model by base editing. Protein and Cell, 2020, 11, 809-824.	11.0	46
285	Identification of common cardiometabolic alterations and deregulated pathways in mouse and pig models of aging. Aging Cell, 2020, 19, e13203.	6.7	10
286	Pathophysiology of premature aging characteristics in Mendelian progeroid disorders. European Journal of Medical Genetics, 2020, 63, 104028.	1.3	14
287	A Novel Syndrome With Short Stature, Mandibular Hypoplasia, and Osteoporosis May Be Associated With a PRRT3 Variant. Journal of the Endocrine Society, 2020, 4, bvaa088.	0.2	0
288	ZMPSTE24 Is Associated with Elevated Inflammation and Progerin mRNA. Cells, 2020, 9, 1981.	4.1	5
289	<p>Hutchinson–Gilford Progeria Syndrome: Clinical and Molecular Characterization</p> . The Application of Clinical Genetics, 2020, Volume 13, 159-164.	3.0	5
290	Impairment of nuclear F-actin formation and its relevance to cellular phenotypes in Hutchinson-Gilford progeria syndrome. Nucleus, 2020, 11, 250-263.	2.2	8
291	Progeroid Syndrome with Mitral Regurgitation: A Rare Case Report. Indian Journal of Cardiovascular Disease in Women WINCARS, 2020, 5, 117-122.	0.1	0
292	Loss of MTX2 causes mandibuloacral dysplasia and links mitochondrial dysfunction to altered nuclear morphology. Nature Communications, 2020, 11, 4589.	12.8	30
293	Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13. Nature Communications, 2020, 11, 4110.	12.8	20
294	Hereditary Disorders of Cardiovascular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 35-47.	2.4	16
295	FZD5 regulates cellular senescence in human mesenchymal stem/stromal cells. Stem Cells, 2021, 39, 318-330.	3.2	19
296	Hutchinsonâ€Gilford Progeria syndrome: Report of the first Togolese case. American Journal of Medical Genetics, Part A, 2020, 182, 1316-1320.	1.2	3
297	The Laminopathies and the Insights They Provide into the Structural and Functional Organization of the Nucleus. Annual Review of Genomics and Human Genetics, 2020, 21, 263-288.	6.2	48
298	Ultrasonic Characteristics of Cardiovascular Changes in Children with Hutchinson–Gilford Progeria Syndrome: A Comparative Study with Normal Children and Aging People. BioMed Research International, 2020, 2020, 1-8.	1.9	1
299	Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford progeria syndrome. Genome Medicine, 2020, 12, 46.	8.2	40

#	Article	IF	CITATIONS
300	Role of the Nuclear Lamina in Age-Associated Nuclear Reorganization and Inflammation. Cells, 2020, 9, 718.	4.1	20
301	Progress and trends in the development of therapies for Hutchinson–Gilford progeria syndrome. Aging Cell, 2020, 19, e13175.	6.7	22
302	The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacological Reviews, 2020, 72, 692-766.	16.0	133
303	A case of generalized lipodystrophy-associated progeroid syndrome treated by leptin replacement with short and long-term monitoring of the metabolic and endocrine profiles. Endocrine Journal, 2020, 67, 211-218.	1.6	3
304	Metabolic Dysfunction in Hutchinson–Gilford Progeria Syndrome. Cells, 2020, 9, 395.	4.1	24
305	Identification of hub genes, key pathways, and therapeutic agents in Hutchinson–Gilford Progeria syndrome using bioinformatics analysis. Medicine (United States), 2020, 99, e19022.	1.0	2
306	Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson–Gilford progeria syndrome. GeroScience, 2020, 42, 467-494.	4.6	12
307	Looking at New Unexpected Disease Targets in LMNA-Linked Lipodystrophies in the Light of Complex Cardiovascular Phenotypes: Implications for Clinical Practice. Cells, 2020, 9, 765.	4.1	10
