Phase II trial of high-dose, intermittent calcitriol (1,25 d dexamethasone in androgen-independent prostate can

Cancer 106, 2136-2142 DOI: 10.1002/cncr.21890

Citation Report

#	Article	IF	CITATIONS
1	Monocyte fructose 1,6-bisphosphatase and cytidine deaminase enzyme activities: potential pharmacodynamic measures of calcitriol effects in cancer patients. Cancer Chemotherapy and Pharmacology, 2006, 59, 97-104.	1.1	7
2	Antitumor Effects of Two Less-Calcemic Vitamin D Analogs (Paricalcitol and QW-1624F ₂ -2) in Squamous Cell Carcinoma Cells. Oncology, 2006, 70, 483-492.	0.9	19
3	The vitamin D receptor as a therapeutic target. Expert Opinion on Therapeutic Targets, 2006, 10, 735-748.	1.5	66
4	The Roles of αâ€Vitamin E and Its Analogues in Prostate Cancer. Vitamins and Hormones, 2007, 76, 493-518.	0.7	8
5	Vitamin D status and cancer: new insights. Current Opinion in Internal Medicine, 2007, 6, 125-130.	1.5	31
7	Mechanistic and pharmacodynamic studies of a 25-hydroxyvitamin D3 derivative in prostate cancer cells. Biochemical and Biophysical Research Communications, 2007, 361, 189-195.	1.0	22
8	Differentiation-inducing potency of the seco-steroid JK-1624F2-2 can be increased by combination with an antioxidant and a p38MAPK inhibitor which upregulates the JNK pathway. Journal of Steroid Biochemistry and Molecular Biology, 2007, 105, 140-149.	1.2	15
9	Calcitriol as a Chemopreventive and Therapeutic Agent in Prostate Cancer: Role of Anti-Inflammatory Activity. Journal of Bone and Mineral Research, 2007, 22, V74-V80.	3.1	56
10	Calcitriol Is a Potent Inhibitor of Retinal Neovascularization. , 2007, 48, 2327.		130
11	S179D prolactin sensitizes human prostate cancer cells such that physiological concentrations of 1, 25 dihydroxy vitamin D3 result in growth inhibition and cell death. Prostate, 2007, 67, 1498-1506.	1.2	12
12	Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nature Reviews Cancer, 2007, 7, 684-700.	12.8	1,215
13	Phase I study of weekly DN-101, a new formulation of calcitriol, in patients with cancer. Cancer Chemotherapy and Pharmacology, 2007, 59, 581-587.	1.1	42
16	The vitamin D receptor in cancer. Proceedings of the Nutrition Society, 2008, 67, 115-127.	0.4	124
17	Synergistic Antileukemic Activity of Carnosic Acid-Rich Rosemary Extract and the 19-nor Gemini Vitamin D Analogue in a Mouse Model of Systemic Acute Myeloid Leukemia. Oncology, 2008, 75, 203-214.	0.9	55
18	Vitamin D, vitamin D analogs (deltanoids) and prostate cancer. Expert Review of Clinical Pharmacology, 2008, 1, 803-813.	1.3	0
19	Vitamin D and Human Health: Lessons from Vitamin D Receptor Null Mice. Endocrine Reviews, 2008, 29, 726-776.	8.9	1,461
20	Shedding Light on Colorectal Cancer Prognosis: Vitamin D and Beyond. Journal of Clinical Oncology, 2008, 26, 2937-2939.	0.8	9
21	Clinical endpoints for drug development in prostate cancer. Current Opinion in Urology, 2008, 18, 303-308.	0.9	15

