Recent surprises in protein targeting to mitochondria a

Current Opinion in Plant Biology 9, 610-615 DOI: 10.1016/j.pbi.2006.09.002

Citation Report

#	Article	IF	CITATIONS
1	Recombinational Cloning with Plant Gateway Vectors. Plant Physiology, 2007, 145, 1144-1154.	2.3	394
2	Apicoplast Lipoic Acid Protein Ligase B Is Not Essential for Plasmodium falciparum. PLoS Pathogens, 2007, 3, e189.	2.1	58
3	Considerations on Post-Translational Modification and Protein Targeting in the Arabidopsis Defense Proteome. Plant Signaling and Behavior, 2007, 2, 153-154.	1.2	3
5	Dual targeting of the tRNA nucleotidyltransferase in plants: not just the signal. Journal of Experimental Botany, 2007, 58, 4083-4093.	2.4	35
6	Cell and Molecular Biology of Plastids. Topics in Current Genetics, 2007, , .	0.7	25
7	The Plant Mitochondrial Proteome. , 2007, , 226-246.		5
8	The Origin and Establishment of the Plastid in Algae and Plants. Annual Review of Genetics, 2007, 41, 147-168.	3.2	394
9	Insights into chloroplast proteomics: from basic principles to new horizons. Topics in Current Genetics, 2007, , 371-407.	0.7	0
10	Transit peptide diversity and divergence: A global analysis of plastid targeting signals. BioEssays, 2007, 29, 1048-1058.	1.2	150
11	How do endosymbionts become organelles? Understanding early events in plastid evolution. BioEssays, 2007, 29, 1239-1246.	1.2	136
12	The future of metabolic phytochemistry: Larger numbers of metabolites, higher resolution, greater understanding. Phytochemistry, 2007, 68, 2861-2880.	1.4	98
13	Plant proteome analysis: A 2006 update. Proteomics, 2007, 7, 2947-2962.	1.3	158
14	Plant organelle proteomics. Current Opinion in Plant Biology, 2007, 10, 594-599.	3.5	49
15	Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Molecular Biology, 2007, 64, 519-530.	2.0	181
16	Targeting and localization of wound-inducible leucine aminopeptidase A in tomato leaves. Planta, 2007, 227, 341-351.	1.6	18
17	Purification and proteomic characterization of plastids from <i>Brassica napus</i> developing embryos. Proteomics, 2008, 8, 3397-3405.	1.3	25
18	Subâ€cellular localization of membrane proteins. Proteomics, 2008, 8, 3991-4011.	1.3	71
19	Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: Comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. Journal of Biotechnology, 2008, 136, 44-53.	1.9	60

ATION RE

#	Article	IF	CITATIONS
20	<i>Arabidopsis</i> Nuclear-Encoded Plastid Transit Peptides Contain Multiple Sequence Subgroups with Distinctive Chloroplast-Targeting Sequence Motifs. Plant Cell, 2008, 20, 1603-1622.	3.1	117
21	The amyloplast proteome of potato tuber. FEBS Journal, 2008, 275, 1723-1741.	2.2	42
22	CLB19, a pentatricopeptide repeat protein required for editing of <i>rpoA</i> and <i>clpP</i> chloroplast transcripts. Plant Journal, 2008, 56, 590-602.	2.8	236
23	Targeting of nucleusâ€encoded proteins to chloroplasts in plants. New Phytologist, 2008, 179, 257-285.	3.5	332
24	Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in <i>Arabidopsis thaliana</i> . FEBS Letters, 2008, 582, 3073-3079.	1.3	97
25	Interaction Analysis. , 0, , 295-315.		О
26	Functions of Chloroplastic Adenylate Kinases in Arabidopsis. Plant Physiology, 2008, 146, 323-324.	2.3	44
27	Chapter 5 New Insights into the Mechanism of Precursor Protein Insertion into the Mitochondrial Membranes. International Review of Cell and Molecular Biology, 2008, 268, 147-190.	1.6	13
28	Genome-Based Analysis of Chlamydomonas reinhardtii Exoribonucleases and Poly(A) Polymerases Predicts Unexpected Organellar and Exosomal Features. Genetics, 2008, 179, 125-136.	1.2	24
29	pur4 Mutations Are Lethal to the Male, But Not the Female, Gametophyte and Affect Sporophyte Development in Arabidopsis. Plant Physiology, 2008, 147, 650-660.	2.3	19
30	Mitochondrial Biogenesis and Function in Arabidopsis ^{â€} . The Arabidopsis Book, 2008, 6, e0111.	0.5	54
31	Chloroplast Biogenesis: Control of Plastid Development, Protein Import, Division and Inheritance. The Arabidopsis Book, 2008, 6, e0110.	0.5	129
33	Specific Interaction between Tomato HsfA1 and HsfA2 Creates Hetero-oligomeric Superactivator Complexes for Synergistic Activation of Heat Stress Gene Expression. Journal of Biological Chemistry, 2009, 284, 20848-20857.	1.6	111
34	The Presence and Localization of Thioredoxins in Diatoms, Unicellular Algae of Secondary Endosymbiotic Origin. Molecular Plant, 2009, 2, 468-477.	3.9	29
35	Peroxisome Biogenesis and Function. The Arabidopsis Book, 2009, 7, e0123.	0.5	95
36	Efficient mitochondrial targeting relies on co-operation of multiple protein signals in plants. Journal of Experimental Botany, 2009, 60, 741-749.	2.4	13
37	Chloroplast biogenesis: diversity and regulation of the protein import apparatus. Current Opinion in Cell Biology, 2009, 21, 494-500.	2.6	118
38	Conservation of dual-targeted proteins in Arabidopsis and rice points to a similar pattern of gene-family evolution. Molecular Genetics and Genomics, 2009, 281, 525-538.	1.0	27