308	Cardiovascular complications of lipodystrophic syndromes – focus on laminopathies. Annales D'Endocrinologie, 2021, 82, 146-148.	1.4	3
309	Dissecting Alzheimer's disease pathogenesis in human 2D and 3D models. Molecular and Cellular Neurosciences, 2021, 110, 103568.	2.2	30
310	Premature aging disorders: A clinical and genetic compendium. Clinical Genetics, 2021, 99, 3-28.	2.0	23
311	Nuclear organization and regulation of the differentiated state. Cellular and Molecular Life Sciences, 2021, 78, 3141-3158.	5.4	20
312	Long-term survival in a patient with Hutchinson-Gilford progeria syndrome and osteosarcoma: A case report. World Journal of Clinical Cases, 2021, 9, 854-863.	0.8	0
313	PCA3 controls chromatin organization and p53 signal activation by regulating LAP2α-lamin A complexes. Cancer Gene Therapy, 2021, , .	4.6	1
314	A targeted antisense therapeutic approach for Hutchinson–Gilford progeria syndrome. Nature Medicine, 2021, 27, 536-545.	30.7	55
315	Clinical and genetic features of children with Hutchinsonâ€Gilford progeria syndrome: a case series and a literature review. Journal of the European Academy of Dermatology and Venereology, 2021, 35, e387-e391.	2.4	3
316	Drug Repurposing for Rare Diseases. Trends in Pharmacological Sciences, 2021, 42, 255-267.	8.7	105
318	Atypical progeroid syndrome (p.E262K LMNA mutation): a rare cause of short stature and osteoporosis. Endocrinology, Diabetes and Metabolism Case Reports, 2021, 2021, .	0.5	6

#	Article	IF	CITATIONS
319	Molecular and Cellular Mechanisms Driving Cardiovascular Disease in Hutchinson-Gilford Progeria Syndrome: Lessons Learned from Animal Models. Cells, 2021, 10, 1157.	4.1	22
320	Laminopathies' Treatments Systematic Review: A Contribution Towards a †Treatabolome'. Journal of Neuromuscular Diseases, 2021, 8, 419-439.	2.6	13
322	Impact of Progerin Expression on Adipogenesis in Hutchinson—Gilford Progeria Skin-Derived Precursor Cells. Cells, 2021, 10, 1598.	4.1	7
323	Descubrimiento de varios fragmentos de una biblia hebrea (Calahorra, s. XIV). Sefarad, 2021, 81, 89-106.	0.2	0
324	Modeling transcriptomic age using knowledge-primed artificial neural networks. Npj Aging and Mechanisms of Disease, 2021, 7, 15.	4.5	27
325	Changes in Chromatin Organization Eradicate Cellular Stress Resilience to UVA/B Light and Induce Premature Aging. Cells, 2021, 10, 1755.	4.1	7
326	High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome. International Journal of Molecular Sciences, 2021, 22, 7327.	4.1	5
327	Whole-exome sequencing reveals POLR3B variants associated with progeria-related Wiedemann-Rautenstrauch syndrome. Italian Journal of Pediatrics, 2021, 47, 160.	2.6	4
328	Genetic reduction of mTOR extends lifespan in a mouse model of Hutchinsonâ€Gilford Progeria syndrome. Aging Cell, 2021, 20, e13457.	6.7	27
329	Principles of brain aging: Status and challenges of modeling human molecular changes in mice. Ageing Research Reviews, 2021, 72, 101465.	10.9	7
330	Child to adulthood clinical description of MDPL syndrome due to a novel variant in POLD1. European Journal of Medical Genetics, 2021, 64, 104333.	1.3	1
331	A 13-Year-Old Boy from Thailand with Hutchinson-Gilford Progeria Syndrome with Coronary Artery and Aortic Calcification and Non-ST-Segment Elevation Myocardial Infarction (NSTEMI). American Journal of Case Reports, 2021, 22, e928969.	0.8	2