CITATION REPORT

#	Article	IF	CITATIONS
22	Chronic inflammation in the pathogenesis of benign prostatic hyperplasia. Journal of Developmental and Physical Disabilities, 2010, 33, 475-488.	3.6	178
23	Vitamin D deficiency and insufficiency among patients with prostate cancer. BJU International, 2009, 104, 909-914.	1.3	43
24	The promiscuous receptor. BJU International, 2009, 104, 1204-1207.	1.3	6
25	Vitamin D and Intervention Trials in Prostate Cancer: From Theory to Therapy. Annals of Epidemiology, 2009, 19, 96-102.	0.9	49
26	Differentiation therapy of leukemia: 3 decades of development. Blood, 2009, 113, 3655-3665.	0.6	295
27	The efficacy of calcitriol therapy in the management of bone loss and fractures: a qualitative review. Osteoporosis International, 2010, 21, 1133-1149.	1.3	32
28	Phase 2 trial of weekly intravenous 1,25 dihydroxy cholecalciferol (Calcitriol) in combination with dexamethasone for castrationâ ϵ_{r} esistant prostate cancer. Cancer, 2010, 116, 2132-2139.	2.0	41
29	The beneficial role of vitamin D and its analogs in cancer treatment and prevention. Critical Reviews in Oncology/Hematology, 2010, 73, 192-201.	2.0	28
30	p73 is essential for vitamin D-mediated osteoblastic differentiation. Cell Death and Differentiation, 2010, 17, 398-407.	5.0	29
31	Vitamin D, disease and therapeutic opportunities. Nature Reviews Drug Discovery, 2010, 9, 941-955.	21.5	378
32	Prevalence of Overactive Bladder, its Under-Diagnosis, and Risk Factors in a Male Urologic Veterans Population. International Journal of Medical Sciences, 2010, 7, 391-394.	1.1	23
33	Molecular pathways mediating the anti-inflammatory effects of calcitriol: implications for prostate cancer chemoprevention and treatment. Endocrine-Related Cancer, 2010, 17, R19-R38.	1.6	117
35	CYP24A1 Inhibition Enhances the Antitumor Activity of Calcitriol. Endocrinology, 2010, 151, 4301-4312.	1.4	77
36	The Vitamin D Receptor (NR111). , 2010, , 203-236.		0
37	Epigenetic silencing of CYP24 in the tumor microenvironment. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 338-342.	1.2	25
38	Glucocorticoid regulation of the vitamin D receptor. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 372-375.	1.2	39
39	A Vitamin D Receptor-Alkylating Derivative of 1α,25-Dihydroxyvitamin D3 Inhibits Growth of Human Kidney Cancer Cells and Suppresses Tumor Growth. Cancer Prevention Research, 2010, 3, 1596-1607.	0.7	21
40	Prostate Cancer and Vitamin D: What Does the Evidence Really Suggest?. Urologic Clinics of North America, 2011, 38, 333-342.	0.8	12

		CITATION RE	PORT	
#	Article		IF	CITATIONS
41	Vitamin D in Oncology. Research in Complementary Medicine, 2011, 18, 2-2.		2.2	7
42	Vitamin D and cancer: Clinical aspects. Best Practice and Research in Clinical Endocrinolo Metabolism, 2011, 25, 605-615.	gy and	2.2	36
43	Vitamin D and Prostate Cancer. , 2011, , 221-249.			1
44	Mechanisms of the Anti-Cancer and Anti-Inflammatory Actions of Vitamin D. Annual Revie Pharmacology and Toxicology, 2011, 51, 311-336.	w of	4.2	408
45	Vitamin D metabolism and action in the prostate: Implications for health and disease. Mo Cellular Endocrinology, 2011, 347, 61-69.	lecular and	1.6	46
46	Hormonally Active Vitamin D3 ($1\hat{l}\pm$,25-Dihydroxycholecalciferol) Triggers Autophagy in Hu Macrophages That Inhibits HIV-1 Infection. Journal of Biological Chemistry, 2011, 286, 18	ıman 890-18902.	1.6	137
47	lα,25-Dihydroxyvitamin D3-3β-bromoacetate, a potential cancer therapeutic agent: Syn molecular mechanism of action. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2	thesis and 537-2540.	1.0	7
48	Randomized, Open-Label Phase III Trial of Docetaxel Plus High-Dose Calcitriol Versus Doce Prednisone for Patients With Castration-Resistant Prostate Cancer. Journal of Clinical One 2011, 29, 2191-2198.	rtaxel Plus cology,	0.8	215
49	Dexamethasone Enhances 1α,25-Dihydroxyvitamin D3 Effects by Increasing Vitamin D Re Transcription. Journal of Biological Chemistry, 2011, 286, 36228-36237.	ceptor?	1.6	57
50	Vitamin D and Prostate Cancer. , 2011, , 1675-1709.			3
51	Dual functions of autophagy in the response of breast tumor cells to radiation. Autophag 739-753.	y, 2012, 8,	4.3	143
52	Natural compounds as anticancer agents: Experimental evidence. World Journal of Experi Medicine, 2012, 2, 45.	mental	0.9	66
53	Buthionine Sulfoximine and 1,25-Dihydroxyvitamin D Induce Apoptosis in Breast Cancer G Induction of Reactive Oxygen Species. Cancer Investigation, 2012, 30, 560-570.	Cells via	0.6	12
54	Vitamin D and Cancer. Frontiers in Endocrinology, 2012, 3, 58.		1.5	129
55	Role of androgen and vitamin D receptors in endothelial cells from benign and malignant prostate. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1	human 131-E1139.	1.8	13
56	Vitamin D and corticosteroids in asthma: synergy, interaction and potential therapeutic e Expert Review of Respiratory Medicine, 2013, 7, 101-104.	ffects.	1.0	20
57	Vitamin D: Pharmacokinetics and Safety When Used in Conjunction with the Pharmaceut Used in Cancer Patients: A Systematic Review. Cancers, 2013, 5, 255-280.	ical Drugs	1.7	13
58	Vitamin D: Are We Ready to Supplement for Breast Cancer Prevention and Treatment?. IS 2013, 2013, 1-22.	RN Oncology,	2.1	19