#	Article	IF	CITATIONS
39	Calcium depletion and calmodulin inhibition affect the import of nuclearâ€encoded proteins into plant mitochondria. Plant Journal, 2009, 58, 694-705.	2.8	25
40	Protein transport in organelles: Dual targeting of proteins to mitochondria and chloroplasts. FEBS Journal, 2009, 276, 1187-1195.	2.2	140
41	Prediction of dual protein targeting to plant organelles. New Phytologist, 2009, 183, 224-236.	3.5	73
42	Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. Journal of Proteomics, 2009, 72, 367-378.	1.2	142
43	Plant proteomics update (2007–2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. Journal of Proteomics, 2009, 72, 285-314.	1.2	191
45	Mitochondrial and chloroplastic targeting signals of NADP ⁺ -dependent isocitrate dehydrogenase. Biochemistry and Cell Biology, 2009, 87, 963-974.	0.9	7
46	Identification of an Arabidopsis unknown small membrane protein targeted to mitochondria, chloroplasts, and peroxisomes. Protoplasma, 2009, 236, 3-12.	1.0	8
48	Physiological and molecular changes associated with prevention of woolliness in peach following pre-harvest application of gibberellic acid. Postharvest Biology and Technology, 2010, 57, 19-26.	2.9	22
49	The nuclear genes <i>Mtfr1</i> and <i>Dufd1</i> regulate mitochondrial dynamic and cellular respiration. Journal of Cellular Physiology, 2010, 225, 767-776.	2.0	42
50	Proteomic analysis of <i>Medicago truncatula</i> root plastids. Proteomics, 2010, 10, 2123-2137.	1.3	44
51	Subcellular fractionation methods and strategies for proteomics. Proteomics, 2010, 10, 3935-3956.	1.3	91
52	The Chloroplast Function Database: a largeâ€scale collection of Arabidopsis <i>Ds/Spm</i> ―or Tâ€DNAâ€tagged homozygous lines for nuclearâ€encoded chloroplast proteins, and their systematic phenotype analysis. Plant Journal, 2010, 61, 529-542.	2.8	60
53	Proteome analysis of chloroplasts from the moss Physcomitrella patens (Hedw.) B.S.G Biochemistry (Moscow), 2010, 75, 1470-1483.	0.7	8
54	Evolutionary origins of metabolic compartmentalization in eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 847-855.	1.8	174
55	Problems and Progress in Understanding the Origins of Mitochondria and Plastids. Cellular Origin and Life in Extreme Habitats, 2010, , 39-62.	0.3	2
56	Characteristics of the tomato chromoplast revealed by proteomic analysis. Journal of Experimental Botany, 2010, 61, 2413-2431.	2.4	129
57	Symbioses and Stress. Cellular Origin and Life in Extreme Habitats, 2010, , .	0.3	10
58	Red Algae in the Genomic Age. Cellular Origin and Life in Extreme Habitats, 2010, , .	0.3	15