332	Atherosclerosis and Cardiovascular Diseases in Progeroid Syndromes. Journal of Atherosclerosis and Thrombosis, 2022, 29, 439-447.	2.0	7
333	DNA damageâ€"how and why we age?. ELife, 2021, 10, .	6.0	184
335	Epigenetic Silencing of Progeroid Syndromes. , 2010, , 345-369.		2
336	Protein Oxidation. , 2011, , 57-78.		2
337	Interphase Chromosome Behavior in Normal and Diseased Cells. , 2013, , 9-33.		8
338	Genetische Bindegewebskrankheiten. , 2014, , 1912-1925.		1

#	ARTICLE	IF	CITATIONS
339	Heredit \tilde{A}^{re} Bindegewebskrankheiten bei Kindern und Jugendlichen. Springer Reference Medizin, 2019, , 1-25.	0.0	1
340	Results-I. Lamin A is an Endogenous Activator of SIRT6 in DNA Damage Repair Process. Springer Theses, 2019, , 73-95.	0.1	1
341	Diseases of collagen and elastic tissue. , 2012, , 935-966.		3
342	Using nuclear envelope mutations to explore age-related skeletal muscle weakness. Clinical Science, 2020, 134, 2177-2187.	4.3	15
346	Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse. Journal of Clinical Investigation, 2018, 129, 531-545.	8.2	75
347	Differential Expression of A-Type and B-Type Lamins during Hair Cycling. PLoS ONE, 2009, 4, e4114.	2.5	13
348	Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations. PLoS ONE, 2017, 12, e0188256.	2.5	9
349	Chromatin modifications: The driving force of senescence and aging?. Aging, 2009, 1, 182-190.	3.1	52
350	Progeria, rapamycin and normal aging: recent breakthrough. Aging, 2011, 3, 685-691.	3.1	43
351	Depletion of nuclear histone H2A variants is associated with chronic DNA damage signaling upon drug-evoked senescence of human somatic cells. Aging, 2012, 4, 823-842.	3.1	25
352	Progeroid laminopathy with restrictive dermopathy-like features caused by an isodisomic LMNA mutation p.R435C. Aging, 2013, 5, 445-459.	3.1	15
353	Prelamin A accumulation and stress conditions induce impaired Oct-1 activity and autophagy in prematurely aged human mesenchymal stem cell. Aging, 2014, 6, 264-280.	3.1	47
354	Lamins and bone disorders: current understanding and perspectives. Oncotarget, 2018, 9, 22817-22831.	1.8	19
355	Nurturing the genome: A-type lamins preserve genomic stability. Nucleus, 2010, 1, 129-135.	2.2	31
356	Anti-Aging Efficacy of a New Alendronate-Pravastatin Cosmetic Combination: A Randomized Double Blind Comparative Study. Journal of Cosmetics Dermatological Sciences and Applications, 2013, 03, 163-171.	0.2	2
357	Single Gene Disorders with Craniofacial and Oral Manifestations. Journal of Contemporary Dental Practice, 2014, 15, 659-671.	0.5	2
358	Hutchinson-Gilford Progeria Syndrome (Hgps) and Application of Gene Therapy Based Crispr/Cas Technology as A Promising Innovative Treatment Approach. Recent Patents on Biotechnology, 2021, 15, 266-285.	0.8	0
359	Preclinical Advances of Therapies for Laminopathies. Journal of Clinical Medicine, 2021, 10, 4834.	2.4	4

#	Article	IF	CITATIONS
360	Hutchinson-Gilford progeria syndrome. Drugs of the Future, 2006, 31, 467.	0.1	O
361	The Stem Cell Hypothesis of Aging. Indonesian Biomedical Journal, 2010, 2, 26.	0.3	0
363	Hutchinson-Gilford Progeria Syndrome: Case Report. Journal of Ege University School of Dentistry, 2011, 32, 45-49.	0.0	0
365	DNA Repair, Human Diseases and Aging. , 0, , .		0
366	Infantile Alopecia, Characteristic Facies and Sclerosed Atrophic Limbs. , 2013, , 79-87.		0
367	Induced Pluripotent Stem Cells: Basics and the Application in Disease Model and Regenerative Medicine., 2013,, 147-168.		0