#	Article	IF	CITATIONS
59	Randomized Clinical Trial of Vitamin D3 Doses on Prostatic Vitamin D Metabolite Levels and Ki67 Labeling in Prostate Cancer Patients. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 1498-1507.	1.8	81
60	Early Growth Inhibition Is Followed by Increased Metastatic Disease with Vitamin D (Calcitriol) Treatment in the TRAMP Model of Prostate Cancer. PLoS ONE, 2014, 9, e89555.	1.1	33
61	Systemic Therapy of Bone Metastases. Cancer Metastasis - Biology and Treatment, 2014, , 247-273.	0.1	0
62	Increased expression of CYP24A1 correlates with advanced stages of prostate cancer and can cause resistance to vitamin D ₃ â€based therapies. FASEB Journal, 2014, 28, 364-372.	0.2	57
63	Bone Metastases. Cancer Metastasis - Biology and Treatment, 2014, , .	0.1	5
64	The clinical use of vitamin D metabolites and their potential developments: a position statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) and the International Osteoporosis Foundation (IOF). Endocrine, 2015, 50, 12-26.	1.1	53
65	From food to clinical medicine—nutraceuticals as clinical therapeutics for hematological malignancies. Current Opinion in Food Science, 2015, 4, 7-12.	4.1	4
66	Calcitriol in Combination Therapy for Prostate Cancer: Pharmacokinetic and Pharmacodynamic Interactions. Journal of Cancer, 2016, 7, 391-407.	1.2	29
67	The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent. International Journal of Molecular Sciences, 2016, 17, 729.	1.8	25
68	Vitamin D and urological cancers. Central European Journal of Urology, 2016, 69, 139-47.	0.2	10
69	Vitamin D Signaling Modulators in Cancer Therapy. Vitamins and Hormones, 2016, 100, 433-472.	0.7	15
70	Associations Between Serum Vitamin D and Adverse Pathology in Men Undergoing Radical Prostatectomy. Journal of Clinical Oncology, 2016, 34, 1345-1349.	0.8	40
71	Vitamin D in prostate cancer. Asian Journal of Andrology, 2018, 20, 244.	0.8	59
72	CYP24A1 depletion facilitates the antitumor effect of vitamin D3 on thyroid cancer cells. Experimental and Therapeutic Medicine, 2018, 16, 2821-2830.	0.8	14
73	The Antitumor Effects of Vitamin D in Genitourinary Cancer. , 2018, , 821-836.		0
74	Calcitriol and cancer therapy: A missed opportunity. Bone Reports, 2018, 9, 110-119.	0.2	26
75	Without 1α-hydroxylation, the gene expression profile of 25(OH)D3 treatment overlaps deeply with that of 1,25(OH)2D3 in prostate cancer cells. Scientific Reports, 2018, 8, 9024.	1.6	15
76	Physiologic serum 1,25 dihydroxyvitamin D is inversely associated with prostatic Ki67 staining in a diverse sample of radical prostatectomy patients. Cancer Causes and Control, 2019, 30, 207-214.	0.8	6