	CITATION	Report	
#	Article	IF	CITATIONS
59	Signaling between Chloroplasts and the Nucleus: Can a Systems Biology Approach Bring Clarity to a Complex and Highly Regulated Pathway?. Plant Physiology, 2010, 152, 453-459.	2.3	91
60	Analysis of the <i>Arabidopsis</i> Cytosolic Proteome Highlights Subcellular Partitioning of Central Plant Metabolism. Journal of Proteome Research, 2011, 10, 1571-1582.	1.8	113
61	Protein biosynthesis occurs in three different locations of a cell. , 2011, , 527-550.		0
62	Dual targeting of mitochondrial proteins: Mechanism, regulation and function. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1012-1020.	1.4	172
63	The mitochondrial proteome of the model legume Medicago truncatula. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1658-1668.	1.1	23
64	Two novel types of hexokinases in the moss Physcomitrella patens. BMC Plant Biology, 2011, 11, 32.	1.6	35
65	Plant organelle proteomics: Collaborating for optimal cell function. Mass Spectrometry Reviews, 2011, 30, 772-853.	2.8	89
66	A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck]. Journal of Experimental Botany, 2011, 62, 5297-5309.	2.4	56
67	Actin in Mung Bean Mitochondria and Implications for Its Function Â. Plant Cell, 2011, 23, 3727-3744.	3.1	19
68	Dual Targeting to Mitochondria and Plastids of AtBT1 and ZmBT1, Two Members of the Mitochondrial Carrier Family. Plant and Cell Physiology, 2011, 52, 597-609.	1.5	46
69	Toward the Storage Metabolome: Profiling the Barley Vacuole Â. Plant Physiology, 2011, 157, 1469-1482.	2.3	92
70	Evolutionary History of Arabidopsis thaliana Aminoacyl-tRNA Synthetase Dual-Targeted Proteins. Molecular Biology and Evolution, 2011, 28, 79-85.	3.5	21
71	Mitochondrial and plastidial COG0354 proteins have folate-dependent functions in iron–sulphur cluster metabolism. Journal of Experimental Botany, 2012, 63, 403-411.	2.4	30
72	Phylogenomic Study of Lipid Genes Involved in Microalgal Biofuel Production—Candidate Gene Mining and Metabolic Pathway Analyses. Evolutionary Bioinformatics, 2012, 8, EBO.S10159.	0.6	26
73	Chloroplast-mitochondria cross-talk in diatoms. Journal of Experimental Botany, 2012, 63, 1543-1557.	2.4	108
75	Proteomic Analysis of Chloroplast-to-Chromoplast Transition in Tomato Reveals Metabolic Shifts Coupled with Disrupted Thylakoid Biogenesis Machinery and Elevated Energy-Production Components Â. Plant Physiology, 2012, 160, 708-725.	2.3	113
76	Mitochondrial Proteome Heterogeneity between Tissues from the Vegetative and Reproductive Stages of <i>Arabidopsis thaliana</i> Development. Journal of Proteome Research, 2012, 11, 3326-3343.	1.8	36
77	Alternative Oxidases (AOX1a and AOX2) Can Functionally Substitute for Plastid Terminal Oxidase in <i>Arabidopsis</i> Chloroplasts. Plant Cell, 2012, 24, 1579-1595.	3.1	57

