Tumor stem cells derived from glioblastomas cultured i mirror the phenotype and genotype of primary tumors

Cancer Cell 9, 391-403 DOI: 10.1016/j.ccr.2006.03.030

Citation Report

#	Article	IF	CITATIONS
1	The cancer stem cell: a new therapeutic paradigm?. Expert Review of Anticancer Therapy, 2006, 6, 1531-1533.	1.1	2
2	The Bad Seed: PDGF Receptors Link Adult Neural Progenitors to Glioma Stem Cells. Neuron, 2006, 51, 151-153.	3.8	35
3	Neurosphere Assays: Growth Factors and Hormone Differences in Tumor and Nontumor Studies. Stem Cells, 2006, 24, 2851-2857.	1.4	73
4	Molecular study on differentiation-associated genes involved in both malignant progression of glioma and differentiation of human fetal neural stem cells. Chinese Journal of Clinical Oncology, 2006, 3, 386-391.	0.0	0
5	Neurospheres Enriched in Cancer Stem–Like Cells Are Highly Effective in Eliciting a Dendritic Cell–Mediated Immune Response against Malignant Gliomas. Cancer Research, 2006, 66, 10247-10252.	0.4	237
6	CXCR4 Inhibition Synergizes with Cytotoxic Chemotherapy in Gliomas. Clinical Cancer Research, 2006, 12, 6765-6771.	3.2	119
7	Most C6 Cells Are Cancer Stem Cells: Evidence from Clonal and Population Analyses. Cancer Research, 2007, 67, 3691-3697.	0.4	207
8	Cancer stem cells and brain tumors: uprooting the bad seeds. Expert Review of Anticancer Therapy, 2007, 7, 1581-1590.	1.1	14
9	Adenoviruses 16 and CV23 Efficiently Transduce Human Low-passage Brain Tumor and Cancer Stem Cells. Molecular Therapy, 2007, 15, 2140-2145.	3.7	29
10	Brain tumour stem cells: possibilities of new therapeutic strategies. Expert Opinion on Biological Therapy, 2007, 7, 1129-1135.	1.4	36
11	CD133+ and CD133â^' Glioblastoma-Derived Cancer Stem Cells Show Differential Growth Characteristics and Molecular Profiles. Cancer Research, 2007, 67, 4010-4015.	0.4	1,027
12	Examination of the Therapeutic Potential of Delta-24-RGD in Brain Tumor Stem Cells: Role of Autophagic Cell Death. Journal of the National Cancer Institute, 2007, 99, 1410-1414.	3.0	268
13	Medulloblastomas Derived from Cxcr6 Mutant Mice Respond to Treatment with a Smoothened Inhibitor. Cancer Research, 2007, 67, 3871-3877.	0.4	37
14	Cancer Stem Cells. , 2007, , .		2
15	Trapping the mouse genome to hunt human alterations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7737-7738.	3.3	5
16	Expression of Interleukin-13 Receptor α2 in Glioblastoma Multiforme: Implications for Targeted Therapies. Cancer Research, 2007, 67, 7983-7986.	0.4	127
17	Prostate Cancer Stem Cells: A Target for New Therapies. , 2007, , 155-179.		35
18	Human Thyroid Tumor Cell Lines Derived from Different Tumor Types Present a Common Dedifferentiated Phenotype. Cancer Research, 2007, 67, 8113-8120.	0.4	96

#	Article	IF	CITATIONS
19	Lessons learned in the development of targeted therapy for malignant gliomas. Molecular Cancer Therapeutics, 2007, 6, 1909-1919.	1.9	186
20	Cannabinoids Induce Glioma Stem-like Cell Differentiation and Inhibit Gliomagenesis. Journal of Biological Chemistry, 2007, 282, 6854-6862.	1.6	116
22	Cancer stem cells and oncology therapeutics. Current Opinion in Oncology, 2007, 19, 61-64.	1.1	129
23	Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Clioma. Neuron, 2007, 53, 503-517.	3.8	438
24	Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. European Journal of Cancer, 2007, 43, 935-946.	1.3	523
25	The human subventricular zone: A source of new cells and a potential source of brain tumors. Experimental Neurology, 2007, 205, 313-324.	2.0	127
26	Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Letters, 2007, 258, 286-290.	3.2	164
27	Cancer Stem Cells: At the Headwaters of Tumor Development. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 175-189.	9.6	136
28	Fast, hungry and unstable: finding the Achilles' heel of small-cell lung cancer. Trends in Molecular Medicine, 2007, 13, 150-157.	3.5	29
20			
29	Cancer Stem Cells in Radiation Resistance. Cancer Research, 2007, 67, 8980-8984.	0.4	464
30	Cancer Stem Cells in Radiation Resistance. Cancer Research, 2007, 67, 8980-8984. Inhibiting kinases in malignant gliomas. Expert Opinion on Therapeutic Targets, 2007, 11, 473-496.	0.4	464 41
30 31	Cancer Stem Cells in Radiation Resistance. Cancer Research, 2007, 67, 8980-8984. Inhibiting kinases in malignant gliomas. Expert Opinion on Therapeutic Targets, 2007, 11, 473-496. An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Research, 2007, 9, R38.	0.4 1.5 2.2	464 41 45
 30 31 32 	Cancer Stem Cells in Radiation Resistance. Cancer Research, 2007, 67, 8980-8984. Inhibiting kinases in malignant gliomas. Expert Opinion on Therapeutic Targets, 2007, 11, 473-496. An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Research, 2007, 9, R38. An update on mouse brain tumor models in cancer drug discovery. Expert Opinion on Drug Discovery, 2007, 2, 1435-1451.	0.4 1.5 2.2 2.5	464 41 45 2
 30 31 32 33 	Cancer Stem Cells in Radiation Resistance. Cancer Research, 2007, 67, 8980-8984. Inhibiting kinases in malignant gliomas. Expert Opinion on Therapeutic Targets, 2007, 11, 473-496. An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Research, 2007, 9, R38. An update on mouse brain tumor models in cancer drug discovery. Expert Opinion on Drug Discovery, 2007, 2, 1435-1451. Targeting cancer stem cells. Expert Opinion on Therapeutic Targets, 2007, 11, 915-927.	0.4 1.5 2.2 2.5 1.5	464 41 45 2 58
 29 30 31 32 33 34 	Cancer Stem Cells in Radiation Resistance. Cancer Research, 2007, 67, 8980-8984. Inhibiting kinases in malignant gliomas. Expert Opinion on Therapeutic Targets, 2007, 11, 473-496. An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Research, 2007, 9, R38. An update on mouse brain tumor models in cancer drug discovery. Expert Opinion on Drug Discovery, 2007, 2, 1435-1451. Targeting cancer stem cells. Expert Opinion on Therapeutic Targets, 2007, 11, 915-927. Cancer stem cells. Drug Discovery Today: Disease Models, 2007, 4, 47-52.	0.4 1.5 2.2 2.5 1.5 1.2	464 41 45 2 58 1
29 30 31 32 33 34 35	Cancer Stem Cells in Radiation Resistance. Cancer Research, 2007, 67, 8980-8984. Inhibiting kinases in malignant gliomas. Expert Opinion on Therapeutic Targets, 2007, 11, 473-496. An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Research, 2007, 9, R38. An update on mouse brain tumor models in cancer drug discovery. Expert Opinion on Drug Discovery, 2007, 2, 1435-1451. Targeting cancer stem cells. Expert Opinion on Therapeutic Targets, 2007, 11, 915-927. Cancer stem cells. Drug Discovery Today: Disease Models, 2007, 4, 47-52. Developmental signaling pathways in brain tumorâ€derived stemâ€like cells. Developmental Dynamics, 2007, 236, 3297-3308.	0.4 1.5 2.2 2.5 1.5 1.2 0.8	464 41 45 2 58 1 63
29 30 31 32 33 34 35 36	Cancer Stem Cells in Radiation Resistance. Cancer Research, 2007, 67, 8980-8984. Inhibiting kinases in malignant gliomas. Expert Opinion on Therapeutic Targets, 2007, 11, 473-496. An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Research, 2007, 9, R38. An update on mouse brain tumor models in cancer drug discovery. Expert Opinion on Drug Discovery, 2007, 2, 1435-1451. Targeting cancer stem cells. Expert Opinion on Therapeutic Targets, 2007, 11, 915-927. Cancer stem cells. Drug Discovery Today: Disease Models, 2007, 4, 47-52. Developmental signaling pathways in brain tumorâ€derived stemâ€ike cells. Developmental Dynamics, 2007, 236, 3297-3308. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133â ^{-'} cells, and the CD133+ sector is enlarged by hypoxia. International Journal of Radiation Oncology Biology Physics, 2007, 67, 1-5.	0.4 1.5 2.2 2.5 1.5 1.2 0.8 0.4	 464 41 45 2 58 1 63 243

#	Article	IF	CITATIONS
38	Chemical genetics reveals a complex functional ground state of neural stem cells. Nature Chemical Biology, 2007, 3, 268-273.	3.9	153
39	Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma. Modern Pathology, 2007, 20, 1061-1068.	2.9	58
40	Expression of HOXC9 and E2F2 are up-regulated in CD133+ cells isolated from human astrocytomas and associate with transformation of human astrocytes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 437-442.	2.4	36
41	High TGFÎ ² -Smad Activity Confers Poor Prognosis in Glioma Patients and Promotes Cell Proliferation Depending on the Methylation of the PDGF-B Gene. Cancer Cell, 2007, 11, 147-160.	7.7	446
42	Long-term EGF/serum-treated human thyrocytes mimic papillary thyroid carcinomas with regard to gene expression. Experimental Cell Research, 2007, 313, 3276-3284.	1.2	17
43	Systems biology and cancer stem cells. Journal of Cellular and Molecular Medicine, 2008, 12, 97-110.	1.6	22
44	Cancer stem cells and "stemness―genes in neuro-oncology. Neurobiology of Disease, 2007, 25, 217-229.	2.1	123
45	Genetic analysis of intracranial tumors in a murine model of glioma demonstrate a shift in gene expression in response to host immunity. Journal of Neuroimmunology, 2007, 182, 63-72.	1.1	7
46	Cyclopamine-Mediated Hedgehog Pathway Inhibition Depletes Stem-Like Cancer Cells in Glioblastoma. Stem Cells, 2007, 25, 2524-2533.	1.4	578
47	Diffuse glioma growth: a guerilla war. Acta Neuropathologica, 2007, 114, 443-458.	3.9	513
48	Brain Tumor Stem Cells. Current Problems in Cancer, 2008, 32, 124-142.	1.0	22
49	Cancer stem cells: markers or biomarkers?. Cancer and Metastasis Reviews, 2008, 27, 459-470.	2.7	102
50	Partial Biological Characterization of Cancer Stem-like Cell Line (WJ2) of Human Glioblastoma Multiforme. Cellular and Molecular Neurobiology, 2008, 28, 991-1003.	1.7	16
51	Optimizing antiangiogenic strategies: combining with radiotherapy. Targeted Oncology, 2008, 3, 51-56.	1.7	4
52	Tumorstammzellen: Grundlagen, klinische Implikationen und Kontroversen. Onkopipeline, 2008, 1, 91-100.	0.0	1
53	Glioma Formation, Cancer Stem Cells, and Akt Signaling. Stem Cell Reviews and Reports, 2008, 4, 203-210.	5.6	92
54	Ovarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype. Journal of Ovarian Research, 2008, 1, 8.	1.3	29
55	Stem cell markers: Insights from membrane proteomics?. Proteomics, 2008, 8, 4946-4957.	1.3	25

#	Article	IF	CITATIONS
56	Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. Journal of Neuroscience Research, 2008, 86, 48-60.	1.3	144
57	Haplotypeâ€specific expression of the human <i>PDGFRA</i> gene correlates with the risk of glioblastomas. International Journal of Cancer, 2008, 123, 322-329.	2.3	18
58	Inflammation as the primary aetiological agent of human prostate cancer: A stem cell connection?. Journal of Cellular Biochemistry, 2008, 105, 931-939.	1.2	38
59	Cancer stem cells as the engine of unstable tumor progression. Journal of Theoretical Biology, 2008, 253, 629-637.	0.8	45
60	Direct Orthotopic Transplantation of Fresh Surgical Specimen Preserves CD133+ Tumor Cells in Clinically Relevant Mouse Models of Medulloblastoma and Glioma. Stem Cells, 2008, 26, 1414-1424.	1.4	127
61	An Induction Gene Trap Screen in Neural Stem Cells Reveals an Instructive Function of the Niche and Identifies the Splicing Regulator Sam68 as a Tenascin-C-Regulated Target Gene. Stem Cells, 2008, 26, 2321-2331.	1.4	45
62	Hedgehog Signaling Regulates Brain Tumor-Initiating Cell Proliferation and Portends Shorter Survival for Patients with PTEN-Coexpressing Glioblastomas. Stem Cells, 2008, 26, 3018-3026.	1.4	100
63	Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Research, 2008, 18, 1037-1046.	5.7	101
64	The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Laboratory Investigation, 2008, 88, 459-463.	1.7	203
65	Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Laboratory Investigation, 2008, 88, 808-815.	1.7	312
66	Invasion suppressor cystatin E/M (CST6): high-level cell type-specific expression in normal brain and epigenetic silencing in gliomas. Laboratory Investigation, 2008, 88, 910-925.	1.7	55
67	Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455, 1061-1068.	13.7	6,879
68	Cancer stem cells – old concepts, new insights. Cell Death and Differentiation, 2008, 15, 947-958.	5.0	320
69	Mesenchymal differentiation of glioblastoma stem cells. Cell Death and Differentiation, 2008, 15, 1491-1498.	5.0	97
70	The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene, 2008, 27, 2091-2096.	2.6	181
71	Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene, 2008, 27, 2897-2909.	2.6	384
72	PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene, 2008, 27, 5416-5430.	2.6	193
73	In vitro sensitivity testing of minimally passaged and uncultured gliomas with TRAIL and/or chemotherapy drugs. British Journal of Cancer, 2008, 99, 294-304.	2.9	17

#	Article	IF	CITATIONS
74	Telomere maintenance and dysfunction predict recurrence in paediatric ependymoma. British Journal of Cancer, 2008, 99, 1129-1135.	2.9	47
75	miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Medicine, 2008, 6, 14.	2.3	819
76	Epigenetic-Mediated Dysfunction of the Bone Morphogenetic Protein Pathway Inhibits Differentiation of Glioblastoma-Initiating Cells. Cancer Cell, 2008, 13, 69-80.	7.7	415
77	BMPing Off Glioma Stem Cells. Cancer Cell, 2008, 13, 3-4.	7.7	31
78	Feedback Circuit among INK4 Tumor Suppressors Constrains Human Glioblastoma Development. Cancer Cell, 2008, 13, 355-364.	7.7	109
79	Neural stem cells, inflammation and NF-κB: basic principle of maintenance and repair or origin of brain tumours?. Journal of Cellular and Molecular Medicine, 2008, 12, 459-470.	1.6	51
80	Brain Tumor Stem Cells: Bringing Order to the Chaos of Brain Cancer. Journal of Clinical Oncology, 2008, 26, 2916-2924.	0.8	164
81	Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Molecular Cancer, 2008, 7, 41.	7.9	145
82	A highly invasive human glioblastoma pre-clinical model for testing therapeutics. Journal of Translational Medicine, 2008, 6, 77.	1.8	52
83	Adult Neural Stem Cells. Methods in Molecular Biology, 2008, 438, 67-84.	0.4	16
86	Thérapeutiques antiangiogéniques en cancérologie. , 2008, , .		0
87	Invadopodia: At the cutting edge of tumour invasion. Journal of Clinical Neuroscience, 2008, 15, 725-737.	0.8	190
88	Persistence of CD133 ⁺ Cells in Human and Mouse Glioma Cell Lines: Detailed Characterization of GL261 Glioma Cells with Cancer Stem Cell-Like Properties. Stem Cells and Development, 2008, 17, 173-184.	1.1	105
89	The new challenge of stem cell: Brain tumour therapy. Cancer Letters, 2008, 272, 1-11.	3.2	15
90	Brain cancer stem-like cell genesis from p53-deficient mouse astrocytes by oncogenic Ras. Biochemical and Biophysical Research Communications, 2008, 365, 496-502.	1.0	30
91	Designer Therapies for Glioblastoma Multiforme. Annals of the New York Academy of Sciences, 2008, 1142, 108-132.	1.8	91
92	Brain tumor stem cells: will understanding a new paradigm lead to improved therapies?. Expert Review of Neurotherapeutics, 2008, 8, 511-514.	1.4	0
0.9	Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity.	qq	654

#	Article	IF	CITATIONS
94	Inhibitor of differentiation 4 drives brain tumor-initiating cell genesis through cyclin E and notch signaling. Genes and Development, 2008, 22, 2028-2033.	2.7	120
95	Cell Surface Proteomics Identifies Molecules Functionally Linked to Tumor Cell Intravasation. Journal of Biological Chemistry, 2008, 283, 26518-26527.	1.6	46
96	Pancreatic Cancer Stem Cells: Implications for the Treatment of Pancreatic Cancer. Clinical Cancer Research, 2008, 14, 5646-5648.	3.2	127
97	Brain Tumour Stem Cells and Neural Stem Cells: Still Explored by the Same Approach?. Journal of International Medical Research, 2008, 36, 890-895.	0.4	7
98	Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis, 2008, 29, 918-925.	1.3	111
99	Cancer stem cells and survival pathways. Cell Cycle, 2008, 7, 1371-1378.	1.3	108
100	Mechanisms of Disease: the role of stem cells in the biology and treatment of gliomas. Nature Clinical Practice Oncology, 2008, 5, 393-404.	4.3	47
101	CD44+CD24â^' prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 2008, 98, 756-765.	2.9	395
102	Epidermal Growth Factor Plays a Crucial Role in Mitogenic Regulation of Human Brain Tumor Stem Cells. Journal of Biological Chemistry, 2008, 283, 10958-10966.	1.6	149
103	Therapeutic Efficacy of ABT-737, a Selective Inhibitor of BCL-2, in Small Cell Lung Cancer. Cancer Research, 2008, 68, 2321-2328.	0.4	187
104	Radial Glia Cells in the Developing Human Brain. Neuroscientist, 2008, 14, 459-473.	2.6	82
105	Molecular Predictors in Glioblastoma. Archives of Neurology, 2008, 65, 877-83.	4.9	62
106	Oct-4 Expression Maintained Cancer Stem-Like Properties in Lung Cancer-Derived CD133-Positive Cells. PLoS ONE, 2008, 3, e2637.	1.1	444
107	Glycogen Synthase Kinase-3 Inhibition Induces Glioma Cell Death through c-MYC, Nuclear Factor-κB, and Glucose Regulation. Cancer Research, 2008, 68, 6643-6651.	0.4	227
108	Positive Correlations of Oct-4 and Nanog in Oral Cancer Stem-Like Cells and High-Grade Oral Squamous Cell Carcinoma. Clinical Cancer Research, 2008, 14, 4085-4095.	3.2	592
109	Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 139-152.	1.8	67
110	Impaired generation of mature neurons by neural stem cells from hypomorphic Sox2 mutants. Development (Cambridge), 2008, 135, 541-557.	1.2	161
111	Molecular and cell biology of brain tumor stem cells: lessons from neural progenitor/stem cells. Neurosurgical Focus, 2008, 24, E25.	1.0	16

#	ARTICLE	IF	CITATIONS
112	New strategy for the analysis of phenotypic marker antigens in brain tumor–derived neurospheres in mice and humans. Neurosurgical Focus, 2008, 24, E28.	1.0	23
113	Oncolytic HSV-1 Infection of Tumors Induces Angiogenesis and Upregulates CYR61. Molecular Therapy, 2008, 16, 1382-1391.	3.7	69
114	Histone Deacetylase Inhibitors Augment Antitumor Efficacy of Herpes-based Oncolytic Viruses. Molecular Therapy, 2008, 16, 1546-1555.	3.7	143
115	Implications of the cancer stem cell hypothesis for neuro-oncology and neurology. Future Neurology, 2008, 3, 265-273.	0.9	8
116	microRNA-7 Inhibits the Epidermal Growth Factor Receptor and the Akt Pathway and Is Down-regulated in Glioblastoma. Cancer Research, 2008, 68, 3566-3572.	0.4	705
117	Temozolomide Preferentially Depletes Cancer Stem Cells in Glioblastoma. Cancer Research, 2008, 68, 5706-5715.	0.4	269
118	Integrative Genomic Analysis of Aneuploidy in Uveal Melanoma. Clinical Cancer Research, 2008, 14, 115-122.	3.2	117
119	Pten and p53 Converge on c-Myc to Control Differentiation, Self-renewal, and Transformation of Normal and Neoplastic Stem Cells in Glioblastoma. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 427-437.	2.0	109
120	Novel Systemic Therapies for Small Cell Lung Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2008, 6, 315-322.	2.3	23
121	Cancer Stem Cells in Brain Tumor Biology. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 411-420.	2.0	68
122	A COMPARISON BETWEEN STEM CELLS FROM THE ADULT HUMAN BRAIN AND FROM BRAIN TUMORS. Neurosurgery, 2008, 63, 1022-1034.	0.6	52
123	USE OF HUMAN NEURAL TISSUE FOR THE GENERATION OF PROGENITORS. Neurosurgery, 2008, 62, 21-30.	0.6	11
127	Therapeutic vaccines for malignant brain tumors. Biologics: Targets and Therapy, 2008, 2, 753.	3.0	8
128	Tumor induction by disruption of the Dnmt1, PCNA and UHRF1 interactions Nature Precedings, 2008, , .	0.1	5
129	Purification and characterization of cancer stem cells. , 0, , 1-14.		0
130	Tumorigenic Potential of Olfactory Bulb-Derived Human Adult Neural Stem Cells Associates with Activation of TERT and NOTCH1. PLoS ONE, 2009, 4, e4434.	1.1	41
131	The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle, 2009, 8, 3274-3284.	1.3	708
132	NK Cells Recognize and Kill Human Glioblastoma Cells with Stem Cell-Like Properties. Journal of Immunology, 2009, 182, 3530-3539.	0.4	287

#	Article	IF	CITATIONS
133	The Neuronal MicroRNA miR-326 Acts in a Feedback Loop with Notch and Has Therapeutic Potential against Brain Tumors. Journal of Neuroscience, 2009, 29, 15161-15168.	1.7	211
134	Targeting multiple kinases in glioblastoma multiforme. Expert Opinion on Investigational Drugs, 2009, 18, 277-292.	1.9	39
135	Transformed Human Brain Cells in Culture as a Model for Brain Tumors. , 2009, , 163-180.		1
136	<i>De novo</i> Induction of Genetically Engineered Brain Tumors in Mice Using Plasmid DNA. Cancer Research, 2009, 69, 431-439.	0.4	132
137	Identification of Cancer Stem Cells in Dog Glioblastoma. Veterinary Pathology, 2009, 46, 391-406.	0.8	78
138	The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochimica Et Biophysica Sinica, 2009, 41, 341-351.	0.9	111
139	Reduced Expression of the Hyaluronan and Proteoglycan Link Proteins in Malignant Gliomas. Journal of Biological Chemistry, 2009, 284, 26547-26556.	1.6	36
140	Different Response of Human Glioma Tumor-initiating Cells to Epidermal Growth Factor Receptor Kinase Inhibitors. Journal of Biological Chemistry, 2009, 284, 7138-7148.	1.6	117
141	Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells. Molecular Cancer Therapeutics, 2009, 8, 386-393.	1.9	122
142	CD133+ Glioblastoma Stem-like Cells are Radiosensitive with a Defective DNA Damage Response Compared with Established Cell Lines. Clinical Cancer Research, 2009, 15, 5145-5153.	3.2	161
143	Identifying and enumerating neural stem cells: application to aging and cancer. Progress in Brain Research, 2009, 175, 43-51.	0.9	10
144	Recognition and Killing of Brain Tumor Stem-Like Initiating Cells by CD8+ Cytolytic T Cells. Cancer Research, 2009, 69, 8886-8893.	0.4	118
145	One renegade cancer stem cell?. Cell Cycle, 2009, 8, 803-808.	1.3	22
146	HtrA Serine Proteases as Potential Therapeutic Targets in Cancer. Current Cancer Drug Targets, 2009, 9, 451-468.	0.8	114
147	A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression. Genes and Development, 2009, 23, 1737-1742.	2.7	95
148	Quantitative Analysis of Complex Glioma Cell Migration on Electrospun Polycaprolactone Using Time-Lapse Microscopy. Tissue Engineering - Part C: Methods, 2009, 15, 531-540.	1.1	103
149	Fibulin-3 Is Uniquely Upregulated in Malignant Gliomas and Promotes Tumor Cell Motility and Invasion. Molecular Cancer Research, 2009, 7, 1756-1770.	1.5	124
150	Automated Brain Tumor Biopsy Prediction Using Single-labeling cDNA Microarrays-based Gene Expression Profiling. Diagnostic Molecular Pathology, 2009, 18, 206-218.	2.1	17

#	Article	IF	CITATIONS
151	Genomic and Expression Profiling of Glioblastoma Stem Cell–Like Spheroid Cultures Identifies Novel Tumor-Relevant Genes Associated with Survival. Clinical Cancer Research, 2009, 15, 6541-6550.	3.2	158
152	Multipotent CD15+ Cancer Stem Cells in <i>Patched-1</i> –Deficient Mouse Medulloblastoma. Cancer Research, 2009, 69, 4682-4690.	0.4	166
153	KAAD-cyclopamine augmented TRAIL-mediated apoptosis in malignant glioma cells by modulating the intrinsic and extrinsic apoptotic pathway. Neurobiology of Disease, 2009, 34, 259-266.	2.1	10
154	Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncology, 2009, 45, 633-639.	0.8	150
155	Epigenetic mechanisms in glioblastoma multiforme. Seminars in Cancer Biology, 2009, 19, 188-197.	4.3	154
156	Increased epithelial stem cell traits in advanced endometrial endometrioid carcinoma. BMC Genomics, 2009, 10, 613.	1.2	18
157	Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1795, 92-103.	3.3	144
158	TGF-β Increases Glioma-Initiating Cell Self-Renewal through the Induction of LIF in Human Glioblastoma. Cancer Cell, 2009, 15, 315-327.	7.7	489
159	Glioma Stem Cells: Not All Created Equal. Cancer Cell, 2009, 15, 247-249.	7.7	20
160	Fingering Modulators of Retinoic Acid Signaling Identifies New Prognostic Marker for Neuroblastoma. Cancer Cell, 2009, 15, 249-251.	7.7	4
162	CD133+ and nestin+ tumorâ€initiating cells dominate in N29 and N32 experimental gliomas. International Journal of Cancer, 2009, 125, 15-22.	2.3	33
163	Limits of CD133 as a marker of glioma selfâ€renewing cells. International Journal of Cancer, 2009, 125, 244-248.	2.3	99
164	Tumor microvasculature supports proliferation and expansion of gliomaâ€propagating cells. International Journal of Cancer, 2009, 125, 1222-1230.	2.3	53
165	Cancer stem cells: Cell culture, markers, and targets for new therapies. Journal of Cellular Biochemistry, 2009, 108, 1031-1038.	1.2	160
166	A comparative study of ectonucleotidase and P2 receptor mRNA profiles in C6 cell line cultures and C6 ex vivo glioma model. Cell and Tissue Research, 2009, 335, 331-340.	1.5	17
167	Molecular Epigenetics and Genetics in Neuro-Oncology. Neurotherapeutics, 2009, 6, 436-446.	2.1	52
168	Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. Journal of Neuro-Oncology, 2009, 94, 359-366.	1.4	65
169	Progress on Potential Strategies to Target Brain Tumor Stem Cells. Cellular and Molecular Neurobiology, 2009, 29, 141-155.	1.7	22

#	Article	IF	CITATIONS
170	Enrichment of Cancer Stem Cells Based on Heterogeneity of Invasiveness. Stem Cell Reviews and Reports, 2009, 5, 66-71.	5.6	51
171	Human glioma cell culture: two FCS-free media could be recommended for clinical use in immunotherapy. In Vitro Cellular and Developmental Biology - Animal, 2009, 45, 500-511.	0.7	14
172	Tumor initiating cells in malignant gliomas: biology and implications for therapy. Journal of Molecular Medicine, 2009, 87, 363-374.	1.7	80
173	Brain cancer stem cells. Journal of Molecular Medicine, 2009, 87, 1087-1095.	1.7	58
174	Cancer/testis antigens can be immunological targets in clonogenic CD133+ melanoma cells. Cancer Immunology, Immunotherapy, 2009, 58, 1635-1646.	2.0	63
175	Antigen-Specific T-Cell Response from Dendritic Cell Vaccination Using Cancer Stem-Like Cell-Associated Antigens. Stem Cells, 2009, 27, 1734-1740.	1.4	194
176	Neurosphere Formation Is an Independent Predictor of Clinical Outcome in Malignant Glioma. Stem Cells, 2009, 27, 980-987.	1.4	207
177	STAT3 Is Required for Proliferation and Maintenance of Multipotency in Clioblastoma Stem Cells. Stem Cells, 2009, 27, 2383-2392.	1.4	421
178	NOTCH Pathway Blockade Depletes CD133-Positive Glioblastoma Cells and Inhibits Growth of Tumor Neurospheres and Xenografts Â. Stem Cells, 2010, 28, 5-16.	1.4	553
179	Notch Promotes Radioresistance of Glioma Stem Cells Â. Stem Cells, 2010, 28, 17-28.	1.4	505
180	Gliosarcoma Stem Cells Undergo Glial and Mesenchymal Differentiation In Vivo. Stem Cells, 2010, 28, 181-190.	1.4	65
181	Identification of Vitronectin as an Extrinsic Inducer of Cancer Stem Cell Differentiation and Tumor Formation. Stem Cells, 2010, 28, 390-398.	1.4	65
182	Proliferation of Human Glioblastoma Stem Cells Occurs Independently of Exogenous Mitogens. Stem Cells, 2009, 27, 1722-1733.	1.4	175
183	Adult neural stem cells and their role in brain pathology. Journal of Pathology, 2009, 217, 242-253.	2.1	23
184	Distinct population of highly malignant cells in a head and neck squamous cell carcinoma cell line established by xenograft model. Journal of Biomedical Science, 2009, 16, 100.	2.6	27
185	Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nature Neuroscience, 2009, 12, 1248-1256.	7.1	447
186	Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nature Reviews Drug Discovery, 2009, 8, 806-823.	21.5	755
187	Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene, 2009, 28, 209-218.	2.6	394

#	Article	IF	CITATIONS
188	Targeted inhibition of the Hedgehog pathway in established malignant glioma xenografts enhances survival. Oncogene, 2009, 28, 3468-3476.	2.6	55
189	Isolation of tumour stem-like cells from benign tumours. British Journal of Cancer, 2009, 101, 303-311.	2.9	113
190	Immunotherapy of Diffuse Gliomas: Biological Background, Current Status and Future Developments. Brain Pathology, 2009, 19, 674-693.	2.1	2,884
191	An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours. Journal of Neuroscience Methods, 2009, 176, 192-199.	1.3	143
192	Intra-operatively obtained human tissue: Protocols and techniques for the study of neural stem cells. Journal of Neuroscience Methods, 2009, 180, 116-125.	1.3	44
193	Radiation Response of Cancer Stem-Like Cells From Established Human Cell Lines After Sorting for Surface Markers. International Journal of Radiation Oncology Biology Physics, 2009, 75, 1216-1225.	0.4	38
194	Cryopreservation of Neurospheres Derived from Human Glioblastoma Multiforme. Stem Cells, 2009, 27, 29-39.	1.4	56
195	<i>SOX2</i> Silencing in Glioblastoma Tumor-Initiating Cells Causes Stop of Proliferation and Loss of Tumorigenicity. Stem Cells, 2009, 27, 40-48.	1.4	521
196	EZH2 Is Essential for Glioblastoma Cancer Stem Cell Maintenance. Cancer Research, 2009, 69, 9211-9218.	0.4	431
197	How powerful is CD133 as a cancer stem cell marker in brain tumors?. Cancer Treatment Reviews, 2009, 35, 403-408.	3.4	107
198	High-grade glioma mouse models and their applicability for preclinical testing. Cancer Treatment Reviews, 2009, 35, 714-723.	3.4	56
199	The N-Myc-DLL3 Cascade Is Suppressed by the Ubiquitin Ligase Huwe1 to Inhibit Proliferation and Promote Neurogenesis in the Developing Brain. Developmental Cell, 2009, 17, 210-221.	3.1	135
200	Cancer stem cells: Beyond Koch's postulates. Cancer Letters, 2009, 278, 3-8.	3.2	22
201	CXCR4 mediates the proliferation of glioblastoma progenitor cells. Cancer Letters, 2009, 274, 305-312.	3.2	139
202	Myricetin sensitizes malignant glioma cells to TRAIL-mediated apoptosis by down-regulation of the short isoform of FLIP and bcl-2. Cancer Letters, 2009, 283, 230-238.	3.2	45
203	Induction of oligodendrogenesis in glioblastoma-initiating cells by IFN-mediated activation of STAT3 signaling. Cancer Letters, 2009, 284, 71-79.	3.2	45
205	Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression. Biochemical and Biophysical Research Communications, 2009, 380, 236-242.	1.0	122
206	SSEA-1 Is an Enrichment Marker for Tumor-Initiating Cells in Human Glioblastoma. Cell Stem Cell, 2009, 4, 440-452.	5.2	598

#	Article	IF	CITATIONS
207	Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens. Cell Stem Cell, 2009, 4, 568-580.	5.2	881
208	Glioma Stem Cells: Better Flat Than Round. Cell Stem Cell, 2009, 4, 466-467.	5.2	30
209	Autocrine TGF-β Signaling Maintains Tumorigenicity of Glioma-Initiating Cells through Sry-Related HMG-Box Factors. Cell Stem Cell, 2009, 5, 504-514.	5.2	503
210	Brain cancer propagating cells: biology, genetics and targeted therapies. Trends in Molecular Medicine, 2009, 15, 519-530.	3.5	96
211	The XIAP inhibitor Embelin enhances TRAIL-mediated apoptosis in malignant glioma cells by down-regulation of the short isoform of FLIP. Neurochemistry International, 2009, 55, 423-430.	1.9	56
212	Daidzein overcomes TRAIL-resistance in malignant glioma cells by modulating the expression of the intrinsic apoptotic inhibitor, bcl-2. Neuroscience Letters, 2009, 454, 223-228.	1.0	26
213	Physiologic Oxygen Concentration Enhances the Stem-Like Properties of CD133+ Human Glioblastoma Cells <i>In vitro</i> . Molecular Cancer Research, 2009, 7, 489-497.	1.5	236
214	Human Brain Tumor Cell and Tumor Tissue Transplantation Models. , 2009, , 147-161.		3
215	Brain Tumor Stem Cell Markers. , 2009, , 713-728.		0
216	Rembrandt: Helping Personalized Medicine Become a Reality through Integrative Translational Research. Molecular Cancer Research, 2009, 7, 157-167.	1.5	380
217	Interphase FISH Demonstrates that Human Adipose Stromal Cells Maintain a High Level of Genomic Stability in Long-Term Culture. Stem Cells and Development, 2009, 18, 717-724.	1.1	51
218	Gliomas. Recent Results in Cancer Research, 2009, , .	1.8	15
219	Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms. Expert Opinion on Therapeutic Targets, 2009, 13, 455-468.	1.5	75
220	Targeting Cancer-initiating Cells With Oncolytic Viruses. Molecular Therapy, 2009, 17, 1677-1682.	3.7	80
221	Prospective Identification of Cancer Stem Cells with the Surface Antigen CD133. Methods in Molecular Biology, 2009, 568, 57-71.	0.4	11
222	Brain Tumor Stem-Like Cells Identified by Neural Stem Cell Marker CD15. Translational Oncology, 2009, 2, 247-257.	1.7	106
223	Modeling Adult Gliomas Using RCAS/t-va Technology. Translational Oncology, 2009, 2, 89-IN6.	1.7	238
224	Donor-Derived Brain Tumor Following Neural Stem Cell Transplantation in an Ataxia Telangiectasia Patient, PLoS Medicine, 2009, 6, e1000029.	3.9	780

#	Article	IF	CITATIONS
225	Notch Inhibitors as a New Tool in the War on Cancer: A Pathway to Watch. Current Pharmaceutical Biotechnology, 2009, 10, 154-160.	0.9	29
226	EFFECT OF SIMVASTATIN ON GLIOMA CELL PROLIFERATION, MIGRATION, AND APOPTOSIS. Neurosurgery, 2009, 65, 1087-1097.	0.6	70
227	An adult tissue-specific stem cell molecular phenotype is activated in epithelial cancer stem cells and correlated to patient outcome. Cell Cycle, 2010, 9, 321-327.	1.3	17
228	Immunohistochemical Expression of Stem Cell, Endothelial Cell, and Chemosensitivity Markers in Primary Glioma Spheroids Cultured in Serum-Containing and Serum-Free Medium. Neurosurgery, 2010, 66, 933-947.	0.6	46
229	Characterization of primary ovarian cancer cells in different culture systems. Oncology Reports, 2010, 23, 1277-84.	1.2	50
230	Imaging-based chemical screens using normal and glioma-derived neural stem cells. Biochemical Society Transactions, 2010, 38, 1067-1071.	1.6	28
231	MT1-MMP controls human mesenchymal stem cell trafficking and differentiation. Blood, 2010, 115, 221-229.	0.6	82
232	Akt and Autophagy Cooperate to Promote Survival of Drug-Resistant Glioma. Science Signaling, 2010, 3, ra81.	1.6	253
233	Chronotherapy and the molecular clock: Clinical implications in oncologyâ~†. Advanced Drug Delivery Reviews, 2010, 62, 979-1001.	6.6	139
234	Medulloblastoma-derived tumor stem-like cells acquired resistance to TRAIL-induced apoptosis and radiosensitivity. Child's Nervous System, 2010, 26, 897-904.	0.6	25
235	Protein tyrosine phosphatases in glioma biology. Acta Neuropathologica, 2010, 119, 157-175.	3.9	61
236	Bioluminescence imaging of invasive intracranial xenografts: implications for translational research and targeted therapeutics of brain tumors. Neurosurgical Review, 2010, 33, 385-394.	1.2	9
237	Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein and Cell, 2010, 1, 638-655.	4.8	204
238	Immune therapeutic targeting of glioma cancer stem cells. Targeted Oncology, 2010, 5, 217-227.	1.7	31
239	Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer and Metastasis Reviews, 2010, 29, 61-72.	2.7	154
240	Maintenance of Critical Properties of Brain Tumor Stem-like Cells After Cryopreservation. Cellular and Molecular Neurobiology, 2010, 30, 775-786.	1.7	10
241	Cancer stem cells at the crossroads of current cancer therapy failures—Radiation oncology perspective. Seminars in Cancer Biology, 2010, 20, 116-124.	4.3	97
242	Cancer stem cells in solid tumors. Seminars in Cancer Biology, 2010, 20, 77-84.	4.3	170