368	Clinical and radiographic features of Hutchinson-Gilford progeria syndrome: A case report. World Journal of Clinical Cases, 2014, 2, 67.	0.8	4
369	Progeria and Genome Instability. , 2015, , 51-63.		0
370	An Overview of Hutchinson Gilford Progeria Syndrome (HGPS). British Journal of Medicine and Medical Research, 2015, 5, 1527-1533.	0.2	0
371	The Nuclear Envelope in Cardiac Health and Disease. , 2015, , 161-185.		1
372	HereditÃ🅦 Bindegewebskrankheiten bei Kindern und Jugendlichen. , 2015, , 1-24.		0
373	Mutation in Genes FBN1, AKT1, and LMNA: Marfan Syndrome, Proteus Syndrome, and Progeria Share Common Systemic Involvement. International Journal of Medical Students, 2015, 3, 92-101.	0.5	0
375	Hutchinson-Gilford Progeria Syndrome (HGPS): relevant aspects of a rare syndrome diagnosed in a Brazilian child. JORDI - Journal of Oral Diagnosis, 2016, 1 , .	0.0	0
376	Reduced Oxidative Stress as a Mechanism for Increased Longevity, Exercise and Heart Failure Protection with Adenylyl Cyclase Type 5 Inhibition. , 2016, , 147-161.		0
377	Epigenetic Significance of Chromatin Organization During Cellular Aging and Organismal Lifespan. , 2016, , 21-66.		0
378	Progeria and the early aging in children: a case report. Dermatology Online Journal, 2016, 22, .	0.5	1
379	Social Entropy. , 2018, , 19-44.		0
381	Hutchinson-Gilford Progeria Syndrome. , 2019, , 1-10.		0

#	Article	IF	CITATIONS
383	Progeria: Model Organisms. , 2020, , 1-7.		0
384	Progeria: Humans. , 2020, , 1-7.		0
385	The Role of Chronic Kidney Disease in Ectopic Calcification. Contemporary Cardiology, 2020, , 137-166.	0.1	O
386	HereditÃre Bindegewebskrankheiten. Springer Reference Medizin, 2020, , 2835-2859.	0.0	1
387	Development of a new drug for progeria syndrome; Past, Present and Future. Archive of Gerontology and Geriatrics Research, 2020, 5, 022-025.	0.3	0
388	Dermatologic manifestations of pediatric cardiovascular diseases: Skin as a reflection of the heart. Pediatric Dermatology, 2021, , .	0.9	0
389	Alopecia en el niñ0. EMC Pediatria, 2020, 55, 1-14.	0.0	0
390	Peroxisomal abnormalities and catalase deficiency in Hutchinson-Gilford Progeria Syndrome. Aging, 2020, 12, 5195-5208.	3.1	10
391	Progeria: a rare genetic premature ageing disorder. Indian Journal of Medical Research, 2014, 139, 667-74.	1.0	21
392	Hutchinson-Gilford Progeria Syndrome. , 2021, , 2517-2526.		0
393	Efficacy of Cord Blood Cell Therapy for Hutchinson–Gilford Progeria Syndrome—A Case Report. International Journal of Molecular Sciences, 2021, 22, 12316.	4.1	4
394	Clinical and Molecular Delineation of Cutis Laxa Syndromes: Paradigms for Elastic Fiber Homeostasis. Advances in Experimental Medicine and Biology, 2021, 1348, 273-309.	1.6	4
395	Progeria: Humans., 2021,, 3975-3981.		0
396	Progeria: Model Organisms. , 2021, , 3981-3987.		0
397	DNA methylation signatures in Blood DNA of Hutchinson–Gilford Progeria syndrome. Aging Cell, 2022, 21, e13555.	6.7	18
400	Vascular smooth muscle cell aging: Insights from Hutchinson-Gilford progeria syndrome. ClÃnica E Investigación En Arteriosclerosis, 2023, 35, 42-51.	0.8	1
401	MG132 Induces Progerin Clearance and Improves Disease Phenotypes in HGPS-like Patients' Cells. Cells, 2022, 11, 610.	4.1	3
402	Lamin A/C-Dependent Translocation of Megakaryoblastic Leukemia-1 and \hat{I}^2 -Catenin in Cyclic Strain-Induced Osteogenesis. Cells, 2021, 10, 3518.	4.1	0