	CITATION	REPORT	
#	Article	IF	CITATIONS
78	Promiscuous Organellar DNA. Advances in Photosynthesis and Respiration, 2012, , 201-221.	1.0	7
80	Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell. Physiologia Plantarum, 2012, 145, 224-234.	2.6	85
81	Exploring chloroplastic changes related to chilling and freezing tolerance during cold acclimation of pea (Pisum sativum L.). Journal of Proteomics, 2013, 80, 145-159.	1.2	48
82	EuLoc: a web-server for accurately predict protein subcellular localization in eukaryotes by incorporating various features of sequence segments into the general form of Chou's PseAAC. Journal of Computer-Aided Molecular Design, 2013, 27, 91-103.	1.3	66
83	Mitochondrial transcript length polymorphisms are a widespread phenomenon in Arabidopsis thaliana. Plant Molecular Biology, 2013, 81, 221-233.	2.0	17
84	A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 253-259.	1.9	141
85	Biochemistry, proteomics, and phosphoproteomics of plant mitochondria from non-photosynthetic cells. Frontiers in Plant Science, 2013, 4, 51.	1.7	32
86	Using the SUBcellular database for Arabidopsis proteins to localize the Deg protease family. Frontiers in Plant Science, 2014, 5, 396.	1.7	16
87	The Potato Tuber Mitochondrial Proteome Â. Plant Physiology, 2014, 164, 637-653.	2.3	122
88	The exception proves the rule? Dual targeting of nuclearâ€encoded proteins into endosymbiotic organelles. New Phytologist, 2014, 201, 80-90.	3.5	48
89	Protein Subcellular Relocalization of Duplicated Genes in Arabidopsis. Genome Biology and Evolution, 2014, 6, 2501-2515.	1.1	20
90	Evolution and significance of the Lon gene family in Arabidopsis organelle biogenesis and energy metabolism. Frontiers in Plant Science, 2014, 5, 145.	1.7	20
91	Alternative Transcription Initiation and the AUG Context Configuration Control Dual-Organellar Targeting and Functional Competence of Arabidopsis Lon1 Protease. Molecular Plant, 2014, 7, 989-1005.	3.9	31
92	Genetics and biology of cytoplasmic male sterility and its applications in forage and turf grass breeding. Plant Breeding, 2014, 133, 299-312.	1.0	22
93	Compartmentation of Salicylate-induced proteins. Applied Biochemistry and Microbiology, 2014, 50, 338-345.	0.3	4
94	SUBAcon: a consensus algorithm for unifying the subcellular localization data of the <i>Arabidopsis</i> proteome. Bioinformatics, 2014, 30, 3356-3364.	1.8	156
95	Synaptic view of eukaryotic cell. International Journal of General Systems, 2014, 43, 740-756.	1.2	10
96	Potato Proteomics. , 2016, , 651-684.		0

#	Article	IF	Citations
97	What is hot in plant mitochondria?. Physiologia Plantarum, 2016, 157, 256-263.	2.6	28
98	The intriguing CP12â€like tail of adenylate kinase 3 from <i>Chlamydomonas reinhardtii</i> . FEBS Journal, 2016, 283, 3389-3407.	2.2	10
99	Evolution of bacterial recombinase A (recA) in eukaryotes explained by addition of genomic data of key microbial lineages. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161453.	1.2	10
100	The novel mitochondrial matrix protease Ste23 is required for efficient presequence degradation and processing. Molecular Biology of the Cell, 2017, 28, 997-1002.	0.9	19
101	Lethal albinic seedling, encoding a threonyl-tRNA synthetase, is involved in development of plastid protein synthesis system in rice. Plant Cell Reports, 2017, 36, 1053-1064.	2.8	16
102	The mitochondrial pentatricopeptide repeat protein <scp>PPR</scp> 19 is involved in the stabilization of <i>NADH dehydrogenase 1</i> transcripts and is crucial for mitochondrial function and <i>Arabidopsis thaliana</i> development. New Phytologist, 2017, 215, 202-216.	3.5	60
103	The mitochondrial complexome of <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 89, 1079-1092.	2.8	192
104	Intracellular metabolic pathway distribution in diatoms and tools for genome-enabled experimental diatom research. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160402.	1.8	38
105	Changes in plastid proteome and structure in arbuscular mycorrhizal roots display a nutrient starvation signature. Physiologia Plantarum, 2017, 159, 13-29.	2.6	9
106	The mitochondrial proteome of the moss Physcomitrella patens. Mitochondrion, 2017, 33, 38-44.	1.6	5
107	Chloroplast- or Mitochondria-Targeted DEAD-Box RNA Helicases Play Essential Roles in Organellar RNA Metabolism and Abiotic Stress Responses. Frontiers in Plant Science, 2017, 8, 871.	1.7	54
108	A comprehensive proteomic analysis of elaioplasts from citrus fruits reveals insights into elaioplast biogenesis and function. Horticulture Research, 2018, 5, 6.	2.9	21
109	Rice DEAD-box RNA helicase OsRH53 has negative impact on Arabidopsis response to abiotic stresses. Plant Growth Regulation, 2018, 85, 153-163.	1.8	17
110	Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11691-E11700.	3.3	49
111	MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants. Frontiers in Plant Science, 2018, 9, 634.	1.7	29
112	Rice albino 1, encoding a glycyl-tRNA synthetase, is involved in chloroplast development and establishment of the plastidic ribosome system in rice. Plant Physiology and Biochemistry, 2019, 139, 495-503.	2.8	11
114	Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins. Plant Methods, 2020, 16, 131.	1.9	9
115	Genome-Scale Characterization of Predicted Plastid-Targeted Proteomes in Higher Plants. Scientific Reports, 2020, 10, 8281.	1.6	7