#	Article	IF	CITATIONS
243	In vitro and in vivo characterization of highly purified Human Mesothelioma derived cells. BMC Cancer, 2010, 10, 54.	1.1	24
244	Potential therapeutic implications of cancer stem cells in glioblastoma. Biochemical Pharmacology, 2010, 80, 654-665.	2.0	179
245	PLAGL2 Regulates Wnt Signaling to Impede Differentiation in Neural Stem Cells and Gliomas. Cancer Cell, 2010, 17, 497-509.	7.7	224
246	In Silico Analysis of Kinase Expression Identifies WEE1 as a Gatekeeper against Mitotic Catastrophe in Glioblastoma. Cancer Cell, 2010, 18, 244-257.	7.7	238
247	Loss of ATM/Chk2/p53 Pathway Components Accelerates Tumor Development and Contributes toÂRadiation Resistance in Gliomas. Cancer Cell, 2010, 18, 619-629.	7.7	211
248	The Ids Have It. Cancer Cell, 2010, 18, 543-545.	7.7	2
249	Telomeres and telomerase in normal and cancer stem cells. FEBS Letters, 2010, 584, 3819-3825.	1.3	197
250	Neurological Surgery at the National Institutes of Health. World Neurosurgery, 2010, 74, 49-59.	0.7	5
251	Phase 2 trial of talampanel, a glutamate receptor inhibitor, for adults with recurrent malignant gliomas. Cancer, 2010, 116, 1776-1782.	2.0	101
252	Demethyl fruticulin A (SCOâ€1) causes apoptosis by inducing reactive oxygen species in mitochondria. Journal of Cellular Biochemistry, 2010, 111, 1149-1159.	1.2	11
253	Residual tumor cells are unique cellular targets in glioblastoma. Annals of Neurology, 2010, 68, 264-269.	2.8	105
254	Single doublecortin gene therapy significantly reduces glioma tumor volume. Journal of Neuroscience Research, 2010, 88, 304-314.	1.3	15
255	Members of the lowâ€density lipoprotein receptorâ€related proteins provide a differential molecular signature between parental and CD133(+) DAOY medulloblastoma cells. Molecular Carcinogenesis, 2010, 49, 710-717.	1.3	13
256	Multicellular tumor spheroids: An underestimated tool is catching up again. Journal of Biotechnology, 2010, 148, 3-15.	1.9	1,376
257	Inhibition of Notch Signaling in Glioblastoma Targets Cancer Stem Cells via an Endothelial Cell Intermediate. Stem Cells, 2010, 28, 1019-1029.	1.4	284
258	Clinical outcome in pediatric glial and embryonal brain tumors correlates with in vitro multiâ€passageable neurosphere formation. Pediatric Blood and Cancer, 2010, 55, 644-651.	0.8	41
259	Subcellular distribution and expression of prenylated Rab acceptor 1 domain family, member 2 (PRAF2) in malignant glioma: Influence on cell survival and migration. Cancer Science, 2010, 101, 1624-1631.	1.7	21
260	Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. British Journal of Cancer, 2010, 102, 1265-1275.	2.9	135

#	Article	IF	CITATIONS
261	Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Therapy, 2010, 17, 1363-1371.	2.3	107
262	The transcriptional network for mesenchymal transformation of brain tumours. Nature, 2010, 463, 318-325.	13.7	1,114
263	Invitation to a second round. Nature, 2010, 466, 40-41.	13.7	49
264	MicroRNAs and glioblastoma; the stem cell connection. Cell Death and Differentiation, 2010, 17, 221-228.	5.0	99
265	Towards patient-based cancer therapeutics. Nature Biotechnology, 2010, 28, 904-906.	9.4	65
266	Recent Insights into PDGFâ€Induced Gliomagenesis. Brain Pathology, 2010, 20, 527-538.	2.1	39
267	The Utility and Limitations of Neurosphere Assay, CD133 Immunophenotyping and Side Population Assay in Glioma Stem Cell Research. Brain Pathology, 2010, 20, 877-889.	2.1	62
268	An Orally Bioavailable c-Met Kinase Inhibitor Potently Inhibits Brain Tumor Malignancy and Growth. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 28-35.	0.9	50
269	Transcriptional Profiles of CD133+ and CD133â^' Glioblastoma-Derived Cancer Stem Cell Lines Suggest Different Cells of Origin. Cancer Research, 2010, 70, 2030-2040.	0.4	237
270	Cell Cultures Used in Studies Focused on Targeting Glioblastoma Tumor-Initiating Cells - Response. Molecular Cancer Research, 2010, 8, 291-291.	1.5	1
271	Knockdown of Cancer Testis Antigens Modulates Neural Stem Cell Marker Expression in Glioblastoma Tumor Stem Cells. Journal of Biomolecular Screening, 2010, 15, 830-839.	2.6	11
272	Identification of Internalizing Human Single-Chain Antibodies Targeting Brain Tumor Sphere Cells. Molecular Cancer Therapeutics, 2010, 9, 2131-2141.	1.9	37
273	Rapid and Robust Transgenic High-Grade Glioma Mouse Models for Therapy Intervention Studies. Clinical Cancer Research, 2010, 16, 3431-3441.	3.2	52
274	Oligodendroglioma cell lines containing t(1;19)(q10;p10). Neuro-Oncology, 2010, 12, 745-755.	0.6	77
275	Brain tumor stem cells maintain overall phenotype and tumorigenicity after in vitro culturing in serum-free conditions. Neuro-Oncology, 2010, 12, 1220-1230.	0.6	55
276	Bevacizumab for Malignant Gliomas. Archives of Neurology, 2010, 67, 285-8.	4.9	39
277	Immunobiological Characterization of Cancer Stem Cells Isolated from Glioblastoma Patients. Clinical Cancer Research, 2010, 16, 800-813.	3.2	295
278	Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-Oncology, 2010, 12, 855-861.	0.6	184

#	Article	IF	CITATIONS
279	Modeling the Prostate Stem Cell Niche: An Evaluation of Stem Cell Survival and Expansion In Vitro. Stem Cells and Development, 2010, 19, 537-546.	1.1	33
280	Gene Transfer Vectors Targeted to Human Prostate Cancer: Do We Need Better Preclinical Testing Systems?. Human Gene Therapy, 2010, 21, 815-827.	1.4	11
281	Î ³ -Secretase Inhibitors Enhance Temozolomide Treatment of Human Gliomas by Inhibiting Neurosphere Repopulation and Xenograft Recurrence. Cancer Research, 2010, 70, 6870-6879.	0.4	110
282	The functional role of Notch signaling in human gliomas. Neuro-Oncology, 2010, 12, 199-211.	0.6	105
283	The AC133 Epitope, but not the CD133 Protein, Is Lost upon Cancer Stem Cell Differentiation. Cancer Research, 2010, 70, 719-729.	0.4	326
284	Sitimagene ceradenovec: a gene-based drug for the treatment of operable high-grade glioma. Future Oncology, 2010, 6, 1691-1710.	1.1	26
285	A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. Neuro-Oncology, 2010, 12, 580-594.	0.6	79
286	Targeting A20 Decreases Glioma Stem Cell Survival and Tumor Growth. PLoS Biology, 2010, 8, e1000319.	2.6	117
287	Microenvironmental Regulation of Glioblastoma Radioresponse. Clinical Cancer Research, 2010, 16, 6049-6059.	3.2	72
288	microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle, 2010, 9, 1031-1036.	1.3	289
289	Preclinical Evaluation of Radiation and Perifosine in a Genetically and Histologically Accurate Model of Brainstem Glioma. Cancer Research, 2010, 70, 2548-2557.	0.4	149
290	Epidermal Growth Factor Receptor Expression Identifies Functionally and Molecularly Distinct Tumor-Initiating Cells in Human Glioblastoma Multiforme and Is Required for Gliomagenesis. Cancer Research, 2010, 70, 7500-7513.	0.4	198
291	Erythropoietin Receptor Signaling through STAT3 Is Required for Glioma Stem Cell Maintenance. Genes and Cancer, 2010, 1, 50-61.	0.6	71
292	Establishment of a human glioblastoma stemlike brainstem rodent tumor model. Journal of Neurosurgery: Pediatrics, 2010, 6, 92-97.	0.8	16
293	The Telomerase Antagonist, Imetelstat, Efficiently Targets Glioblastoma Tumor-Initiating Cells Leading to Decreased Proliferation and Tumor Growth. Clinical Cancer Research, 2010, 16, 154-163.	3.2	197
294	Glioma Stem Cell Research for the Development of Immunotherapy. Neurosurgery Clinics of North America, 2010, 21, 159-166.	0.8	35
295	Glioma stem cell signaling: therapeutic opportunities and challenges. Expert Review of Anticancer Therapy, 2010, 10, 709-722.	1.1	34
296	The cancer stem cell paradigm: a new understanding of tumor development and treatment. Expert Opinion on Therapeutic Targets, 2010, 14, 621-632.	1.5	80

#	Article	IF	CITATIONS
297	Analysis of an alternative human CD133 promoter reveals the implication of Ras/ERK pathway in tumor stem-like hallmarks. Molecular Cancer, 2010, 9, 39.	7.9	62
298	Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opinion on Therapeutic Targets, 2010, 14, 935-949.	1.5	178
299	Sox2 roles in neural stem cells. International Journal of Biochemistry and Cell Biology, 2010, 42, 421-424.	1.2	305
300	Isolation of cancer stem-like cells from a side population of a human glioblastoma cell line, SK-MG-1. Cancer Letters, 2010, 291, 150-157.	3.2	55
301	Curcumin inhibits the side population (SP) phenotype of the rat C6 glioma cell line: Towards targeting of cancer stem cells with phytochemicals. Cancer Letters, 2010, 293, 65-72.	3.2	88
302	Clinically relevant doses of chemotherapy agents reversibly block formation of glioblastoma neurospheres. Cancer Letters, 2010, 296, 168-177.	3.2	29
303	Molecular cytogenetic characterization of stem-like cancer cells isolated from established cell lines. Cancer Letters, 2010, 296, 206-215.	3.2	13
304	An RNAi Screen Identifies TRRAP as a Regulator of Brain Tumor-Initiating Cell Differentiation. Cell Stem Cell, 2010, 6, 37-47.	5.2	119
305	Integrin Alpha 6 Regulates Glioblastoma Stem Cells. Cell Stem Cell, 2010, 6, 421-432.	5.2	597
306	Oxygen in Stem Cell Biology: A Critical Component of the Stem Cell Niche. Cell Stem Cell, 2010, 7, 150-161.	5.2	1,346
307	Brain tumor stem cells: The cancer stem cell hypothesis writ large. Molecular Oncology, 2010, 4, 420-430.	2.1	127
308	Contribution of myeloid-derived suppressor cells to tumor-induced immune suppression, angiogenesis, invasion and metastasis. Journal of Genetics and Genomics, 2010, 37, 423-430.	1.7	70
309	Invasive Glioblastoma Cells Acquire Stemness and Increased Akt Activation. Neoplasia, 2010, 12, 453-IN5.	2.3	172
311	Differentiation Therapy Exerts Antitumor Effects on Stem-like Glioma Cells. Clinical Cancer Research, 2010, 16, 2715-2728.	3.2	279
312	Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro-Oncology, 2010, 12, 1102-1112.	0.6	205
313	Heat shock protein–peptide complex in the treatment of glioblastoma. Expert Review of Vaccines, 2011, 10, 721-731.	2.0	23
314	Knockdown of the Potential Cancer Stem-Like Cell Marker Rex-1 Improves Chemotherapeutic Effects in Gliomas. Human Gene Therapy, 2011, 22, 1551-1562.	1.4	10
315	Modulation of migratory activity and invasiveness of human glioma spheroids following 5-aminolevulinic acidâ \in based photodynamic treatment. Journal of Neurosurgery, 2011, 115, 281-288.	0.9	54

#	Article	IF	CITATIONS
316	Cisplatin Restores TRAIL Apoptotic Pathway in Glioblastoma-Derived Stem Cells through Up-regulation of DR5 and Down-regulation of c-FLIP. Cancer Investigation, 2011, 29, 511-520.	0.6	63
317	Cancer Stem Cells in Tumor Heterogeneity. Advances in Cancer Research, 2011, 112, 255-281.	1.9	71
318	Functional Sphere Profiling Reveals the Complexity of Neuroblastoma Tumor-Initiating Cell Model. Neoplasia, 2011, 13, 991-IN30.	2.3	61
319	SNAIL Regulates Interleukin-8 Expression, Stem Cell–Like Activity, and Tumorigenicity of Human Colorectal Carcinoma Cells. Gastroenterology, 2011, 141, 279-291.e5.	0.6	266
320	Glioma Cell Lines: Role of Cancer Stem Cells. , 2011, , 205-212.		0
321	Organotypic Explant Culture of Glioblastoma Multiforme and Subsequent Single ell Suspension. Current Protocols in Stem Cell Biology, 2011, 19, Unit3.5.	3.0	16
322	Radioresistance of glioma stem cells: Intrinsic characteristic or property of the †microenvironmentâ€stem cell unit'?. Molecular Oncology, 2011, 5, 374-386.	2.1	88
323	Expression of EGFRvIII in Glioblastoma: Prognostic Significance Revisited. Neoplasia, 2011, 13, 1113-IN6.	2.3	115
324	Tumors of the Central Nervous System, Volume 2. , 2011, , .		3
325	Cancer Stem Cells in Solid Tumors. , 2011, , .		7
327	Glioma Cell Migration on Three-dimensional Nanofiber Scaffolds Is Regulated by Substrate Topography and Abolished by Inhibition of STAT3 Signaling. Neoplasia, 2011, 13, 831-IN22.	2.3	113
328	Glioma Stem Cell Proliferation and Tumor Growth Are Promoted by Nitric Oxide Synthase-2. Cell, 2011, 146, 53-66.	13.5	280
329	Salinomycin can effectively kill ALDHhigh stem-like cells on gastric cancer. Biomedicine and Pharmacotherapy, 2011, 65, 509-515.	2.5	97
330	Tpl2 kinase signal transduction in inflammation and cancer. Cancer Letters, 2011, 304, 80-89.	3.2	89
331	Glioblastoma cell lines derived under serum-free conditions can be used as an in vitro model system to evaluate therapeutic response. Cancer Letters, 2011, 305, 50-57.	3.2	8
332	Elevated invasive potential of glioblastoma stem cells. Biochemical and Biophysical Research Communications, 2011, 406, 643-648.	1.0	168
333	Molecular targeting of glioblastoma: Drug discovery and therapies. Trends in Molecular Medicine, 2011, 17, 301-312.	3.5	114
334	Distinct Types of Tumor-Initiating Cells Form Human Colon Cancer Tumors and Metastases. Cell Stem Cell, 2011, 9, 357-365.	5.2	276

#	Article	IF	CITATIONS
335	Will Kinase Inhibitors Make it as Glioblastoma Drugs?. Current Topics in Microbiology and Immunology, 2011, 355, 135-169.	0.7	22
336	ID4 Imparts Chemoresistance and Cancer Stemness to Glioma Cells by Derepressing miR-9*–Mediated Suppression of SOX2. Cancer Research, 2011, 71, 3410-3421.	0.4	189
337	Three-Dimensional In Vitro Models in Glioma Research - Focus on Spheroids. , 2011, , .		1
338	Glioblastoma Multiforme Stem Cells. Scientific World Journal, The, 2011, 11, 930-958.	0.8	27
339	Stem cells within established cancer cell lines: an impact on in vitro experiments. Stem Cell Studies, 2011, 1, 7.	0.2	4
340	Glioma Stem Cells: Cell Culture, Markers and Targets for New Combination Therapies. , 0, , .		3
341	Cancer Stem Cells in Drug Resistance and Drug Screening: Can We Exploit the Cancer Stem Cell Paradigm in Search for New Antitumor Agents?. , 2011, , .		0
342	The Neural Extracellular Matrix, Cell Adhesion Molecules and Proteolysis in Glioma Invasion and Tumorigenicity. , 0, , .		0
343	Differential Signature of the Centrosomal MARK4 Isoforms in Glioma. Analytical Cellular Pathology, 2011, 34, 319-338.	0.7	23
344	Antigenic and Genotypic Similarity between Primary Glioblastomas and Their Derived Neurospheres. Journal of Oncology, 2011, 2011, 1-16.	0.6	23
345	Animal models to study cancer-initiating cells from Glioblastoma. Frontiers in Bioscience - Landmark, 2011, 16, 2243.	3.0	19
346	CD133 negative cancer stem cells in glioblastoma. Frontiers in Bioscience - Elite, 2011, E3, 701-710.	0.9	39
347	Evidence for cancer stem cells contributing to the pathogenesis of ovarian cancer. Frontiers in Bioscience - Landmark, 2011, 16, 368.	3.0	49
348	Cryopreservation of cancer-initiating cells derived from glioblastoma. Frontiers in Bioscience - Scholar, 2011, S3, 698-708.	0.8	7
349	Recruited Cells Can Become Transformed and Overtake PDGF-Induced Murine Gliomas In Vivo during Tumor Progression. PLoS ONE, 2011, 6, e20605.	1.1	72
350	CD44v6 Regulates Growth of Brain Tumor Stem Cells Partially through the AKT-Mediated Pathway. PLoS ONE, 2011, 6, e24217.	1.1	115
351	Immunotherapy for glioma. Current Opinion in Neurology, 2011, 24, 641-647.	1.8	29
352	Glioma Stem Cell Maintenance: The Role of the Microenvironment. Current Pharmaceutical Design, 2011, 17, 2386-2401.	0.9	76

		CITATION RE	PORT	
#	Article		IF	CITATIONS
353	The Cancer Stem Cell Hypothesis: Failures and Pitfalls. Neurosurgery, 2011, 68, 531-54	5.	0.6	119
354	Collateral Damage Control in Cancer Therapy: Defining the Stem Identity in Gliomas. Cu Pharmaceutical Design, 2011, 17, 2370-2385.	urrent	0.9	2
355	The biological characteristics of glioma stem cells in human glioma cell line SHG44. Mo Medicine Reports, 2011, 5, 552-8.	lecular	1.1	4
356	Advances in Translational Research in Neuro-oncology. Archives of Neurology, 2011, 68	, 303-8.	4.9	4
357	Inhibition of Sonic Hedgehog and Notch Pathways Enhances Sensitivity of CD133+ Glic Temozolomide Therapy. Molecular Medicine, 2011, 17, 103-112.	oma Stem Cells to	1.9	167
358	The emerging role of CXCL10 in cancer (Review). Oncology Letters, 2011, 2, 583-589.		0.8	322
359	In vitro expansion of human glioblastoma cells at non-physiological oxygen tension irre alters subsequent in vivo aggressiveness and AC133 expression. International Journal o 2011, 40, 1220-9.	versibly f Oncology,	1.4	7
360	Evaluation of Cancer Stem Cell Migration Using Compartmentalizing Microfluidic Devic Cell Imaging. Journal of Visualized Experiments, 2011, , e3297.	ies and Live	0.2	12
361	Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-lik Neuropathology and Applied Neurobiology, 2011, 37, 381-394.	e cells.	1.8	118
362	Effect of doublecortin on selfâ€renewal and differentiation in brain tumor stem cells. C 2011, 102, 1350-1357.	ancer Science,	1.7	20
363	Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibitior 2011, 30, 3454-3467.	1. Oncogene,	2.6	174
364	Blockade of the NFήB pathway drives differentiating glioblastoma-initiating cells into se in vitro and in vivo. Oncogene, 2011, 30, 3537-3548.	enescence both	2.6	69
365	The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tu pathology and prognosis. British Journal of Cancer, 2011, 104, 1168-1177.	mour	2.9	244
366	Secreted factors from brain endothelial cells maintain glioblastoma stemâ€like cell exp the mTOR pathway. EMBO Reports, 2011, 12, 470-476.	ansion through	2.0	114
367	Overexpression of ZNF217 in glioblastoma contributes to the maintenance of glioma s regulated by hypoxia-inducible factors. Laboratory Investigation, 2011, 91, 1068-1078.	tem cells	1.7	45
368	Complex Oncogenic Signaling Networks Regulate Brain Tumorâ€Initiating Cells and The Pivotal Roles of Wildâ€Type EGFR, EGFRvIII Mutant and Hedgehog Cascades and Novel Therapies. Brain Pathology, 2011, 21, 479-500.	eir Progenies: Multitargeted	2.1	20
369	A comparative study of the structural organization of spheres derived from the adult hu subventricular zone and glioblastoma biopsies. Experimental Cell Research, 2011, 317,	ıman 1049-1059.	1.2	24
370	Maintenance of EGFR and EGFRvIII expressions in an in vivo and in vitro model of huma multiforme. Experimental Cell Research, 2011, 317, 1513-1526.	n glioblastoma	1.2	42

#	Article	IF	CITATIONS
371	Identification of a peptide that interacts with Nestin protein expressed in brain cancer stem cells. Biomaterials, 2011, 32, 8518-8528.	5.7	41
372	FoxM1 Promotes β-Catenin Nuclear Localization and Controls Wnt Target-Gene Expression and Glioma Tumorigenesis. Cancer Cell, 2011, 20, 427-442.	7.7	505
373	Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metabolism Reviews, 2011, 43, 374-386.	1.5	99
374	Molecular Pathogenesis. , 2011, , 27-44.		2
375	Identification of CD133â^'/Telomeraselow Progenitor Cells in Glioblastoma-Derived Cancer Stem Cell Lines. Cellular and Molecular Neurobiology, 2011, 31, 337-343.	1.7	20
376	Highly enriched CD133+CD44+ stem-like cells with CD133+CD44high metastatic subset in HCT116 colon cancer cells. Clinical and Experimental Metastasis, 2011, 28, 751-763.	1.7	85
377	The role of sphingosine kinase-1 in EGFRvIII-regulated growth and survival of glioblastoma cells. Journal of Neuro-Oncology, 2011, 102, 353-366.	1.4	30
378	Glioblastoma-derived spheroid cultures as an experimental model for analysis of EGFR anomalies. Journal of Neuro-Oncology, 2011, 102, 395-407.	1.4	27
379	Effects of hypoxia on expression of a panel of stem cell and chemoresistance markers in glioblastoma-derived spheroids. Journal of Neuro-Oncology, 2011, 103, 43-58.	1.4	119
380	Understanding the role of tumor stem cells in glioblastoma multiforme: a review article. Journal of Neuro-Oncology, 2011, 103, 397-408.	1.4	23
381	Characterization of a human tumorsphere glioma orthotopic model using magnetic resonance imaging. Journal of Neuro-Oncology, 2011, 104, 473-481.	1.4	19
382	Optimization of glioblastoma multiforme stem cell isolation, transfection, and transduction. Journal of Neuro-Oncology, 2011, 104, 509-522.	1.4	16
383	The roles of viruses in brain tumor initiation and oncomodulation. Journal of Neuro-Oncology, 2011, 105, 451-466.	1.4	52
384	Telomerase Activity-Independent Function of TERT Allows Glioma Cells to Attain Cancer Stem Cell Characteristics by Inducing EGFR Expression. Molecules and Cells, 2011, 31, 9-16.	1.0	55
385	Heterogeneity of primary glioblastoma cells in the expression of caspase-8 and the response to TRAIL-induced apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 1150-1164.	2.2	25
386	Cancer stem cells: a new framework for the design of tumor therapies. Journal of Molecular Medicine, 2011, 89, 95-107.	1.7	65
387	Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 69-79.	1.7	158
388	Seeing is Believing: Are Cancer Stem Cells the Loch Ness Monster of Tumor Biology?. Stem Cell Reviews and Reports, 2011, 7, 227-237.	5.6	28

#	Article	IF	CITATIONS
389	BTECH: A Platform to Integrate Genomic, Transcriptomic and Epigenomic Alterations in Brain Tumors. Neuroinformatics, 2011, 9, 59-67.	1.5	5
390	Chemoresistance of glioblastoma cancer stem cells - much more complex than expected. Molecular Cancer, 2011, 10, 128.	7.9	265
391	Liposarcoma cells with aldefluor and CD133 activity have a cancer stem cell potential. Clinical Sarcoma Research, 2011, 1, 8.	2.3	22
392	Krüppel-Like Family of Transcription Factor 9, a Differentiation-Associated Transcription Factor, Suppresses Notch1 Signaling and Inhibits Glioblastoma-Initiating Stem Cells. Stem Cells, 2011, 29, 20-31.	1.4	80
393	Side Population is Not Necessary or Sufficient for a Cancer Stem Cell Phenotype in Glioblastoma Multiforme. Stem Cells, 2011, 29, 452-461.	1.4	97
394	Alternative Lengthening of Telomeres in Human Glioma Stem Cells. Stem Cells, 2011, 29, 440-451.	1.4	61
395	p53 Directly Represses <i>ld2</i> to Inhibit the Proliferation of Neural Progenitor Cells. Stem Cells, 2011, 29, 1090-1101.	1.4	38
396	MEK-ERK Signaling Dictates DNA-Repair Gene MGMT Expression and Temozolomide Resistance of Stem-Like Glioblastoma Cells via the MDM2-p53 Axis. Stem Cells, 2011, 29, 1942-1951.	1.4	93
397	Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells. Journal of Cellular Physiology, 2011, 226, 1118-1127.	2.0	70
398	Protein kinase C $\hat{1}^1$ expression and oncogenic signaling mechanisms in cancer. Journal of Cellular Physiology, 2011, 226, 879-887.	2.0	91
399	A distinct subset of glioma cell lines with stem cellâ€like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target. Glia, 2011, 59, 590-602.	2.5	97
400	Genetic modeling of gliomas in mice: New tools to tackle old problems. Glia, 2011, 59, 1155-1168.	2.5	85
401	The origins of glioma: E Pluribus Unum?. Glia, 2011, 59, 1135-1147.	2.5	73
402	<i>Drosophila melanogaster</i> as a model system for human brain cancers. Glia, 2011, 59, 1364-1376.	2.5	51
403	Cancer stem cells in gliomas: Identifying and understanding the apex cell in cancer's hierarchy. Glia, 2011, 59, 1148-1154.	2.5	128
404	Expression and regulation of AC133 and CD133 in glioblastoma. Glia, 2011, 59, 1974-1986.	2.5	40
405	Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99â€1 cells based on high aldehyde dehydrogenase activity. International Journal of Cancer, 2011, 128, 294-303.	2.3	104
406	Insight into the complex regulation of CD133 in glioma. International Journal of Cancer, 2011, 128, 501-510.	2.3	56

#	Article	IF	CITATIONS
407	Induction of autophagy promotes differentiation of gliomaâ€initiating cells and their radiosensitivity. International Journal of Cancer, 2011, 129, 2720-2731.	2.3	153
408	A novel fixative for immunofluorescence staining of CD133-positive glioblastoma stem cells. Journal of Neuroscience Methods, 2011, 198, 99-102.	1.3	4
409	Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain, 2011, 134, 1331-1343.	3.7	151
410	Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA repair, and etoposide extrusion. Neuro-Oncology, 2011, 13, 70-83.	0.6	60
411	CD133+ Glioblastoma Stem-Like Cells Induce Vascular Mimicry in Vivo. Current Neurovascular Research, 2011, 8, 210-219.	0.4	52
412	Maintenance of tumor initiating cells of defined genetic composition by nucleostemin. Proceedings of the United States of America, 2011, 108, 20388-20393.	3.3	104
413	Ubiquitously Expressed Hematological and Neurological Expressed 1 Downregulates Akt-Mediated GSK3β Signaling, and Its Knockdown Results in Deregulated G2/M Transition in Prostate Cells. DNA and Cell Biology, 2011, 30, 419-429.	0.9	28
414	Microfluidics-based devices: New tools for studying cancer and cancer stem cell migration. Biomicrofluidics, 2011, 5, 13412.	1.2	90
415	Endothelial Cells Create a Stem Cell Niche in Glioblastoma by Providing NOTCH Ligands That Nurture Self-Renewal of Cancer Stem-Like Cells. Cancer Research, 2011, 71, 6061-6072.	0.4	335
416	Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4274-4280.	3.3	484
417	Delineation of a Cellular Hierarchy in Lung Cancer Reveals an Oncofetal Antigen Expressed on Tumor-Initiating Cells. Cancer Research, 2011, 71, 4236-4246.	0.4	72
418	A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biology and Therapy, 2011, 11, 464-473.	1.5	205
419	Homozygously deleted gene DACH1 regulates tumor-initiating activity of glioma cells. Proceedings of the United States of America, 2011, 108, 12384-12389.	3.3	40
420	Retaining cell–cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6235-6240.	3.3	263
421	Inconsistent Immunohistochemical Expression Patterns of Four Different CD133 Antibody Clones in Glioblastoma. Journal of Histochemistry and Cytochemistry, 2011, 59, 391-407.	1.3	70
422	Report from the Fifth National Cancer Institute Mouse Models of Human Cancers Consortium Nervous System Tumors Workshop. Neuro-Oncology, 2011, 13, 692-699.	0.6	7
423	Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells. Cancers, 2011, 3, 621-635.	1.7	23
424	Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?. Cancers, 2011, 3, 1111-1128.	1.7	19

#	Article	IF	CITATIONS
425	Pseudotyping Vesicular Stomatitis Virus with Lymphocytic Choriomeningitis Virus Glycoproteins Enhances Infectivity for Glioma Cells and Minimizes Neurotropism. Journal of Virology, 2011, 85, 5679-5684.	1.5	71
426	A single intravenous injection of oncolytic picornavirus SVV-001 eliminates medulloblastomas in primary tumor-based orthotopic xenograft mouse models. Neuro-Oncology, 2011, 13, 14-27.	0.6	65
427	Modeling Evolutionary Dynamics of Epigenetic Mutations in Hierarchically Organized Tumors. PLoS Computational Biology, 2011, 7, e1001132.	1.5	53
428	Identification and gene expression profiling of tumor-initiating cells isolated from human osteosarcoma cell lines in an orthotopic mouse model. Cancer Biology and Therapy, 2011, 12, 278-287.	1.5	35
429	Metabolic Alterations in Highly Tumorigenic Glioblastoma Cells. Journal of Biological Chemistry, 2011, 286, 32843-32853.	1.6	206
430	Autocrine Endothelin-3/Endothelin Receptor B Signaling Maintains Cellular and Molecular Properties of Glioblastoma Stem Cells. Molecular Cancer Research, 2011, 9, 1668-1685.	1.5	38
431	Frizzled 4 Regulates Stemness and Invasiveness of Migrating Glioma Cells Established by Serial Intracranial Transplantation. Cancer Research, 2011, 71, 3066-3075.	0.4	137
432	Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Reviews in Molecular Medicine, 2011, 13, e17.	1.6	266
433	A Molecular Screening Approach to Identify and Characterize Inhibitors of Glioblastoma Stem Cells. Molecular Cancer Therapeutics, 2011, 10, 1818-1828.	1.9	80
434	Itraconazole Inhibits Angiogenesis and Tumor Growth in Non–Small Cell Lung Cancer. Cancer Research, 2011, 71, 6764-6772.	0.4	132
435	A CD133-related gene expression signature identifies an aggressive glioblastoma subtype with excessive mutations. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1591-1596.	3.3	114
436	Oxygen Is a Master Regulator of the Immunogenicity of Primary Human Glioma Cells. Cancer Research, 2011, 71, 6583-6589.	0.4	20
437	Chemokine receptor CXCR3 promotes growth of glioma. Carcinogenesis, 2011, 32, 129-137.	1.3	63
438	Pancreatic cancer spheres are more than just aggregates of stem marker-positive cells. Bioscience Reports, 2011, 31, 45-55.	1.1	65
439	Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO Journal, 2011, 30, 4084-4097.	3.5	134
440	Effect of Brain- and Tumor-Derived Connective Tissue Growth Factor on Glioma Invasion. Journal of the National Cancer Institute, 2011, 103, 1162-1178.	3.0	109
441	The Epithelial-Mesenchymal Transition Mediator S100A4 Maintains Cancer-Initiating Cells in Head and Neck Cancers. Cancer Research, 2011, 71, 1912-1923.	0.4	123
442	Glioblastoma Stem-Like Cells—Biology and Therapeutic Implications. Cancers, 2011, 3, 2655-2666.	1.7	33

ARTICLE IF CITATIONS # EGFR-AKT-Smad Signaling Promotes Formation of Glioma Stem-like Cells and Tumor Angiogenesis by 443 0.4 120 ID3-Driven Cytokine Induction. Cancer Research, 2011, 71, 7125-7134. Induction of brain tumor stem cell apoptosis by FTY720: a potential therapeutic agent for 444 69 glioblastoma. Neuro-Oncology, 2012, 14, 405-415. Molecular biology of brain tumors. Handbook of Clinical Neurology / Edited By P J Vinken and G W 445 1.0 11 Bruyn, 2012, 104, 23-34. Molecularly targeted therapy in neuro-oncology. Handbook of Clinical Neurology / Edited By P J 446 Vinken and G W Bruyn, 2012, 104, 255-278. The Implications of Cancer Stem Cells for Cancer Therapy. International Journal of Molecular 447 1.8 57 Sciences, 2012, 13, 16636-16657. Alpha-secretase inhibition reduces human glioblastoma stem cell growth in vitro and in vivo by inhibiting Notch. Neuro-Oncology, 2012, 14, 1215-1226. 0.6 Glioma-Propagating Cells as an In Vitro Screening Platform. Journal of Biomolecular Screening, 2012, 449 2.6 6 17, 1136-1150. Gliomagenesis Arising from Pten- and Ink4a/Arf-Deficient Neural Progenitor Cells Is Mediated by the 450 0.4 p53-Fbxw7/Cdc4 Pathway, Which Controls c-Myc. Cancer Research, 2012, 72, 6065-6075. 451 Glioblastoma Cancer Stem-Like Cells. Cancer Journal (Sudbury, Mass), 2012, 18, 100-106. 1.0 51 Glioblastoma Stem–like Cell Lines with Either Maintenance or Loss of High-Level EGFR Amplification, 3.2 Generated via Modulation of Ligand Concentration. Clinical Cancer Research, 2012, 18, 1901-1913. Chemotherapy with cytotoxic and cytostatic agents in brain cancer. Handbook of Clinical Neurology / 453 1.0 9 Edited By P J Vinken and G W Bruyn, 2012, 104, 229-254. A Validated Tumorgraft Model Reveals Activity of Dovitinib Against Renal Cell Carcinoma. Science 454 5.8 159 Translational Medicine, 2012, 4, 137ra75. Oncolytic Virus-Mediated Manipulation of DNA Damage Responses: Synergy With Chemotherapy in 455 3.0 103 Killing Glioblastoma Stem Cells. Journal of the National Cancer Institute, 2012, 104, 42-55. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem 2.7 370 cells. Genes and Development, 2012, 26, 1926-1944. Transdifferentiation of Glioblastoma Stem-Like Cells into Mural Cells Drives Vasculogenic Mimicry in 457 150 1.7 Glioblastomas. Journal of Neuroscience, 2012, 32, 12950-12960. Letter to the Editor: Extended endoscopic endonasal approach. Journal of Neurosurgery, 2012, 116, 688-688. Targeting of Noncanonical Wnt5a Signaling by AP-1 Blocker Dominant-Negative Jun When It Inhibits 459 0.6 25 Skin Carcinogenesis. Genes and Cancer, 2012, 3, 37-50. Letter to the Editor: Brain edema. Journal of Neurosurgery, 2012, 116, 688-689.