#	Article	IF	CITATIONS
403	Genetic basis of cardiovascular aging is at the core of human longevity., 2022, 2, 25.		0
404	Progeria—a Rare Genetic Condition with Accelerated Ageing Process. Applied Biochemistry and Biotechnology, 2023, 195, 2587-2596.	2.9	3
405	Hutchinson-gilford progeria syndrome and its relevance to cardiovascular diseases and normal aging. Biomedical and Environmental Sciences, 2013, 26, 382-9.	0.2	4
406	In vivo cyclic induction of the FOXM1 transcription factor delays natural and progeroid aging phenotypes and extends healthspan. Nature Aging, 2022, 2, 397-411.	11.6	23
407	Clinical manifestations and gene analysis of Hutchinson-Gilford progeria syndrome: A case report. World Journal of Clinical Cases, 2022, 10, 5018-5024.	0.8	1
408	LINCing Senescence and Nuclear Envelope Changes. Cells, 2022, 11, 1787.	4.1	3
409	Nuclear Mechanosensation and Mechanotransduction in Vascular Cells. Frontiers in Cell and Developmental Biology, 0, 10 , .	3.7	5
410	Ocular manifestations of Hutchinson-Gilford-Progeria syndrome: A rare presentation. Indian Journal of Clinical and Experimental Ophthalmology, 2022, 8, 298-302.	0.0	0
411	Characterizing arrhythmia using machine learning analysis of Ca2+ cycling inÂhuman cardiomyocytes. Stem Cell Reports, 2022, 17, 1810-1823.	4.8	6
412	Status of treatment strategies for Hutchinson–Gilford progeria syndrome with a focus on prelamin: A posttranslational modification. Basic and Clinical Pharmacology and Toxicology, 2022, 131, 217-223.	2.5	4
413	Progeria and Agingâ€"Omics Based Comparative Analysis. Biomedicines, 2022, 10, 2440.	3.2	3
414	In vivo stress reporters as early biomarkers of the cellular changes associated with progeria. Journal of Cellular and Molecular Medicine, 0, , .	3.6	1
415	The <scp>E262K</scp> mutation in Lamin A links nuclear proteostasis imbalance to laminopathyâ€associated premature aging. Aging Cell, 2022, 21, .	6.7	9
416	Case report: Focal segmental glomerulosclerosis in a pediatric atypical progeroid syndrome. Frontiers in Pediatrics, 0, 10, .	1.9	1
417	Modelling premature cardiac aging with induced pluripotent stem cells from a hutchinson-gilford Progeria Syndrome patient. Frontiers in Physiology, $0,13,.$	2.8	3
418	Hutchinson-Gilford progeria syndrome complicated with stroke: A report of 2 cases and literature review. Frontiers in Pediatrics, $0,10,10$	1.9	1
419	ZP3 and AIPL1 participate in GVBD of mouse oocytes by affecting the nuclear membrane localization and maturation of farnesylated prelamin A. Zygote, 0, , 1-9.	1,1	1
420	Mitochondrial Dysfunction and Oxidative Stress in Hereditary Ectopic Calcification Diseases. International Journal of Molecular Sciences, 2022, 23, 15288.	4.1	2

#	Article	IF	CITATIONS
421	Progerin induces a phenotypic switch in vascular smooth muscle cells and triggers replication stress and an aging-associated secretory signature. GeroScience, 2023, 45, 965-982.	4.6	6
422	A 3-year-old girl with old face appearance: Case report. Journal of Dermatology & Dermatologic Surgery, 2022, 26, 99.	0.2	0
423	Unique progerin C-terminal peptide ameliorates Hutchinson–Gilford progeria syndrome phenotype by rescuing BUBR1. Nature Aging, 2023, 3, 185-201.	11.6	3
424	Vascular smooth muscle cell aging: Insights from Hutchinson-Gilford progeria syndrome. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2023, 35, 42-51.	0.2	0
425	Clinical Spectrum of LMNA-Associated Type 2 Familial Partial Lipodystrophy: A Systematic Review. Cells, 2023, 12, 725.	4.1	6