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
77	Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharmaceutica Sinica B, 2019, 9, 203-219.	5.7	85
78	The Effect of Vitamin D Supplementation on Prostate Cancer: A Systematic Review and Meta-Analysis of Clinical Trials. Hormone and Metabolic Research, 2019, 51, 11-21.	0.7	29
79	Vitamin D Suppresses Ovarian Cancer Growth and Invasion by Targeting Long Non-Coding RNA CCAT2. International Journal of Molecular Sciences, 2020, 21, 2334.	1.8	23
80	Safety and efficacy of high dose pulse calcitriol and docetaxel for androgen-independent prostate cancer. Medicine, Case Reports and Study Protocols, 2021, 2, e0151.	0.0	1
81	The Role of Bone Microenvironment, Vitamin D and Calcium. Recent Results in Cancer Research, 2012, 192, 33-64.	1.8	12
82	Liposomal 1,25-dihydroxyvitamin D3-3Î ² -bromoacetate is a Stronger Growth-inhibiting Agent than its un-encapsulated Counterpart in Prostate Cancer Cells. Journal of Steroids & Hormonal Science, 2010, 01, .	0.1	4
84	Hormonotherapy of Bone Metastases. Cancer Metastasis - Biology and Treatment, 2009, , 299-320.	0.1	0
85	Calcitriol and Vitamin D Analogs. , 2010, , 287-302.		0
86	Vitamin D and Cancer—A Review. US Endocrinology, 2013, 09, 44.	0.3	0
87	Phase IIa, randomized placebo-controlled trial of single high dose cholecalciferol (vitamin D) and daily Genistein (G-2535) versus double placebo in men with early stage prostate cancer undergoing prostatectomy. American Journal of Clinical and Experimental Urology, 2016, 4, 17-27.	0.4	5
88	Combinations of Calcitriol with Anticancer Treatments for Breast Cancer: An Update. International Journal of Molecular Sciences, 2021, 22, 12741.	1.8	17
90	Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Critical Reviews in Oncology/Hematology, 2022, 172, 103625.	2.0	16
91	Vitamin D and Hypoxia: Points of Interplay in Cancer. Cancers, 2022, 14, 1791.	1.7	3
92	Dietary Intake and Genetic Background Influence Vitamin Needs during Pregnancy. Healthcare (Switzerland), 2022, 10, 768.	1.0	0
93	Identification of a Vitamin-D Receptor Antagonist, MeTC7, which Inhibits the Growth of Xenograft and Transgenic Tumors <i>In Vivo</i> . Journal of Medicinal Chemistry, 2022, 65, 6039-6055.	2.9	3
94	Novel DNA Aptamer for CYP24A1 Inhibition with Enhanced Antiproliferative Activity in Cancer Cells. ACS Applied Materials & Interfaces, 2022, 14, 18064-18078.	4.0	12
96	Selected Vitamins. , 0, , 385-415.		0
97	The Multiple Effects of Vitamin D against Chronic Diseases: From Reduction of Lipid Peroxidation to Updated Evidence from Clinical Studies. Antioxidants, 2022, 11, 1090.	2.2	12

#	Article	IF	CITATIONS
98	Vitamin D and genetic ancestry are associated with apoptosis rates in benign and malignant prostatic epithelium. Prostate, 2023, 83, 352-363.	1.2	0
99	African American Prostate Cancer Displays Quantitatively Distinct Vitamin D Receptor Cistrome-transcriptome Relationships Regulated by BAZ1A. Cancer Research Communications, 2023, 3, 621-639.	0.7	4
100	Vitamin D and prostate cancer. , 2024, , 917-935.		0