#	Article	IF	CITATIONS
461	Animal model of intramedullary spinal cord glioma using human glioblastoma multiforme neurospheres. Journal of Neurosurgery: Spine, 2012, 16, 315-319.	0.9	12
462	Letter to the Editor: Severe disability. Journal of Neurosurgery, 2012, 116, 689-691.	0.9	0
463	Neural stem cells: Brain building blocks and beyond. Upsala Journal of Medical Sciences, 2012, 117, 132-142.	0.4	60
464	Letter to the Editor: Glioma spheroids. Journal of Neurosurgery, 2012, 116, 691-693.	0.9	0
465	Human Tumor Xenografts: The Good, the Bad, and the Ugly. Molecular Therapy, 2012, 20, 882-884.	3.7	49
466	MET Signaling Regulates Glioblastoma Stem Cells. Cancer Research, 2012, 72, 3828-3838.	0.4	145
467	Concise Review: Self-Renewal in the Central Nervous System: Neural Stem Cells from Embryo to Adult. Stem Cells Translational Medicine, 2012, 1, 298-308.	1.6	44
468	Girdin maintains the stemness of glioblastoma stem cells. Oncogene, 2012, 31, 2715-2724.	2.6	67
469	Interferon regulatory factor 7 regulates glioma stem cells via interleukin-6 and Notch signalling. Brain, 2012, 135, 1055-1069.	3.7	74
470	Current Progress on Understanding MicroRNAs in Glioblastoma Multiforme. Genes and Cancer, 2012, 3, 3-15.	0.6	132
471	A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 Inhibits Caspase-8 Cleavage and TRAIL-Induced Apoptosis in Glioblastoma. Cancer Discovery, 2012, 2, 140-155.	7.7	104
472	EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase. Oncogene, 2012, 31, 5132-5143.	2.6	80
473	Tumor-suppressing Function of Caspase-2 Requires Catalytic Site Cys-320 and Site Ser-139 in Mice. Journal of Biological Chemistry, 2012, 287, 14792-14802.	1.6	37
474	The Oncogenic RNA-Binding Protein Musashi1 Is Regulated by HuR via mRNA Translation and Stability in Glioblastoma Cells. Molecular Cancer Research, 2012, 10, 143-155.	1.5	65
475	Effect of γ34.5 Deletions on Oncolytic Herpes Simplex Virus Activity in Brain Tumors. Journal of Virology, 2012, 86, 4420-4431.	1.5	85
476	Stem Cells and Cancer Stem Cells, Volume 2. , 2012, , .		1
477	Progenitor-like Traits Contribute to Patient Survival and Prognosis in Oligodendroglial Tumors. Clinical Cancer Research, 2012, 18, 4122-4135.	3.2	16
478	Comparison of Spheroids Formed by Rat Glioma Stem Cells and Neural Stem Cells Reveals Differences in Glucose Metabolism and Promising Therapeutic Applications. Journal of Biological Chemistry, 2012, 287, 33664-33674.	1.6	55

#	Article	IF	Citations
479	Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Research, 2012, 22, 248-258.	5.7	158
480	Active Efflux of Dasatinib from the Brain Limits Efficacy against Murine Glioblastoma: Broad Implications for the Clinical Use of Molecularly Targeted Agents. Molecular Cancer Therapeutics, 2012, 11, 2183-2192.	1.9	85
481	The Role of Cyclin-D2 in the Tumorgenesis of Glioblastoma. Neurosurgery, 2012, 71, N22-N23.	0.6	2
482	Harnessing the Brain's Tools for Killing Cancer Cells Could be a Key to Treating High-grade Gliomas. Neurosurgery, 2012, 71, N23-N24.	0.6	1
483	Meta-analysis of the expression of the mitosis-related gene Fam83D. Oncology Letters, 2012, 4, 1335-1340.	0.8	18
484	Sestrins Link Tumor Suppressors with the AMPK-TOR Signaling Network. , 2012, , .		1
485	Anticancer Effects of Cinnamic Acid in Lung Adenocarcinoma Cell Line H1299-Derived Stem-Like Cells. Oncology Research, 2012, 20, 499-507.	0.6	12
486	t(X;14)(p11;q32) in MALT lymphoma involving GPR34 reveals a role for GPR34 in tumor cell growth. Blood, 2012, 120, 3949-3957.	0.6	48
487	Differential Expression of 2′,3′-Cyclic-Nucleotide 3′-Phosphodiesterase and Neural Lineage Markers Correlate with Glioblastoma Xenograft Infiltration and Patient Survival. Clinical Cancer Research, 2012, 18, 3628-3636.	3.2	40
488	Characteristic Features of Stem Cells in Glioblastomas: From Cellular Biology to Genetics. Brain Pathology, 2012, 22, 592-606.	2.1	11
489	Contribution of MicroRNA-1275 to Claudin11 Protein Suppression via a Polycomb-mediated Silencing Mechanism in Human Glioma Stem-like Cells. Journal of Biological Chemistry, 2012, 287, 27396-27406.	1.6	51
490	<scp>EGF</scp> signalling pathway regulates colon cancer stem cell proliferation and apoptosis. Cell Proliferation, 2012, 45, 413-419.	2.4	66
491	Glioma Stem Cell Research for the Development of Immunotherapy. Advances in Experimental Medicine and Biology, 2012, 746, 216-225.	0.8	6
492	Immunotherapy of brain tumors. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 104, 309-330.	1.0	3
493	Glioblastoma-derived Tumor Cells Induce Vasculogenic Mimicry through Flk-1 Protein Activation. Journal of Biological Chemistry, 2012, 287, 24821-24831.	1.6	126
494	Notch1 signaling promotes survival of glioblastoma cells via EGFR-mediated induction of anti-apoptotic Mcl-1. Oncogene, 2012, 31, 4698-4708.	2.6	61
495	Epidermal Growth Factor Receptor Variant III Contributes to Cancer Stem Cell Phenotypes in Invasive Breast Carcinoma. Cancer Research, 2012, 72, 2657-2671.	0.4	48
496	Clioma-Initiating Cells: Interferon Treatment. , 2012, , 99-106.		0

#	Article	IF	CITATIONS
497	Glioma stem cell invasion through regulation of the interconnected ERK, integrin α6 and N-cadherin signaling pathway. Cellular Signalling, 2012, 24, 2076-2084.	1.7	48
498	High-Grade Glioma Relationship to the Neural Stem Cell Compartment: A Retrospective Review of 104 Cases. International Journal of Radiation Oncology Biology Physics, 2012, 82, e159-e165.	0.4	10
499	Activation of Multiple ERBB Family Receptors Mediates Glioblastoma Cancer Stem-like Cell Resistance to EGFR-Targeted Inhibition. Neoplasia, 2012, 14, 420-IN13.	2.3	123
500	Wnt activation is implicated in glioblastoma radioresistance. Laboratory Investigation, 2012, 92, 466-473.	1.7	135
501	Comparative genomic and proteomic analysis of high grade glioma primary cultures and matched tumor in situ. Experimental Cell Research, 2012, 318, 2245-2256.	1.2	4
502	Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma. British Journal of Pharmacology, 2012, 166, 532-553.	2.7	19
503	Flow cytometric techniques for detection of candidate cancer stem cell subpopulations in canine tumour models. Veterinary and Comparative Oncology, 2012, 10, 252-273.	0.8	14
504	Quantitative analysis of topoisomerase II alpha and evaluation of its effects on cell proliferation and apoptosis in glioblastoma cancer stem cells. Neuroscience Letters, 2012, 518, 138-143.	1.0	22
505	Cancer stem cells and tumor angiogenesis. Cancer Letters, 2012, 321, 13-17.	3.2	59
506	Analysis of Tumor Metabolism Reveals Mitochondrial Glucose Oxidation in Genetically Diverse Human Glioblastomas in the Mouse Brain InÂVivo. Cell Metabolism, 2012, 15, 827-837.	7.2	459
507	The homing of human cord blood stem cells to sites of inflammation. Cell Cycle, 2012, 11, 2303-2313.	1.3	10
508	Glioblastoma research 2006–2010: Pattern of citation and systematic review of highly cited articles. Clinical Neurology and Neurosurgery, 2012, 114, 1207-1210.	0.6	12
509	Glioma Revisited: From Neurogenesis and Cancer Stem Cells to the Epigenetic Regulation of the Niche. Journal of Oncology, 2012, 2012, 1-20.	0.6	40
510	Cancer Stem Cell Models and Role in Drug Discovery. , 2012, , 217-228.		2
511	The synthetic purine reversine selectively induces cell death of cancer cells. Journal of Cellular Biochemistry, 2012, 113, 3207-3217.	1.2	18
512	Autocrine CCL5 Signaling Promotes Invasion and Migration of CD133 ⁺ Ovarian Cancer Stemâ€Like Cells via NFâ€₽Bâ€Mediated MMPâ€9 Upregulation. Stem Cells, 2012, 30, 2309-2319.	1.4	173
513	High Content Screening of Defined Chemical Libraries Using Normal and Glioma-Derived Neural Stem Cell Lines. Methods in Enzymology, 2012, 506, 311-329.	0.4	15
514	The proto-oncoprotein KR-POK represses transcriptional activation of CDKN1A by MIZ-1 through competitive binding. Oncogene, 2012, 31, 1442-1458.	2.6	12

#	Article	IF	CITATIONS
515	Notch Signaling and Brain Tumors. Advances in Experimental Medicine and Biology, 2012, 727, 289-304.	0.8	24
516	7.10 Cell-Extracellular Matrix Mechanobiology in Cancer. , 2012, , 142-167.		0
517	Glioblastoma cancer stem cells: Basis for a functional hypothesis. Stem Cell Discovery, 2012, 02, 122-131.	0.5	9
518	Study of chemoresistant CD133+ cancer stem cells from human glioblastoma cell line U138MG using multiple assays. Cell Biology International, 2012, 36, 1137-1143.	1.4	25
519	STEAP1 is overexpressed in cancers: A promising therapeutic target. Biochemical and Biophysical Research Communications, 2012, 429, 148-155.	1.0	67
520	Increasing the efficacy of tumor cell vaccines by enhancing cross priming. Cancer Letters, 2012, 325, 155-164.	3.2	43
521	The Cancer Stem Cell Subtype Determines Immune Infiltration of Glioblastoma. Stem Cells and Development, 2012, 21, 2753-2761.	1.1	79
522	In vivo models of primary brain tumors: pitfalls and perspectives. Neuro-Oncology, 2012, 14, 979-993.	0.6	211
523	Notch Inhibition as a Promising New Approach to Cancer Therapy. Advances in Experimental Medicine and Biology, 2012, 727, 305-319.	0.8	130
524	CD133 as a Marker for Regulation and Potential for Targeted Therapies in Glioblastoma Multiforme. Neurosurgery Clinics of North America, 2012, 23, 391-405.	0.8	28
525	CNTF receptor subunit \hat{l}_{\pm} as a marker for glioma tumor-initiating cells and tumor grade. Journal of Neurosurgery, 2012, 117, 1022-1031.	0.9	33
526	Evaluation of Tyrosine Kinase Inhibitor Combinations for Glioblastoma Therapy. PLoS ONE, 2012, 7, e44372.	1.1	42
527	Netrin-4 Promotes Glioblastoma Cell Proliferation through Integrin β4 Signaling. Neoplasia, 2012, 14, 219-IN23.	2.3	40
529	Assessing Mechanisms of Glioblastoma Invasion. Neuromethods, 2012, , 275-298.	0.2	1
532	Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines. BMC Complementary and Alternative Medicine, 2012, 12, 201.	3.7	57
533	Nonadhesive Culture System as a Model of Rapid Sphere Formation with Cancer Stem Cell Properties. PLoS ONE, 2012, 7, e31864.	1.1	130
534	Phosphoproteome of Human Glioblastoma Initiating Cells Reveals Novel Signaling Regulators Encoded by the Transcriptome. PLoS ONE, 2012, 7, e43398.	1.1	34
535	A Radial Glia Gene Marker, Fatty Acid Binding Protein 7 (FABP7), Is Involved in Proliferation and Invasion of Glioblastoma Cells. PLoS ONE, 2012, 7, e52113.	1.1	94

#	Article	IF	CITATIONS
536	Current Strategies for Identification of Glioma Stem Cells: Adequate or Unsatisfactory?. Journal of Oncology, 2012, 2012, 1-10.	0.6	75
537	A simplified and modified procedure to culture brain glioma stem cells from clinical specimens. Oncology Letters, 2012, 3, 50-54.	0.8	13
538	Stem cells and progenitor cell lineages as targets for neoplastic transformation in the central nervous system. , 2012, , 6-35.		1
539	The role of microRNAs in glioma initiation and progression. Frontiers in Bioscience - Landmark, 2012, 17, 700.	3.0	94
540	High-Throughput Chemical Screens Identify Disulfiram as an Inhibitor of Human Glioblastoma Stem Cells. Oncotarget, 2012, 3, 1124-1136.	0.8	144
541	Genomic instability of surgical sample and cancer-initiating cell lines from human glioblastoma. Frontiers in Bioscience - Landmark, 2012, 17, 1469.	3.0	10
542	REST Regulates Oncogenic Properties of Glioblastoma Stem Cells. Stem Cells, 2012, 30, 405-414.	1.4	67
543	Connexin 43 Reverses Malignant Phenotypes of Glioma Stem Cells by Modulating E-Cadherin. Stem Cells, 2012, 30, 108-120.	1.4	79
544	In vitro models. Stem Cells, 2012, 30, 95-99.	1.4	31
545	Stem Cell Media Culture of Melanoma Results in the Induction of a Nonrepresentative Neural Expression Profile. Stem Cells, 2012, 30, 336-343.	1.4	14
546	Rai is a New Regulator of Neural Progenitor Migration and Glioblastoma Invasion. Stem Cells, 2012, 30, 817-832.	1.4	32
547	Differential Proteomic Analysis of Human Clioblastoma and Neural Stem Cells Reveals HDGF as a Novel Angiogenic Secreted Factor. Stem Cells, 2012, 30, 845-853.	1.4	71
548	Implication of expression of Nanog in prostate cancer cells and their stem cells. Journal of Huazhong University of Science and Technology [Medical Sciences], 2012, 32, 242-246.	1.0	12
549	Malignant Glioma: Lessons from Genomics, Mouse Models, and Stem Cells. Cell, 2012, 149, 36-47.	13.5	528
550	Emerging insights into the molecular and cellular basis of glioblastoma. Genes and Development, 2012, 26, 756-784.	2.7	463
551	Exploring the cancer stem cell phenotype with high-throughput screening applications. Future Medicinal Chemistry, 2012, 4, 1229-1241.	1.1	9
552	Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nature Medicine, 2012, 18, 1232-1238.	15.2	159
553	Effects of epidermal growth factor receptor blockade on ependymoma stem cells <i>in vitro</i> and in orthotopic mouse models. International Journal of Cancer, 2012, 131, E791-803.	2.3	15

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
554	Glioblastoma Multiforme: Cryopreservation of Brain Tumor-Initiating Cells (Method). , 2012, , 95-101.		0
555	Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells. Neuro-Oncology, 2012, 14, 132-144.	0.6	185
556	Paediatric and adult malignant glioma: close relatives or distant cousins?. Nature Reviews Clinical Oncology, 2012, 9, 400-413.	12.5	166
557	RNAi screening in glioma stem-like cells identifies PFKFB4 as a key molecule important for cancer cell survival. Oncogene, 2012, 31, 3235-3243.	2.6	123
558	Recognition of Glioma Stem Cells by Genetically Modified T Cells Targeting EGFRvIII and Development of Adoptive Cell Therapy for Glioma. Human Gene Therapy, 2012, 23, 1043-1053.	1.4	266
559	Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193, a novel small molecule inhibitor of the JAK2/STAT3 pathway. Journal of Neuro-Oncology, 2012, 107, 487-501.	1.4	64
560	Recent advances in the molecular understanding of glioblastoma. Journal of Neuro-Oncology, 2012, 108, 11-27.	1.4	358
561	Efficacy of clinically relevant temozolomide dosing schemes in glioblastoma cancer stem cell lines. Journal of Neuro-Oncology, 2012, 109, 45-52.	1.4	41
562	Identification of cancer stem cells provides novel tumor models for drug discovery. Frontiers of Medicine, 2012, 6, 112-121.	1.5	3
563	Cancer-Initiating Enriched Cell Lines from Human Glioblastoma: Preparing for Drug Discovery Assays. Stem Cell Reviews and Reports, 2012, 8, 288-298.	5.6	10
564	A review of the role of stem cells in the development and treatment of glioma. Acta Neurochirurgica, 2012, 154, 951-969.	0.9	13
565	Spheres without Influence: Dissociating InÂVitro Self-Renewal from Tumorigenic Potential in Glioma. Cancer Cell, 2012, 21, 1-3.	7.7	7
566	Glioblastoma: Therapeutic challenges, what lies ahead. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 338-349.	3.3	92
567	Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials, 2012, 33, 1462-1476.	5.7	219
568	CCL5, CCR1 and CCR5 in murine glioblastoma: Immune cell infiltration and survival rates are not dependent on individual expression of either CCR1 or CCR5. Journal of Neuroimmunology, 2012, 246, 10-17.	1.1	44
569	Strongly amphiphilic photosensitizers are not substrates of the cancer stem cell marker ABCG2 and provides specific and efficient light-triggered drug delivery of an EGFR-targeted cytotoxic drug. Journal of Controlled Release, 2012, 159, 197-203.	4.8	48
570	Primary human cervical carcinoma cells require human papillomavirus E6 and E7 expression for ongoing proliferation. Virology, 2012, 422, 114-124.	1.1	59
571	Curcumin promotes differentiation of gliomaâ€initiating cells by inducing autophagy. Cancer Science, 2012, 103, 684-690.	1.7	157

#	Article	IF	CITATIONS
572	Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. International Journal of Cancer, 2012, 130, 29-39.	2.3	230
573	Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors. NMR in Biomedicine, 2012, 25, 1177-1186.	1.6	66
574	The application of radiation therapy to the pediatric preclinical testing program (PPTP): Results of a pilot study in rhabdomyosarcoma. Pediatric Blood and Cancer, 2013, 60, 377-382.	0.8	10
575	Vaccinia virus expressing bone morphogenetic protein-4 in novel glioblastoma orthotopic models facilitates enhanced tumor regression and long-term survival. Journal of Translational Medicine, 2013, 11, 155.	1.8	26
576	Identification of Post-Translational Modifications by Mass Spectrometry. Australian Journal of Chemistry, 2013, 66, 734.	0.5	29
577	Carbon nanotubes in hyperthermia therapy. Advanced Drug Delivery Reviews, 2013, 65, 2045-2060.	6.6	194
578	Murine cell line model of proneural glioma for evaluation of anti-tumor therapies. Journal of Neuro-Oncology, 2013, 112, 375-382.	1.4	36
579	Animal Models of Brain Tumors. Neuromethods, 2013, , .	0.2	0
580	Cancer stem cells, epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous carcinoma. Human Pathology, 2013, 44, 2373-2384.	1.1	50
581	Neuronal Cell Culture. Methods in Molecular Biology, 2013, , .	0.4	12
581 582	Neuronal Cell Culture. Methods in Molecular Biology, 2013, , . Emerging Concepts in Neuro-Oncology. , 2013, , .	0.4	12 0
581 582 583	Neuronal Cell Culture. Methods in Molecular Biology, 2013, , . Emerging Concepts in Neuro-Oncology. , 2013, , . Stem Cells and Cancer Stem Cells, Volume 9. , 2013, , .	0.4	12 0 0
581 582 583 585	Neuronal Cell Culture. Methods in Molecular Biology, 2013, , . Emerging Concepts in Neuro-Oncology. , 2013, , . Stem Cells and Cancer Stem Cells, Volume 9. , 2013, , . Existence of glioma stroma mesenchymal stemlike cells in Korean glioma specimens. Child's Nervous System, 2013, 29, 549-563.	0.4	12 0 0 26
581 582 583 585 585	Neuronal Cell Culture. Methods in Molecular Biology, 2013, , . Emerging Concepts in Neuro-Oncology. , 2013, , . Stem Cells and Cancer Stem Cells, Volume 9. , 2013, , . Existence of glioma stroma mesenchymal stemlike cells in Korean glioma specimens. Child's Nervous System, 2013, 29, 549-563. Raman spectroscopy can discriminate distinct glioma subtypes as defined by RNA expression profiling. Journal of Raman Spectroscopy, 2013, 44, 1217-1221.	0.4	12 0 0 26 5
581 582 583 585 585	Neuronal Cell Culture. Methods in Molecular Biology, 2013, , .Emerging Concepts in Neuro-Oncology. , 2013, , .Stem Cells and Cancer Stem Cells, Volume 9. , 2013, , .Existence of glioma stroma mesenchymal stemlike cells in Korean glioma specimens. Child's Nervous System, 2013, 29, 549-563.Raman spectroscopy can discriminate distinct glioma subtypes as defined by RNA expression profiling. Journal of Raman Spectroscopy, 2013, 44, 1217-1221.Cancer stem cell contribution to glioblastoma invasiveness. Stem Cell Research and Therapy, 2013, 4, 18.	0.4 0.6 1.2 2.4	12 0 0 26 5 100
 581 582 583 585 586 587 588 	Neuronal Cell Culture. Methods in Molecular Biology, 2013, , . Emerging Concepts in Neuro-Oncology., 2013, , . Stem Cells and Cancer Stem Cells, Volume 9., 2013, , . Existence of glioma stroma mesenchymal stemlike cells in Korean glioma specimens. Child's Nervous System, 2013, 29, 549-563. Raman spectroscopy can discriminate distinct glioma subtypes as defined by RNA expression profiling. Journal of Raman Spectroscopy, 2013, 44, 1217-1221. Cancer stem cell contribution to glioblastoma invasiveness. Stem Cell Research and Therapy, 2013, 4, 18. Neurospheres and Glial Cell Cultures: Immunocytochemistry for Cell Phenotyping. Methods in Molecular Biology, 2013, 1078, 119-132.	0.4 0.6 1.2 2.4 0.4	12 0 0 26 5 100
 581 582 583 585 586 587 588 589 	Neuronal Cell Culture. Methods in Molecular Biology, 2013, , . Emerging Concepts in Neuro-Oncology. , 2013, , . Stem Cells and Cancer Stem Cells, Volume 9. , 2013, , . Existence of glioma stroma mesenchymal stemlike cells in Korean glioma specimens. Child's Nervous System, 2013, 29, 549-563. Raman spectroscopy can discriminate distinct glioma subtypes as defined by RNA expression profiling. Journal of Raman Spectroscopy, 2013, 44, 1217-1221. Cancer stem cell contribution to glioblastoma invasiveness. Stem Cell Research and Therapy, 2013, 4, 18. Neurospheres and Glial Cell Cultures: Immunocytochemistry for Cell Phenotyping. Methods in Molecular Biology, 2013, 1078, 119-132. Combined gemcitabine and CHK1 inhibitor treatment induces apoptosis resistance in cancer stem cell line. Frontiers of Medicine, 2013, 7, 462-476.	0.4 0.6 1.2 2.4 0.4 1.5	12 0 0 26 5 100 7 16

#	Article	IF	Citations
591	Human osteosarcoma CD49fâ^'CD133+ cells: impaired in osteogenic fate while gain of tumorigenicity. Oncogene, 2013, 32, 4252-4263.	2.6	30
592	Glioblastoma Behaviors in Three-Dimensional Collagen-Hyaluronan Composite Hydrogels. ACS Applied Materials & Interfaces, 2013, 5, 9276-9284.	4.0	129
593	Implications of Glioblastoma Stem Cells in Chemoresistance. , 2013, , 435-462.		0
594	Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. International Journal of Biochemistry and Cell Biology, 2013, 45, 2736-2748.	1.2	155
595	The Clinical Relevance of Cancer Cell Lines. Journal of the National Cancer Institute, 2013, 105, 452-458.	3.0	479
596	Molecular pathways and potential therapeutic targets in glioblastoma multiforme. Expert Review of Anticancer Therapy, 2013, 13, 1307-1318.	1.1	5
597	Chromatin Regulator PRC2 Is a Key Regulator of Epigenetic Plasticity in Glioblastoma. Cancer Research, 2013, 73, 4559-4570.	0.4	91
598	Na+/K+-ATPase Â2-subunit (AMOG) expression abrogates invasion of glioblastoma-derived brain tumor-initiating cells. Neuro-Oncology, 2013, 15, 1518-1531.	0.6	30
599	Isolation and Propagation of Colon Cancer Stem Cells. Methods in Molecular Biology, 2013, 1035, 247-259.	0.4	22
600	Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/Â-catenin pathway. Neuro-Oncology, 2013, 15, 1502-1517.	0.6	64
601	Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12006-12011.	3.3	180
602	Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity. Toxicology, 2013, 314, 209-220.	2.0	95
604	Comparative drug pair screening across multiple glioblastoma cell lines reveals novel drug-drug interactions. Neuro-Oncology, 2013, 15, 1469-1478.	0.6	19
605	AURKA Governs Self-Renewal Capacity in Glioma-Initiating Cells via Stabilization/Activation of β-catenin/Wnt Signaling. Molecular Cancer Research, 2013, 11, 1101-1111.	1.5	59
606	Epigenetic Regulation of the miR142-3p/Interleukin-6 Circuit in Glioblastoma. Molecular Cell, 2013, 52, 693-706.	4.5	83
607	Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression. Carcinogenesis, 2013, 34, 550-559.	1.3	50
608	Head and Neck Cancer Stem Cells. Otolaryngology - Head and Neck Surgery, 2013, 149, 252-260.	1.1	50
609	Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome. Experimental Cell Research, 2013, 319, 2230-2243.	1.2	92

#		IF	CITATIONS
"	Characterization of small spheres derived from various solid tumor cell lines: are they suitable	17	36
010	targets for T cells?. Clinical and Experimental Metastasis, 2013, 30, 781-791.	1.7	30
611	Quantitative proteomic analysis of sphere-forming stem-like oral cancer cells. Stem Cell Research and Therapy, 2013, 4, 156.	2.4	21
612	Frequency of NFKBIA deletions is low in glioblastomas and skewed in glioblastoma neurospheres. Molecular Cancer, 2013, 12, 160.	7.9	14
613	Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine, 2013, 8, 1443-1458.	1.7	102
614	Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms. Journal of Cellular and Molecular Medicine, 2013, 17, 1218-1235.	1.6	49
615	Fatty acid binding protein 7 as a marker of glioma stem cells. Pathology International, 2013, 63, 546-553.	0.6	35
616	Implementation of a multiâ€institutional diffuse intrinsic pontine glioma autopsy protocol and characterization of a primary cell culture. Neuropathology and Applied Neurobiology, 2013, 39, 426-436.	1.8	24
617	Heterogeneous reovirus susceptibility in human glioblastoma stem-like cell cultures. Cancer Gene Therapy, 2013, 20, 507-513.	2.2	25
618	Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin. Neuro-Oncology, 2013, 15, 904-920.	0.6	44
619	CD133 Is Essential for Glioblastoma Stem Cell Maintenance. Stem Cells, 2013, 31, 857-869.	1.4	199
620	ld-1 Is a Key Transcriptional Regulator of Glioblastoma Aggressiveness and a Novel Therapeutic Target. Cancer Research, 2013, 73, 1559-1569.	0.4	140
621	Patient-Specific Orthotopic Glioblastoma Xenograft Models Recapitulate the Histopathology and Biology of Human Glioblastomas In Situ. Cell Reports, 2013, 3, 260-273.	2.9	186
622	Current status of gene therapy for brain tumors. Translational Research, 2013, 161, 339-354.	2.2	53
623	Changes in the biological characteristics of glioma cancer stem cells after serial in vivo subtransplantation. Child's Nervous System, 2013, 29, 55-64.	0.6	10
624	Complexity of cancer stem cells. International Journal of Cancer, 2013, 132, 1249-1259.	2.3	109
625	CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. Journal of Pathology, 2013, 229, 355-378.	2.1	252
626	Critical multiple angiogenic factors secreted by glioblastoma stemâ€like cells underline the need for combinatorial antiâ€angiogenic therapeutic strategies. Proteomics - Clinical Applications, 2013, 7, 79-90.	0.8	7
627	Cytoplasmic TRADD Confers a Worse Prognosis in Glioblastoma. Neoplasia, 2013, 15, 888-897.	2.3	16

#	Article	IF	CITATIONS
628	Marker-independent Method for Isolating Slow-Dividing Cancer Stem Cells in Human Glioblastoma. Neoplasia, 2013, 15, 840-IN39.	2.3	39
629	Diacylglycerol Kinase α Is a Critical Signaling Node and Novel Therapeutic Target in Glioblastoma and Other Cancers. Cancer Discovery, 2013, 3, 782-797.	7.7	93
631	Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway. Toxicology Letters, 2013, 220, 61-69.	0.4	38
632	Technologies and challenges in largeâ€scale phosphoproteomics. Proteomics, 2013, 13, 910-931.	1.3	142
633	A Distinct Reactive Oxygen Species Profile Confers Chemoresistance in Glioma-Propagating Cells and Associates with Patient Survival Outcome. Antioxidants and Redox Signaling, 2013, 19, 2261-2279.	2.5	25
634	In Vitro Models of Brain Cancer. , 2013, , 75-86.		0
635	The good, the bad and the ugly: Epigenetic mechanisms in glioblastoma. Molecular Aspects of Medicine, 2013, 34, 849-862.	2.7	46
636	Wnt/β-catenin signaling is a key downstream mediator of MET signaling in glioblastoma stem cells. Neuro-Oncology, 2013, 15, 161-171.	0.6	103
637	Effective Elimination of Cancer Stem Cells By a Novel Drug Combination Strategy. Stem Cells, 2013, 31, 23-34.	1.4	79
638	High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell and Tissue Research, 2013, 352, 161-177.	1.5	144
639	Cell surface Nestin is a biomarker for glioma stem cells. Biochemical and Biophysical Research Communications, 2013, 433, 496-501.	1.0	88
640	Oncogenic effects of miR-10b in glioblastoma stem cells. Journal of Neuro-Oncology, 2013, 112, 153-163.	1.4	151
641	Characteristics of glioma stem cells. Brain Tumor Pathology, 2013, 30, 209-214.	1.1	48
642	The critical role of cyclin D2 in cell cycle progression and tumorigenicity of glioblastoma stem cells. Oncogene, 2013, 32, 3840-3845.	2.6	49
643	Therapeutic concentrations of antiâ€epileptic drugs do not inhibit the activity of the oncolytic adenovirus Delta24â€RGD in malignant glioma. Journal of Gene Medicine, 2013, 15, 134-141.	1.4	9
644	Strategies for Isolating and Enriching Cancer Stem Cells: Well Begun Is Half Done. Stem Cells and Development, 2013, 22, 2221-2239.	1.1	74
645	Human Low-Grade Glioma Cultures. , 2013, , 137-163.		3
646	Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures. Cell Cycle, 2013, 12, 491-500.	1.3	64
#	Article	IF	CITATIONS
-----	--	-----	-----------
647	Isolation and Characterization of Cancer Stem Cells In Vitro. Methods in Molecular Biology, 2013, 946, 181-204.	0.4	13
648	Tissue Factor Activity and ECM-Related Gene Expression in Human Aortic Endothelial Cells Grown on Electrospun Biohybrid Scaffolds. Biomacromolecules, 2013, 14, 1338-1348.	2.6	22
649	Hypoxia-induced expression of VE-cadherin and filamin B in glioma cell cultures and pseudopalisade structures. Journal of Neuro-Oncology, 2013, 113, 239-249.	1.4	18
650	Effect of the STAT3 inhibitor STX-0119 on the proliferation of cancer stem-like cells derived from recurrent glioblastoma. International Journal of Oncology, 2013, 43, 219-227.	1.4	90
651	Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1613-1623.	1.8	294
652	Phosphorylation of EZH2 Activates STAT3 Signaling via STAT3 Methylation and Promotes Tumorigenicity of Glioblastoma Stem-like Cells. Cancer Cell, 2013, 23, 839-852.	7.7	665
653	Metformin selectively affects human glioblastoma tumor-initiating cell viability. Cell Cycle, 2013, 12, 145-156.	1.3	154
654	Decoding the cancer stem cell hypothesis in glioblastoma. CNS Oncology, 2013, 2, 319-330.	1.2	20
655	Basic Cell Culture Protocols. Methods in Molecular Biology, 2013, , .	0.4	13
656	Glioblastoma cancer stem cells – From concept to clinical application. Cancer Letters, 2013, 338, 32-40.	3.2	67
657	Novel Internalizing Human Antibodies Targeting Brain Tumor Sphere Cells. , 2013, , 187-190.		0
658	Vertebrate animal models of glioma: Understanding the mechanisms and developing new therapies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2013, 1836, 158-165.	3.3	50
659	Isolation and Characterization of Cancer Stem Cells from Dog Glioblastoma. , 2013, , 219-228.		0
660	Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties. International Journal of Oncology, 2013, 42, 453-459.	1.4	98
661	miR-486 sustains NF-κB activity by disrupting multiple NF-κB-negative feedback loops. Cell Research, 2013, 23, 274-289.	5.7	97
662	Colon cancer stem cells resist antiangiogenesis therapy-induced apoptosis. Cancer Letters, 2013, 328, 226-234.	3.2	44
663	A Metabolic Shift Favoring Sphingosine 1-Phosphate at the Expense of Ceramide Controls Glioblastoma Angiogenesis. Journal of Biological Chemistry, 2013, 288, 37355-37364.	1.6	90
664	Prognostic value of Musashi-1 in gliomas. Journal of Neuro-Oncology, 2013, 115, 453-461.	1.4	46

ARTICLE IF CITATIONS Histone Acetyltransferase PCAF Is Required for Hedgehogâ€"Gli-Dependent Transcription and Cancer 665 0.4 102 Cell Proliferation. Cancer Research, 2013, 73, 6323-6333. Cancer stem cells: moving past the controversy. CNS Oncology, 2013, 2, 465-467. 1.2 mTOR plays critical roles in pancreatic cancer stem cells through specific and stemness-related 667 1.6 92 functions. Scientific Reports, 2013, 3, 3230. Inhibition of DYRK1A destabilizes EGFR and reduces EGFR-dependent glioblastoma growth. Journal of 3.9 Clinical Investigation, 2013, 123, 2475-2487. TGM2 inhibition attenuates ID1 expression in CD44-high glioma-initiating cells. Neuro-Oncology, 2013, 669 0.6 60 15, 1353-1365. The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis, 2013, 34, 1420-1430. 1.3 Functional Role of CLIC1 Ion Channel in Glioblastoma-Derived Stem/Progenitor Cells. Journal of the 671 3.0 76 National Cancer Institute, 2013, 105, 1644-1655. A Kinome-Wide RNAi Screen in Drosophila Glia Reveals That the RIO Kinases Mediate Cell Proliferation 1.5 114 and Survival through TORC2-Akt Signaling in Glioblastoma. PLoS Genetics, 2013, 9, e1003253. Glioma Stem Cells and Immunotherapy for the Treatment of Malignant Gliomas. ISRN Oncology, 2013, 673 2.1 20 2013, 1-13. Serum-free culture success of glial tumors is related to specific molecular profiles and expression of 674 extracellular matrix–associated gene modules. Neuro-Oncology, 2013, 15, 1684-1695 A miR-297/hypoxia/DCK-α axis regulating glioblastoma survival. Neuro-Oncology, 2013, 15, 1652-1663. 675 0.6 42 CDH5 is specifically activated in glioblastoma stemlike cells and contributes to vasculogenic mimicry 134 induced by hypoxia. Neuro-Oncology, 2013, 15, 865-879. Level of Notch activation determines the effect on growth and stem cell-like features in glioblastoma 677 1.5 39 multiforme neurosphere cultures. Cancer Biology and Therapy, 2013, 14, 625-637. A Genetically Engineered Oncolytic Adenovirus Decoys and Lethally Traps Quiescent Cancer Stem–like Cells in S/G2/M Phases. Clinical Cancer Research, 2013, 19, 6495-6505. 678 3.2 Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant 679 2.7 121 cellular behavior in a lineage-dependent manner. Genes and Development, 2013, 27, 654-669. Cancer-Specific Requirement for BUB1B/BUBR1 in Human Brain Tumor Isolates and Genetically 680 Transformed Cells. Cancer Discovery, 2013, 3, 198-211. Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for 681 2.7 114 PHF5A. Genes and Development, 2013, 27, 1032-1045. Hepatocyte Growth Factor Sensitizes Brain Tumors to c-MET Kinase Inhibition. Clinical Cancer 3.2 29 Research, 2013, 19, 1433-1444.

#	Article	IF	CITATIONS
683	On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells. Neuro-Oncology, 2013, 15, 198-207.	0.6	87
684	The Intermediate Filament Vimentin Mediates MicroRNA miR-378 Function in Cellular Self-renewal by Regulating the Expression of the Sox2 Transcription Factor*. Journal of Biological Chemistry, 2013, 288, 319-331.	1.6	48
685	miR-21 in the Extracellular Vesicles (EVs) of Cerebrospinal Fluid (CSF): A Platform for Glioblastoma Biomarker Development. PLoS ONE, 2013, 8, e78115.	1.1	270
686	Intravenous injection of oncolytic picornavirus SVV-001 prolongs animal survival in a panel of primary tumor–based orthotopic xenograft mouse models of pediatric glioma. Neuro-Oncology, 2013, 15, 1173-1185.	0.6	70
687	Prolonged Inhibition of Glioblastoma Xenograft Initiation and Clonogenic Growth following <i>In Vivo</i> Notch Blockade. Clinical Cancer Research, 2013, 19, 3224-3233.	3.2	48
688	Anticancer Effects of Niclosamide in Human Glioblastoma. Clinical Cancer Research, 2013, 19, 4124-4136.	3.2	135
689	Inhibition of BET Bromodomain Targets Genetically Diverse Glioblastoma. Clinical Cancer Research, 2013, 19, 1748-1759.	3.2	262
690	MicroRNA in Human Glioma. Cancers, 2013, 5, 1306-1331.	1.7	45
691	Targeting the Cytosolic Innate Immune Receptors RIG-I and MDA5 Effectively Counteracts Cancer Cell Heterogeneity in Glioblastoma. Stem Cells, 2013, 31, 1064-1074.	1.4	76
692	Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11751-11756.	3.3	222
693	Alteration of cancer stem cellâ€like phenotype by histone deacetylase inhibitors in squamous cell carcinoma of the head and neck. Cancer Science, 2013, 104, 1468-1475.	1.7	53
694	Mer receptor tyrosine kinase promotes invasion and survival in glioblastoma multiforme. Oncogene, 2013, 32, 872-882.	2.6	66
695	Novel HSP90 Inhibitor NVP-HSP990 Targets Cell-Cycle Regulators to Ablate Olig2-Positive Glioma Tumor–Initiating Cells. Cancer Research, 2013, 73, 3062-3074.	0.4	21
696	Neutralization of terminal differentiation in gliomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14520-14527.	3.3	65
697	Cancer Stem Cells. , 2013, , 1-22.		1
698	Sox21 inhibits glioma progression <i>in vivo</i> by forming complexes with Sox2 and stimulating aberrant differentiation. International Journal of Cancer, 2013, 133, 1345-1356.	2.3	22
699	Inhibition of the transcription factor Sp1 suppresses colon cancer stem cell growth and induces apoptosis in vitro and in nude mouse xenografts. Oncology Reports, 2013, 30, 1782-1792.	1.2	79
700	Expansive growth of two glioblastoma stem-like cell lines is mediated by bFGF and not by EGF. Radiology and Oncology, 2013, 47, 330-337.	0.6	29

#	Article	IF	CITATIONS
701	Glioma Spheroids Obtained via Ultrasonic Aspiration Are Viable and Express Stem Cell Markers. Neurosurgery, 2013, 73, 868-886.	0.6	21
702	Deregulated MicroRNAs Identified in Isolated Glioblastoma Stem Cells: An Overview. Cell Transplantation, 2013, 22, 741-753.	1.2	12
703	Cancer Stem Cell-Like Cells Exist in Mucoepidermoid Carcinoma Cell Line MC3. Oncology Research, 2013, 20, 589-600.	0.6	5
704	Significantly increased expression of OCT4 and ABCG2 in spheroid body-forming cells of the human gastric cancer MKN-45 cell line. Oncology Letters, 2013, 6, 891-896.	0.8	10
705	Novel Phenotypic Fluorescent Three-Dimensional Co-Culture Platforms for Recapitulating Tumor <i>in vivo</i> Progression and for Personalized Therapy. Journal of Cancer, 2013, 4, 755-763.	1.2	10
706	Going 3D – Cell Culture Approaches for Stem Cell Research and Therapy. Current Tissue Engineering, 2013, 2, 8-19.	0.2	7
707	Low-cost media formulation for culture of brain tumor spheroids (neurospheres). BioTechniques, 2013, 55, 83-88.	0.8	5
708	The Cancer Stem Cell Marker CD133 Interacts with Plakoglobin and Controls Desmoglein-2 Protein Levels. PLoS ONE, 2013, 8, e53710.	1.1	12
709	A Small Molecule (Pluripotin) as a Tool for Studying Cancer Stem Cell Biology: Proof of Concept. PLoS ONE, 2013, 8, e57099.	1.1	9
710	Delineating the Cytogenomic and Epigenomic Landscapes of Glioma Stem Cell Lines. PLoS ONE, 2013, 8, e57462.	1.1	31
711	Reverse Engineering of Modified Genes by Bayesian Network Analysis Defines Molecular Determinants Critical to the Development of Glioblastoma. PLoS ONE, 2013, 8, e64140.	1.1	41
712	Induction of the Unfolded Protein Response Drives Enhanced Metabolism and Chemoresistance in Glioma Cells. PLoS ONE, 2013, 8, e73267.	1.1	60
713	Next-Generation Sequence Analysis of Cancer Xenograft Models. PLoS ONE, 2013, 8, e74432.	1.1	30
714	A High-Content Small Molecule Screen Identifies Sensitivity of Glioblastoma Stem Cells to Inhibition of Polo-Like Kinase 1. PLoS ONE, 2013, 8, e77053.	1.1	53
715	microRNA-100 Targets SMRT/NCOR2, Reduces Proliferation, and Improves Survival in Glioblastoma Animal Models. PLoS ONE, 2013, 8, e80865.	1.1	47
716	Tumor versus Stromal Cells in Culture—Survival of the Fittest?. PLoS ONE, 2013, 8, e81183.	1.1	5
717	The NF-κB RelB Protein Is an Oncogenic Driver of Mesenchymal Glioma. PLoS ONE, 2013, 8, e57489.	1.1	52
718	Extracellular Sphingosine-1-Phosphate: A Novel Actor in Human Glioblastoma Stem Cell Survival. PLoS ONE, 2013, 8, e68229.	1.1	42

#	Article	IF	Citations
719	Phosphoproteomics-Based Characterization of Cancer Cell Signaling Networks. , 2013, , .		0
720	Identification of Molecular Pathways Facilitating Glioma Cell Invasion In Situ. PLoS ONE, 2014, 9, e111783.	1.1	38
721	Selective Lentiviral Gene Delivery to CD133-Expressing Human Glioblastoma Stem Cells. PLoS ONE, 2014, 9, e116114.	1.1	23
722	A New Tumorsphere Culture Condition Restores Potentials of Self-Renewal and Metastasis of Primary Neuroblastoma in a Mouse Neuroblastoma Model. PLoS ONE, 2014, 9, e86813.	1.1	16
723	PIAS1 Regulates Breast Tumorigenesis through Selective Epigenetic Gene Silencing. PLoS ONE, 2014, 9, e89464.	1.1	30
724	Micro-Environment Causes Reversible Changes in DNA Methylation and mRNA Expression Profiles in Patient-Derived Glioma Stem Cells. PLoS ONE, 2014, 9, e94045.	1.1	33
725	Growth Arrest-Specific Transcript 5 Associated snoRNA Levels Are Related to p53 Expression and DNA Damage in Colorectal Cancer. PLoS ONE, 2014, 9, e98561.	1.1	66
726	Response-Predictive Gene Expression Profiling of Glioma Progenitor Cells In Vitro. PLoS ONE, 2014, 9, e108632.	1.1	14
727	The PGI-KLF4 pathway regulates self-renewal of glioma stem cells residing in the mesenchymal niches in human gliomas. Neoplasma, 2014, 61, 401-410.	0.7	22
728	CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Frontiers in Cellular Neuroscience, 2014, 8, 144.	1.8	129
729	The Failure in the Stabilization of Glioblastoma-Derived Cell Lines: Spontaneous In Vitro Senescence as the Main Culprit. PLoS ONE, 2014, 9, e87136.	1.1	22
730	Anchorage-independent growth of Ewing sarcoma cells under serum-free conditions is not associated with stem-cell like phenotype and function. Oncology Reports, 2014, 32, 845-852.	1.2	20
731	Brain stem cells as the cell of origin in glioma. World Journal of Stem Cells, 2014, 6, 43.	1.3	70
732	The Role of the "Cancer Stem Cell Niche―in Cancer Initiation and Progression. , 2014, , .		2
734	Victory and Defeat in the Induction of a Therapeutic Response through Vaccine Therapy for Human and Canine Brain Tumors: A Review of the State of the Art. Critical Reviews in Immunology, 2014, 34, 399-432.	1.0	13
735	5-Hydroxymethylcytosine Plays a Critical Role in Glioblastomagenesis by Recruiting the CHTOP-Methylosome Complex. Cell Reports, 2014, 9, 48-60.	2.9	122
736	MRI biomarkers identify the differential response of glioblastoma multiforme to anti-angiogenic therapy. Neuro-Oncology, 2014, 16, 868-879.	0.6	39
737	Personalized In Vitro Cancer Modeling — Fantasy or Reality?. Translational Oncology, 2014, 7, 657-664. 	1.7	34