#		IE	CITATIONS
# 116	Roles of Organellar RNA-Binding Proteins in Plant Growth, Development, and Abiotic Stress Responses. International Journal of Molecular Sciences, 2020, 21, 4548.	1.8	24
117	Study of subcellular localization of Glycine max γ-tocopherol methyl transferase isoforms in N. benthamiana. 3 Biotech, 2020, 10, 110.	1.1	1
118	Genome-wide signatures of plastid-nuclear coevolution point to repeated perturbations of plastid proteostasis systems across angiosperms. Plant Cell, 2021, 33, 980-997.	3.1	26
119	RNA methylation in chloroplasts or mitochondria in plants. RNA Biology, 2021, 18, 2127-2135.	1.5	13
120	Genome-wide identification and expression pattern analysis of lipoxygenase gene family in banana. Scientific Reports, 2021, 11, 9948.	1.6	24
121	Intracellular Parcel Service: Current Issues in Intracellular Membrane Trafficking. Methods in Molecular Biology, 2015, 1270, 1-12.	0.4	11
122	Part VII Subcellular Proteomics Organelle Proteomics: Reduction of Sample Complexity by Enzymatic In-Gel Selection of Native Proteins. Methods in Molecular Biology, 2009, 564, 325-333.	0.4	2
123	In Silico Methods for Identifying Organellar and Suborganellar Targeting Peptides in Arabidopsis Chloroplast Proteins and for Predicting the Topology of Membrane Proteins. Methods in Molecular Biology, 2011, 774, 243-280.	0.4	6
124	Macromolecules Trafficking toÂPlant Mitochondria. Advances in Botanical Research, 2012, 63, 347-421.	0.5	7
125	The predicted subcellular localisation of the sugarcane proteome. Functional Plant Biology, 2009, 36, 242.	1.1	6
127	Metabolic and Molecular Events Occurring during Chromoplast Biogenesis. Journal of Botany, 2011, 2011, 1-13.	1.2	32
128	Towards understanding the evolution and functional diversification of DNA-containing plant organelles. F1000Research, 2016, 5, 330.	0.8	13
129	Sorting Signals, N-Terminal Modifications and Abundance of the Chloroplast Proteome. PLoS ONE, 2008, 3, e1994.	1.1	583
130	The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape. PLoS ONE, 2011, 6, e23624.	1.1	53
131	A peptide of 17 aminoacids from the N-terminal region of maize plastidial transglutaminase is essential for chloroplast targeting. American Journal of Molecular Biology, 2012, 02, 245-257.	0.1	5
132	1 Freight Management in the Cell: Current Aspects of Intracellular Membrane Trafficking. Methods in Molecular Biology, 2008, 457, 3-12.	0.4	1
133	IntrazellulÃre Proteinverteilung und Entwicklung der Organellen. , 2010, , 149-166.		0
134	IntrazellulÃre Proteinverteilung und Entwicklung der Organellen. , 2010, , 149-166.		0

#	Article	IF	CITATIONS
135	Plastid Evolution and the Nuclear Genomic "Footprint―of Red and Green Algal Endosymbionts. Cellular Origin and Life in Extreme Habitats, 2010, , 191-204.	0.3	0
136	Plastid Retrograde Signals: More to Discover. , 2019, , 477-507.		1
138	SIRBP1 promotes translational efficiency via SIeIF4A2 to maintain chloroplast function in tomato. Plant Cell, 2022, 34, 2747-2764.	3.1	8
142	A chloroplast-localized pentatricopeptide repeat protein involved in RNA editing and splicing and its effects on chloroplast development in rice. BMC Plant Biology, 2022, 22, .	1.6	6