426	Acute Coronary Syndrome Treated with Percutaneous Coronary Intervention in Hutchinson–Gilford Progeria. Children, 2023, 10, 526.	1.5	1
427	Transcriptional activation of endogenous Oct4 via the <scp>CRISPR</scp> / <scp>dCas9</scp> activator ameliorates <scp>Hutchinsonâ€Gilford</scp> progeria syndrome in mice. Aging Cell, 2023, 22, .	6.7	3
428	Progerinin, an Inhibitor of Progerin, Alleviates Cardiac Abnormalities in a Model Mouse of Hutchinson–Gilford Progeria Syndrome. Cells, 2023, 12, 1232.	4.1	1
430	Impact of Combined Baricitinib and FTI Treatment on Adipogenesis in Hutchinson–Gilford Progeria Syndrome and Other Lipodystrophic Laminopathies. Cells, 2023, 12, 1350.	4.1	4
431	Hepatic hydrogen sulfide levels are reduced in mouse model of Hutchinson-Gilford progeria syndrome. Aging, 0, , .	3.1	0
432	Bone dysplasia in <scp>Hutchinsonâ€Gilford</scp> progeria syndrome is associated with dysregulated differentiation and function of bone cell populations. Aging Cell, 2023, 22, .	6.7	1
433	A recurrent homozygous <scp>LMNA</scp> missense variant p. <scp>Thr528Met</scp> causes atypical progeroid syndrome characterized by mandibuloacral dysostosis, severe muscular dystrophy, and skeletal deformities. American Journal of Medical Genetics, Part A, O, , .	1.2	0
434	Nuclear proteostasis imbalance in laminopathyâ€associated premature aging diseases. FASEB Journal, 2023, 37, .	0.5	1
435	Odontoma and other congenital dental anomalies: Implications for forensic identification. Congenital Anomalies (discontinued), 0, , .	0.6	0
438	A Family with a Single LMNA Mutation Illustrates Diversity in Cardiac Phenotypes Associated with Laminopathic Progeroid Syndromes. Neurology International, 2023, 13, 135-144.	0.5	0
439	Hutchinson-Gilford progeria patient-derived cardiomyocyte model of carrying LMNA gene variant c.1824 C > T. Cell and Tissue Research, 2023, 394, 189-207.	2.9	0
440	The secretome atlas of two mouse models of progeria. Aging Cell, 2023, 22, .	6.7	0
441	Hutchinson-Gilford progeria. BMJ Case Reports, 2023, 16, e256203.	0.5	0

#	Article	IF	Citations
442	Scaffold, mechanics and functions of nuclear lamins. FEBS Letters, 2023, 597, 2791-2805.	2.8	3
443	Hutchinson-Gilford progeria syndrome: Cardiovascular manifestations and treatment. Mechanisms of Ageing and Development, 2023, 216, 111879.	4.6	0
444	Ghrelin delays premature aging in <scp>Hutchinsonâ€Gilford</scp> progeria syndrome. Aging Cell, 2023, 22, .	6.7	2
445	Use of Farnesyl Transferase Inhibitors in an Ageing Model in Drosophila. Journal of Developmental Biology, 2023, 11, 40.	1.7	O
446	Pericentrin deficiency in smooth muscle cells augments atherosclerosis through HSF1-driven cholesterol biosynthesis and PERK activation. JCI Insight, 2023, 8, .	5.0	0
447	Androgen signaling stabilizes genomes to counteract senescence by promoting <scp>XRCC4</scp> transcription. EMBO Reports, 2023, 24, .	4.5	O
448	Impaired end joining induces cardiac atrophy in a Hutchinson–Gilford progeria mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0
449	The farnesyl transferase inhibitor (FTI) lonafarnib improves nuclear morphology in ZMPSTE24-deficient fibroblasts from patients with the progeroid disorder MAD-B. Nucleus, 2023, 14, .	2.2	O
450	Woodhouse-Sakati syndrome: A review. Revue Neurologique, 2024, , .	1.5	0
451	Therapeutic strategies targeting cellular senescence for cancer and other diseases. Journal of Biochemistry, 2024, 175, 525-537.	1.7	О