#	Article	IF	CITATIONS
738	Inhibition of Notch signaling alters the phenotype of orthotopic tumors formed from glioblastoma multiforme neurosphere cells but does not hamper intracranial tumor growth regardless of endogene Notch pathway signature. Cancer Biology and Therapy, 2014, 15, 862-877.	1.5	9
740	Triptolide Synergistically Enhances Temozolomide-Induced Apoptosis and Potentiates Inhibition of NF-κB Signaling in Glioma Initiating Cells. The American Journal of Chinese Medicine, 2014, 42, 485-503.	1.5	30
741	In vivo models of brain tumors: roles of genetically engineered mouse models in understanding tumor biology and use in preclinical studies. Cellular and Molecular Life Sciences, 2014, 71, 4007-4026.	2.4	42
742	The orthotopic xenotransplant of human glioblastoma successfully recapitulates glioblastoma-microenvironment interactions in a non-immunosuppressed mouse model. BMC Cancer, 2014, 14, 923.	1.1	31
743	Single-cell sphingosine kinase activity measurements in primary leukemia. Analytical and Bioanalytical Chemistry, 2014, 406, 7027-7036.	1.9	16
744	Cancer stem-like sphere cells induced from de-differentiated hepatocellular carcinoma-derived cell lines possess the resistance to anti-cancer drugs. BMC Cancer, 2014, 14, 722.	1.1	61
745	MiR-29b controls fetal mouse neurogenesis by regulating ICAT-mediated Wnt/β-catenin signaling. Cell Death and Disease, 2014, 5, e1473-e1473.	2.7	26
746	Combined PDK1 and CHK1 inhibition is required to kill glioblastoma stem-like cells in vitro and in vivo. Cell Death and Disease, 2014, 5, e1223-e1223.	2.7	57
747	Differentiation of glioblastoma multiforme stem-like cells leads to downregulation of EGFR and EGFRvIII and decreased tumorigenic and stem-like cell potential. Cancer Biology and Therapy, 2014, 15, 216-224.	1.5	30
748	Size Does Matter: Why Polyploid Tumor Cells are Critical Drug Targets in the War on Cancer. Frontiers in Oncology, 2014, 4, 123.	1.3	147
749	Glioblastoma multiforme: State of the art and future therapeutics. , 2014, 5, 64.		223
750	Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice. Journal of Visualized Experiments, 2014, , e51763.	0.2	9
751	BMPs as Therapeutic Targets and Biomarkers in Astrocytic Glioma. BioMed Research International, 2014, 2014, 1-8.	0.9	24
752	The Low Chamber Pancreatic Cancer Cells Had Stem-Like Characteristics in Modified Transwell System: Is It a Novel Method to Identify and Enrich Cancer Stem-Like Cells?. BioMed Research International, 2014, 2014, 1-10.	0.9	7
753	The role of cancer stem cells in glioblastoma. Neurosurgical Focus, 2014, 37, E6.	1.0	97
754	A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis. Journal of Orthopaedic Research, 2014, 32, 1628-1635.	1.2	194
755	Toward 3D Biomimetic Models to Understand the Behavior of Glioblastoma Multiforme Cells. Tissue Engineering - Part B: Reviews, 2014, 20, 314-327.	2.5	49
756	Dual mTORC1/2 Blockade Inhibits Glioblastoma Brain Tumor Initiating Cells <i>In Vitro</i> and <i>In Vivo</i> and Synergizes with Temozolomide to Increase Orthotopic Xenograft Survival. Clinical Cancer Research, 2014, 20, 5756-5767.	3.2	46

		CITATION REPORT	
#	Article	IF	CITATIONS
757	In Vivo Modeling of Malignant Clioma. Advances in Cancer Research, 2014, 121, 261-330.	1.9	21
758	Taking advantage of neural development to treat glioblastoma. European Journal of Neuroscienc 2014, 40, 2859-2866.	e, 1.2	4
759	Targeting the bHLH Transcriptional Networks by Mutated E Proteins in Experimental Glioma. Ste Cells, 2014, 32, 2583-2595.	m 1.4	4
760	Emerging Roles for Platelets in Inflammation and Disease. Journal of Infectious Disease and Thera 2014, 02, .	ару, 0.1	12
761	Glioblastoma stem-like cells: approaches for isolation and characterization. Journal of Cancer Ste Cell Research, 2014, 1, 1.	:m 1.1	12
762	Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells. , 2014, 2, 25.		112
763	Cancer stem cells. Anti-Cancer Drugs, 2014, 25, 353-367.	0.7	33
764	Matrix Regulation of Tumor-Initiating Cells. Progress in Molecular Biology and Translational Scier 2014, 126, 243-256.	1ce, 0.9	5
765	Highâ€Throughput, Miniaturized Clonogenic Analysis of a Limiting Dilution Assay on a Micropillar/Microwell Chip with Brain Tumor Cells. Small, 2014, 10, 5098-5105.	5.2	20
766	ABCB1, ABCG2, and PTEN Determine the Response of Clioblastoma to Temozolomide and ABT-8 Therapy. Clinical Cancer Research, 2014, 20, 2703-2713.	88 3.2	105
767	Advances in Oncolytic Virotherapy for Brain Tumors. , 2014, , 137-151.		1
768	Endogenous Stem Cell-Based Brain Remodeling in Mammals. Pancreatic Islet Biology, 2014, , .	0.1	0
769	Links Between Injury-Induced Brain Remodeling and Oncogenesis. Pancreatic Islet Biology, 2014 199-226.	·'' 0.1	0
770	The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells. Oncogene, 20 33, 2236-2244.	014, 2.6	34
771	The Cyclin-like Protein Spy1 Regulates Growth and Division Characteristics of the CD133+ Popul in Human Glioma. Cancer Cell, 2014, 25, 64-76.	ation 7.7	35
772	PCDH10 is required for the tumorigenicity of glioblastoma cells. Biochemical and Biophysical Research Communications, 2014, 444, 13-18.	1.0	12
773	Brain tumor stem cells: Molecular characteristics and their impact on therapy. Molecular Aspects Medicine, 2014, 39, 82-101.	s of 2.7	164
774	"The development tumor model―to study and monitor the entire progression of both prima metastatic tumors. Tumor Biology, 2014, 35, 2219-2230.	ary and 0.8	6

#	Article	IF	CITATIONS
775	The role of CXCR4 in highly malignant human gliomas biology: Current knowledge and future directions. Glia, 2014, 62, 1015-1023.	2.5	53
776	Glioma stem cells: turpis omen in nomen? (the evil in the name?). Journal of Internal Medicine, 2014, 276, 25-40.	2.7	19
777	Newly-derived neuroblastoma cell lines propagated in serum-free media recapitulate the genotype and phenotype of primary neuroblastoma tumours. European Journal of Cancer, 2014, 50, 628-637.	1.3	57
778	Glioblastoma cancer stem cells: Biomarker and therapeutic advances. Neurochemistry International, 2014, 71, 1-7.	1.9	62
779	Detection of primary cilia in human glioblastoma. Journal of Neuro-Oncology, 2014, 117, 15-24.	1.4	50
780	Sirtuin-2 Activity is Required for Glioma Stem Cell Proliferation Arrest but not Necrosis Induced by Resveratrol. Stem Cell Reviews and Reports, 2014, 10, 103-113.	5.6	47
781	Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. Journal of Translational Medicine, 2014, 12, 13.	1.8	87
782	Cancer Stem Cell-Specific Scavenger Receptor CD36 Drives Glioblastoma Progression. Stem Cells, 2014, 32, 1746-1758.	1.4	182
783	Driving Glioblastoma to Drink. Cell, 2014, 157, 289-290.	13.5	9
784	Culture Dimensionality Influences the Resistance of Glioblastoma Stem-like Cells to Multikinase Inhibitors. Molecular Cancer Therapeutics, 2014, 13, 1664-1672.	1.9	33
784 785	Culture Dimensionality Influences the Resistance of Glioblastoma Stem-like Cells to Multikinase Inhibitors. Molecular Cancer Therapeutics, 2014, 13, 1664-1672. Epigenetic dysregulation in glioma. Cancer Science, 2014, 105, 363-369.	1.9 1.7	33 58
784 785 786	Culture Dimensionality Influences the Resistance of Glioblastoma Stem-like Cells to Multikinase Inhibitors. Molecular Cancer Therapeutics, 2014, 13, 1664-1672. Epigenetic dysregulation in glioma. Cancer Science, 2014, 105, 363-369. Induced Differentiation of Brain Tumour Stem Cells. Stem Cells and Cancer Stem Cells, 2014, , 149-158.	1.9 1.7 0.1	33 58 0
784 785 786 787	Culture Dimensionality Influences the Resistance of Glioblastoma Stem-like Cells to Multikinase Inhibitors. Molecular Cancer Therapeutics, 2014, 13, 1664-1672. Epigenetic dysregulation in glioma. Cancer Science, 2014, 105, 363-369. Induced Differentiation of Brain Tumour Stem Cells. Stem Cells and Cancer Stem Cells, 2014, 149-158. Stem Cells Loaded With Multimechanistic Oncolytic Herpes Simplex Virus Variants for Brain Tumor Therapy. Journal of the National Cancer Institute, 2014, 106, dju090.	1.9 1.7 0.1 3.0	33 58 0 102
784 785 786 787 788	Culture Dimensionality Influences the Resistance of Glioblastoma Stem-like Cells to Multikinase Inhibitors. Molecular Cancer Therapeutics, 2014, 13, 1664-1672. Epigenetic dysregulation in glioma. Cancer Science, 2014, 105, 363-369. Induced Differentiation of Brain Tumour Stem Cells. Stem Cells and Cancer Stem Cells, 2014, , 149-158. Stem Cells Loaded With Multimechanistic Oncolytic Herpes Simplex Virus Variants for Brain Tumor Therapy. Journal of the National Cancer Institute, 2014, 106, dju090. The Zinc Finger Transcription Factor ZFX Is Required for Maintaining the Tumorigenic Potential of Glioblastoma Stem Cells. Stem Cells, 2014, 32, 2033-2047.	1.9 1.7 0.1 3.0 1.4	 33 58 0 102 47
784 785 786 787 787 788	Culture Dimensionality Influences the Resistance of Glioblastoma Stem-like Cells to Multikinase Inhibitors. Molecular Cancer Therapeutics, 2014, 13, 1664-1672. Epigenetic dysregulation in glioma. Cancer Science, 2014, 105, 363-369. Induced Differentiation of Brain Tumour Stem Cells. Stem Cells and Cancer Stem Cells, 2014, , 149-158. Stem Cells Loaded With Multimechanistic Oncolytic Herpes Simplex Virus Variants for Brain Tumor Therapy. Journal of the National Cancer Institute, 2014, 106, dju090. The Zinc Finger Transcription Factor ZFX Is Required for Maintaining the Tumorigenic Potential of Clioblastoma Stem Cells. Stem Cells, 2014, 32, 2033-2047. A mesenchymal glioma stem cell profile is related to clinical outcome. Oncogenesis, 2014, 3, e91-e91.	1.9 1.7 0.1 3.0 1.4 2.1	 33 58 0 102 47 54
784 785 786 787 788 788 789	Culture Dimensionality Influences the Resistance of Glioblastoma Stem-like Cells to Multikinase Inhibitors. Molecular Cancer Therapeutics, 2014, 13, 1664-1672. Epigenetic dysregulation in glioma. Cancer Science, 2014, 105, 363-369. Induced Differentiation of Brain Tumour Stem Cells. Stem Cells and Cancer Stem Cells, 2014, , 149-158. Stem Cells Loaded With Multimechanistic Oncolytic Herpes Simplex Virus Variants for Brain Tumor Therapy. Journal of the National Cancer Institute, 2014, 106, dju090. The Zinc Finger Transcription Factor ZFX Is Required for Maintaining the Tumorigenic Potential of Glioblastoma Stem Cells. Stem Cells, 2014, 32, 2033-2047. A mesenchymal glioma stem cell profile is related to clinical outcome. Oncogenesis, 2014, 3, e91-e91. The selective Aurora-A kinase inhibitor MLN8237 (alisertib) potently inhibits proliferation of glioblastoma neurosphere tumor stem-like cells and potentiates the effects of temozolomide and ionizing radiation. Cancer Chemotherapy and Pharmacology, 2014, 73, 983-90.	1.9 1.7 0.1 3.0 1.4 2.1 1.1	 33 58 0 102 47 54 36
 784 785 786 787 788 789 790 791 	Culture Dimensionality Influences the Resistance of Glioblastoma Stem-like Cells to Multikinase Inhibitors. Molecular Cancer Therapeutics, 2014, 13, 1664-1672. Epigenetic dysregulation in glioma. Cancer Science, 2014, 105, 363-369. Induced Differentiation of Brain Tumour Stem Cells. Stem Cells and Cancer Stem Cells, 2014, , 149-158. Stem Cells Loaded With Multimechanistic Oncolytic Herpes Simplex Virus Variants for Brain Tumor Therapy. Journal of the National Cancer Institute, 2014, 106, dju090. The Zinc Finger Transcription Factor ZFX Is Required for Maintaining the Tumorigenic Potential of Glioblastoma Stem Cells. Stem Cells, 2014, 32, 2033-2047. A mesenchymal glioma stem cell profile is related to clinical outcome. Oncogenesis, 2014, 3, e91-e91. The selective Aurora-A kinase inhibitor MLN8237 (alisertib) potently inhibits proliferation of glioblastoma neurosphere tumor stem-like cells and potentiates the effects of temozolomide and ionizing radiation. Cancer Chemotherapy and Pharmacology, 2014, 73, 983-90. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nature Cell Biology, 2014, 16, 268-280.	 1.9 1.7 0.1 3.0 1.4 2.1 1.1 4.6 	 33 58 0 102 47 54 36 241

ARTICLE IF CITATIONS # MicroRNA expression profile of gastric cancer stem cells in the MKN-45 cancer cell line. Acta 793 0.9 33 Biochimica Et Biophysica Sinica, 2014, 46, 92-99. Aberrant selfâ€renewal and quiescence contribute toÂtheÂaggressiveness of glioblastoma. Journal of 794 2.1 Pathology, 2014, 234, 23-33 Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for 795 1.1 153 chemotherapy. Breast Cancer Research and Treatment, 2014, 145, 359-370. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nature Reviews Cancer, 796 469 2014, 14, 92-107. Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival 797 5.0 152 of glioblastoma-initiating cells. Cell Death and Differentiation, 2014, 21, 258-269. Fibulin-3-mediated inhibition of epithelial-to-mesenchymal transition and self-renewal of ALDH+ lung cancer stem cells through IGF1R signaling. Oncogene, 2014, 33, 3908-3917. 798 2.6 799 Glioma Cell Biology., 2014,,. 3 Cancer Stem Cells and Glioblastoma., 2014, , 3-22. 800 801 Reprogramming cancer cells to pluripotency. Epigenetics, 2014, 9, 798-802. 1.3 16 Targeting adaptive glioblastoma: an overview of proliferation and invasion. Neuro-Oncology, 2014, 16, 1575-1584. Hyperdiploid tumor cells increase phenotypic heterogeneity within Glioblastoma tumors. Molecular 803 2.9 26 BioSystems, 2014, 10, 741-758. SUMO1 modification stabilizes CDK6 protein and drives the cell cycle and glioblastoma progression. 804 5.8 94 Nature Communications, 2014, 5, 4234. Involvement of autophagy in melatoninâ€induced cytotoxicity in gliomaâ€initiating cells. Journal of Pineal 805 3.4 43 Research, 2014, 57, 308-316. Responsiveness of stem-like human glioma cells to all-trans retinoic acid and requirement of retinoic acid receptor isotypes \hat{l}_{\pm} , \hat{l}^2 and \hat{l}^3 . Neuroscience, 2014, 279, 44-64. 806 1.1 14 Human <i>Brat</i> Ortholog <i>TRIM3</i> Is a Tumor Suppressor That Regulates Asymmetric Cell 807 90 0.4 Division in Glioblastoma. Cancer Research, 2014, 74, 4536-4548. microRNA-148a Is a Prognostic oncomiR That Targets MIG6 and BIM to Regulate EGFR and Apoptosis in 808 106 Glioblastoma. Cancer Research, 2014, 74, 1541-1553. p75 Neurotrophin Receptor Cleavage by α- and Î3-Secretases Is Required for Neurotrophin-mediated 809 1.6 57 Proliferation of Brain Tumor-initiating Cells. Journal of Biological Chemistry, 2014, 289, 8067-8085. The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells. Neuro-Oncology, 2014, 16, 29-37.

#	Article	IF	CITATIONS
811	Primary glioblastoma cultures: can profiling of stem cell markers predict radiotherapy sensitivity?. Journal of Neurochemistry, 2014, 131, 251-264.	2.1	47
812	Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT5B, and glioblastoma. Cell Death and Differentiation, 2014, 21, 720-734.	5.0	69
813	Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale, 2014, 6, 10865-10873.	2.8	111
814	Proteomic analysis underlines the usefulness of both primary adherent and stem-like cell lines for studying proteins involved in human glioblastoma. Journal of Proteomics, 2014, 110, 7-19.	1.2	3
815	Anti-YKL-40 antibody and ionizing irradiation synergistically inhibit tumor vascularization and malignancy in glioblastoma. Carcinogenesis, 2014, 35, 373-382.	1.3	58
816	Autocrine/paracrine sphingosineâ€1â€phosphate fuels proliferative and stemness qualities of glioblastoma stem cells. Clia, 2014, 62, 1968-1981.	2.5	42
817	Mass Spectrometric Analysis of Post-translational Modifications (PTMs) and Protein–Protein Interactions (PPIs). Advances in Experimental Medicine and Biology, 2014, 806, 205-235.	0.8	16
818	Systematic screen of chemotherapeutics in <i>Drosophila</i> stem cell tumors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4530-4535.	3.3	119
819	Aurora-A Inhibition Offers a Novel Therapy Effective against Intracranial Glioblastoma. Cancer Research, 2014, 74, 5364-5370.	0.4	42
820	Recruited Brain Tumorâ€Derived Mesenchymal Stem Cells Contribute to Brain Tumor Progression. Stem Cells, 2014, 32, 1110-1123.	1.4	89
821	MET Signaling in Colon Cancer Stem-like Cells Blunts the Therapeutic Response to EGFR Inhibitors. Cancer Research, 2014, 74, 1857-1869.	0.4	120
822	Targeting histone methyltransferase EZH2 as cancer treatment. Journal of Biochemistry, 2014, 156, 249-257.	0.9	72
823	New Advances of microRNAs in Glioma Stem Cells, With Special Emphasis on Aberrant Methylation of microRNAs. Journal of Cellular Physiology, 2014, 229, 1141-1147.	2.0	21
824	Rab3a promotes brain tumor initiation and progression. Molecular Biology Reports, 2014, 41, 5903-5911.	1.0	32
825	Cells Isolated from Human Glioblastoma Multiforme Express Progesterone-Induced Blocking Factor (PIBF). Cellular and Molecular Neurobiology, 2014, 34, 479-489.	1.7	19
826	Arsenic trioxide inhibits Hedgehog, Notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathologica Communications, 2014, 2, 31.	2.4	37
827	Crosstalk between Glioma-Initiating Cells and Endothelial Cells Drives Tumor Progression. Cancer Research, 2014, 74, 4482-4492.	0.4	77
828	HIV-1–induced AIDS in monkeys. Science, 2014, 344, 1401-1405.	6.0	76

#	Article	IF	CITATIONS
829	Stem Cells in Cancer: Should We Believe or Not?. , 2014, , .		2
830	DRR regulates AKT activation to drive brain cancer invasion. Oncogene, 2014, 33, 4952-4960.	2.6	25
831	An Epigenetic Biomarker Panel for Glioblastoma Multiforme Personalized Medicine through DNA Methylation Analysis of Human Embryonic Stem Cell-like Signature. OMICS A Journal of Integrative Biology, 2014, 18, 310-323.	1.0	23
832	MET-Mediated Resistance to EGFR Inhibitors: An Old Liaison Rooted in Colorectal Cancer Stem Cells. Cancer Research, 2014, 74, 3647-3651.	0.4	30
833	Immunocompetent murine models for the study of glioblastoma immunotherapy. Journal of Translational Medicine, 2014, 12, 107.	1.8	175
834	In silico modeling predicts drug sensitivity of patient-derived cancer cells. Journal of Translational Medicine, 2014, 12, 128.	1.8	26
835	Cancer Stem Cells in Brain Tumors. , 2014, , 229-243.		1
836	Cancer-Initiating Cells from Colorectal Cancer Patients Escape from T Cell–Mediated Immunosurveillance In Vitro through Membrane-Bound IL-4. Journal of Immunology, 2014, 192, 523-532.	0.4	97
837	Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells. Neuro-Oncology, 2014, 16, 1354-1364.	0.6	51
838	Detoxification of oxidative stress in glioma stem cells: Mechanism, clinical relevance, and therapeutic development. Journal of Neuroscience Research, 2014, 92, 1419-1424.	1.3	43
839	Sox2 Is Required to Maintain Cancer Stem Cells in a Mouse Model of High-Grade Oligodendroglioma. Cancer Research, 2014, 74, 1833-1844.	0.4	84
840	Response of primary glioblastoma cells to therapy is patient specific and independent of cancer stem cell phenotype. Neuro-Oncology, 2014, 16, 361-371.	0.6	42
841	Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA–microRNA regulatory network in nasopharyngeal carcinoma model systems. FEBS Open Bio, 2014, 4, 128-140.	1.0	38
842	Circadian properties of cancer stem cells in glioma cell cultures and tumorspheres. Cancer Letters, 2014, 345, 65-74.	3.2	20
843	Mutant p53 gain of function can be at the root of dedifferentiation of human osteosarcoma MG63 cells into 3AB-OS cancer stem cells. Bone, 2014, 60, 198-212.	1.4	35
844	ZFHX4 Interacts with the NuRD Core Member CHD4 and Regulates the Glioblastoma Tumor-Initiating Cell State. Cell Reports, 2014, 6, 313-324.	2.9	106
845	The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture. Cancer Letters, 2014, 346, 1-5.	3.2	52
846	Sox2 Promotes Malignancy in Glioblastoma by Regulating Plasticity and Astrocytic Differentiation. Neoplasia, 2014, 16, 193-206.e25.	2.3	132

#	ARTICLE	IF	CITATIONS
847	Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 2014, 344, 1396-1401.	6.0	3,648
848	HMMR Maintains the Stemness and Tumorigenicity of Glioblastoma Stem-like Cells. Cancer Research, 2014, 74, 3168-3179.	0.4	101
849	In vitro anticancer drug test: A new method emerges from the model of glioma stem cells. Toxicology Reports, 2014, 1, 188-199.	1.6	21
850	High-Throughput Flow Cytometry Screening Reveals a Role for Junctional Adhesion Molecule A as a Cancer Stem Cell Maintenance Factor. Cell Reports, 2014, 6, 117-129.	2.9	76
851	Non-enzymatic, Serum-free Tissue Culture of Pre-invasive Breast Lesions for Spontaneous Generation of Mammospheres. Journal of Visualized Experiments, 2014, , e51926.	0.2	0
852	Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation. Frontiers in Genetics, 2014, 5, 14.	1.1	33
853	Primary Orthotopic Glioma Xenografts Recapitulate Infiltrative Growth and Isocitrate Dehydrogenase I Mutation. Journal of Visualized Experiments, 2014, , e50865.	0.2	8
854	The role of Src family kinases in growth and migration of glioma stem cells. International Journal of Oncology, 2014, 45, 302-310.	1.4	49
855	Optimization of High Grade Glioma Cell Culture from Surgical Specimens for Use in Clinically Relevant Animal Models and 3D Immunochemistry. Journal of Visualized Experiments, 2014, , e51088.	0.2	27
857	Tanshinone IIA inhibits the growth, attenuates the stemness and induces the apoptosis of human glioma stem cells. Oncology Reports, 2014, 32, 1303-1311.	1.2	32
858	Enrichment and characterization of cancer stem-like cells from a cervical cancer cell line. Molecular Medicine Reports, 2014, 9, 2117-2123.	1.1	50
859	MicroRNA-29b-1 impairs in vitro cell proliferation, self-renewal and chemoresistance of human osteosarcoma 3AB-OS cancer stem cells. International Journal of Oncology, 2014, 45, 2013-2023.	1.4	57
860	A stem cell medium containing neural stimulating factor induces a pancreatic cancer stem-like cell-enriched population. International Journal of Oncology, 2014, 45, 1857-1866.	1.4	18
861	Coculture with astrocytes reduces the radiosensitivity of glioblastoma stemâ€ike cells and identifies additional targets for radiosensitization. Cancer Medicine, 2015, 4, 1705-1716.	1.3	42
862	A standardized and reproducible protocol for serum-free monolayer culturing of primary paediatric brain tumours to be utilized for therapeutic assays. Scientific Reports, 2015, 5, 12218.	1.6	17
863	Antitumorigenic effect of interferon-β by inhibition of undifferentiated glioblastoma cells. International Journal of Oncology, 2015, 47, 1647-1654.	1.4	8
864	Tumor formation and drug resistance properties of human glioblastoma side population cells. Molecular Medicine Reports, 2015, 11, 4309-4314.	1.1	11
865	The Role of Biomaterials on Cancer Stem Cell Enrichment and Behavior. Jom, 2015, 67, 2543-2549.	0.9	9

#	Article	IF	CITATIONS
866	Overexpression and Nucleolar Localization of Î ³ -Tubulin Small Complex Proteins GCP2 and GCP3 in Glioblastoma. Journal of Neuropathology and Experimental Neurology, 2015, 74, 723-742.	0.9	26
867	A1E reduces stemness and self-renewal in HPV 16-positive cervical cancer stem cells. BMC Complementary and Alternative Medicine, 2015, 16, 42.	3.7	6
868	Targeting PBK/TOPK decreases growth and survival of glioma initiating cells in vitro and attenuates tumor growth in vivo. Molecular Cancer, 2015, 14, 121.	7.9	72
869	Assessing breast cancer cell lines as tumour models by comparison of mRNA expression profiles. Breast Cancer Research, 2015, 17, 114.	2.2	60
870	Isolation and Culturing of Glioma Cancer Stem Cells. Current Protocols in Cell Biology, 2015, 67, 23.10.1-23.10.10.	2.3	21
871	Maintenance of Stemlike Clioma Cells and Microglia in an Organotypic Clioma Slice Model. Neurosurgery, 2015, 77, 629-643.	0.6	9
872	Intratumor heterogeneity and transcriptional profiling in glioblastoma: translational opportunities. Future Neurology, 2015, 10, 369-381.	0.9	1
873	Synthetic and Biological Studies of Sesquiterpene Polygodial: Activity of 9â€Epipolygodial against Drugâ€Resistant Cancer Cells. ChemMedChem, 2015, 10, 2014-2026.	1.6	22
874	Initiate Tumors with Single Cell Spheres Formed in Serum-Containing Medium. Journal of Cancer, 2015, 6, 901-912.	1.2	3
875	Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines. Anatomy and Cell Biology, 2015, 48, 25.	0.5	49
876	Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain. International Journal of Molecular Sciences, 2015, 16, 27288-27301.	1.8	37
877	Long Non-Coding RNAs Dysregulation and Function in Glioblastoma Stem Cells. Non-coding RNA, 2015, 1, 69-86.	1.3	17
878	Targeting Aggressive Cancer Stem Cells in Glioblastoma. Frontiers in Oncology, 2015, 5, 159.	1.3	107
879	Proportional Upregulation of CD97 Isoforms in Glioblastoma and Glioblastoma-Derived Brain Tumor Initiating Cells. PLoS ONE, 2015, 10, e0111532.	1.1	19
880	Molecular Heterogeneity in a Patient-Derived Glioblastoma Xenoline Is Regulated by Different Cancer Stem Cell Populations. PLoS ONE, 2015, 10, e0125838.	1.1	25
881	The HDAC Inhibitors Scriptaid and LBH589 Combined with the Oncolytic Virus Delta24-RGD Exert Enhanced Anti-Tumor Efficacy in Patient-Derived Glioblastoma Cells. PLoS ONE, 2015, 10, e0127058.	1.1	40
882	ROCK Inhibition Facilitates In Vitro Expansion of Glioblastoma Stem-Like Cells. PLoS ONE, 2015, 10, e0132823.	1.1	31
883	Different Effects of BORIS/CTCFL on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells. PLoS ONE, 2015, 10, e0132977.	1.1	32

# 884	ARTICLE Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells. PLoS ONE, 2015, 10, e0134111.	IF 1.1	CITATIONS
885	FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2. PLoS ONE, 2015, 10, e0137703.	1.1	89
886	Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9. PLoS ONE, 2015, 10, e0145393.	1.1	35
887	<i>EGFR</i> Amplification and Glioblastoma Stem-Like Cells. Stem Cells International, 2015, 2015, 1-11.	1.2	30
888	Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells. Oncotarget, 2015, 6, 26192-26215.	0.8	94
889	Phenotypic diversity of patient-derived melanoma populations in stem cell medium. Laboratory Investigation, 2015, 95, 672-683.	1.7	22
890	Potentiation of temozolomide antitumor effect by purine receptor ligands able to restrain the in vitro growth of human glioblastoma stem cells. Purinergic Signalling, 2015, 11, 331-346.	1.1	27
891	Migration of Transformed Bone Marrow-Derived Cells with Peripheral Neural Tumor TraitsIn Vivo. Cancer Investigation, 2015, 33, 361-368.	0.6	0
892	Molecular subtypes, stem cells and heterogeneity: Implications for personalised therapy in glioma. Journal of Clinical Neuroscience, 2015, 22, 1219-1226.	0.8	41
893	ESI–MS/MS and MALDI-IMS Localization Reveal Alterations in Phosphatidic Acid, Diacylglycerol, and DHA in Glioma Stem Cell Xenografts. Journal of Proteome Research, 2015, 14, 2511-2519.	1.8	43
894	Identification and Characterization of Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma Cell Lines. Cellular Physiology and Biochemistry, 2015, 36, 784-798.	1.1	71
895	Descriptive analysis of tumor cells with stem like phenotypes in metastatic and benign adrenal tumors. Journal of Pediatric Surgery, 2015, 50, 1493-1501.	0.8	9
896	Acute hypoxia induces upregulation of microRNA-210 expression in glioblastoma spheroids. CNS Oncology, 2015, 4, 25-35.	1.2	17
897	Brain Tumor Stem Cells. Molecular Pathology Library, 2015, , 23-34.	0.1	1
898	Preclinical Test of Dacomitinib, an Irreversible EGFR Inhibitor, Confirms Its Effectiveness for Glioblastoma. Molecular Cancer Therapeutics, 2015, 14, 1548-1558.	1.9	61
899	Radiotherapy Followed by Aurora Kinase Inhibition Targets Tumor-Propagating Cells in Human Glioblastoma. Molecular Cancer Therapeutics, 2015, 14, 419-428.	1.9	23
900	Notching on Cancerââ,¬â"¢s Door: Notch Signaling in Brain Tumors. Frontiers in Oncology, 2014, 4, 341.	1.3	76
901	The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes. EBioMedicine, 2015, 2, 1351-1363.	2.7	228

#	Article	IF	CITATIONS
902	Kinome-wide shRNA Screen Identifies the Receptor Tyrosine Kinase AXL as a Key Regulator for Mesenchymal Glioblastoma Stem-like Cells. Stem Cell Reports, 2015, 4, 899-913.	2.3	47
903	Metabolic activation of mitochondria in glioma stem cells promotes cancer development through a reactive oxygen species-mediated mechanism. Stem Cell Research and Therapy, 2015, 6, 198.	2.4	40
904	Standardized orthotopic xenografts in zebrafish reveal glioma cell line specific characteristics and tumor cell heterogeneity. DMM Disease Models and Mechanisms, 2015, 9, 199-210.	1.2	42
905	Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Cell Reports, 2015, 13, 2425-2439.	2.9	146
906	Aggressive invasion is observed in CD133â^'/A2B5+ glioma-initiating cells. Oncology Letters, 2015, 10, 3399-3406.	0.8	15
907	All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation. Molecular Medicine Reports, 2015, 12, 165-172.	1.1	12
908	Tamoxifen in combination with temozolomide induce a synergistic inhibition of PKC-pan in GBM cell lines. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 722-732.	1.1	33
909	Identification of OLIG2 as the most specific glioblastoma stem cell marker starting from comparative analysis of data from similar DNA chip microarray platforms. Tumor Biology, 2015, 36, 1943-1953.	0.8	37
910	(-)-Epigallocatechin-3-gallate inhibits nasopharyngeal cancer stem cell self-renewal and migration and reverses the epithelial–mesenchymal transition via NF-κB p65 inactivation. Tumor Biology, 2015, 36, 2747-2761.	0.8	48
911	A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nature Communications, 2015, 6, 6289.	5.8	82
912	Reciprocal regulation of GAS5 IncRNA levels and mTOR inhibitor action in prostate cancer cells. Prostate, 2015, 75, 693-705.	1.2	111
913	Activity of 2-Aryl-2-(3-indolyl)acetohydroxamates against Drug-Resistant Cancer Cells. Journal of Medicinal Chemistry, 2015, 58, 2206-2220.	2.9	46
914	PTK7 regulates Id1 expression in CD44-high glioma cells. Neuro-Oncology, 2015, 17, 505-515.	0.6	28
915	Targeting Cancer Stem Cells in Breast Cancer: Potential Anticancer Properties of 6-Shogaol and Pterostilbene. Journal of Agricultural and Food Chemistry, 2015, 63, 2432-2441.	2.4	71
916	Cell of Origin for Malignant Gliomas and Its Implication in Therapeutic Development. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020610.	2.3	163
917	In vitro screen of a small molecule inhibitor drug library identifies multiple compounds that synergize with oncolytic myxoma virus against human brain tumor-initiating cells. Neuro-Oncology, 2015, 17, 1086-1094.	0.6	30
918	Salinomycin exerts anticancer effects on human breast carcinoma MCF-7 cancer stem cells via modulation of Hedgehog signaling. Chemico-Biological Interactions, 2015, 228, 100-107.	1.7	52
919	Critical functions of RhoB in support of glioblastoma tumorigenesis. Neuro-Oncology, 2015, 17, 516-525.	0.6	29

#	Article	IF	CITATIONS
920	Single agent efficacy of the VEGFR kinase inhibitor axitinib in preclinical models of glioblastoma. Journal of Neuro-Oncology, 2015, 121, 91-100.	1.4	30
921	Development of a Sox2 reporter system modeling cellular heterogeneity in glioma. Neuro-Oncology, 2015, 17, 361-371.	0.6	22
922	Colorectal cancer stem cell and chemoresistant colorectal cancer cell phenotypes and increased sensitivity to Notch pathway inhibitor. Molecular Medicine Reports, 2015, 12, 2417-2424.	1.1	45
923	A CDC20-APC/SOX2 Signaling Axis Regulates Human Glioblastoma Stem-like Cells. Cell Reports, 2015, 11, 1809-1821.	2.9	82
924	RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway–Dependent Tumors. Cancer Research, 2015, 75, 3623-3635.	0.4	133
925	Impedimetric quantification of the formation process and the chemosensitivity of cancer cell colonies suspended in 3D environment. Biosensors and Bioelectronics, 2015, 74, 878-885.	5.3	43
926	Sensitivity of glioma initiating cells to a monoclonal anti-EGFR antibody therapy under hypoxia. Life Sciences, 2015, 137, 74-80.	2.0	2
927	Identification of Global DNA Methylation Signatures in Glioblastoma-Derived Cancer Stem Cells. Journal of Genetics and Genomics, 2015, 42, 355-371.	1.7	47
928	Chemoresistance and Chemotherapy Targeting Stem-Like Cells in Malignant Glioma. Advances in Experimental Medicine and Biology, 2015, 853, 111-138.	0.8	43
929	Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer. Experimental Cell Research, 2015, 336, 141-149.	1.2	38
930	Cancer stem cells in glioblastoma. Genes and Development, 2015, 29, 1203-1217.	2.7	1,248
931	Pigment Epithelium-Derived Factor (PEDF) Expression Induced by EGFRvIII Promotes Self-renewal and Tumor Progression of Glioma Stem Cells. PLoS Biology, 2015, 13, e1002152.	2.6	56
932	In vitro screening of clinical drugs identifies sensitizers of oncolytic viral therapy in glioblastoma stem-like cells. Gene Therapy, 2015, 22, 947-959.	2.3	12
933	High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma. ACS Medicinal Chemistry Letters, 2015, 6, 948-952.	1.3	30
934	Low-fluence rate, long duration photodynamic therapy in glioma mouse model using organic light emitting diode (OLED). Photodiagnosis and Photodynamic Therapy, 2015, 12, 504-510.	1.3	41
935	Mouse models of glioma. Journal of Clinical Neuroscience, 2015, 22, 619-626.	0.8	64
936	In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. BMC Cancer, 2015, 15, 228.	1.1	47
937	Biological characteristics of a new human glioma cell line transformed into A2B5+ stem cells. Molecular Cancer, 2015, 14, 75.	7.9	17

#	Article	IF	CITATIONS
938	ABT-888 enhances cytotoxic effects of temozolomide independent of MGMT status in serum free cultured glioma cells. Journal of Translational Medicine, 2015, 13, 74.	1.8	26
940	Immunobiology and Immunotherapeutic Targeting of Glioma Stem Cells. Advances in Experimental Medicine and Biology, 2015, 853, 139-166.	0.8	7
941	Isolation and characterization of cancer stem cells from medulloblastoma. Genetics and Molecular Research, 2015, 14, 3355-3361.	0.3	12
942	High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Biomaterials, 2015, 51, 278-289.	5.7	60
943	Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones. Trends in Pharmacological Sciences, 2015, 36, 236-252.	4.0	44
944	Mechanisms regulating glioma invasion. Cancer Letters, 2015, 362, 1-7.	3.2	269
945	Contributions to Drug Resistance in Glioblastoma Derived from Malignant Cells in the Sub-Ependymal Zone. Cancer Research, 2015, 75, 194-202.	0.4	48
946	SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature, 2015, 520, 363-367.	13.7	303
947	Radiosensitization of Primary Human Glioblastoma Stem-like Cells with Low-Dose AKT Inhibition. Molecular Cancer Therapeutics, 2015, 14, 1171-1180.	1.9	36
948	Myelin-forming cell-specific cadherin-19 is a marker for minimally infiltrative glioblastoma stem-like cells. Journal of Neurosurgery, 2015, 122, 69-77.	0.9	15
949	Quantitative proteomics and transcriptomics reveals metabolic differences in attracting and non-attracting human-in-mouse glioma stem cell xenografts and stromal cells. EuPA Open Proteomics, 2015, 8, 94-103.	2.5	7
950	Brain tumour cells interconnect to a functional and resistant network. Nature, 2015, 528, 93-98.	13.7	787
951	Cytogenetic landscape of paired neurospheres and traditional monolayer cultures in pediatric malignant brain tumors. Neuro-Oncology, 2015, 17, 965-977.	0.6	13
952	Cancer cell spheroids for screening of chemotherapeutics and drug-delivery systems. Therapeutic Delivery, 2015, 6, 509-520.	1.2	35
953	Temozolomide sensitizes stem-like cells of glioma spheres to TRAIL-induced apoptosis via upregulation of casitas B-lineage lymphoma (c-Cbl) protein. Tumor Biology, 2015, 36, 9621-9630.	0.8	7
954	Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Molecular Cancer, 2015, 14, 160.	7.9	30
955	Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF. Molecular Cancer, 2015, 14, 157.	7.9	70
956	Patient-Derived Xenografts as a Model System for Radiation Research. Seminars in Radiation Oncology, 2015, 25, 273-280.	1.0	33

#	Article	IF	CITATIONS
957	Wittig derivatization of sesquiterpenoid polygodial leads to cytostatic agents with activity against drug resistant cancer cells and capable of pyrrolylation of primary amines. European Journal of Medicinal Chemistry, 2015, 103, 226-237.	2.6	16
958	DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. Brain, 2015, 138, 2553-2570.	3.7	67
959	Advances in the molecular functions of syndecan-1 (SDC1/CD138) in the pathogenesis of malignancies. Critical Reviews in Oncology/Hematology, 2015, 94, 1-17.	2.0	76
960	MiRâ€449a exerts tumorâ€suppressive functions in human glioblastoma by targeting Mycâ€associated zincâ€finger protein. Molecular Oncology, 2015, 9, 640-656.	2.1	53
961	Inositol Polyphosphate-5-Phosphatase F (INPP5F) inhibits STAT3 activity and suppresses gliomas tumorigenicity. Scientific Reports, 2015, 4, 7330.	1.6	28
962	Contemporary murine models in preclinical astrocytoma drug development. Neuro-Oncology, 2015, 17, 12-28.	0.6	23
963	An in silico screen links gene expression signatures to drug response in glioblastoma stem cells. Pharmacogenomics Journal, 2015, 15, 347-353.	0.9	3
964	Cancer Stem Cell-Like Phenotype and Survival Are Coordinately Regulated by Akt/FoxO/Bim Pathway. Stem Cells, 2015, 33, 646-660.	1.4	64
965	Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma. Oncogene, 2015, 34, 1619-1628.	2.6	82
966	EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties. Oncogene, 2015, 34, 558-567.	2.6	139
967	Mitochondrial energy metabolism and apoptosis regulation in glioblastoma. Brain Research, 2015, 1595, 127-142.	1.1	30
968	Isolation and Culture of Primary Clioblastoma Cells from Human Tumor Specimens. Methods in Molecular Biology, 2015, 1235, 263-275.	0.4	34
970	Combination of Systemic Chemotherapy with Local Stem Cell Delivered S-TRAIL in Resected Brain Tumors. Stem Cells, 2015, 33, 101-110.	1.4	34
971	Casein kinase 2α regulates glioblastoma brain tumor-initiating cell growth through the β-catenin pathway. Oncogene, 2015, 34, 3688-3699.	2.6	50
972	Differential SKIP expression in PTEN-deficient glioblastoma regulates cellular proliferation and migration. Oncogene, 2015, 34, 3711-3727.	2.6	20
973	miRâ€101 Acts as a Tumor Suppressor by Targeting Kruppelâ€like Factor 6 in Glioblastoma Stem Cells. CNS Neuroscience and Therapeutics, 2015, 21, 40-51.	1.9	48
974	Cancer stem cells: perspectives for therapeutic targeting. Cancer Immunology, Immunotherapy, 2015, 64, 91-97.	2.0	63
976	The Effects of Histone Deacetylase Inhibitors on Glioblastoma-Derived Stem Cells. Journal of Molecular Neuroscience, 2015, 55, 7-20.	1.1	38

#	Article	IF	CITATIONS
977	Effects of Long-term Serial Passaging on the Characteristics and Properties of Cell Lines Derived From Uveal Melanoma Primary Tumors. , 2016, 57, 5288.		36
978	Highly Effective Auger-Electron Therapy in an Orthotopic Glioblastoma Xenograft Model using Convection-Enhanced Delivery. Theranostics, 2016, 6, 2278-2291.	4.6	19
979	Thermal Therapy Approaches for Treatment of Brain Tumors in Animals and Humans. Critical Reviews in Biomedical Engineering, 2016, 44, 443-457.	0.5	22
980	A Systematic Comparison Identifies an ATP-Based Viability Assay as Most Suitable Read-Out for Drug Screening in Glioma Stem-Like Cells. Stem Cells International, 2016, 2016, 1-10.	1.2	17
981	RSK2 activity mediates glioblastoma invasiveness and is a potential target for new therapeutics. Oncotarget, 2016, 7, 79869-79884.	0.8	25
982	Slowing down glioblastoma progression in mice by running or the anti-malarial drug dihydroartemisinin? Induction of oxidative stress in murine glioblastoma therapy. Oncotarget, 2016, 7, 56713-56725.	0.8	36
983	Radioresistance of Brain Tumors. Cancers, 2016, 8, 42.	1.7	35
984	Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model. Oncotarget, 2016, 7, 75839-75853.	0.8	27
985	Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget, 2016, 7, 59360-59376.	0.8	34
986	Inhibition of the Autophagy Pathway Synergistically Potentiates the Cytotoxic Activity of Givinostat (ITF2357) on Human Glioblastoma Cancer Stem Cells. Frontiers in Molecular Neuroscience, 2016, 9, 107.	1.4	37
987	What Do We Learn from Spheroid Culture Systems? Insights from Tumorspheres Derived from Primary Colon Cancer Tissue. PLoS ONE, 2016, 11, e0146052.	1.1	48
988	Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines. PLoS ONE, 2016, 11, e0150271.	1.1	21
989	Decitabine Treatment of Glioma-Initiating Cells Enhances Immune Recognition and Killing. PLoS ONE, 2016, 11, e0162105.	1.1	17
990	Targeting atypical protein kinase C iota reduces viability in glioblastoma stemâ€like cells <i>via</i> a notch signaling mechanism. International Journal of Cancer, 2016, 139, 1776-1787.	2.3	29
991	A study of the origin of human glioma based on cell lines and tumor specimens. Cell and Tissue Biology, 2016, 10, 100-105.	0.2	0
992	Let-7d miRNA Shows Both Antioncogenic and Oncogenic Functions in Osteosarcoma-Derived 3AB-OS Cancer Stem Cells. Journal of Cellular Physiology, 2016, 231, 1832-1841.	2.0	41
993	A paired comparison between glioblastoma "stem cells―and differentiated cells. International Journal of Cancer, 2016, 138, 1709-1718.	2.3	42
994	Sensitivity of GBM cells to cAMP agonist-mediated apoptosis correlates with CD44 expression and agonist resistance with MAPK signaling. Cell Death and Disease, 2016, 7, e2494-e2494.	2.7	27

#	Article	IF	CITATIONS
995	A novel ligand of calcitonin receptor reveals a potential new sensor that modulates programmed cell death. Cell Death Discovery, 2016, 2, 16062.	2.0	6
996	Cancer stem cells are underestimated by standard experimental methods in clear cell renal cell carcinoma. Scientific Reports, 2016, 6, 25220.	1.6	23
997	Ursolic acid inhibits proliferation and reverses drug resistance of ovarian cancer stem cells by downregulating ABCG2 through suppressing the expression of hypoxia-inducible factor-1α in vitro. Oncology Reports, 2016, 36, 428-440.	1.2	36
998	The antiâ€hypertensive drug prazosin inhibits glioblastoma growth via the <scp>PKC</scp> δâ€dependent inhibition of the <scp>AKT</scp> pathway. EMBO Molecular Medicine, 2016, 8, 511-526.	3.3	40
999	Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels. Scientific Reports, 2016, 6, 31915.	1.6	28
1000	Therapeutic potential of targeting micro <scp>RNA</scp> â€10b in established intracranial glioblastoma: first steps toward the clinic. EMBO Molecular Medicine, 2016, 8, 268-287.	3.3	117
1001	A comprehensive next generation sequencing-based virome assessment in brain tissue suggests no major virus - tumor association. Acta Neuropathologica Communications, 2016, 4, 71.	2.4	57
1002	Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition. Cell Reports, 2016, 17, 2994-3009.	2.9	169
1003	Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nature Communications, 2016, 7, 13616.	5.8	267
1004	Efficient generation of patient-matched malignant and normal primary cell cultures from clear cell renal cell carcinoma patients: clinically relevant models for research and personalized medicine. BMC Cancer, 2016, 16, 485.	1.1	23
1005	Modeling Pancreatic Cancer with Organoids. Trends in Cancer, 2016, 2, 176-190.	3.8	174
1006	Stem cells and cancer: A review. Asian Pacific Journal of Tropical Disease, 2016, 6, 406-420.	0.5	1
1007	Silence of bFGF enhances chemosensitivity of glioma cells to temozolomide through the MAPK signal pathway. Acta Biochimica Et Biophysica Sinica, 2016, 48, 501-508.	0.9	10
1008	Epigenetic Advancements in Cancer. , 2016, , .		1
1009	Decreased expression of long non-coding RNA GAS5 indicates a poor prognosis and promotes cell proliferation and invasion in hepatocellular carcinoma by regulating vimentin. Molecular Medicine Reports, 2016, 13, 1541-1550.	1.1	117
1010	Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling. Cancer Letters, 2016, 376, 137-147.	3.2	54
1011	Shift of microRNA profile upon orthotopic xenografting of glioblastoma spheroid cultures. Journal of Neuro-Oncology, 2016, 128, 395-404.	1.4	6
1012	Liquid-based three-dimensional tumor models for cancer research and drug discovery. Experimental Biology and Medicine, 2016, 241, 939-954.	1.1	82

#	Article	IF	CITATIONS
1013	The transcriptional modulator HMGA2 promotes stemness and tumorigenicity in glioblastoma. Cancer Letters, 2016, 377, 55-64.	3.2	50
1014	Epigenetic Post transcriptional Mutation in Neuro-Oncology. , 2016, , 177-205.		1
1015	Modeling head and neck cancer stem cell-mediated tumorigenesis. Cellular and Molecular Life Sciences, 2016, 73, 3279-3289.	2.4	7
1016	Quantitative phosphoproteomics-based molecular network description for high-resolution kinase-substrate interactome analysis. Bioinformatics, 2016, 32, 2083-2088.	1.8	18
1017	The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. International Journal of Biochemistry and Cell Biology, 2016, 81, 174-183.	1.2	79
1018	Large-scale assessment of the gliomasphere model system. Neuro-Oncology, 2016, 18, 1367-1378.	0.6	82
1019	Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. , 2016, 164, 152-169.		507
1020	Culture conditions tailored to the cell of origin are critical for maintaining native properties and tumorigenicity of glioma cells. Neuro-Oncology, 2016, 18, 1413-1424.	0.6	18
1021	An alginate-based platform for cancer stem cell research. Acta Biomaterialia, 2016, 37, 83-92.	4.1	39
1022	5,10b-Ethanophenanthridine amaryllidaceae alkaloids inspire the discovery of novel bicyclic ring systems with activity against drug resistant cancer cells. European Journal of Medicinal Chemistry, 2016, 120, 313-328.	2.6	16
1023	Human glioblastoma stem-like cells accumulate protoporphyrin IX when subjected to exogenous 5-aminolaevulinic acid, rendering them sensitive to photodynamic treatment. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 203-210.	1.7	28
1024	The complex role of transglutaminase 2 in glioblastoma proliferation. Neuro-Oncology, 2016, 19, now157.	0.6	13
1025	Association of collagen architecture with glioblastoma patient survival. Journal of Neurosurgery, 2016, 126, 1812-1821.	0.9	78
1026	Time-lapse phenotyping of invasive glioma cells ex vivo reveals subtype-specific movement patterns guided by tumor core signaling. Experimental Cell Research, 2016, 349, 199-213.	1.2	18
1027	Repurposing antipsychotics as glioblastoma therapeutics: Potentials and challenges. Oncology Letters, 2016, 11, 1281-1286.	0.8	50
1028	Precision medicine in glioblastoma therapy. Expert Review of Precision Medicine and Drug Development, 2016, 1, 451-468.	0.4	Ο
1029	Apigenin Inhibits Cancer Stem Cellâ€Like Phenotypes in Human Glioblastoma Cells via Suppression of câ€Met Signaling. Phytotherapy Research, 2016, 30, 1833-1840.	2.8	78
1030	Multi-omics analysis of primary glioblastoma cell lines shows recapitulation of pivotal molecular features of parental tumors. Neuro-Oncology, 2017, 19, now160.	0.6	33

#	Article	IF	CITATIONS
1031	A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses. Neuro-Oncology, 2017, 19, now164.	0.6	75
1032	FOXD1–ALDH1A3 Signaling Is a Determinant for the Self-Renewal and Tumorigenicity of Mesenchymal Glioma Stem Cells. Cancer Research, 2016, 76, 7219-7230.	0.4	120
1033	Changes of bivalent chromatin coincide with increased expression of developmental genes in cancer. Scientific Reports, 2016, 6, 37393.	1.6	88
1034	Enrichment and Interrogation of Cancer Stem Cells. , 2016, , 59-98.		7
1035	TRPM7 channel inhibition mediates midazolam-induced proliferation loss in human malignant glioma. Tumor Biology, 2016, 37, 14721-14731.	0.8	19
1036	Resistance to cytotoxicity and sustained release of interleukin-6 and interleukin-8 in the presence of decreased interferon-γ after differentiation of glioblastoma by human natural killer cells. Cancer Immunology, Immunotherapy, 2016, 65, 1085-1097.	2.0	54
1037	Small Molecule Kinase Inhibitors for the Treatment of Brain Cancer. Journal of Medicinal Chemistry, 2016, 59, 10030-10066.	2.9	106
1038	Resetting cancer stem cell regulatory nodes upon <scp>MYC</scp> inhibition. EMBO Reports, 2016, 17, 1872-1889.	2.0	51
1039	Metabolic/Proteomic Signature Defines Two Glioblastoma Subtypes With Different Clinical Outcome. Scientific Reports, 2016, 6, 21557.	1.6	75
1040	Biobanking: An Important Resource for Precision Medicine in Glioblastoma. Advances in Experimental Medicine and Biology, 2016, 951, 47-56.	0.8	3
1041	Origin of the U87MG glioma cell line: Good news and bad news. Science Translational Medicine, 2016, 8, 354re3.	5.8	313
1042	Interstitial flow differentially increases patient-derived glioblastoma stem cell invasion <i>via</i> CXCR4, CXCL12, and CD44-mediated mechanisms. Integrative Biology (United) Tj ETQq1 1 0.3	78 4 31.4 rgl	BT d ©verlock
1043	Ion channels expression and function are strongly modified in solid tumors and vascular malformations. Journal of Translational Medicine, 2016, 14, 285.	1.8	55
1044	GPR133 (ADGRD1), an adhesion G-protein-coupled receptor, is necessary for glioblastoma growth. Oncogenesis, 2016, 5, e263-e263.	2.1	60
1046	Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells. Nature Communications, 2016, 7, 11798.	5.8	39
1047	Culture on 3D Chitosanâ€Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. Advanced Healthcare Materials, 2016, 5, 3173-3181.	3.9	60
1048	Reciprocal activation between STAT3 and miR-181b regulates the proliferation of esophageal cancer stem-like cells via the CYLD pathway. Molecular Cancer, 2016, 15, 40.	7.9	35
1049	In vivo MRI visualization of U87 glioblastoma development dynamics in the model of orthotopic xenotransplantation to the SCID mouse. Russian Journal of Genetics: Applied Research, 2016, 6, 448-453.	0.4	17

#	Article	IF	CITATIONS
1050	Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2016, , .	0.8	3
1051	Isolation of Clioma-Initiating Cells for Biological Study. Advances in Experimental Medicine and Biology, 2016, 899, 197-209.	0.8	2
1052	Sox2: regulation of expression and contribution to brain tumors. CNS Oncology, 2016, 5, 159-173.	1.2	29
1053	Regulation of Glioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151. Neoplasia, 2016, 18, 185-198.	2.3	22
1054	Inhibition of Dopamine Receptor D4 Impedes Autophagic Flux, Proliferation, and Survival of Glioblastoma Stem Cells. Cancer Cell, 2016, 29, 859-873.	7.7	169
1055	An intrinsic DFF40/CAD endonuclease deficiency impairs oligonucleosomal DNA hydrolysis during caspase-dependent cell death: a common trait in human glioblastoma cells. Neuro-Oncology, 2016, 18, 950-961.	0.6	17
1056	Integrative Network Analysis Combined with Quantitative Phosphoproteomics Reveals Transforming Growth Factor-beta Receptor type-2 (TGFBR2) as a Novel Regulator of Glioblastoma Stem Cell Properties. Molecular and Cellular Proteomics, 2016, 15, 1017-1031.	2.5	16
1057	InsR/IGF1R Pathway Mediates Resistance to EGFR Inhibitors in Glioblastoma. Clinical Cancer Research, 2016, 22, 1767-1776.	3.2	58
1058	A Supplemented High-Fat Low-Carbohydrate Diet for the Treatment of Glioblastoma. Clinical Cancer Research, 2016, 22, 2482-2495.	3.2	88
1059	ErbB2/HER2-Specific NK Cells for Targeted Therapy of Glioblastoma. Journal of the National Cancer Institute, 2016, 108, .	3.0	282
1060	Genetic biomarkers of drug response for small-molecule therapeutics targeting the RTK/Ras/PI3K, p53 or Rb pathway in glioblastoma. CNS Oncology, 2016, 5, 77-90.	1.2	28
1061	Drug screening and grouping by sensitivity with a panel of primary cultured cancer spheroids derived from endometrial cancer. Cancer Science, 2016, 107, 452-460.	1.7	38
1062	Polysome Profiling Links Translational Control to the Radioresponse of Glioblastoma Stem-like Cells. Cancer Research, 2016, 76, 3078-3087.	0.4	23
1063	A new patient-derived orthotopic malignant meningioma model treated with oncolytic herpes simplex virus. Neuro-Oncology, 2016, 18, 1278-1287.	0.6	25
1064	Chromosomal Instability Affects the Tumorigenicity of Glioblastoma Tumor-Initiating Cells. Cancer Discovery, 2016, 6, 532-545.	7.7	59
1065	Discovery of Clinical Development Candidate GDC-0084, a Brain Penetrant Inhibitor of PI3K and mTOR. ACS Medicinal Chemistry Letters, 2016, 7, 351-356.	1.3	78
1066	Inflammatory Cells in Tumor Microenvironment. , 2016, , 27-50.		0
1067	Novel small molecule inhibitors of the OLIG2 transcription factor: promising new therapeutics for glioblastoma. Future Oncology, 2016, 12, 1001-1004.	1.1	3

#	Article	IF	CITATIONS
1068	The challenges associated with molecular targeted therapies for glioblastoma. Journal of Neuro-Oncology, 2016, 127, 427-434.	1.4	58
1069	The Role of Microenvironment in the Control of Tumor Angiogenesis. , 2016, , .		3
1070	Involvement of DDX6 gene in radio- and chemoresistance in glioblastoma. International Journal of Oncology, 2016, 48, 1053-1062.	1.4	9
1071	Short-Term Differentiation of Clioblastoma Stem Cells Induces Hypoxia Tolerance. Neurochemical Research, 2016, 41, 1545-1558.	1.6	5
1072	Enrichment of cancer stem cells by cotton fiber. RSC Advances, 2016, 6, 23345-23353.	1.7	3
1073	Upregulation of RNA Processing Factors in Poorly Differentiated Lung Cancer Cells. Translational Oncology, 2016, 9, 89-98.	1.7	9
1074	M011L-deficient oncolytic myxoma virus induces apoptosis in brain tumor-initiating cells and enhances survival in a novel immunocompetent mouse model of glioblastoma. Neuro-Oncology, 2016, 18, 1088-1098.	0.6	43
1075	Wnt inhibition is dysregulated in gliomas and its re-establishment inhibits proliferation and tumor sphere formation. Experimental Cell Research, 2016, 340, 53-61.	1.2	39
1076	ST3GAL1-Associated Transcriptomic Program in Glioblastoma Tumor Growth, Invasion, and Prognosis. Journal of the National Cancer Institute, 2016, 108, .	3.0	48
1077	A novel drug conjugate, NEO212, targeting proneural and mesenchymal subtypes of patient-derived glioma cancer stem cells. Cancer Letters, 2016, 371, 240-250.	3.2	24
1078	Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncolmmunology, 2016, 5, e1119354.	2.1	151
1079	Immunotherapy with dendritic cells loaded with glioblastoma stem cells: from preclinical to clinical studies. Cancer Immunology, Immunotherapy, 2016, 65, 101-109.	2.0	42
1080	USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. Neuro-Oncology, 2016, 18, 37-47.	0.6	77
1081	Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics. Molecular Cancer Research, 2016, 14, 3-13.	1.5	230
1082	Convection-enhanced delivery of an anti-miR is well-tolerated, preserves anti-miR stability and causes efficient target de-repression: a proof of concept. Journal of Neuro-Oncology, 2016, 126, 47-55.	1.4	25
1083	Heat-shock factor 2 is a suppressor of prostate cancer invasion. Oncogene, 2016, 35, 1770-1784.	2.6	48
1084	Comparative genomic and genetic analysis of glioblastoma-derived brain tumor-initiating cells and their parent tumors. Neuro-Oncology, 2016, 18, 350-360.	0.6	45
1085	Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation. Neuro-Oncology, 2016, 18, 48-57.	0.6	66

#		IF	CITATIONS
1086	specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under <scp>BMP4</scp> and Noggin Influence. Brain Pathology, 2016, 26, 43-61.	2.1	18
1087	Differential propagation of stroma and cancer stem cells dictates tumorigenesis and multipotency. Oncogene, 2017, 36, 570-584.	2.6	47
1088	PRMT5–PTEN molecular pathway regulates senescence and self-renewal of primary glioblastoma neurosphere cells. Oncogene, 2017, 36, 263-274.	2.6	94
1089	High-Throughput 3D Tumor Spheroid Screening Method for Cancer Drug Discovery Using Celigo Image Cytometry. SLAS Technology, 2017, 22, 454-465.	1.0	61
1090	Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells. Neuro-Oncology, 2017, 19, 43-54.	0.6	189
1091	Dissecting inherent intratumor heterogeneity in patient-derived glioblastoma culture models. Neuro-Oncology, 2017, 19, now253.	0.6	35
1092	Acidic pH with coordinated reduction of basic fibroblast growth factor maintains the glioblastoma stem cell-like phenotype inÂvitro. Journal of Bioscience and Bioengineering, 2017, 123, 634-641.	1.1	5
1093	RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells. Stem Cell Reports, 2017, 8, 125-139.	2.3	100
1094	Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer, 2017, 17, 99.	1.1	101
1095	A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions. Science Translational Medicine, 2017, 9, .	5.8	119
1096	Glioma: experimental models and reality. Acta Neuropathologica, 2017, 133, 263-282.	3.9	223
1097	Functional analysis of KIF20A, a potential immunotherapeutic target for glioma. Journal of Neuro-Oncology, 2017, 132, 63-74.	1.4	48
1098	Glioblastoma Cell Malignancy and Drug Sensitivity Are Affected by the Cell of Origin. Cell Reports, 2017, 18, 977-990.	2.9	46
1099	Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo. Acta Neuropathologica, 2017, 133, 629-644.	3.9	146
1100	Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling. Molecular Aspects of Medicine, 2017, 55, 140-151.	2.7	101
1102	Isolation, Characterization, and Expansion of Cancer Stem Cells. Methods in Molecular Biology, 2017, 1553, 133-143.	0.4	7
1103	Tumor-Initiating Cells: a criTICal review of isolation approaches and new challenges in targeting strategies. Molecular Cancer, 2017, 16, 40.	7.9	64
1104	Regulation of stem-like cancer cells by glutamine through β-catenin pathway mediated by redox signaling. Molecular Cancer, 2017, 16, 51.	7.9	81

ARTICLE IF CITATIONS A threeâ€microRNA signature identifies two subtypes of glioblastoma patients with different clinical 1105 2.1 32 outcomes. Molecular Oncology, 2017, 11, 1115-1129. Prognostic Relevance of Tumor Purity and Interaction with MGMT Methylation in Glioblastoma. 1.5 23 Molecular Cancer Research, 2017, 15, 532-540. A Core Regulatory Circuit in Glioblastoma Stem Cells Links MAPK Activation to a Transcriptional 1107 1.6 22 Program of Neural Stem Cell Identity. Scientific Reports, 2017, 7, 43605. Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nature Genetics, 1108 9.4 2017, 49, 594-599. Systematic analysis of the achaete-scute complex-like gene signature in clinical cancer patients. 1109 0.4 23 Molecular and Clinical Oncology, 2017, 6, 7-18. Rad51 Degradation: Role in Oncolytic Virusâ€"Poly(ADP-Ribose) Polymerase Inhibitor Combination Therapy in Glioblastoma. Journal of the National Cancer Institute, 2017, 109, 1-13. 3.0 The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma 1111 1.6 32 initiating cells. Scientific Reports, 2017, 7, 889. Establishment and characterization of an orthotopic patient-derived Group 3 medulloblastoma model 1.6 16 for preclinical drug evaluation. Scientific Reports, 2017, 7, 46366. 1113 Cyclin-dependent kinase 7 is a therapeutic target in high-grade glioma. Oncogenesis, 2017, 6, e336-e336. 2.1 53 Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated 1114 5.8 glioblastoma cells via macropinocytosis. Nature Communications, 2017, 8, 15144. The Role of Neurotrophin Signaling in Gliomagenesis. Vitamins and Hormones, 2017, 104, 367-404. 1115 0.7 11 CRB3 downregulation confers breast cancer stem cell traits through TAZ $\hat{1}^2$ -catenin. Oncogenesis, 2017, 2.1 6, e322-e322. Histone H3.3K27M Represses <i>p16</i> to Accelerate Gliomagenesis in a Murine Model of DIPG. 1117 1.5 120 Molecular Cancer Research, 2017, 15, 1243-1254. Induction of senescence in primary glioblastoma cells by serum and TGF². Scientific Reports, 2017, 7, 1.6 2156. Crosstalk between M2 macrophages and glioma stem cells. Cellular Oncology (Dordrecht), 2017, 40, 1120 2.155 471-482. PNIPAAm-co-Jeffamine® (PNJ) scaffolds as inÂvitro models for niche enrichment of glioblastoma 1121 stem-like cells. Biomaterials, 2017, 143, 149-158. The inhibition of FGF receptor 1 activity mediates sorafenib antiproliferative effects in human 1122 2.4 21 malignant pleural mesothelioma tumor-initiating cells. Stem Cell Research and Therapy, 2017, 8, 119. Therapeutic targeting of chemoresistant and recurrent glioblastoma stem cells with a proapoptotic 2.3 variant of oncolytic herpes simplex virus. International Journal of Cancer, 2017, 141, 1671-1681.

#	Article	IF	CITATIONS
1124	Functional analysis of the DEPDC1 oncoantigen in malignant glioma and brain tumor initiating cells. Journal of Neuro-Oncology, 2017, 133, 297-307.	1.4	20
1125	Genetic subclone architecture of tumor clone-initiating cells in colorectal cancer. Journal of Experimental Medicine, 2017, 214, 2073-2088.	4.2	30
1126	Tweety-Homolog 1 Drives Brain Colonization of Gliomas. Journal of Neuroscience, 2017, 37, 6837-6850.	1.7	129
1127	Integrating the glioblastoma microenvironment into engineered experimental models. Future Science OA, 2017, 3, FSO189.	0.9	61
1128	Tumorâ€derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Science, 2017, 108, 283-289.	1.7	357
1129	Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications. Neurotherapeutics, 2017, 14, 372-384.	2.1	70
1130	Preparing Viable Single Cells from Human Tissue and Tumors for Cytomic Analysis. Current Protocols in Molecular Biology, 2017, 118, 25C.1.1-25C.1.23.	2.9	45
1131	BCL6 promotes glioma and serves as a therapeutic target. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3981-3986.	3.3	58
1132	ZEB1 regulates glioma stemness through LIF repression. Scientific Reports, 2017, 7, 69.	1.6	31
1133	The transcription factor PPARα is overexpressed and is associated with a favourable prognosis in <scp>IDH</scp> â€wildtype primary glioblastoma. Histopathology, 2017, 70, 1030-1043.	1.6	19
1134	Isolation, identification, and characterization of cancer stem cells: A review. Journal of Cellular Physiology, 2017, 232, 2008-2018.	2.0	157
1135	A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma. Acta Neuropathologica, 2017, 133, 645-660.	3.9	53
1136	Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. Journal of Experimental Medicine, 2017, 214, 245-267.	4.2	123
1137	Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell, 2017, 20, 233-246.e7.	5.2	387
1138	Culture methods of diffuse intrinsic pontine glioma cells determine response to targeted therapies. Experimental Cell Research, 2017, 360, 397-403.	1.2	26
1139	Crizotinib targets in glioblastoma stem cells. Cancer Medicine, 2017, 6, 2625-2634.	1.3	22
1140	Inhibition of Hes1 enhances lapatinib sensitivity in gastric cancer sphere-forming cells. Oncology Letters, 2017, 14, 3989-3996.	0.8	4
1141	Cancer Immunotherapy Getting Brainy: Visualizing the Distinctive CNS Metastatic Niche to Illuminate Therapeutic Resistance. Drug Resistance Updates, 2017, 33-35, 23-35.	6.5	16

#	Article	IF	CITATIONS
1142	Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nature Medicine, 2017, 23, 1342-1351.	15.2	79
1143	Comparison of Cellular Transforming Activity of <i>OCT4, NANOG,</i> and <i>SOX2</i> in Immortalized Astrocytes. DNA and Cell Biology, 2017, 36, 1000-1009.	0.9	8
1144	Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3. Scientific Reports, 2017, 7, 13674.	1.6	37
1145	Specificity protein 1-modulated superoxide dismutase 2 enhances temozolomide resistance in glioblastoma, which is independent of O6-methylguanine-DNA methyltransferase. Redox Biology, 2017, 13, 655-664.	3.9	60
1146	Sensitivity to <i>BUB1B</i> Inhibition Defines an Alternative Classification of Glioblastoma. Cancer Research, 2017, 77, 5518-5529.	0.4	38
1147	Significance of perivascular tumour cells defined by CD109 expression in progression of glioma. Journal of Pathology, 2017, 243, 468-480.	2.1	36
1148	Neuroblastoma patient-derived xenograft cells cultured in stem-cell promoting medium retain tumorigenic and metastatic capacities but differentiate in serum. Scientific Reports, 2017, 7, 10274.	1.6	26
1149	Animal Models in Glioblastoma: Use in Biology and Developing Therapeutic Strategies. Current Cancer Research, 2017, , 219-240.	0.2	4
1150	Preliminary identification of endometrial cancer stem cells inÂvitro and inÂvivo. Biochemical and Biophysical Research Communications, 2017, 490, 506-513.	1.0	11
1151	Transglutaminase 2 Inhibition Reverses Mesenchymal Transdifferentiation of Glioma Stem Cells by Regulating C/EBPÎ ² Signaling. Cancer Research, 2017, 77, 4973-4984.	0.4	68
1152	Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Molecular Cancer Research, 2017, 15, 1623-1633.	1.5	29
1154	Voltage-gated calcium channels: Novel targets for cancer therapy. Oncology Letters, 2017, 14, 2059-2074.	0.8	124
1155	Immunohistochemical Characterization and Sensitivity to Human Adenovirus Serotypes 3, 5, and 11p of New Cell Lines Derived from Human Diffuse Grade II to IV Gliomas. Translational Oncology, 2017, 10, 772-779.	1.7	5
1156	Notch Signaling. , 2017, , .		0
1157	Modelling glioblastoma tumour-host cell interactions using adult brain organotypic slice co-culture. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	37
1158	Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6147-E6156.	3.3	102
1159	Transcription elongation factors represent in vivo cancer dependencies in glioblastoma. Nature, 2017, 547, 355-359.	13.7	156
1160	Znf179 induces differentiation and growth arrest of human primary glioblastoma multiforme in a p53-dependent cell cycle pathway. Scientific Reports, 2017, 7, 4787.	1.6	8

#	Article	IF	CITATIONS
1161	Subventricular zones: new key targets for glioblastoma treatment. Radiation Oncology, 2017, 12, 67.	1.2	35
1162	Blue light potentiates neurogenesis induced by retinoic acid-loaded responsive nanoparticles. Acta Biomaterialia, 2017, 59, 293-302.	4.1	24
1163	Human Cytomegalovirus-Infected Glioblastoma Cells Display Stem Cell-Like Phenotypes. MSphere, 2017, 2, .	1.3	14
1165	Accelerating glioblastoma drug discovery: Convergence of patient-derived models, genome editing and phenotypic screening. Molecular and Cellular Neurosciences, 2017, 80, 198-207.	1.0	20
1166	Lossâ€ofâ€function screens of druggable targetome against cancer stemâ€like cells. FASEB Journal, 2017, 31, 625-635.	0.2	32
1167	S100B Mediates Stemness of Ovarian Cancer Stem-Like Cells Through Inhibiting p53. Stem Cells, 2017, 35, 325-336.	1.4	27
1168	The effects of tumor treating fields and temozolomide in MGMT expressing and non-expressing patient-derived glioblastoma cells. Journal of Clinical Neuroscience, 2017, 36, 120-124.	0.8	32
1169	Proteome and Secretome Characterization of Glioblastoma-Derived Neural Stem Cells. Stem Cells, 2017, 35, 967-980.	1.4	40
1170	Pathology and Molecular Pathology of Brain Cancer. , 2017, , 291-311.		2
1171	Administration of Non-Torsadogenic human Ether-Ã-go-go-Related Gene Inhibitors Is Associated with Better Survival for High hERG–Expressing Glioblastoma Patients. Clinical Cancer Research, 2017, 23, 73-80.	3.2	40
1172	Safe and Effective Treatment of Experimental Neuroblastoma and Glioblastoma Using Systemically Delivered Triple MicroRNA-Detargeted Oncolytic Semliki Forest Virus. Clinical Cancer Research, 2017, 23, 1519-1530.	3.2	43
1173	Yeast display biopanning identifies human antibodies targeting glioblastoma stem-like cells. Scientific Reports, 2017, 7, 15840.	1.6	18
1174	Sulforaphane inhibits cancer stem-like cell properties and cisplatin resistance through miR-214-mediated downregulation of c-MYC in non-small cell lung cancer. Oncotarget, 2017, 8, 12067-12080.	0.8	64
1175	Metabolic Reprogramming in Glioma. Frontiers in Cell and Developmental Biology, 2017, 5, 43.	1.8	242
1176	Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma. International Journal of Oncology, 2018, 52, 241-251.	1.4	14
1177	Chemotherapeutic Drugs: DNA Damage and Repair in Glioblastoma. Cancers, 2017, 9, 57.	1.7	61
1178	Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy. PLoS ONE, 2017, 12, e0172884.	1.1	37
1179	Cellular heterogeneity contributes to subtype-specific expression of ZEB1 in human glioblastoma. PLoS ONE, 2017, 12, e0185376.	1.1	10

ATION P

~		<u> </u>	
		IV F D(DDT
\sim	IIAI	IVE F	

#	Article	IF	CITATIONS
1180	Live-cell calcium imaging of adherent and non-adherent GL261 cells reveals phenotype-dependent differences in drug responses. BMC Cancer, 2017, 17, 516.	1.1	7
1181	A novel small molecule inhibitor of p32 mitochondrial protein overexpressed in glioma. Journal of Translational Medicine, 2017, 15, 210.	1.8	23
1182	Nucleolar and spindle associated protein 1 promotes the aggressiveness of astrocytoma by activating the Hedgehog signaling pathway. Journal of Experimental and Clinical Cancer Research, 2017, 36, 127.	3.5	47
1183	Brain Tumor Treatment: 2017 Update. Cancer and Clinical Oncology, 2017, 7, 30.	0.2	0
1184	Glioma stem cells and their non-stem differentiated glioma cells exhibit differences in mitochondrial structure and function. Oncology Reports, 2017, 39, 411-416.	1.2	8
1185	Hitting a Moving Target: Glioma Stem Cells Demand New Approaches in Glioblastoma Therapy. Current Cancer Drug Targets, 2017, 17, 236-254.	0.8	18
1186	Obstacles to Brain Tumor Therapy: Key ABC Transporters. International Journal of Molecular Sciences, 2017, 18, 2544.	1.8	67
1187	Procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 promotes hypoxia-induced glioma migration and invasion. Oncotarget, 2017, 8, 23401-23413.	0.8	17
1188	Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries?. Oncotarget, 2017, 8, 69185-69197.	0.8	76
1189	Synergistic and targeted therapy with a procaspase-3 activator and temozolomide extends survival in glioma rodent models and is feasible for the treatment of canine malignant glioma patients. Oncotarget, 2017, 8, 80124-80138.	0.8	33
1190	Current Therapeutic Alternatives and New Perspectives in Glioblastoma Multiforme. Current Medicinal Chemistry, 2017, 24, 2781-2795.	1.2	24
1191	Overexpression of miR-29a reduces the oncogenic properties of glioblastoma stem cells by downregulating Quaking gene isoform 6. Oncotarget, 2017, 8, 24949-24963.	0.8	52
1192	Combined BET bromodomain and CDK2 inhibition in MYC-driven medulloblastoma. Oncogene, 2018, 37, 2850-2862.	2.6	71
1193	Characterization of a novel <scp>OTX</scp> 2â€driven stem cell program in Group 3 and Group 4 medulloblastoma. Molecular Oncology, 2018, 12, 495-513.	2.1	16
1194	Saccharina japonica Extract Suppresses Stemness of Glioma Stem Cells by Degrading Epidermal Growth Factor Receptor/Epidermal Growth Factor Receptor Variant III. Journal of Medicinal Food, 2018, 21, 496-505.	0.8	5
1195	Sprouty2 enhances the tumorigenic potential of glioblastoma cells. Neuro-Oncology, 2018, 20, 1044-1054.	0.6	28
1196	Extensive and systematic rewiring of histone post-translational modifications in cancer model systems. Nucleic Acids Research, 2018, 46, 3817-3832.	6.5	31
1197	Elevated <scp>CRB</scp> 3 expression suppresses breast cancer stemness by inhibiting βâ€catenin signalling to restore tamoxifen sensitivity. Journal of Cellular and Molecular Medicine, 2018, 22, 3423-3433.	1.6	17

#	Article	IF	CITATIONS
1198	ETV2 mediates endothelial transdifferentiation of glioblastoma. Signal Transduction and Targeted Therapy, 2018, 3, 4.	7.1	33
1199	Orthotopic Patient-Derived Glioblastoma Xenografts in Mice. Methods in Molecular Biology, 2018, 1741, 183-190.	0.4	18
1200	Primary glioblastoma cells for precision medicine: a quantitative portrait of genomic (in)stability during the first 30 passages. Neuro-Oncology, 2018, 20, 1080-1091.	0.6	22
1201	Establishing Primary Human Glioblastoma Adherent Cultures from Operative Specimens. Methods in Molecular Biology, 2018, 1741, 53-62.	0.4	4
1202	Establishing Primary Human Glioblastoma Tumorsphere Cultures from Operative Specimens. Methods in Molecular Biology, 2018, 1741, 63-69.	0.4	11
1203	Autophagy mediates glucose starvation-induced glioblastoma cell quiescence and chemoresistance through coordinating cell metabolism, cell cycle, and survival. Cell Death and Disease, 2018, 9, 213.	2.7	48
1204	Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival. Scientific Reports, 2018, 8, 2836.	1.6	37
1206	New aspects of glioblastoma multiforme revealed by similarities between neural and glioblastoma stem cells. Cell Biology and Toxicology, 2018, 34, 425-440.	2.4	29
1207	Refined control of cell stemness allowed animal evolution in the oxic realm. Nature Ecology and Evolution, 2018, 2, 220-228.	3.4	29
1208	Reactive species balance via GTP cyclohydrolase I regulates glioblastoma growth and tumor initiating cell maintenance. Neuro-Oncology, 2018, 20, 1055-1067.	0.6	27
1209	Estimation of the effectiveness ratio (α/β) for resistant cancer cells in U87MG human glioblastoma. Applied Radiation and Isotopes, 2018, 141, 156-161.	0.7	2
1210	Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anti-Cancer Drugs, 2018, 29, 208-215.	0.7	54
1211	Brain-Mimetic 3D Culture Platforms Allow Investigation of Cooperative Effects of Extracellular Matrix Features on Therapeutic Resistance in Glioblastoma. Cancer Research, 2018, 78, 1358-1370.	0.4	72
1212	ING5 activity in self-renewal of glioblastoma stem cells via calcium and follicle stimulating hormone pathways. Oncogene, 2018, 37, 286-301.	2.6	28
1213	Novel Targeting of Transcription and Metabolism in Glioblastoma. Clinical Cancer Research, 2018, 24, 1124-1137.	3.2	45
1214	In vitro and in vivo characterization of stem-like cells from canine osteosarcoma and assessment of drug sensitivity. Experimental Cell Research, 2018, 363, 48-64.	1.2	30
1215	A unique epigenomic landscape defines the characteristics and differentiation potentials of glioma stem cells. Genome Biology, 2018, 19, 51.	3.8	1
1216	Heterogenic expression of stem cell markers in patient-derived glioblastoma spheroid cultures exposed to long-term hypoxia. CNS Oncology, 2018, 7, CNS15.	1.2	7

ARTICLE IF CITATIONS Hydrogel microenvironments for cancer spheroid growth and drug screening. Science Advances, 1217 238 4.7 2018, 4, eaas8998. Electrotaxis of tumor-initiating cells of H1975 lung adenocarcinoma cells is associated with both activation of stretch-activated cation channels (SACCs) and internal calcium release. 2.4 19 Bioelectrochemistry, 2018, 124, 80-92. Spontaneous Glioblastoma Spheroid Infiltration of Early-Stage Cerebral Organoids Models Brain 1219 1.4 73 Tumor Invasion. SLAS Discovery, 2018, 23, 862-868. Antipsychotic dopamine receptor antagonists, cancer, and cancer stem cells. Archives of Pharmacal 39 Research, 2018, 41, 384-408 Modular peptide-functionalized gold nanorods for effective glioblastoma multicellular tumor 1221 2.6 22 spheroid targeting. Biomaterials Science, 2018, 6, 1140-1146. Astrocyte-derived CCL20 reinforces HIF-1-mediated hypoxic responses in glioblastoma by stimulating the CCR6-NF- \hat{I}^{B} B signaling pathway. Oncogene, 2018, 37, 3070-3087. 2.6 EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro-Oncology, 1223 0.6 210 2018, 20, 743-752. Combating malignant astrocytes: Strategies mitigating tumor invasion. Neuroscience Research, 2018, 1994 1.0 126, 22-30 Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex 1225 2.0 15 vivo-in vivo pharmaco-omic model. Experimental Neurology, 2018, 299, 281-288. A Large-Scale RNAi Screen Identifies SGK1 as a Key Survival Kinase for GBM Stem Cells. Molecular 1.5 Cancer Research, 2018, 16, 103-114. Involvement of plateletâ€derived growth factor ligands and receptors in tumorigenesis. Journal of 1227 2.7 135 Internal Medicine, 2018, 283, 16-44. Patient-derived xenografts as preclinical neuroblastoma models. Cell and Tissue Research, 2018, 372, 1228 1.5 233-243. Inhibition of ID1–BMPR2 Intrinsic Signaling Sensitizes Glioma Stem Cells to Differentiation Therapy. 1229 3.2 26 Clinical Cancer Research, 2018, 24, 383-394. Modeling phenotypes of malignant gliomas. Cancer Science, 2018, 109, 6-14. 1230 1.7 Changes in chromatin state reveal ARNT2 at a node of a tumorigenic transcription factor signature 1231 3.9 19 driving glioblastoma cell aggressiveness. Acta Neuropathologica, 2018, 135, 267-283. Enhancement of invadopodia activity in glioma cells by sublethal doses of irradiation and temozolomide. Journal of Neurosurgery, 2018, 129, 598-610. Secretion-mediated STAT3 activation promotes self-renewal of glioma stem-like cells during hypoxia. 1233 2.6 71 Oncogene, 2018, 37, 1107-1118. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and 1234 unfolded protein response., 2018, 184, 13-41.

# 1235	ARTICLE An RGD small-molecule integrin antagonist induces detachment-mediated anoikis in glioma cancer stem cells. International Journal of Oncology, 2018, 53, 2683-2694.	IF 1.4	CITATIONS
1236	CDK7 inhibition is a novel therapeutic strategy against GBM both in vitro and in vivo. Cancer Management and Research, 2018, Volume 10, 5747-5758.	0.9	29
1237	Ependymoma. , 2018, , 177-192.		1
1238	Inhibition of glioblastoma cell proliferation, invasion, and mechanism of action of a novel hydroxamic acid hybrid molecule. Cell Death Discovery, 2018, 4, 41.	2.0	30
1239	Contribution of the Wnt Pathway to Defining Biology of Glioblastoma. NeuroMolecular Medicine, 2018, 20, 437-451.	1.8	31
1240	Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nature Genetics, 2018, 50, 1399-1411.	9.4	145
1241	Cells isolated from residual intracranial tumors after treatment express iPSC genes and possess neural lineage differentiation plasticity. EBioMedicine, 2018, 36, 281-292.	2.7	6
1242	Preclinical Models of Pediatric Brain Tumors—Forging Ahead. Bioengineering, 2018, 5, 81.	1.6	16
1243	Next-Generation in vivo Modeling of Human Cancers. Frontiers in Oncology, 2018, 8, 429.	1.3	33
1244	The downregulation of WWOX induces epithelial–mesenchymal transition and enhances stemness and chemoresistance in breast cancer. Experimental Biology and Medicine, 2018, 243, 1066-1073.	1.1	9
1245	Farnesyl diphosphate synthase is important for the maintenance of glioblastoma stemness. Experimental and Molecular Medicine, 2018, 50, 1-12.	3.2	62
1246	A biobank of patient-derived pediatric brain tumor models. Nature Medicine, 2018, 24, 1752-1761.	15.2	124
1247	Selective enrichment of CD133+/SOX2+ glioblastoma stem cells via adherent culture. Oncology Letters, 2018, 16, 4567-4576.	0.8	0
1248	Live-Cell Imaging Assays to Study Clioblastoma Brain Tumor Stem Cell Migration and Invasion. Journal of Visualized Experiments, 2018, , .	0.2	7
1249	Modified carbazoles destabilize microtubules and kill glioblastoma multiform cells. European Journal of Medicinal Chemistry, 2018, 159, 74-89.	2.6	19
1250	MRI analysis to map interstitial flow in the brain tumor microenvironment. APL Bioengineering, 2018, 2,	3.3	50
1251	Restriction of Replication of Oncolytic Herpes Simplex Virus with a Deletion of γ34.5 in Glioblastoma Stem-Like Cells. Journal of Virology, 2018, 92, .	1.5	26
1252	Concise Review: Current Status of Three-Dimensional Organoids as Preclinical Models. Stem Cells, 2018, 36, 1329-1340.	1.4	116

#	Article	IF	CITATIONS
1253	Combinatorial Drug Testing in 3D Microtumors Derived from GBM Patient-Derived Xenografts Reveals Cytotoxic Synergy in Pharmacokinomics-informed Pathway Interactions. Scientific Reports, 2018, 8, 8412.	1.6	12
1254	Oncolytic virotherapy in glioblastoma patients induces a tumor macrophage phenotypic shift leading to an altered glioblastoma microenvironment. Neuro-Oncology, 2018, 20, 1494-1504.	0.6	50
1255	Patterns of Invasive Growth in Malignant Gliomas—The Hippocampus Emerges as an Invasion-Spared Brain Region. Neoplasia, 2018, 20, 643-656.	2.3	34
1256	Plasticity in Glioma Stem Cell Phenotype and Its Therapeutic Implication. Neurologia Medico-Chirurgica, 2018, 58, 61-70.	1.0	25
1257	Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer and Metastasis Reviews, 2018, 37, 213-225.	2.7	26
1258	<i>BCL3</i> expression promotes resistance to alkylating chemotherapy in gliomas. Science Translational Medicine, 2018, 10, .	5.8	52
1259	Adaptive Fibrogenic Reprogramming of Osteosarcoma Stem Cells Promotes Metastatic Growth. Cell Reports, 2018, 24, 1266-1277.e5.	2.9	32
1260	PRL-3 is a potential glioblastoma prognostic marker and promotes glioblastoma progression by enhancing MMP7 through the ERK and JNK pathways. Theranostics, 2018, 8, 1527-1539.	4.6	33
1261	An Experimenter's Guide to Glioblastoma Invasion Pathways. Trends in Molecular Medicine, 2018, 24, 763-780.	3.5	86
1262	Enrichment of cancer stem cells via β-catenin contributing to the tumorigenesis of hepatocellular carcinoma. BMC Cancer, 2018, 18, 783.	1.1	45
1263	Kinomic profiling of glioblastoma cells reveals PLCG1 as a target in restricted glucose. Biomarker Research, 2018, 6, 22.	2.8	14
1264	Metabolic Imaging Detects Low Levels of Glycolytic Activity That Vary with Levels of c-Myc Expression in Patient-Derived Xenograft Models of Glioblastoma. Cancer Research, 2018, 78, 5408-5418.	0.4	34
1265	Glioblastoma Stem-Like Cells Are More Susceptible Than Differentiated Cells to Natural Killer Cell Lysis Mediated Through Killer Immunoglobulin-Like Receptors–Human Leukocyte Antigen Ligand Mismatch and Activation Receptor–Ligand Interactions. Frontiers in Immunology, 2018, 9, 1345.	2.2	52
1266	Modeling Microenvironmental Regulation of Glioblastoma Stem Cells: A Biomaterials Perspective. Frontiers in Materials, 2018, 5, .	1.2	19
1267	Utility of Glioblastoma Patient-Derived Orthotopic Xenografts in Drug Discovery and Personalized Therapy. Frontiers in Oncology, 2018, 8, 23.	1.3	89
1268	Role of Microenvironment in Clioma Invasion: What We Learned from In Vitro Models. International Journal of Molecular Sciences, 2018, 19, 147.	1.8	102
1269	Migration/Invasion of Malignant Gliomas and Implications for Therapeutic Treatment. International Journal of Molecular Sciences, 2018, 19, 1115.	1.8	72
1270	Inhibition of glutamate oxaloacetate transaminase 1 in cancer cell lines results in altered metabolism with increased dependency of glucose. BMC Cancer, 2018, 18, 559.	1.1	44

#	Article	IF	CITATIONS
1271	Regulation of Apoptosis and Radiation Sensitization in Lung Cancer Cells via the Sirt1/NF-κB/Smac Pathway. Cellular Physiology and Biochemistry, 2018, 48, 304-316.	1.1	33
1272	Cell line-based xenograft mouse model of paediatric glioma stem cells mirrors the clinical course of the patient. Carcinogenesis, 2018, 39, 1304-1309.	1.3	15
1273	Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell Death and Disease, 2018, 9, 792.	2.7	47
1274	Biomimetic models to examine microenvironmental regulation of glioblastoma stem cells. Cancer Letters, 2018, 429, 41-53.	3.2	21
1275	Chronophin regulates active vitamin B6 levels and transcriptomic features of glioblastoma cell lines cultured under non-adherent, serum-free conditions. BMC Cancer, 2018, 18, 524.	1.1	6
1276	The viable circulating tumor cells with cancer stem cells feature, where is the way out?. Journal of Experimental and Clinical Cancer Research, 2018, 37, 38.	3.5	36
1277	Distinctive epigenomes characterize glioma stem cells and their response to differentiation cues. Genome Biology, 2018, 19, 43.	3.8	81
1278	An Interplay between Senescence, Apoptosis and Autophagy in Glioblastoma Multiforme—Role in Pathogenesis and Therapeutic Perspective. International Journal of Molecular Sciences, 2018, 19, 889.	1.8	65
1279	KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice. Science Translational Medicine, 2018, 10, .	5.8	54
1280	Methylation of hypoxia-inducible factor (HIF)-1α by C9a/GLP inhibits HIF-1 transcriptional activity and cell migration. Nucleic Acids Research, 2018, 46, 6576-6591.	6.5	90
1281	Zeb1 potentiates genomeâ€wide gene transcription with Lef1 to promote glioblastoma cell invasion. EMBO Journal, 2018, 37, .	3.5	47
1282	The Role of the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma and Preclinical Models to Study It. , 2018, , 735-748.		0
1283	Cell-Cycle Regulation. , 2018, , 257-269.		3
1284	SSTR-2 as a potential tumour-specific marker for fluorescence-guided meningioma surgery. Acta Neurochirurgica, 2018, 160, 1539-1546.	0.9	9
1285	Identification of genomic and molecular traits that present therapeutic vulnerability to HGF-targeted therapy in glioblastoma. Neuro-Oncology, 2019, 21, 222-233.	0.6	12
1286	Advancing precision medicine with personalized drug screening. Drug Discovery Today, 2019, 24, 272-278.	3.2	27
1287	Characterization of a new glioblastoma cell line, GB-val4, with unusual TP53 mutation. Human Cell, 2019, 32, 557-567.	1.2	0
1288	Novel tumor suppressor role of miRNA-876 in cholangiocarcinoma. Oncogenesis, 2019, 8, 42.	2.1	21

#	Article	IF	CITATIONS
1289	Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. Nature Reviews Materials, 2019, 4, 651-668.	23.3	103
1290	Driving Neuronal Differentiation through Reversal of an ERK1/2-miR-124-SOX9 Axis Abrogates Glioblastoma Aggressiveness. Cell Reports, 2019, 28, 2064-2079.e11.	2.9	37
1291	Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naÃ ⁻ ve glioblastoma. BMC Cancer, 2019, 19, 628.	1.1	55
1292	NAMPT: A potential prognostic and therapeutic biomarker in patients with glioblastoma. Oncology Reports, 2019, 42, 963-972.	1.2	14
1293	CCAAT/enhancer-binding protein delta regulates the stemness of glioma stem-like cells through activating PDGFA expression upon inflammatory stimulation. Journal of Neuroinflammation, 2019, 16, 146.	3.1	21
1294	Identification of Posttranslational Modifications (PTMs) of Proteins byÂMass Spectrometry. Advances in Experimental Medicine and Biology, 2019, 1140, 199-224.	0.8	26
1295	Defining Protein Pattern Differences Among Molecular Subtypes of Diffuse Gliomas Using Mass Spectrometry*[S]. Molecular and Cellular Proteomics, 2019, 18, 2029-2043.	2.5	19
1296	Liquid Biopsy in Lung Cancer Screening: The Contribution of Metabolomics. Results of A Pilot Study. Cancers, 2019, 11, 1069.	1.7	22
1297	Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma. Nature Communications, 2019, 10, 2910.	5.8	77
1298	Capture at the single cell level of metabolic modules distinguishing aggressive and indolent glioblastoma cells. Acta Neuropathologica Communications, 2019, 7, 155.	2.4	21
1299	Genetic and Lineage Classification of Glioma-Initiating Cells Identifies a Clinically Relevant Glioblastoma Model. Cancers, 2019, 11, 1564.	1.7	8
1300	BMP signaling mediates glioma stem cell quiescence and confers treatment resistance in glioblastoma. Scientific Reports, 2019, 9, 14569.	1.6	57
1301	Therapeutic Targeting of Cancer Stem Cells in Human Glioblastoma by Manipulating the Renin-Angiotensin System. Cells, 2019, 8, 1364.	1.8	27
1302	Retinoid receptor turnover mediated by sumoylation, ubiquitination and the valosin-containing protein is disrupted in glioblastoma. Scientific Reports, 2019, 9, 16250.	1.6	11
1303	Clinical Significance of <i>PRKCI</i> Gene Expression in Cancerous Tissue in Patients With Gastric Cancer. Anticancer Research, 2019, 39, 5715-5720.	0.5	11
1304	Sulforaphane inhibits gastric cancer stem cells via suppressing sonic hedgehog pathway. International Journal of Food Sciences and Nutrition, 2019, 70, 570-578.	1.3	31
1305	Tyrosine kinase Eph receptor A6 sensitizes gliomaâ€initiating cells towards bone morphogenetic proteinâ€induced apoptosis. Cancer Science, 2019, 110, 3486-3496.	1.7	13
1306	Ocoxin Modulates Cancer Stem Cells and M2 Macrophage Polarization in Glioblastoma. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	1.9	16
#	Article	IF	CITATIONS
------	--	-----	-----------
1307	B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres. EBioMedicine, 2019, 47, 33-43.	2.7	101
1308	Physiologically Relevant Oxygen Concentration (6% O2) as an Important Component of the Microenvironment Impacting Melanoma Phenotype and Melanoma Response to Targeted Therapeutics In Vitro. International Journal of Molecular Sciences, 2019, 20, 4203.	1.8	17
1309	ER stress and UPR activation in glioblastoma: identification of a noncanonical PERK mechanism regulating GBM stem cells through SOX2 modulation. Cell Death and Disease, 2019, 10, 690.	2.7	51
1310	Nilotinib, an approved leukemia drug, inhibits smoothened signaling in Hedgehog-dependent medulloblastoma. PLoS ONE, 2019, 14, e0214901.	1.1	4
1311	A way to understand idiopathic senescence and apoptosis in primary glioblastoma cells– possible approaches to circumvent these phenomena. BMC Cancer, 2019, 19, 923.	1.1	9
1312	Experimental models and tools to tackle glioblastoma. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	70
1313	Patient-Derived Glioma Models: From Patients to Dish to Animals. Cells, 2019, 8, 1177.	1.8	86
1314	Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. Journal of Hematology and Oncology, 2019, 12, 10.	6.9	115
1315	Primitive Cancer Cell States: A Target for Drug Screening?. Trends in Pharmacological Sciences, 2019, 40, 161-171.	4.0	10
1316	Mutation Profiles in Glioblastoma 3D Oncospheres Modulate Drug Efficacy. SLAS Technology, 2019, 24, 28-40.	1.0	14
1317	The Expression of the Chemokine CXCL14 Correlates with Several Aggressive Aspects of Glioblastoma and Promotes Key Properties of Glioblastoma Cells. International Journal of Molecular Sciences, 2019, 20, 2496.	1.8	21
1318	Endothelial cells promote 3D invasion of GBM by IL-8-dependent induction of cancer stem cell properties. Scientific Reports, 2019, 9, 9069.	1.6	76
1319	Evolution of Nucleic Acid Aptamers Capable of Specifically Targeting Glioma Stem Cells via Cell-SELEX. Analytical Chemistry, 2019, 91, 8070-8077.	3.2	25
1320	Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes and Development, 2019, 33, 591-609.	2.7	303
1321	Application of Cancer Organoid Model for Drug Screening and Personalized Therapy. Cells, 2019, 8, 470.	1.8	143
1322	Role of the calcium toolkit in cancer stem cells. Cell Calcium, 2019, 80, 141-151.	1.1	29
1323	Vulnerability of invasive glioblastoma cells to lysosomal membrane destabilization. EMBO Molecular Medicine, 2019, 11, .	3.3	38
1324	Acyl-CoA-Binding Protein Drives Glioblastoma Tumorigenesis by Sustaining Fatty Acid Oxidation. Cell Metabolism, 2019, 30, 274-289.e5.	7.2	115

#	Article	IF	CITATIONS
1325	The efficacy of a coordinated pharmacological blockade in glioblastoma stem cells with nine repurposed drugs using the CUSP9 strategy. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1495-1507.	1.2	40
1326	Genome-Wide CRISPR-Cas9 Screens Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in Glioblastoma Stem Cells. Cell Reports, 2019, 27, 971-986.e9.	2.9	139
1327	Pathological and Molecular Features of Glioblastoma and Its Peritumoral Tissue. Cancers, 2019, 11, 469.	1.7	165
1328	Cancer Stem Cells: Acquisition, Characteristics, Therapeutic Implications, Targeting Strategies and Future Prospects. Stem Cell Reviews and Reports, 2019, 15, 331-355.	5.6	80
1329	Inhibition of protein disulfide isomerase in glioblastoma causes marked downregulation of DNA repair and DNA damage response genes. Theranostics, 2019, 9, 2282-2298.	4.6	35
1330	PIP4K2A as a negative regulator of PI3K in PTEN <i>-</i> deficient glioblastoma. Journal of Experimental Medicine, 2019, 216, 1120-1134.	4.2	27
1331	A reference collection of patient-derived cell line and xenograft models of proneural, classical and mesenchymal glioblastoma. Scientific Reports, 2019, 9, 4902.	1.6	127
1332	Glioblastoma heterogeneity and the tumour microenvironment: implications for preclinical research and development of new treatments. Biochemical Society Transactions, 2019, 47, 625-638.	1.6	104
1333	KRAS mutations in the parental tumour accelerate in vitro growth of tumoroids established from colorectal adenocarcinoma. International Journal of Experimental Pathology, 2019, 100, 12-18.	0.6	7
1334	Modeling Patient-Derived Glioblastoma with Cerebral Organoids. Cell Reports, 2019, 26, 3203-3211.e5.	2.9	293
1335	High density is a property of slow-cycling and treatment-resistant human glioblastoma cells. Experimental Cell Research, 2019, 378, 76-86.	1.2	14
1336	Suppression of glioblastoma by a drug cocktail reprogramming tumor cells into neuronal like cells. Scientific Reports, 2019, 9, 3462.	1.6	19
1337	In Vitro Tumor Cell Rechallenge For Predictive Evaluation of Chimeric Antigen Receptor T Cell Antitumor Function. Journal of Visualized Experiments, 2019, , .	0.2	19
1338	Animal Models of Brain Tumor Surgery. , 2019, , 169-190.		0
1339	Targeting Glioma Stem Cells by Functional Inhibition of Dynamin 2: A Novel Treatment Strategy for Glioblastoma. Cancer Investigation, 2019, 37, 144-155.	0.6	17
1340	Targeting the mDia Formin-Assembled Cytoskeleton Is an Effective Anti-Invasion Strategy in Adult High-Grade Glioma Patient-Derived Neurospheres. Cancers, 2019, 11, 392.	1.7	12
1341	A cell type-selective apoptosis-inducing small molecule for the treatment of brain cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6435-6440.	3.3	23
1342	Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculatureâ€onâ€aâ€Chip System Correlates with Tumor Heterogeneity and Subtypes. Advanced Science, 2019, 6, 1801531.	5.6	69

#	Article	IF	CITATIONS
1343	The Genetic Landscape of Human Glioblastoma and Matched Primary Cancer Stem Cells Reveals Intratumour Similarity and Intertumour Heterogeneity. Stem Cells International, 2019, 2019, 1-12.	1.2	29
1344	A pilot precision medicine trial for children with diffuse intrinsic pontine glioma—PNOC003: A report from the Pacific Pediatric Neuroâ€Oncology Consortium. International Journal of Cancer, 2019, 145, 1889-1901.	2.3	84
1345	CHD4 regulates the DNA damage response and RAD51 expression in glioblastoma. Scientific Reports, 2019, 9, 4444.	1.6	33
1346	Novel Curcumin Inspired Bis-Chalcone Promotes Endoplasmic Reticulum Stress and Glioblastoma Neurosphere Cell Death. Cancers, 2019, 11, 357.	1.7	22
1347	Phenotypic heterogeneity of 2D organoid reflects clinical tumor characteristics. Biochemical and Biophysical Research Communications, 2019, 513, 332-339.	1.0	6
1348	RAB27Bâ€activated secretion of stemâ€like tumor exosomes delivers the biomarker microRNAâ€146aâ€5p, which promotes tumorigenesis and associates with an immunosuppressive tumor microenvironment in colorectal cancer. International Journal of Cancer, 2019, 145, 2209-2224.	ו 2.3	92
1349	Spheroid glioblastoma culture conditions as antigen source for dendritic cell-based immunotherapy: spheroid proteins are survival-relevant targets but can impair immunogenic interferon γ production. Cytotherapy, 2019, 21, 643-658.	0.3	7
1350	The Role of SVZ Stem Cells in Glioblastoma. Cancers, 2019, 11, 448.	1.7	53
1351	The landscape of the mesenchymal signature in brain tumours. Brain, 2019, 142, 847-866.	3.7	228
1352	Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment. EBioMedicine, 2019, 42, 252-269.	2.7	78
1353	ZEB1 Is a Transcription Factor That Is Prognostic and Predictive in Diffuse Gliomas. Frontiers in Neurology, 2019, 9, 1199.	1.1	9
1354	Targeting IDH1-Mutated Malignancies with NRF2 Blockade. Journal of the National Cancer Institute, 2019, 111, 1033-1041.	3.0	61
1355	Developing preclinical models of neuroblastoma: driving therapeutic testing. BMC Biomedical Engineering, 2019, 1, 33.	1.7	14
1356	Tunneling nanotubeâ€like structures in brain tumors. Cancer Reports, 2019, 2, .	0.6	13
1357	Prolactin and its receptor as therapeutic targets in glioblastoma multiforme. Scientific Reports, 2019, 9, 19578.	1.6	19
1358	The Protein Neddylation Inhibitor MLN4924 Suppresses Patient-Derived Glioblastoma Cells via Inhibition of ERK and AKT Signaling. Cancers, 2019, 11, 1849.	1.7	18
1359	Autofluorescence of NADH is a new biomarker for sorting and characterizing cancer stem cells in human glioma. Stem Cell Research and Therapy, 2019, 10, 330.	2.4	28
1360	Secretome analysis of patient-derived GBM tumor spheres identifies midkine as a potent therapeutic target. Experimental and Molecular Medicine, 2019, 51, 1-11.	3.2	28

.

#	Article	IF	CITATIONS
1361	High-Risk Human Papillomavirus E7 Maintains Stemness Via APH1B In Cervical Cancer Stem-Cell Like Cells. Cancer Management and Research, 2019, Volume 11, 9541-9552.	0.9	7
1362	Xenografts Derived From Patients' Ascites Recapitulate the Gemcitabine Resistance Observed in Pancreatic Cancer Patients. Pancreas, 2019, 48, 1294-1302.	0.5	4
1363	Computational assessment of SKA1 as a potential cancer biomarker. Biyokimya Dergisi, 2019, 44, 752-760.	0.1	1
1364	Organoids from the Human Fetal and Adult Pancreas. Current Diabetes Reports, 2019, 19, 160.	1.7	33
1365	Radiation Drives the Evolution of Orthotopic Xenografts Initiated from Glioblastoma Stem–like Cells. Cancer Research, 2019, 79, 6032-6043.	0.4	14
1366	Real-Time Monitoring of Human Glioma Cell Migration on Dorsal Root Ganglion Axon-Oligodendrocyte Co-Cultures. Journal of Visualized Experiments, 2019, , .	0.2	1
1367	EGF-induced nuclear localization of SHCBP1 activates β-catenin signaling and promotes cancer progression. Oncogene, 2019, 38, 747-764.	2.6	44
1368	Human Organoids Share Structural and Genetic Features with Primary Pancreatic Adenocarcinoma Tumors. Molecular Cancer Research, 2019, 17, 70-83.	1.5	83
1369	The proneural gene ASCL1 governs the transcriptional subgroup affiliation in glioblastoma stem cells by directly repressing the mesenchymal gene NDRG1. Cell Death and Differentiation, 2019, 26, 1813-1831.	5.0	41
1370	shRNAâ€mediated PPARα knockdown in human glioma stem cells reduces <i>in vitro</i> proliferation and inhibits orthotopic xenograft tumour growth. Journal of Pathology, 2019, 247, 422-434.	2.1	13
1371	A curcumin derivative hydrazinobenzoylcurcumin suppresses stemâ€like features of glioblastoma cells by targeting Ca ²⁺ /calmodulinâ€dependent protein kinase II. Journal of Cellular Biochemistry, 2019, 120, 6741-6752.	1.2	25
1372	Measurement of Plasma Cell-Free Mitochondrial Tumor DNA Improves Detection of Glioblastoma in Patient-Derived Orthotopic Xenograft Models. Cancer Research, 2019, 79, 220-230.	0.4	67
1373	The effect of transferrin-targeted, resveratrol-loaded liposomes on neurosphere cultures of glioblastoma: implications for targeting tumour-initiating cells. Journal of Drug Targeting, 2019, 27, 601-613.	2.1	22
1374	Novel therapies hijack the blood–brain barrier to eradicate glioblastoma cancer stem cells. Carcinogenesis, 2019, 40, 2-14.	1.3	12
1375	Podoplanin expression is a prognostic biomarker but may be dispensable for the malignancy of glioblastoma. Neuro-Oncology, 2019, 21, 326-336.	0.6	18
1376	Gliomasphere marker combinatorics: multidimensional flow cytometry detects <scp>CD</scp> 44+/ <scp>CD</scp> 133+/ <scp>ITGA</scp> 6+/ <scp>CD</scp> 36+ signature. Journal of Cellular and Molecular Medicine, 2019, 23, 281-292.	1.6	26
1377	Design and applications of man-made biomimetic fibrillar hydrogels. Nature Reviews Materials, 2019, 4, 99-115.	23.3	253
1378	Genetically distinct glioma stem-like cell xenografts established from paired glioblastoma samples harvested before and after molecularly targeted therapy. Scientific Reports, 2019, 9, 139.	1.6	9

#	Article	IF	CITATIONS
1379	Glioblastoma's Next Top Model: Novel Culture Systems for Brain Cancer Radiotherapy Research. Cancers, 2019, 11, 44.	1.7	59
1380	Regulation of human glioma cell migration, tumor growth, and stemness gene expression using a Lck targeted inhibitor. Oncogene, 2019, 38, 1734-1750.	2.6	53
1381	Extracellular Vesicles Released by Clioblastoma Cells Stimulate Normal Astrocytes to Acquire a Tumor-Supportive Phenotype Via p53 and MYC Signaling Pathways. Molecular Neurobiology, 2019, 56, 4566-4581.	1.9	77
1382	Brain Tumor Stem Cells. Methods in Molecular Biology, 2019, , .	0.4	2
1383	Establishment and Culture of Patient-Derived Primary Medulloblastoma Cell Lines. Methods in Molecular Biology, 2019, 1869, 23-36.	0.4	4
1384	Isolation and Culture of Glioblastoma Brain Tumor Stem Cells. Methods in Molecular Biology, 2019, 1869, 11-21.	0.4	9
1385	Phenotypic and Expressional Heterogeneity in the Invasive Glioma Cells. Translational Oncology, 2019, 12, 122-133.	1.7	25
1386	CD163, a novel therapeutic target, regulates the proliferation and stemness of glioma cells via casein kinase 2. Oncogene, 2019, 38, 1183-1199.	2.6	48
1387	Overexpression of TIMP-1 and Sensitivity to Topoisomerase Inhibitors in Glioblastoma Cell Lines. Pathology and Oncology Research, 2019, 25, 59-69.	0.9	3
1388	Brain-Tumor-Regenerating 3D Scaffold-Based Primary Xenograft Models for Glioma Stem Cell Targeted Drug Screening. ACS Biomaterials Science and Engineering, 2019, 5, 139-148.	2.6	5
1389	Bioengineered scaffolds for 3D culture demonstrate extracellular matrix-mediated mechanisms of chemotherapy resistance in glioblastoma. Matrix Biology, 2020, 85-86, 128-146.	1.5	46
1390	Primary colonospheres maintain stem cellâ€like key features after cryopreservation. Journal of Cellular Physiology, 2020, 235, 2452-2463.	2.0	7
1391	Establishment of a hepatocellular carcinoma patientâ€derived xenograft platform and its application in biomarker identification. International Journal of Cancer, 2020, 146, 1606-1617.	2.3	32
1392	TMZ regulates GBM stemness <i>via</i> MMP14â€DLL4â€Notch3 pathway. International Journal of Cancer, 2020, 146, 2218-2228.	2.3	16
1393	Threeâ€dimensional biomimetic hyaluronic acid hydrogels to investigate glioblastoma stem cell behaviors. Biotechnology and Bioengineering, 2020, 117, 511-522.	1.7	26
1394	The Dopamine D2 Receptor Contributes to the Spheroid Formation Behavior of U87 Glioblastoma Cells. Pharmacology, 2020, 105, 19-27.	0.9	27
1395	Potential of Glioblastoma-Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy. CNS Drugs, 2020, 34, 127-145.	2.7	26
1396	Rs145204276 and rs4759314 affect the prognosis of prostate cancer by modulating the GAS5/miR-1284/HMGB1 and HOTAIR/miR-22/HMGB1 signalling pathways. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 435-442.	1.9	15

#	Article	IF	CITATIONS
1397	Upregulation of Epithelial-To-Mesenchymal Transition Markers and P2X7 Receptors Is Associated to Increased Invasiveness Caused by P2X7 Receptor Stimulation in Human Glioblastoma Stem Cells. Cells, 2020, 9, 85.	1.8	32
1398	A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell, 2020, 180, 188-204.e22.	13.5	529
1399	A molecularly distinct subset of glioblastoma requires serum ontaining media to establish sustainable bona fide glioblastoma stem cell cultures. Glia, 2020, 68, 1228-1240.	2.5	12
1400	Suppression of LIM Kinase 1 and LIM Kinase 2 Limits Glioblastoma Invasion. Cancer Research, 2020, 80, 69-78.	0.4	17
1401	The combination of twoâ€dimensional and threeâ€dimensional analysis methods contributes to the understanding of glioblastoma spatial heterogeneity. Journal of Biophotonics, 2020, 13, e201900196.	1.1	10
1402	Tumor propagating cells: drivers of tumor plasticity, heterogeneity, and recurrence. Oncogene, 2020, 39, 2055-2068.	2.6	32
1403	Enhanced SPARCL1 expression in cancer stem cells improves preclinical modeling of glioblastoma by promoting both tumor infiltration and angiogenesis. Neurobiology of Disease, 2020, 134, 104705.	2.1	23
1404	Transcription factors NFIA and NFIB induce cellular differentiation in high-grade astrocytoma. Journal of Neuro-Oncology, 2020, 146, 41-53.	1.4	18
1405	Brain Invasion along Perivascular Spaces by Glioma Cells: Relationship with Blood–Brain Barrier. Cancers, 2020, 12, 18.	1.7	19
1406	Quantitative in vivo bioluminescence imaging of orthotopic patient-derived glioblastoma xenografts. Scientific Reports, 2020, 10, 15361.	1.6	10
1407	Detection of glioblastoma intratumor heterogeneity in radiosensitivity using patient-derived neurosphere cultures. Journal of Neuro-Oncology, 2020, 149, 383-390.	1.4	5
1408	Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Frontiers in Cellular Neuroscience, 2020, 14, 558381.	1.8	38
1409	Drug repositioning of antiretroviral ritonavir for combinatorial therapy in glioblastoma. European Journal of Cancer, 2020, 140, 130-139.	1.3	11
1410	The CNS and the Brain Tumor Microenvironment: Implications for Glioblastoma Immunotherapy. International Journal of Molecular Sciences, 2020, 21, 7358.	1.8	48
1411	Profiling Anti-Apoptotic BCL-xL Protein Expression in Glioblastoma Tumorspheres. Cancers, 2020, 12, 2853.	1.7	19
1412	Modeling the Interaction between the Microenvironment and Tumor Cells in Brain Tumors. Neuron, 2020, 108, 1025-1044.	3.8	31
1413	Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathologica, 2020, 140, 919-949.	3.9	72
1414	Ablation of neuropilin-1 improves the therapeutic response in conventional drug-resistant glioblastoma multiforme. Oncogene, 2020, 39, 7114-7126.	2.6	17

#	Article	IF	CITATIONS
1415	Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nature Communications, 2020, 11, 4997.	5.8	109
1416	B3GNT5 is a novel marker correlated with stemâ€like phenotype and poor clinical outcome in human gliomas. CNS Neuroscience and Therapeutics, 2020, 26, 1147-1154.	1.9	15
1417	Generation of Glioblastoma Patient-Derived Intracranial Xenografts for Preclinical Studies. International Journal of Molecular Sciences, 2020, 21, 5113.	1.8	12
1418	Overexpression of HGF/MET axis along with p53 inhibition induces de novo glioma formation in mice. Neuro-Oncology Advances, 2020, 2, vdaa067.	0.4	8
1419	Differentiation of Tumorigenic C6 Glioma Cells Induced by Enhanced IL-6 Signaling. Medicina (Lithuania), 2020, 56, 625.	0.8	1
1420	Mesenchymal Transformation: The Rosetta Stone of Glioblastoma Pathogenesis and Therapy Resistance. Advanced Science, 2020, 7, 2002015.	5.6	25
1421	The Organoid Era Permits the Development of New Applications to Study Glioblastoma. Cancers, 2020, 12, 3303.	1.7	24
1422	Small subset of Wntâ€activated cells is an initiator of regrowth in colorectal cancer organoids after irradiation. Cancer Science, 2020, 111, 4429-4441.	1.7	8
1423	Letter regarding "Extensive brainstem infiltration, not mass effect, is a common feature of end-stage cerebral glioblastomas― Neuro-Oncology, 2020, 22, 1882-1883.	0.6	2
1424	Physical Cues in the Microenvironment Regulate Stemness-Dependent Homing of Breast Cancer Cells. Cancers, 2020, 12, 2176.	1.7	4
1425	A simple and highly efficient method for multiâ€allelic <scp>CRISPR as9</scp> editing in primary cell cultures. Cancer Reports, 2020, 3, e1269.	0.6	12
1426	Exploiting the Complexities of Glioblastoma Stem Cells: Insights for Cancer Initiation and Therapeutic Targeting. International Journal of Molecular Sciences, 2020, 21, 5278.	1.8	20
1427	CD133 mRNA-Loaded Dendritic Cell Vaccination Abrogates Glioma Stem Cell Propagation in Humanized Glioblastoma Mouse Model. Molecular Therapy - Oncolytics, 2020, 18, 295-303.	2.0	27
1428	Functional characterization of SOX2 as an anticancer target. Signal Transduction and Targeted Therapy, 2020, 5, 135.	7.1	95
1429	Characterization and comparison of genomic profiles between primary cancer cell lines and parent atypical meningioma tumors. Cancer Cell International, 2020, 20, 345.	1.8	3
1430	Head and Neck Cancer Stem Cell-Enriched Spheroid Model for Anticancer Compound Screening. Cells, 2020, 9, 1707.	1.8	15
1431	EGFR/FOXO3a/BIM signaling pathway determines chemosensitivity of BMP4-differentiated glioma stem cells to temozolomide. Experimental and Molecular Medicine, 2020, 52, 1326-1340.	3.2	24
1432	Overcoming the blood–brain barrier by Annexin A1-binding peptide to target brain tumours. British Journal of Cancer, 2020, 123, 1633-1643.	2.9	11

ARTICLE IF CITATIONS # Glioma stem-like cells evade interferon suppression through MBD3/NuRD complex–mediated STAT1 1433 4.2 30 downregulation. Journal of Experimental Medicine, 2020, 217, . Dinaciclib, a cyclin-dependent kinase inhibitor, suppresses cholangiocarcinoma growth by targeting 1434 1.6 CDK2/5/9. Scientific Reports, 2020, 10, 18489. Core regulatory circuitries in defining cancer cell identity across the malignant spectrum. Open 1435 1.5 10 Biology, 2020, 10, 200121. Therapeutic targeting of KSP in preclinical models of high-risk neuroblastoma. Science Translational 1436 5.8 Medicine, 2020, 12, . MicroRNA miR-100 Decreases Glioblastoma Growth by Targeting SMARCA5 and ErbB3 in Tumor-Initiating 1437 0.8 14 Cells. Technology in Cancer Research and Treatment, 2020, 19, 153303382096074. Expression and clinical significance of CXC chemokines in the glioblastoma microenvironment. Life 1438 Sciences, 2020, 261, 118486. Cancer stem cell generation during epithelial-mesenchymal transition is temporally gated by intrinsic 1439 1.7 19 circadian clocks. Clinical and Experimental Metastasis, 2020, 37, 617-635. Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in 1440 3.8 mesenchymal glioblastoma. Genome Biology, 2020, 21, 216. The Alternative Splicing Factor, MBNL1, Inhibits Glioblastoma Tumor Initiation and Progression by 1441 0.4 12 Reducing Hypoxia-Induced Stemness. Cancer Research, 2020, 80, 4681-4692. Phenotypic profiling with a living biobank of primary rhabdomyosarcoma unravels disease 1442 5.8 heterogeneity and AKT sensitivity. Nature Communications, 2020, 11, 4629. The impact of autophagy during the development and survival of glioblastoma. Open Biology, 2020, 10, 1443 1.5 20 200184. Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of 1444 2.1 SOX2 mRNA. Oncogenesis, 2020, 9, 81. Practical Review on Preclinical Human 3D Glioblastoma Models: Advances and Challenges for Clinical 1445 1.7 25 Translation. Cancers, 2020, 12, 2347. The Suitability of Glioblastoma Cell Lines as Models for Primary Glioblastoma Cell Metabolism. 1446 1.7 Cancers, 2020, 12, 3722. Suppression of the USP10/CCND1 axis induces glioblastoma cell apoptosis. Acta Pharmacologica Sinica, 1447 30 2.8 2021, 42, 1338-1346. Glioblastoma Organoids: Pre-Clinical Applications and Challenges in the Context of Immunotherapy. 1448 Frontiers in Oncology, 2020, 10, 604121. Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T 1449 5.589 cell testing. Nature Protocols, 2020, 15, 4000-4033. Therapeutic Efficacy of GC1118, a Novel Anti-EGFR Antibody, against Glioblastoma with High EGFR 1450 Amplification in Patient-Derived Xenografts. Cancers, 2020, 12, 3210.

#	Article	IF	CITATIONS
1451	Effects of BMPER, CXCL10, and HOXA9 on Neovascularization During Early-Growth Stage of Primary High-Grade Glioma and Their Corresponding MRI Biomarkers. Frontiers in Oncology, 2020, 10, 711.	1.3	6
1452	Development of a peptide-based delivery platform for targeting malignant brain tumors. Biomaterials, 2020, 252, 120105.	5.7	15
1453	Zika Virus with Increased CpG Dinucleotide Frequencies Shows Oncolytic Activity in Glioblastoma Stem Cells. Viruses, 2020, 12, 579.	1.5	16
1454	The limitations of targeting MEK signalling in Glioblastoma therapy. Scientific Reports, 2020, 10, 7401.	1.6	17
1455	A kinase-deficient NTRK2 splice variant predominates in glioma and amplifies several oncogenic signaling pathways. Nature Communications, 2020, 11, 2977.	5.8	26
1456	Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Research, 2020, 30, 833-853.	5.7	149
1457	Selective toxicity of functionalised graphene oxide to patients-derived glioblastoma stem cells and minimal toxicity to non-cancerous brain tissue cells. 2D Materials, 2020, 7, 045002.	2.0	3
1458	Developing oncolytic viruses for clinical use: A consortium approach. Cytokine and Growth Factor Reviews, 2020, 56, 133-140.	3.2	13
1459	Metabolic heterogeneity and adaptability in brain tumors. Cellular and Molecular Life Sciences, 2020, 77, 5101-5119.	2.4	34
1460	GBP2 enhances glioblastoma invasion through Stat3/fibronectin pathway. Oncogene, 2020, 39, 5042-5055.	2.6	50
1461	Considering the Experimental Use of Temozolomide in Glioblastoma Research. Biomedicines, 2020, 8, 151.	1.4	25
1462	Gene Expression Alterations and Molecular Analysis of CHEK1 in Solid Tumors. Cancers, 2020, 12, 662.	1.7	18
1463	Experimental Evidence and Clinical Implications of Pituitary Adenoma Stem Cells. Frontiers in Endocrinology, 2020, 11, 54.	1.5	22
1464	A new tyrosine kinase inhibitor K905-0266 inhibits proliferation and sphere formation of glioblastoma cancer cells. Journal of Drug Targeting, 2020, 28, 933-938.	2.1	1
1465	Tumor Microenvironment Is Critical for the Maintenance of Cellular States Found in Primary Glioblastomas. Cancer Discovery, 2020, 10, 964-979.	7.7	102
1466	Sphere-Forming Culture for Expanding Genetically Distinct Patient-Derived Glioma Stem Cells by Cellular Growth Rate Screening. Cancers, 2020, 12, 549.	1.7	2
1467	Methods for in vitro modeling of glioma invasion: Choosing tools to meet the need. Glia, 2020, 68, 2173-2191.	2.5	12
1468	A Brain-Penetrating Hsp90 Inhibitor NXD30001 Inhibits Glioblastoma as a Monotherapy or in Combination With Radiation. Frontiers in Pharmacology, 2020, 11, 974.	1.6	13

#	Article	IF	CITATIONS
1469	Modeling human pediatric and adult gliomas in immunocompetent mice through costimulatory blockade. OncoImmunology, 2020, 9, 1776577.	2.1	8
1470	Utility of Human-Derived Models for Glioblastoma. Cancer Discovery, 2020, 10, 907-909.	7.7	6
1471	Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nature Communications, 2020, 11, 3406.	5.8	300
1472	Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Research, 2020, 80, 4314-4323.	0.4	51
1473	Cancer Stem Cell-Inducing Media Activates Senescence Reprogramming in Fibroblasts. Cancers, 2020, 12, 1745.	1.7	13
1474	Grincamycin B Functions as a Potent Inhibitor for Glioblastoma Stem Cell via Targeting RHOA and PI3K/AKT. ACS Chemical Neuroscience, 2020, 11, 2256-2265.	1.7	7
1475	Comparison of the Genomic Profile of Cancer Stem Cells and Their Non-Stem Counterpart: The Case of Ovarian Cancer. Journal of Clinical Medicine, 2020, 9, 368.	1.0	10
1476	Loss of 5′-Methylthioadenosine Phosphorylase (MTAP) is Frequent in High-Grade Gliomas; Nevertheless, it is Not Associated with Higher Tumor Aggressiveness. Cells, 2020, 9, 492.	1.8	19
1477	The necessity for standardization of glioma stem cell culture: a systematic review. Stem Cell Research and Therapy, 2020, 11, 84.	2.4	15
1478	Matrix protease production, epithelial-to-mesenchymal transition marker expression and invasion of glioblastoma cells in response to osmotic or hydrostatic pressure. Scientific Reports, 2020, 10, 2634.	1.6	15
1479	Study of glycosylation of prostate-specific antigen secreted by cancer tissue-originated spheroids reveals new candidates for prostate cancer detection. Scientific Reports, 2020, 10, 2708.	1.6	25
1480	Comprehensive pharmacogenomic characterization of gastric cancer. Genome Medicine, 2020, 12, 17.	3.6	20
1481	The contribution of ketone bodies to glycolytic inhibition for the treatment of adult and pediatric glioblastoma. Journal of Neuro-Oncology, 2020, 147, 317-326.	1.4	25
1482	Glioblastoma Stem Cells: Driving Resilience through Chaos. Trends in Cancer, 2020, 6, 223-235.	3.8	217
1483	Upcoming Revolutionary Paths in Preclinical Modeling of Pancreatic Adenocarcinoma. Frontiers in Oncology, 2020, 9, 1443.	1.3	16
1484	Suicide gene therapy for the treatment of high-grade glioma: past lessons, present trends, and future prospects. Neuro-Oncology Advances, 2020, 2, vdaa013.	0.4	26
1485	Glioblastome Multiforme: A Bibliometric Analysis. World Neurosurgery, 2020, 136, 270-282.	0.7	65
1486	Off-target effect of the BMI1 inhibitor PTC596 drives epithelial-mesenchymal transition in glioblastoma multiforme. Npj Precision Oncology, 2020, 4, 1.	2.3	75

ARTICLE IF CITATIONS Genomic and Phenotypic Characterization of a Broad Panel of Patient-Derived Xenografts Reflects the 1487 3.2 124 Diversity of Glioblastoma. Clinical Cancer Research, 2020, 26, 1094-1104. Combined proteomics/miRNomics of dendritic cell immunotherapy-treated glioblastoma patients as a 1488 19 screening for survival-associated factors. Npj Vaccines, 2020, 5, 5. A Simple and Reliable Protocol for the Preparation and Culturing of Fresh Surgically Resected Human 1489 0.9 1 Glioblastoma Tissue. Methods and Protocols, 2020, 3, 11. Establishment of novel long-term cultures from EpCAM positive and negative circulating tumour 1490 cells from patients with metastatic gastroesophageal cancer. Scientific Reports, 2020, 10, 539. The Olfactory Bulb Provides a Radioresistant Niche for Glioblastoma Cells. International Journal of 1491 0.4 4 Radiation Oncology Biology Physics, 2020, 107, 194-201. Patient-derived tumor organoid predicts drugs response in glioblastoma: A step forward in 1492 0.8 personalized cancer therapy?. Journal of Clinical Neuroscience, 2020, 78, 400-402. Centrifugal Generation of Droplet-Based 3D Cell Cultures. SLAS Technology, 2020, 25, 436-445. 1493 1.0 12 Cerebral organoids as a model for glioblastoma multiforme. Current Opinion in Biomedical 1494 1.8 Engineering, 2020, 13, 152-159. Investigation of Inter- and Intratumoral Heterogeneity of Glioblastoma Using TOF-SIMS. Molecular 1495 2.5 35 and Cellular Proteomics, 2020, 19, 960-970. Graphene-Induced Transdifferentiation of Cancer Stem Cells as a Therapeutic Strategy against 1496 2.6 Glioblastoma. ACS Biomaterials Science and Engineering, 2020, 6, 3258-3269. High expression of RFX4 is associated with tumor progression and poor prognosis in patients with 1497 0.8 10 glioblastoma. International Journal of Neuroscience, 2021, 131, 7-14. Pre-clinical tumor models of primary brain tumors: Challenges and opportunities. Biochimica Et 1498 3.3 34 Biophysica Acta: Reviews on Cancer, 2021, 1875, 188458. The small molecule drug CBL0137 increases the level of DNA damage and the efficacy of radiotherapy 1499 3.2 11 for glioblastoma. Cancer Letters, 2021, 499, 232-242. Comprehensive analysis of inhibitory checkpoint ligand expression by glioblastoma cells. Immunology 1500 1.0 and Cell Biology, 2021, 99, 403-418 1501 Genome-wide translation patterns in gliomas: An integrative view. Cellular Signalling, 2021, 79, 109883. 1.7 4 Tumor cell network integration in glioma represents a stemness feature. Neuro-Oncology, 2021, 23, 757-769. The prospects of tumor chemosensitivity testing at the single-cell level. Drug Resistance Updates, 1503 6.5 4 2021, 54, 100741. Characterization of adherent primary cell lines from fresh human glioblastoma tissue, defining glial 1504 fibrillary acidic protein as a reliable marker in establishment of glioblastoma cell culture. Cancer Reports, 2021, 4, e1324.

#	Article	IF	CITATIONS
1505	Targeting Glioblastoma: Advances in Drug Delivery and Novel Therapeutic Approaches. Advanced Therapeutics, 2021, 4, 2000124.	1.6	35
1506	MiR-874 Inhibits Cell Proliferation, Migration, and Invasion of Glioma Cells and Correlates with Prognosis of Glioma Patients. NeuroMolecular Medicine, 2021, 23, 247-255.	1.8	4
1508	In Vitro Methods for the Study of Glioblastoma Stem-Like Cell Radiosensitivity. Methods in Molecular Biology, 2021, 2269, 37-47.	0.4	0
1509	Neurospheres and GlialÂCell Cultures; from PlatingÂto Cell Phenotyping. Methods in Molecular Biology, 2021, 2311, 131-145.	0.4	0
1510	Anoikis resistance conferred by tenascin-C-derived peptide TNIIIA2 and its disruption by integrin inactivation. Biochemical and Biophysical Research Communications, 2021, 536, 14-19.	1.0	12
1511	Comprehensive analysis of PLOD family members in low-grade gliomas using bioinformatics methods. PLoS ONE, 2021, 16, e0246097.	1.1	4
1512	Plexin-B2 facilitates glioblastoma infiltration by modulating cell biomechanics. Communications Biology, 2021, 4, 145.	2.0	16
1513	Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Current Topics in Developmental Biology, 2021, 142, 477-530.	1.0	15
1514	Evolution of Experimental Models in the Study of Glioblastoma: Toward Finding Efficient Treatments. Frontiers in Oncology, 2020, 10, 614295.	1.3	51
1515	Targeting Glioblastoma Using a Novel Peptide Specific to a Deglycosylated Isoform of Brevican. Advanced Therapeutics, 2021, 4, 2000244.	1.6	11
1516	Characterization of a new human astrocytoma cell line SHG140: cell proliferation, cell phenotype, karyotype, STR markers and tumorigenicity analysis. Journal of Cancer, 2021, 12, 371-378.	1.2	10
1517	The Isolation of Human Glioblastoma Cells: An Optimised Protocol. Acta Medica Academica, 2021, 49, 4.	0.3	1
1518	A multidimensional biosensor system to guide LUAD individualized treatment. Journal of Materials Chemistry B, 2021, 9, 7991-8002.	2.9	3
1519	Overcoming therapeutic resistance in glioblastoma: Moving beyond the sole targeting of the glioma cells. , 2021, , 91-118.		0
1520	Heparan Sulfate in Normal and Cancer Stem Cells of the Brain. Biology of Extracellular Matrix, 2021, , 205-236.	0.3	0
1521	Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development. Cells, 2021, 10, 265.	1.8	50
1522	A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors. Cancers, 2021, 13, 230.	1.7	13
1523	Phenocopying Glioblastoma: A Review. IEEE Reviews in Biomedical Engineering, 2023, 16, 456-471.	13.1	3

#	Article	IF	CITATIONS
1524	Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neuro-Oncology Advances, 2021, 3, vdab103.	0.4	10
1525	Other cells of the tumor microenvironment. , 2021, , 113-138.		0
1526	Effectiveness of porous silicon nanoparticle treatment at inhibiting the migration of a heterogeneous glioma cell population. Journal of Nanobiotechnology, 2021, 19, 60.	4.2	9
1528	The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma. Cells, 2021, 10, 484.	1.8	73
1529	Organoid Models of Glioblastoma and Their Role in Drug Discovery. Frontiers in Cellular Neuroscience, 2021, 15, 605255.	1.8	31
1530	Three-dimensional model of glioblastoma by co-culturing tumor stem cells with human brain organoids. Biology Open, 2021, 10, .	0.6	18
1531	Proteomic Characterization of Two Extracellular Vesicle Subtypes Isolated from Human Glioblastoma Stem Cell Secretome by Sequential Centrifugal Ultrafiltration. Biomedicines, 2021, 9, 146.	1.4	10
1532	Intranasal delivery of experimental compounds in orthotopic brain tumor mouse models. STAR Protocols, 2021, 2, 100290.	0.5	2
1533	The Dynamic m ⁶ A Epitranscriptome in Glioma Stem Cell Plasticity and Function. , 0, , .		0
1534	Druggable genome and precision medicine in cancer: current challenges. FEBS Journal, 2021, 288, 6142-6158.	2.2	25
1535	Advanced Spheroid, Tumouroid and 3D Bioprinted In-Vitro Models of Adult and Paediatric Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 2962.	1.8	16
1537	Manipulation of the Nanoscale Presentation of Integrin Ligand Produces Cancer Cells with Enhanced Stemness and Robust Tumorigenicity. Nano Letters, 2021, 21, 3225-3236.	4.5	28
1538	Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Frontiers in Immunology, 2021, 12, 640082.	2.2	64
1539	Computationally guided high-throughput design of self-assembling drug nanoparticles. Nature Nanotechnology, 2021, 16, 725-733.	15.6	64
1540	In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. Drug Resistance Updates, 2021, 55, 100753.	6.5	30
1541	miRNA-mediated loss of m6A increases nascent translation in glioblastoma. PLoS Genetics, 2021, 17, e1009086.	1.5	22
1542	The adaptive transition of glioblastoma stem cells and its implications on treatments. Signal Transduction and Targeted Therapy, 2021, 6, 124.	7.1	51
1543	Dissecting the mechanism of temozolomide resistance and its association with the regulatory roles of intracellular reactive oxygen species in glioblastoma. Journal of Biomedical Science, 2021, 28, 18.	2.6	42

#	Article	IF	CITATIONS
1544	From sorting to sequencing in the molecular era: the evolution of the cancer stem cell model in medulloblastoma. FEBS Journal, 2021, , .	2.2	6
1545	Integrated Metabolomics and Transcriptomics Analysis of Monolayer and Neurospheres from Established Glioblastoma Cell Lines. Cancers, 2021, 13, 1327.	1.7	5
1546	Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell International, 2021, 21, 152.	1.8	168
1547	The Promise of Patient-Derived Preclinical Models to Accelerate the Implementation of Personalised Medicine for Children with Neuroblastoma. Journal of Personalized Medicine, 2021, 11, 248.	1.1	13
1548	The expression and prognostic value of the epidermal growth factor receptor family in glioma. BMC Cancer, 2021, 21, 451.	1.1	5
1549	The microRNA-210-Stathmin1 Axis Decreases Cell Stiffness to Facilitate the Invasiveness of Colorectal Cancer Stem Cells. Cancers, 2021, 13, 1833.	1.7	5
1550	In Vivo and Ex Vivo Pediatric Brain Tumor Models: An Overview. Frontiers in Oncology, 2021, 11, 620831.	1.3	15
1551	Glioblastoma Primary Cells Retain the Most Copy Number Alterations That Predict Poor Survival in Glioma Patients. Frontiers in Oncology, 2021, 11, 621432.	1.3	2
1553	Morphological and molecular characteristics of spheroid formation in HT-29 and Caco-2 colorectal cancer cell lines. Cancer Cell International, 2021, 21, 204.	1.8	41
1554	<i>De novo</i> purine biosynthesis is a major driver of chemoresistance in glioblastoma. Brain, 2021, 144, 1230-1246.	3.7	30
1555	The Role of Neurodevelopmental Pathways in Brain Tumors. Frontiers in Cell and Developmental Biology, 2021, 9, 659055.	1.8	26
1556	Evaluating the transcriptional fidelity of cancer models. Genome Medicine, 2021, 13, 73.	3.6	26
1557	Auger electron therapy of glioblastoma using [125I]5-iodo-2′-deoxyuridine and concomitant chemotherapy – Evaluation of a potential treatment strategy. Nuclear Medicine and Biology, 2021, 96-97, 35-40.	0.3	2
1558	Novel dopamine receptor 3 antagonists inhibit the growth of primary and temozolomide resistant glioblastoma cells. PLoS ONE, 2021, 16, e0250649.	1.1	4
1559	From neural stem cells to glioblastoma: A natural history of GBM recapitulated in vitro. Journal of Cellular Physiology, 2021, 236, 7390-7404.	2.0	3
1560	Glioblastoma Metabolomics—In Vitro Studies. Metabolites, 2021, 11, 315.	1.3	11
1561	Expansion of Rare Cancer Cells into Tumoroids for Therapeutic Regimen and Cancer Therapy. Advanced Therapeutics, 2021, 4, 2100017.	1.6	3
1562	CD109-GP130 interaction drives glioblastoma stem cell plasticity and chemoresistance through STAT3 activity. JCl Insight, 2021, 6, .	2.3	23

#	Article	IF	CITATIONS
1563	A Novel Mice Model for Studying the Efficacy and IRAEs of Anti-CTLA4 Targeted Immunotherapy. Frontiers in Oncology, 2021, 11, 692403.	1.3	3
1564	Marizomib sensitizes primary glioma cells to apoptosis induced by a latest-generation TRAIL receptor agonist. Cell Death and Disease, 2021, 12, 647.	2.7	12
1565	Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Frontiers in Oncology, 2021, 11, 631037.	1.3	10
1566	Silibinin Regulates Tumor Progression and Tumorsphere Formation by Suppressing PD-L1 Expression in Non-Small Cell Lung Cancer (NSCLC) Cells. Cells, 2021, 10, 1632.	1.8	29
1567	Repurposing of Anticancer Stem Cell Drugs in Brain Tumors. Journal of Histochemistry and Cytochemistry, 2021, 69, 002215542110254.	1.3	5
1568	Characterization of stem cell-like property in cancer cells based on single-cell impedance measurement in a microfluidic platform. Talanta, 2021, 229, 122259.	2.9	7
1570	FABP7 Facilitates Uptake of Docosahexaenoic Acid in Glioblastoma Neural Stem-like Cells. Nutrients, 2021, 13, 2664.	1.7	10
1571	Patient-Derived Xenograft Models for Intrahepatic Cholangiocarcinoma and Their Application in Guiding Personalized Medicine. Frontiers in Oncology, 2021, 11, 704042.	1.3	5
1572	A Fast and Efficient Approach to Obtaining High-Purity Glioma Stem Cell Culture. Frontiers in Genetics, 2021, 12, 639858.	1.1	3
1573	A GPC2 antibody-drug conjugate is efficacious against neuroblastoma and small-cell lung cancer via binding a conformational epitope. Cell Reports Medicine, 2021, 2, 100344.	3.3	14
1574	The Impact of Astrocytes and Endothelial Cells on Glioblastoma Stemness Marker Expression in Multicellular Spheroids. Cellular and Molecular Bioengineering, 2021, 14, 639-651.	1.0	5
1575	Future Match Making: When Pediatric Oncology Meets Organoid Technology. Frontiers in Cell and Developmental Biology, 2021, 9, 674219.	1.8	6
1576	The Role of N-myc Downstream-Regulated Gene Family in Glioma Based on Bioinformatics Analysis. DNA and Cell Biology, 2021, 40, 949-968.	0.9	2
1577	Comprehensive Transcriptomic Analysis Reveals the Role of the Immune Checkpoint HLA-G Molecule in Cancers. Frontiers in Immunology, 2021, 12, 614773.	2.2	10
1578	Biomimetic bioinks of nanofibrillar polymeric hydrogels for 3D bioprinting. Nano Today, 2021, 39, 101180.	6.2	9
1579	Transcriptional CDK inhibitors, CYC065 and THZ1 promote Bim-dependent apoptosis in primary and recurrent GBM through cell cycle arrest and Mcl-1 downregulation. Cell Death and Disease, 2021, 12, 763.	2.7	8
1580	Chemical tools for epichaperome-mediated interactome dysfunctions of the central nervous system. Nature Communications, 2021, 12, 4669.	5.8	19
1581	Preclinical Evaluation of Sodium Selenite in Mice: Toxicological and Tumor Regression Studies after Striatum Implantation of Human Glioblastoma Stem Cells. International Journal of Molecular Sciences, 2021, 22, 10646.	1.8	3

#	Article	IF	CITATIONS
1582	Strategic Development of an Immunotoxin for the Treatment of Glioblastoma and Other Tumours Expressing the Calcitonin Receptor. Cells, 2021, 10, 2347.	1.8	2
1583	Adaptive mechanoproperties mediated by the formin FMN1 characterize glioblastoma fitness for invasion. Developmental Cell, 2021, 56, 2841-2855.e8.	3.1	12
1584	Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis(dicarbollide) Uptake in Glioma Stem Cells. International Journal of Molecular Sciences, 2021, 22, 9937.	1.8	9
1585	A map of the altered glioma metabolism. Trends in Molecular Medicine, 2021, 27, 1045-1059.	3.5	18
1586	Heterogeneity of Response to Iron-Based Metallodrugs in Glioblastoma Is Associated with Differences in Chemical Structures and Driven by FAS Expression Dynamics and Transcriptomic Subtypes. International Journal of Molecular Sciences, 2021, 22, 10404.	1.8	11
1587	Gelatin methacrylate hydrogels culture model for glioblastoma cells enriches for mesenchymal-like state and models interactions with immune cells. Scientific Reports, 2021, 11, 17727.	1.6	8
1588	Viral targeting of glioblastoma stem cells with patient-specific genetic and post-translational p53 deregulations. Cell Reports, 2021, 36, 109673.	2.9	6
1589	The effect of androgen on wool follicles and keratin production in Hetian sheep. Brazilian Journal of Biology, 2021, 81, 526-536.	0.4	3
1590	Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight, 2021, 6, .	2.3	12
1591	Elevated RGMA Expression Predicts Poor Prognosis in Patients with Glioblastoma. OncoTargets and Therapy, 2021, Volume 14, 4867-4878.	1.0	0
1592	Adenosine A2A Receptor Activation Enhances Blood–Tumor Barrier Permeability in a Rodent Glioma Model. Molecular Cancer Research, 2021, 19, 2081-2095.	1.5	10
1593	Bench to bedside radiosensitizer development strategy for newly diagnosed glioblastoma. Radiation Oncology, 2021, 16, 191.	1.2	6
1594	EIF3D promotes the progression of preeclampsia by inhibiting of MAPK/ERK1/2 pathway. Reproductive Toxicology, 2021, 105, 166-174.	1.3	5
1595	A vascularized tumoroid model for human glioblastoma angiogenesis. Scientific Reports, 2021, 11, 19550.	1.6	17
1596	Defining phenotypic and functional heterogeneity of glioblastoma stem cells by mass cytometry. JCI Insight, 2021, 6, .	2.3	10
1597	Stem Cell Based Modelling of Clioblastoma. Molecular Pathology Library, 2021, , 237-246.	0.1	0
1598	Modulation of Nogo receptor 1 expression orchestrates myelin-associated infiltration of glioblastoma. Brain, 2021, 144, 636-654.	3.7	16
1599	Advances in Research of Adult Gliomas. International Journal of Molecular Sciences, 2021, 22, 924.	1.8	27

		CITATION REPORT		
#	Article		IF	CITATIONS
1600	Targeting the molecular mechanisms of glioma stem cell resistance to chemotherapy.	, 2021, , 587-634.		1
1601	Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neur Advances, 2021, 3, vdab100.	ro-Oncology	0.4	47
1602	Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nano tumor organoids. Biochemical Journal, 2021, 478, 21-39.	tubes in	1.7	74
1603	ATP-binding cassette transporters restrict drug delivery and efficacy against brain tume blood-brain barrier integrity is lost. Cell Reports Medicine, 2021, 2, 100184.	ors even when	3.3	32
1604	Global computational alignment of tumor and cell line transcriptional profiles. Nature Communications, 2021, 12, 22.		5.8	71
1605	Research Translation and Personalized Medicine. , 2012, , 161-191.			5
1606	Neurosphere Culture and Human Organotypic Model to Evaluate Brain Tumor Stem Ce Molecular Biology, 2009, 568, 73-83.	ells. Methods in	0.4	41
1607	Transcription Profiling of Brain Tumors: Tumor Biology and Treatment Stratification. , 2	2009, , 529-551.		2
1608	Final Thoughts: Complexity and Controversy Surrounding the "Cancer Stem Cellâ€ 433-464.	•Paradigm. , 2011, ,		1
1609	Involvement of Heparan Sulfate and Heparanase in Neural Development and Pathogen Tumors. Advances in Experimental Medicine and Biology, 2020, 1221, 365-403.	esis of Brain	0.8	9
1610	Astrocytic Tumors. Recent Results in Cancer Research, 2009, 171, 3-24.		1.8	21
1611	Brain Tumor Stem Cells. Recent Results in Cancer Research, 2009, 171, 241-259.		1.8	3
1612	Common Denominators of Self-renewal and Malignancy in Neural Stem Cells and Glior 387-418.	na. , 2012, ,		1
1613	Combined PI3Kα-mTOR Targeting of Glioma Stem Cells. Scientific Reports, 2020, 10, 2	21873.	1.6	17
1614	Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a F Mechanism. Scientific Reports, 2016, 6, 19404.	Paracrine	1.6	10
1623	Metabolic mapping of glioblastoma stem cells reveals NADH fluxes associated with gliophenotype and survival. Journal of Biomedical Optics, 2020, 25, 1.	oblastoma	1.4	8
1624	Phenotypic Mapping of Pathologic Cross-Talk between Glioblastoma and Innate Immu Synthetic Genetic Tracing. Cancer Discovery, 2021, 11, 754-777.	ne Cells by	7.7	46
1625	Cancer stem cell–associated miRNAs serve as prognostic biomarkers in colorectal ca 2019, 4, .	incer. JCI Insight,	2.3	23

#	Article	IF	CITATIONS
1626	Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma. Journal of Clinical Investigation, 2012, 122, 911-922.	3.9	87
1627	TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets. Journal of Clinical Investigation, 2012, 122, 3563-3578.	3.9	169
1628	Mesenchymal high-grade glioma is maintained by the ID-RAP1 axis. Journal of Clinical Investigation, 2013, 123, 405-417.	3.9	70
1629	Looking in the miR-ror: TGF-β–mediated activation of NF-κB in glioma. Journal of Clinical Investigation, 2012, 122, 3473-3475.	3.9	6
1630	γ-Secretase inhibitor–resistant glioblastoma stem cells require RBPJ to propagate. Journal of Clinical Investigation, 2016, 126, 2415-2418.	3.9	6
1631	Building the case for the calcitonin receptor as a viable target for the treatment of glioblastoma. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592097811.	1.4	5
1632	A method to culture human alveolar rhabdomyosarcoma cell lines as rhabdospheres demonstrates an enrichment in stemness and notch signaling. Biology Open, 2021, 10, .	0.6	2
1633	Gamma-Secretase Represents a Therapeutic Target for the Treatment of Invasive Glioma Mediated by the p75 Neurotrophin Receptor. PLoS Biology, 2008, 6, e289.	2.6	66
1634	Remission of Invasive, Cancer Stem-Like Glioblastoma Xenografts Using Lentiviral Vector-Mediated Suicide Gene Therapy. PLoS ONE, 2009, 4, e6314.	1.1	53
1635	GSK3Î ² Regulates Differentiation and Growth Arrest in Glioblastoma. PLoS ONE, 2009, 4, e7443.	1.1	138
1636	T Cells Enhance Stem-Like Properties and Conditional Malignancy in Gliomas. PLoS ONE, 2010, 5, e10974.	1.1	33
1637	Prediction of Associations between microRNAs and Gene Expression in Glioma Biology. PLoS ONE, 2011, 6, e14681.	1.1	73
1638	Genetic and Epigenetic Modifications of Sox2 Contribute to the Invasive Phenotype of Malignant Gliomas. PLoS ONE, 2011, 6, e26740.	1.1	187
1639	Cord Blood Stem Cells Inhibit Epidermal Growth Factor Receptor Translocation to Mitochondria in Glioblastoma. PLoS ONE, 2012, 7, e31884.	1.1	15
1640	CD57high Neuroblastoma Cells Have Aggressive Attributes Ex Situ and an Undifferentiated Phenotype in Patients. PLoS ONE, 2012, 7, e42025.	1.1	14
1641	Histone Demethylase Jumonji D3 (JMJD3) as a Tumor Suppressor by Regulating p53 Protein Nuclear Stabilization. PLoS ONE, 2012, 7, e51407.	1.1	96
1642	High-Resolution Mutational Profiling Suggests the Genetic Validity of Glioblastoma Patient-Derived Pre-Clinical Models. PLoS ONE, 2013, 8, e56185.	1.1	25
1643	Resistance to Oncolytic Myxoma Virus Therapy in Nf1â^'/â^'/Trp53â^'/â^' Syngeneic Mouse Glioma Models Is Independent of Anti-Viral Type-I Interferon. PLoS ONE, 2013, 8, e65801.	1.1	16

#	Article	IF	Citations
1644	Cadherin-11 Regulates Motility in Normal Cortical Neural Precursors and Glioblastoma. PLoS ONE, 2013, 8, e70962.	1.1	26
1645	Podocalyxin-Like Protein Is Expressed in Glioblastoma Multiforme Stem-Like Cells and Is Associated with Poor Outcome. PLoS ONE, 2013, 8, e75945.	1.1	38
1646	BAFF, APRIL, TWEAK, BCMA, TACI and Fn14 Proteins Are Related to Human Glioma Tumor Grade: Immunohistochemistry and Public Microarray Data Meta-Analysis. PLoS ONE, 2013, 8, e83250.	1.1	27
1647	Hypoxia Enhances the Antiglioma Cytotoxicity of B10, a Glycosylated Derivative of Betulinic Acid. PLoS ONE, 2014, 9, e94921.	1.1	13
1648	Gene Expression Profiling Identifies Microphthalmia-Associated Transcription Factor (MITF) and Dickkopf-1 (DKK1) as Regulators of Microenvironment-Driven Alterations in Melanoma Phenotype. PLoS ONE, 2014, 9, e95157.	1.1	26
1649	Novel Anti-Apoptotic MicroRNAs 582-5p and 363 Promote Human Glioblastoma Stem Cell Survival via Direct Inhibition of Caspase 3, Caspase 9, and Bim. PLoS ONE, 2014, 9, e96239.	1.1	95
1650	Sustained Radiosensitization of Hypoxic Glioma Cells after Oxygen Pretreatment in an Animal Model of Glioblastoma and In Vitro Models of Tumor Hypoxia. PLoS ONE, 2014, 9, e111199.	1.1	26
1651	A Combined Gene Signature of Hypoxia and Notch Pathway in Human Glioblastoma and Its Prognostic Relevance. PLoS ONE, 2015, 10, e0118201.	1.1	45
1652	A High-Throughput In Vitro Drug Screen in a Genetically Engineered Mouse Model of Diffuse Intrinsic Pontine Glioma Identifies BMS-754807 as a Promising Therapeutic Agent. PLoS ONE, 2015, 10, e0118926.	1.1	57
1653	Meta-Analysis of Public Microarray Datasets Reveals Voltage-Gated Calcium Gene Signatures in Clinical Cancer Patients. PLoS ONE, 2015, 10, e0125766.	1.1	84
1654	Arsenic Trioxide Sensitizes Glioblastoma to a Myc Inhibitor. PLoS ONE, 2015, 10, e0128288.	1.1	12
1655	Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model. PLoS ONE, 2016, 11, e0159746.	1.1	23
1656	Regulation of the JMJD3 (KDM6B) histone demethylase in glioblastoma stem cells by STAT3. PLoS ONE, 2017, 12, e0174775.	1.1	43
1657	A 4-miRNA signature to predict survival in glioblastomas. PLoS ONE, 2017, 12, e0188090.	1.1	21
1658	Cancer-type dependent expression of CK2 transcripts. PLoS ONE, 2017, 12, e0188854.	1.1	57
1659	Modeling Physiologic Microenvironments in Three-Dimensional Microtumors Maintains Brain Tumor Initiating Cells. Journal of Cancer Stem Cell Research, 2017, 5, 1.	1.1	3
1660	Standardization of an orthotopic mouse brain tumor model following transplantation of CT-2A astrocytoma cells. Histology and Histopathology, 2007, 22, 1309-26.	0.5	51
1661	The Curious Case of ZEB1. Discoveries, 2018, 6, e86.	1.5	11

#	Article	IF	CITATIONS
1662	Mouse Models of Glioblastoma. , 0, , 131-139.		15
1663	Cancer stem cell-specific expression profiles reveal emerging bladder cancer biomarkers and identify circRNA_103809 as an important regulator in bladder cancer. Aging, 2020, 12, 3354-3370.	1.4	21
1664	Expression and prognostic value of long non-coding RNA H19 in glioma via integrated bioinformatics analyses. Aging, 2020, 12, 3407-3430.	1.4	40
1665	YTHDF2 correlates with tumor immune infiltrates in lower-grade glioma. Aging, 2020, 12, 18476-18500.	1.4	16
1666	<i>TP53</i> mutated glioblastoma stem-like cell cultures are sensitive to dual mTORC1/2 inhibition while resistance in <i>TP53</i> wild type cultures can be overcome by combined inhibition of mTORC1/2 and Bcl-2. Oncotarget, 2016, 7, 58435-58444.	0.8	8
1667	Tumor-initiating cell frequency is relevant for glioblastoma aggressiveness. Oncotarget, 2016, 7, 71491-71503.	0.8	11
1668	PTEN loss represses glioblastoma tumor initiating cell differentiation via inactivation of Lgl1. Oncotarget, 2013, 4, 1266-1279.	0.8	32
1669	Cancer stem cells from human glioblastoma resemble but do not mimic original tumors after <i>in vitro</i> passaging in serum-free media. Oncotarget, 2016, 7, 65888-65901.	0.8	28
1670	Case-specific potentiation of glioblastoma drugs by pterostilbene. Oncotarget, 2016, 7, 73200-73215.	0.8	16
1671	Coordination of signalling networks and tumorigenic properties by ABL in glioblastoma cells. Oncotarget, 2016, 7, 74747-74767.	0.8	12
1672	Investigating the utility of human melanoma cell lines as tumour models. Oncotarget, 2017, 8, 10498-10509.	0.8	53
1673	Disabled cell density sensing leads to dysregulated cholesterol synthesis in glioblastoma. Oncotarget, 2017, 8, 14860-14875.	0.8	30
1674	Stem cell cultures derived from pediatric brain tumors accurately model the originating tumors. Oncotarget, 2017, 8, 18626-18639.	0.8	30
1675	Small G protein Rac GTPases regulate the maintenance of glioblastoma stem-like cells <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2017, 8, 18031-18049.	0.8	30
1676	Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget, 2017, 8, 37974-37990.	0.8	61
1677	Involvement of Polo-like kinase 1 (Plk1) in quiescence regulation of cancer stem-like cells of the gastric cancer cell lines. Oncotarget, 2017, 8, 37633-37645.	0.8	11
1678	Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget, 2017, 8, 64932-64953.	0.8	58
1679	ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of HAUS5. Oncotarget, 2017, 8, 48545-48562.	0.8	19

#	Article	IF	CITATIONS
1680	Patient-derived DIPG cells preserve stem-like characteristics and generate orthotopic tumors. Oncotarget, 2017, 8, 76644-76655.	0.8	27
1681	A genome-wide miRNA screen revealed miR-603 as a MGMT-regulating miRNA in glioblastomas. Oncotarget, 2014, 5, 4026-4039.	0.8	62
1682	Xenotransplantation of pediatric low grade gliomas confirms the enrichment of <i>BRAF</i> V600E mutation and preservation of <i>CDKN2A</i> deletion in a novel orthotopic xenograft mouse model of progressive pleomorphic xanthoastrocytoma. Oncotarget, 2017, 8, 87455-87471.	0.8	21
1683	Hedgehog signaling sensitizes Glioma stem cells to endogenous nano-irradiation. Oncotarget, 2014, 5, 5483-5493.	0.8	30
1684	MAEL contributes to gastric cancer progression by promoting ILKAP degradation. Oncotarget, 2017, 8, 113331-113344.	0.8	20
1685	Intracellular and extracellular domains of protein tyrosine phosphatase PTPRZ-B differentially regulate glioma cell growth and motility. Oncotarget, 2014, 5, 8690-8702.	0.8	28
1686	SuperQuant-assisted comparative proteome analysis of glioblastoma subpopulations allows for identification of potential novel therapeutic targets and cell markers. Oncotarget, 2018, 9, 9400-9414.	0.8	8
1687	Establishment of primary cell culture and an intracranial xenograft model of pediatric ependymoma: a prospect for therapy development and understanding of tumor biology. Oncotarget, 2018, 9, 21731-21743.	0.8	8
1688	WNK1 kinase and its partners Akt, SGK1 and NBC-family Na+/HCO3â´´ cotransporters are potential therapeutic targets for glioblastoma stem-like cells linked to Bisacodyl signaling. Oncotarget, 2018, 9, 27197-27219.	0.8	5
1689	Inhibition of glioblastoma malignancy by Lgl1. Oncotarget, 2014, 5, 11541-11551.	0.8	16
1689 1690	Inhibition of glioblastoma malignancy by Lgl1. Oncotarget, 2014, 5, 11541-11551. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget, 2014, 5, 11252-11268.	0.8 0.8	16 108
1689 1690 1691	Inhibition of glioblastoma malignancy by Lgl1. Oncotarget, 2014, 5, 11541-11551. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget, 2014, 5, 11252-11268. ATF4 contributes to autophagy and survival in sunitinib treated brain tumor initiating cells (BTICs). Oncotarget, 2019, 10, 368-382.	0.8 0.8 0.8	16 108 16
1689 1690 1691 1692	Inhibition of glioblastoma malignancy by Lgl1. Oncotarget, 2014, 5, 11541-11551. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget, 2014, 5, 11252-11268. ATF4 contributes to autophagy and survival in sunitinib treated brain tumor initiating cells (BTICs). Oncotarget, 2019, 10, 368-382. Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction. Oncotarget, 2015, 6, 1157-1170.	0.8 0.8 0.8 0.8	16 108 16 39
1689 1690 1691 1692 1693	Inhibition of glioblastoma malignancy by Lgl1. Oncotarget, 2014, 5, 11541-11551.Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget, 2014, 5, 11252-11268.ATF4 contributes to autophagy and survival in sunitinib treated brain tumor initiating cells (BTICs). Oncotarget, 2019, 10, 368-382.Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction. Oncotarget, 2015, 6, 1157-1170.Patient-derived glioblastoma cultures as a tool for small-molecule drug discovery. Oncotarget, 2020, 11, 443-451.	0.8 0.8 0.8 0.8 0.8	16 108 16 39 16
1689 1690 1691 1692 1693	Inhibition of glioblastoma malignancy by Lgl1. Oncotarget, 2014, 5, 11541-11551.Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget, 2014, 5, 11252-11268.ATF4 contributes to autophagy and survival in sunitinib treated brain tumor initiating cells (BTICs). Oncotarget, 2019, 10, 368-382.Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction. Oncotarget, 2015, 6, 1157-1170.Patient-derived glioblastoma cultures as a tool for small-molecule drug discovery. Oncotarget, 2020, 11, 443-451.Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma. Oncotarget, 2015, 6, 10950-10963.	0.8 0.8 0.8 0.8 0.8	16 108 16 39 16 23
1689 1690 1691 1692 1693 1695	Inhibition of glioblastoma malignancy by Lgl1. Oncotarget, 2014, 5, 11541-11551.Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget, 2014, 5, 11252-11268.ATF4 contributes to autophagy and survival in sunitinib treated brain tumor initiating cells (BTICs). Oncotarget, 2019, 10, 368-382.Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction. Oncotarget, 2015, 6, 1157-1170.Patient-derived glioblastoma cultures as a tool for small-molecule drug discovery. Oncotarget, 2020, 11, 443-451.Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma. Oncotarget, 2015, 6, 10950-10963.Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget, 2015, 6, 8788-8806.	0.8 0.8 0.8 0.8 0.8 0.8	16 108 16 39 16 23 117
 1689 1690 1691 1692 1693 1694 1695 1696 	Inhibition of glioblastoma malignancy by Lgl1. Oncotarget, 2014, 5, 11541-11551.Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget, 2014, 5, 11252-11268.ATF4 contributes to autophagy and survival in sunitinib treated brain tumor initiating cells (BTICs). Oncotarget, 2019, 10, 368-382.Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction. Oncotarget, 2015, 6, 1157-1170.Patient-derived glioblastoma cultures as a tool for small-molecule drug discovery. Oncotarget, 2020, 11, 443-451.Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma. Oncotarget, 2015, 6, 10950-10963.Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget, 2015, 6, 8788-8806.Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twist1. Oncotarget, 2011, 2, 1028-1042.	0.8 0.8 0.8 0.8 0.8 0.8 0.8	16 108 16 39 16 23 117 65

#	Article	IF	CITATIONS
1698	Aberrant mesenchymal differentiation of glioma stem-like cells: implications for therapeutic targeting. Oncotarget, 2015, 6, 31007-31017.	0.8	24
1699	Reciprocal regulation of Abl kinase by Crk Y251 and Abi1 controls invasive phenotypes in glioblastoma. Oncotarget, 2015, 6, 37792-37807.	0.8	21
1700	Cancer stem cell targeted therapy: progress amid controversies. Oncotarget, 2015, 6, 44191-44206.	0.8	129
1701	FOXP3, a novel glioblastoma oncosuppressor, affects proliferation and migration. Oncotarget, 2012, 3, 1146-1157.	0.8	24
1702	Polycomb complex protein BMI-1 promotes invasion and metastasis of pancreatic cancer stem cells by activating PI3K/AKT signaling, an <i>ex vivo</i> , <i>in vitro</i> , and <i>in vivo</i> study. Oncotarget, 2016, 7, 9586-9599.	0.8	54
1703	Distinct lymphocyte antigens 6 (Ly6) family members Ly6D, Ly6E, Ly6K and Ly6H drive tumorigenesis and clinical outcome. Oncotarget, 2016, 7, 11165-11193.	0.8	76
1704	p73 promotes glioblastoma cell invasion by directly activating POSTN (periostin) expression. Oncotarget, 2016, 7, 11785-11802.	0.8	36
1705	Nuclear factor one B (<i>NFIB</i>) encodes a subtype-specific tumour suppressor in glioblastoma. Oncotarget, 2016, 7, 29306-29320.	0.8	34
1706	NOTCH blockade combined with radiation therapy and temozolomide prolongs survival of orthotopic glioblastoma. Oncotarget, 0, 7, 41251-41264.	0.8	65
1707	Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget, 2016, 7, 38638-38657.	0.8	53
1708	Glioblastoma radiosensitization by pimozide. Translational Cancer Research, 2016, 5, S1029-S1032.	0.4	4
1709	Oncolytic Adenovirus: Preclinical and Clinical Studies in Patients with Human Malignant Gliomas. Current Gene Therapy, 2009, 9, 422-427.	0.9	99
1710	iNOS: A Potential Therapeutic Target for Malignant Glioma. Current Molecular Medicine, 2013, 13, 1241-1249.	0.6	52
1711	Feasibility of Targeting Clioblastoma Stem Cells: From Concept to Clinical Trials. Current Topics in Medicinal Chemistry, 2020, 19, 2974-2984.	1.0	9
1712	Targeting Stem Cells-Clinical Implications for Cancer Therapy. Current Stem Cell Research and Therapy, 2009, 4, 147-153.	0.6	49
1713	Angiogenesis and Hypoxia in Glioblastoma: A Focus on Cancer Stem Cells. CNS and Neurological Disorders - Drug Targets, 2012, 11, 878-883.	0.8	24
1714	Cancer Stem Cells, Models, Drugs and Future Prospective. , 2015, , 135-156.		1
1715	Chemical Proteomic Approaches Targeting Cancer Stem Cells: A Review of Current Literature. Cancer Genomics and Proteomics, 2017, 14, 315-327.	1.0	7

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1716	Stem cells and models of astrocytomas. Clinical and Investigative Medicine, 2009, 32,	166.	0.3	4
1717	Differential signature of the centrosomal MARK4 isoforms in glioma. Analytical Cellula 2011, 34, 319-38.	Pathology,	0.7	13
1718	Regulating Methylation at H3K27: A Trick or Treat for Cancer Cell Plasticity. Cancers, 2	:020, 12, 2792.	1.7	26
1719	Exploring the Potential of Drug Response Assays for Precision Medicine in Ovarian Car International Journal of Molecular Sciences, 2021, 22, 305.	cer.	1.8	10
1720	Organoids of liver diseases: From bench to bedside. World Journal of Gastroenterology 1913-1927.	ı, 2019, 25,	1.4	12
1721	Evaluation of the TRPM protein family as potential biomarkers for various types of hun using public database analyses. Experimental and Therapeutic Medicine, 2020, 20, 770	nan cancer)-785.	0.8	5
1722	Knockdown of Tousled‑like kinase 1 inhibits survival of glioblastoma multiforme cell Journal of Molecular Medicine, 2020, 46, 685-699.	s. International	1.8	11
1723	A natural compound obtained from Valeriana�jatamansi selectively inhibits glioma s Oncology Letters, 2020, 19, 1384-1392.	tem cells.	0.8	4
1724	GSK‑3 inhibitor CHIR99021 enriches glioma stem‑like cells. Oncology Reports, 20.	20, 43, 1479-1490.	1.2	6
1725	Patientâ€'derived orthotopic xenograft glioma models fail to replicate the magnetic re features of the original patient tumor. Oncology Reports, 2020, 43, 1619-1629.	sonance imaging	1.2	7
1726	Towards an advanced cell-based in vitro glioma model system. AIMS Genetics, 2018, 0	5, 091-112.	1.9	14
1727	The top cited articles on glioma stem cells in Web of Science. Neural Regeneration Res 1431-8.	earch, 2013, 8,	1.6	12
1728	Cancer stem cells in glioma: challenges and opportunities. Translational Cancer Resear 429-441.	ch, 2013, 2,	0.4	28
1729	Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress Glioblastoma Tumor G Research and Treatment, 2018, 50, 1009-1022.	rowth. Cancer	1.3	21
1730	A Review on the Biology of Cancer Stem Cells. Stem Cell Discovery, 2014, 04, 83-89.		0.5	21
1731	Glioblastoma stem cells: Molecular characteristics and therapeutic implications. World Stem Cells, 2014, 6, 230.	Journal of	1.3	50
1732	Rapamycin induces differentiation of glioma stem/progenitor cells by activating autop Journal of Cancer, 2011, 30, 712-720.	hagy. Chinese	4.9	15
1733	New Insight on the Role of Transient Receptor Potential (TRP) Channels in Driven Glior Pathways. , 0, , .	nagenesis		1

#	Article	IF	CITATIONS
1734	Receptor Tyrosine Kinase Interaction with the Tumor Microenvironment in Malignant Progression of Human Glioblastoma. , 0, , .		2
1735	UHRF2 mRNA Expression is Low in Malignant Glioma but Silencing Inhibits the Growth of U251 Glioma Cells in vitro. Asian Pacific Journal of Cancer Prevention, 2012, 13, 5137-5142.	0.5	12
1736	The retromer complex safeguards against neural progenitor-derived tumorigenesis by regulating Notch receptor trafficking. ELife, 2018, 7, .	2.8	18
1737	Improving drug discovery using image-based multiparametric analysis of the epigenetic landscape. ELife, 2019, 8, .	2.8	19
1738	Expression patterns and the prognostic value of the EMILIN/Multimerin family members in low-grade glioma. PeerJ, 2020, 8, e8696.	0.9	6
1739	Polycomb group proteins in cancer: multifaceted functions and strategies for modulation. NAR Cancer, 2021, 3, zcab039.	1.6	10
1740	Opportunities and challenges of glioma organoids. Cell Communication and Signaling, 2021, 19, 102.	2.7	19
1741	Kinomics platform using GBM tissue identifies BTK as being associated with higher patient survival. Life Science Alliance, 2021, 4, e202101054.	1.3	4
1742	Three-dimensionalÂculture models to study glioblastoma — current trends and future perspectives. Current Opinion in Pharmacology, 2021, 61, 91-97.	1.7	11
1743	Cancer Stem Cell Theory and Head & Neck Cancer. Practica Otologica, 2009, 102, 403-410.	0.0	0
1745	Epigenetic Profiling of Gliomas. , 2009, , 615-650.		1
1746	Targeting Brain Cancer Stem Cells in the Clinic. , 2009, , 275-286.		1
1747	Brain Cancer Stem Cells as Targets of Novel Therapies. , 2009, , 1057-1075.		2
1748	Cancer Stem Cells in Colorectal Cancer. , 2009, , 223-250.		1
1749	Therapeutic Approaches to Target Cancer Stem Cells. , 2009, , 545-560.		1
1750	Modeling Gliomas Using PDGF-Expressing Retroviruses. , 2009, , 3-27.		2
1751	The stem cell connection of primary brain tumors. Biomedical Reviews, 2014, 20, 31.	0.6	0
1752	Efficient Derivation and Propagation of Glioblastoma Stem-Like Cells Under Serum-Free Conditions Using the Cambridge Protocol. , 2011, , 191-204.		0

ARTICLE IF CITATIONS The Cancer Stem Cell Paradigm., 2011, , 225-248. 1754 0 Glioma-Initiating Cells: Interferon Treatment., 2011, , 269-276. 1756 Primary Glioma Spheroids: Advantage of Serum-Free Medium., 2012, , 83-91. 0 Gliosarcoma Stem Cells: Glial and Mesenchymal Differentiation., 2012, , 75-81. Identification of Glioma Stem Cells: What is Already Known and How Far do We Still Need to Go? The 1758 0.3 1 Biomarkers Dilemma. Journal of Carcinogenesis & Mutagenesis, 2012, s1, . Brain Tumor Stem Cells and Immunotherapy. Journal of Cancer Research Updates, 0, , . 0.3 Basic Issues on Cancer Stem Cells-Concept, In vitro Models and Therapeutic Implications. Niche 1760 0.4 0 Journal, 2012, 1, 17-20. Cancer Stem Cells: The Gist of the Matter. Pancreatic Islet Biology, 2013, , 199-224. 0.1 1762 Abstract 4889: Alteration of cancer stem cell-like phenotype by histone deacetylase inhibitors in 1764 0 squamous cell carcinoma of the head and neck.., 2013, , 1765 Experimental Models of Glioma., 2014, , 399-431. PBK/TOPK as a Potential Therapeutic Target in Glioblastoma and Other Malignancies. Molecular 1767 0.0 0 Biology (Los Angeles, Calif), 2015, 05, . Connexins: Bridging the Gap Between Cancer Cell Communication in Glioblastoma., 2015, , 29-41. Brain tumor stem cells: phenotypic characterization and directed therapeutic approaches. Cell and 1770 0.2 1 Organ Transplantology, 2015, 3, 177-183. Cancer Stem Cell Microenvironment in Canine Glioblastoma Development: Animal Model for Human 1771 0.1 Disease. International Journal of Pathology and Clinical Research, 2015, 1, . 1772 Signalling Pathways in Glioma-Propagating Cells. Cell Biology: Research & Therapy, 0, s1, . 0.2 0 Glioma Stem Cells., 2016, , 335-356. Patient-derived cells modeling pediatric glioma. Aging, 2017, 9, 1353-1354. 1775 1.4 0 Chapter 15: Photoablation of Glioblastoma Stem Cells by Singleâ€'Walled Carbon Nanotubes Functionalized with CD133 Antibody., 2017, , 389-410.

# 1781	ARTICLE Review on the molecular signaling pathways involved in controlling cancer stem cells and treatment. The Journal of Qazvin University of Medical Sciences, 2018, 22, 77-92.	IF 0.1	CITATIONS
1784	Tracking Metabolic Rewiring of Cancer Metabolism in Humans Using Isotope-Resolved NMR. Methods in Molecular Biology, 2019, 2037, 169-186.	0.4	0
1792	Dihydropyrimidinase‑related protein 5 controls glioblastoma stem cell characteristics as a biomarker of proneural‑subtype glioblastoma stem cells. Oncology Letters, 2020, 20, 1153-1162.	0.8	2
1797	Mouse Models of Diffuse Lower-Grade Gliomas of the Adult. Neuromethods, 2021, , 3-38.	0.2	0
1798	Drug Repositioning Screen on a New Primary Cell Line Identifies Potent Therapeutics for Glioblastoma. Frontiers in Neuroscience, 2020, 14, 578316.	1.4	1
1800	Three-dimensional organoid culture unveils resistance to clinical therapies in adult and pediatric glioblastoma. Translational Oncology, 2022, 15, 101251.	1.7	27
1801	Transcriptional and epigenetic regulatory mechanisms in glioblastoma stem cells. , 2020, , 231-255.		1
1802	Relationship between Cancer Stem Cell Marker CD133 and Cancer Germline Antigen Genes in NCI-H292 Lung Cancer Cells. Korean Journal of Thoracic and Cardiovascular Surgery, 2020, 53, 22-27.	0.6	2
1805	HOXC6/8/10/13 predict poor prognosis and associate with immune infiltrations in glioblastoma. International Immunopharmacology, 2021, 101, 108293.	1.7	6
1808	Human Glioblastoma Organoids to Model Brain Tumor Heterogeneity Ex Vivo. Neuromethods, 2021, , 133-158.	0.2	0
1810	The cancer stem cell theory: is it correct?. Molecules and Cells, 2008, 26, 514-6.	1.0	35
1812	Actualities and perspectives in neurosurgery. Journal of Medicine and Life, 2008, 1, 23-9.	0.4	0
1814	Colon cancer stem cells. Gastrointestinal Cancer Research: GCR, 2010, , S16-23.	0.8	40
1818	Effects of Zeng Sheng Ping/ACAPHA on malignant brain tumor growth and Notch signaling. Anticancer Research, 2012, 32, 2689-96.	0.5	7
1819	Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures. International Journal of Clinical and Experimental Pathology, 2013, 6, 546-60.	0.5	30
1821	CD133: to be or not to be, is this the real question?. American Journal of Translational Research (discontinued), 2013, 5, 563-81.	0.0	83
1824	Clinical value of CD133 and nestin in patients with glioma: a population-based study. International Journal of Clinical and Experimental Pathology, 2014, 7, 3739-51.	0.5	39
1827	Six1 promotes glioblastoma cell proliferation and invasion by upregulation of connective tissue growth factor. American Journal of Cancer Research, 2015, 5, 1823-30.	1.4	10

#	Article	IF	CITATIONS
1828	Fms related tyrosine kinase 1 (Flt1) functions as an oncogene and regulates glioblastoma cell metastasis by regulating sonic hedgehog signaling. American Journal of Cancer Research, 2017, 7, 1164-1176.	1.4	3
1829	Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research. Comparative Medicine, 2017, 67, 300-314.	0.4	18
1830	SPOCD1 promotes the proliferation and metastasis of glioma cells by up-regulating PTX3. American Journal of Cancer Research, 2018, 8, 624-635.	1.4	9
1831	Enrichment and characterization of cancer stem-like cells in ultra-low concentration of serum and non-adhesive culture system. American Journal of Translational Research (discontinued), 2018, 10, 1552-1561.	0.0	5
1832	Targeting snoRNAs as an emerging method of therapeutic development for cancer. American Journal of Cancer Research, 2019, 9, 1504-1516.	1.4	5
1833	Overexpressed gene signature of EPH receptor A/B family in cancer patients-comprehensive analyses from the public high-throughput database. International Journal of Clinical and Experimental Pathology, 2020, 13, 1220-1242.	0.5	11
1834	PSMA PET Imaging in Glioblastoma: A Preclinical Evaluation and Theranostic Outlook. Frontiers in Oncology, 2021, 11, 774017.	1.3	10
1835	Temozolomide sensitivity of malignant glioma cell lines – a systematic review assessing consistencies between in vitro studies. BMC Cancer, 2021, 21, 1240.	1.1	22
1836	Comprehensive analysis of expression, prognosis and immune infiltration for TIMPs in glioblastoma. BMC Neurology, 2021, 21, 447.	0.8	8
1837	MEOX2 Transcription Factor Is Involved in Survival and Adhesion of Glioma Stem-like Cells. Cancers, 2021, 13, 5943.	1.7	6
1838	AEBP1 as a potential immune-related prognostic biomarker in glioblastoma: a bioinformatic analyses. Annals of Translational Medicine, 2021, 9, 1657-1657.	0.7	3
1839	Culture and Phenotyping of Glial Cell Cultures, , and. Methods in Molecular Biology, 2022, 2422, 217-232.	0.4	0
1841	Prognostic Significance and Gene Co-Expression Network of PLAU and PLAUR in Gliomas. Frontiers in Oncology, 2021, 11, 602321.	1.3	10
1842	MV1035 Overcomes Temozolomide Resistance in Patient-Derived Glioblastoma Stem Cell Lines. Biology, 2022, 11, 70.	1.3	5
1843	Extracellular Proton Sensing GPR68 Mediates Acid Signaling in Development and Cancer. SSRN Electronic Journal, 0, , .	0.4	0
1844	Modulation of Biological Responses of Tumor Cells Adhered to Poly(2-methoxyethyl acrylate) with Increasing Cell Viability under Serum-Free Conditions. ACS Biomaterials Science and Engineering, 2022, 8, 672-681.	2.6	3
1845	PNJ scaffolds promote microenvironmental regulation of glioblastoma stem-like cell enrichment and radioresistance. Biomaterials Science, 2022, 10, 819-833.	2.6	1
1846	Effects of the IDH1 R132H Mutation on the Energy Metabolism: A Comparison between Tissue and Corresponding Primary Glioma Cell Cultures. ACS Omega, 2022, 7, 3568-3578.	1.6	5

		CITATION REPORT		
#	Article		IF	CITATIONS
1847	EGFR Exon 20 Insertion Mutations in Sinonasal Squamous Cell Carcinoma. Cancers, 20	22, 14, 394.	1.7	7
1849	Targeted disruption of tumor vasculature via polyphenol nanoparticles to improve brain treatment. Cell Reports Physical Science, 2022, 3, 100691.	n cancer	2.8	10
1850	Aberrant Expression of ADARB1 Facilitates Temozolomide Chemoresistance and Immur Glioblastoma. Frontiers in Pharmacology, 2022, 13, 768743.	ne Infiltration in	1.6	3
1851	Chloride intracellular channel 1 activity is not required for glioblastoma development b inhibition dictates glioma stem cell responsivity to novel biguanide derivatives. Journal Experimental and Clinical Cancer Research, 2022, 41, 53.	ut its of	3.5	15
1853	ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell ma Journal of Clinical Investigation, 2022, 132, .	aintenance.	3.9	27
1854	Cannabidiol inhibits RAD51 and sensitizes glioblastoma to temozolomide in multiple or models. Neuro-Oncology Advances, 2022, 4, vdac019.	thotopic tumor	0.4	8
1855	Adapt to Persist: Glioblastoma Microenvironment and Epigenetic Regulation on Cell Pla Biology, 2022, 11, 313.	isticity.	1.3	12
1856	Instructive Hydrogels for Primary Tumor Cell Culture: Current Status and Outlook. Adva Healthcare Materials, 2022, 11, e2102479.	anced	3.9	7
1857	Multiple transcriptome analysis of Piwil2-induced cancer stem cells, including piRNAs, r miRNAs reveals the mechanism of tumorigenesis and development. Molecular Biology I	nRNAs and Reports, 2022, , 1.	1.0	3
1858	Patient-derived explants as tumor models. Cancer Cell, 2022, 40, 348-350.		7.7	3
1859	Establishment and Characterization of Brain Cancer Primary Cell Cultures From Patient Phenotypic Screening for New Drugs. Frontiers in Pharmacology, 2022, 13, 778193.	s to Enable	1.6	1
1860	Ion Channel Drugs Suppress Cancer Phenotype in NG108-15 and U87 Cells: Toward Nc Electroceuticals for Glioblastoma. Cancers, 2022, 14, 1499.	vel	1.7	12
1861	The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Frontie 2022, 12, 790976.	rs in Oncology,	1.3	11
1862	Creation and Development of Patient-Derived Organoids for Therapeutic Screening in S Current Stem Cell Reports, 2022, 8, 107-117.	Solid Cancer.	0.7	2
1864	Patient-Derived Xenotransplant of CNS Neoplasms in Zebrafish: A Systematic Review. C 1204.	Cells, 2022, 11,	1.8	4
1865	Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem Neoplasia, 2022, 28, 100790.	-like cells.	2.3	5
1866	Real-time evaluation of glioblastoma growth in patient-specific zebrafish xenografts. Neuro-Oncology, 2022, 24, 726-738.		0.6	19
1867	Patient-Derived Organoids in Precision Medicine: Drug Screening, Organoid-on-a-Chip a Organoid Biobank. Frontiers in Oncology, 2021, 11, 762184.	nd Living	1.3	53

#	Article	IF	CITATIONS
1868	CRISPR-to-Kill (C2K)–Employing the Bacterial Immune System to Kill Cancer Cells. Cancers, 2021, 13, 6306.	1.7	5
1869	Can ECIS Biosensor Technology Be Used to Measure the Cellular Responses of Glioblastoma Stem Cells?. Biosensors, 2021, 11, 498.	2.3	7
1870	ALDH1A3 Segregated Expression and Nucleus-Associated Proteasomal Degradation Are Common Traits of Glioblastoma Stem Cells. Biomedicines, 2022, 10, 7.	1.4	5
1872	Orthotopic brain tumor models derived from glioblastoma stem-like cells. Methods in Cell Biology, 2022, , .	0.5	1
1873	Cancer stem-like cells evade CD8 ⁺ CD103 ⁺ tumor-resident memory T (T _{RM}) lymphocytes by initiating an epithelial-to-mesenchymal transition program in a human lung tumor model. , 2022, 10, e004527.		12
1875	Glioblastoma Embryonic-like Stem Cells Exhibit Immune-Evasive Phenotype. Cancers, 2022, 14, 2070.	1.7	4
1876	HOX and PBX gene dysregulation as a therapeutic target in glioblastoma multiforme. BMC Cancer, 2022, 22, 400.	1.1	7
1877	Modulation of cancer stemness property in head and neck cancer cells via circulatory fluid shear stress. Microfluidics and Nanofluidics, 2022, 26, 1.	1.0	2
1891	Brain tumor stem cell dancing. Annali Dell'Istituto Superiore Di Sanita, 2014, 50, 286-90.	0.2	2
1892	A Tumor-Homing Peptide Platform Enhances Drug Solubility, Improves Blood–Brain Barrier Permeability and Targets Glioblastoma. Cancers, 2022, 14, 2207.	1.7	7
1893	Comprehensive Landscape of STEAP Family Members Expression in Human Cancers: Unraveling the Potential Usefulness in Clinical Practice Using Integrated Bioinformatics Analysis. Data, 2022, 7, 64.	1.2	5
1894	The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomaterialia, 2022, 146, 10-22.	4.1	10
1895	Glioma Stem Cells in Pediatric High-Grade Gliomas: From Current Knowledge to Future Perspectives. Cancers, 2022, 14, 2296.	1.7	11
1896	Microâ€pillar array columns (µPAC): An efficient tool for comparing tissue and cultured cells of glioblastoma. Journal of Chromatography Open, 2022, 2, 100047.	0.8	7
1897	Sprouty 1 is Associated with Stemness and Cancer Progression in Glioblastoma. SSRN Electronic Journal, 0, , .	0.4	0
1899	Integrative multi-omics approach to targeted therapy for glioblastoma. Pharmacological Research, 2022, 182, 106308.	3.1	9
1900	Combination of B7H6-siRNA and Temozolomide Synergistically Reduces Stemness and Migration Properties of Glioblastoma Cancer Cells: Promising Combination Treatment Against GBM. SSRN Electronic Journal, 0, , .	0.4	0
1901	Analysis of the potential role of photocurable hydrogel in patient-derived glioblastoma organoid culture through RNA sequencing. Biomaterials Science, 2022, 10, 4902-4914.	2.6	3

#	Article	IF	CITATIONS
1902	Glioblastoma, from disease understanding towards optimal cell-based in vitro models. Cellular Oncology (Dordrecht), 2022, 45, 527-541.	2.1	8
1903	Cisplatin-Resistant CD44+ Lung Cancer Cells Are Sensitive to Auger Electrons. International Journal of Molecular Sciences, 2022, 23, 7131.	1.8	3
1904	Computational estimation of quality and clinical relevance of cancer cell lines. Molecular Systems Biology, 2022, 18, .	3.2	12
1905	The Interaction between DNMT1 and Highâ€Mannose CD133 Maintains the Slowâ€Cycling State and Tumorigenic Potential of Glioma Stem Cell. Advanced Science, 2022, 9, .	5.6	13
1906	The impact of temozolomide and lonafarnib on the stemness marker expression of glioblastoma cells in multicellular spheroids. Biotechnology Progress, 2022, 38, .	1.3	2
1908	Biomanufacturing of glioblastoma organoids exhibiting hierarchical and spatially organized tumor microenvironment via transdifferentiation. Biotechnology and Bioengineering, 2022, 119, 3252-3274.	1.7	4
1909	Sprouty 1 is associated with stemness and cancer progression in glioblastoma. IBRO Neuroscience Reports, 2022, 13, 120-126.	0.7	1
1910	Drug Repurposing, a Fast-Track Approach to Develop Effective Treatments for Glioblastoma. Cancers, 2022, 14, 3705.	1.7	6
1911	Cross-platform analysis reveals cellular and molecular landscape of glioblastoma invasion. Neuro-Oncology, 2023, 25, 482-494.	0.6	4
1912	CCAAT/Enhancer-Binding Protein Delta Regulates Glioblastoma Survival through Catalase-Mediated Hydrogen Peroxide Clearance. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	1.9	6
1913	EGFR ligand shifts the role of EGFR from oncogene to tumour suppressor in EGFR-amplified glioblastoma by suppressing invasion through BIN3 upregulation. Nature Cell Biology, 2022, 24, 1291-1305.	4.6	14
1914	Acidosis induces RIPK1-dependent death of glioblastoma stem cells via acid-sensing ion channel 1a. Cell Death and Disease, 2022, 13, .	2.7	7
1915	Folate enzyme MTHFD2 links one-carbon metabolism to unfolded protein response in glioblastoma. Cancer Letters, 2022, 549, 215903.	3.2	8
1916	Functional temozolomide sensitivity testing of patient-specific glioblastoma stem cell cultures is predictive of clinical outcome. Translational Oncology, 2022, 26, 101535.	1.7	2
1917	Glioblastoma organoid technology: an emerging preclinical models for drug discovery. Organoid, 0, 2, e7.	0.0	1
1918	A Three-Dimensional Organoid Culture System to Model Invasive Patterns of Patient-Derived Glioma Stem Cells. Neuromethods, 2023, , 139-158.	0.2	0
1919	ZEB1 loss increases glioma stem cell tumorigenicity and resistance to chemoradiation. Journal of Neurosurgery, 2022, , 1-12.	0.9	0
1920	Non-coding RNAs and glioma: Focus on cancer stem cells. Molecular Therapy - Oncolytics, 2022, 27, 100-123.	2.0	11

#	Article	IF	CITATIONS
1921	Sphingosine kinase 1 promotes growth of glioblastoma by increasing inflammation mediated by the NF-κB /IL-6/STAT3 and JNK/PTX3 pathways. Acta Pharmaceutica Sinica B, 2022, 12, 4390-4406.	5.7	13
1922	VRK1 Is a Synthetic–Lethal Target in VRK2-Deficient Glioblastoma. Cancer Research, 2022, 82, 4044-4057.	0.4	12
1923	Development of Experimental Three-Dimensional Tumor Models to Study Glioblastoma Cancer Stem Cells and Tumor Microenvironment. Methods in Molecular Biology, 2023, , 117-127.	0.4	2
1924	High APLN Expression Predicts Poor Prognosis for Glioma Patients. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	1.9	1
1926	Modeling Brain Tumors Using Genetically Edited Brain Organoids. Neuromethods, 2023, , 159-171.	0.2	0
1927	High throughput-screening of native herbal compounds identifies taccaoside A as a cytotoxic compound that mediates RAS signaling in cancer stem cells. Phytomedicine, 2023, 108, 154492.	2.3	2
1928	Cell cultures in assessing radioresistance of glioblastomas. Zhurnal Voprosy Nejrokhirurgii Imeni N N Burdenko, 2022, 86, 126.	0.1	0
1929	Serpin family A member 1 is an oncogene in glioma and its translation is enhanced by NAD(P)H quinone dehydrogenase 1 through RNA-binding activity. Open Medicine (Poland), 2022, 17, 1645-1654.	0.6	1
1930	Polymer Thin Film Promotes Tumor Spheroid Formation via JAK2-STAT3 Signaling Primed by Fibronectin-Integrin α5 and Sustained by LMO2-LDB1 Complex. Biomedicines, 2022, 10, 2684.	1.4	1
1931	Preservation of the Hypoxic Transcriptome in Glioblastoma Patient-Derived Cell Lines Maintained at Lowered Oxygen Tension. Cancers, 2022, 14, 4852.	1.7	0
1932	Transcriptome Changes in Glioma Cells Cultivated under Conditions of Neurosphere Formation. Cells, 2022, 11, 3106.	1.8	4
1933	Novel kinome profiling technology reveals drug treatment is patient and 2D/3D model dependent in glioblastoma. Frontiers in Oncology, 0, 12, .	1.3	1
1934	Dual-drug loaded nanomedicine hydrogel as a therapeutic platform to target both residual glioblastoma and glioma stem cells. International Journal of Pharmaceutics, 2022, 628, 122341.	2.6	3
1935	DHODH inhibition impedes glioma stem cell proliferation, induces DNA damage, and prolongs survival in orthotopic glioblastoma xenografts. Oncogene, 2022, 41, 5361-5372.	2.6	5
1936	Identification of glioblastoma-specific antigens expressed in patient-derived tumor cells as candidate targets for chimeric antigen receptor T cell therapy. Neuro-Oncology Advances, 2023, 5, .	0.4	1
1937	Synergistic Anticancer Effect of a Combination of Berbamine and Arcyriaflavin A against Glioblastoma Stem-like Cells. Molecules, 2022, 27, 7968.	1.7	2
1939	Brain organoids: Establishment and application. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
1941	Downregulation of <scp>ADAMTS3</scp> Suppresses Stemness and Tumorigenicity in Glioma Stem Cell. CNS Neuroscience and Therapeutics, 0, , .	1.9	1

#	Article	IF	CITATIONS
1942	Characterization of orthotopic xenograft tumor of glioma stem cells (GSCs) on MRI, PET and immunohistochemical staining. Frontiers in Oncology, 0, 12, .	1.3	0
1944	Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors. Communications Biology, 2022, 5, .	2.0	4
1945	Autonomous rhythmic activity in glioma networks drives brain tumour growth. Nature, 2023, 613, 179-186.	13.7	55
1946	Cancer stem cells (CSCs): key player of radiotherapy resistance and its clinical significance. Biomarkers, 2023, 28, 139-151.	0.9	15
1947	Aggressive migration in acidic pH of a glioblastoma cancer stem cell line in vitro is independent of ASIC and KCa3.1 ion channels, but involves phosphoinositide 3-kinase. Pflugers Archiv European Journal of Physiology, 2023, 475, 405-416.	1.3	9
1948	Pre-clinical models for evaluating glioma targeted immunotherapies. Frontiers in Immunology, 0, 13, .	2.2	4
1949	Activated T cell therapy targeting glioblastoma cancer stem cells. Scientific Reports, 2023, 13, .	1.6	0
1950	Culturing and Imaging Glioma Stem Cells in 3D Collagen Matrices. Current Protocols, 2023, 3, .	1.3	0
1952	Biomaterial-based in vitro 3D modeling of glioblastoma multiforme. , 2023, 1, 177-194.		2
1953	Utility of the Cerebral Organoid Glioma â€~GLICO' Model for Screening Applications. Cells, 2023, 12, 153.	1.8	6
1954	Insights into the Cancer Stem Cell Model of Glioma Tumorigenesis. Annals of the Academy of Medicine, Singapore, 2007, 36, 352-357.	0.2	23
1955	Influence of the Cultivation Conditions of the Glioblastoma Neurosphere on the Expression of MALAT1 and LINCROR Long Non-coding RNA Genes. Doklady Biochemistry and Biophysics, 2023, 508, 21-24.	0.3	1
1956	Patient-derived models: Advanced tools for precision medicine in neuroblastoma. Frontiers in Oncology, 0, 12, .	1.3	5
1957	Dopamine receptor D2 regulates glioblastoma survival and death through MET and death receptor 4/5. Neoplasia, 2023, 39, 100894.	2.3	3
1958	Study of Strawberry Notch homolog 1 and 2 expression in human glioblastoma. Journal of Neuro-Oncology, 2023, 161, 515-523.	1.4	0
1959	Identification of therapeutic sensitivities in a spheroid drug combination screen of Neurofibromatosis Type I associated High Grade Gliomas. PLoS ONE, 2023, 18, e0277305.	1.1	1
1960	Murineâ€Derived Glioma Organoids and Cell Line Culture Systems. Current Protocols, 2023, 3, .	1.3	0
1961	Assessment of Drug Susceptibility for Patient-Derived Tumor Models through Lactate Biosensing and Machine Learning. ACS Sensors, 2023, 8, 803-810.	4.0	0

#	Article	IF	CITATIONS
1962	Modeling glioblastoma complexity with organoids for personalized treatments. Trends in Molecular Medicine, 2023, 29, 282-296.	3.5	7
1963	Pancreatic Organoids: A Frontier Method for Investigating Pancreatic-Related Diseases. International Journal of Molecular Sciences, 2023, 24, 4027.	1.8	2
1965	Characteristics of vasculogenic mimicry and tumour to endothelial transdifferentiation in human glioblastoma: a systematic review. BMC Cancer, 2023, 23, .	1.1	5
1967	Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. International Journal of Molecular Sciences, 2023, 24, 5665.	1.8	2
1968	Alteration of Mesenchymal Stem Cells Isolated from Glioblastoma Multiforme under the Influence of Photodynamic Treatment. Current Issues in Molecular Biology, 2023, 45, 2580-2596.	1.0	1
1969	IGFBP5 is an ROR1 ligand promoting glioblastoma invasion via ROR1/HER2-CREB signaling axis. Nature Communications, 2023, 14, .	5.8	3
1970	Downregulation of BASP1 Promotes Temozolomide Resistance in Gliomas via Epigenetic Activation of the FBXO32/NF-κB/MGMT Axis. Molecular Cancer Research, 2023, 21, 648-663.	1.5	3
1971	Neural Stem Cells as Potential Glioblastoma Cells of Origin. Life, 2023, 13, 905.	1.1	10
1972	Considerations for modelling diffuse high-grade gliomas and developing clinically relevant therapies. Cancer and Metastasis Reviews, 0, , .	2.7	0
1973	Development of a Synthetic, Injectable Hydrogel to Capture Residual Glioblastoma and Glioblastoma Stemâ€Like Cells with CXCL12â€Mediated Chemotaxis. Advanced Healthcare Materials, 2023, 12, .	3.9	3
1974	Atypical teratoid/rhabdoid tumoroids reveal subgroup-specific drug vulnerabilities. Oncogene, 2023, 42, 1661-1671.	2.6	5
1977	<scp>RNA</scp> cytosine methyltransferase <scp>NSUN5</scp> promotes protein synthesis and tumorigenic phenotypes in glioblastoma. Molecular Oncology, 2023, 17, 1763-1783.	2.1	1
1978	SOX2 downregulation of PML increases HCMV gene expression and growth of glioma cells. PLoS Pathogens, 2023, 19, e1011316.	2.1	4
1979	Transcriptional Profiling of a Patient-Matched Cohort of Glioblastoma (IDH-Wildtype) for Therapeutic Target and Repurposing Drug Identification. Biomedicines, 2023, 11, 1219.	1.4	0
1985	Radiopharmaceuticals for molecular imaging and theranostics of glioblastoma. , 2023, , 667-705.		0
2033	Acid-sensing ion channels and downstream signalling in cancer cells: is there a mechanistic link?. Pflugers Archiv European Journal of Physiology, 2024, 476, 659-672.	1.3	1
2045	A systematic review of immunotherapy in high-grade glioma: learning from the past to shape future perspectives. Neurological Sciences, 0, , .	0.9	0