CITATION REPORT List of articles citing

The role of circulating fibrocytes in fibrosis

DOI: 10.1007/s11926-006-0055-x Current Rheumatology Reports, 2006, 8, 145-50.

Source: https://exaly.com/paper-pdf/40728755/citation-report.pdf

Version: 2024-04-18

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
228	Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. 2006 , 99, 675-91		783
227	Models of pulmonary fibrosis. 2006 , 3, 243-249		17
226	Nephrogenic systemic fibrosis (nephrogenic fibrosing dermopathy). 2006 , 18, 614-7		116
225	Bibliography. Current world literature. Raynaud phenomenon, scleroderma, overlap syndromes and other fibrosing syndromes. 2006 , 18, 654-6		
224	Differentiation of human circulating fibrocytes as mediated by transforming growth factor-beta and peroxisome proliferator-activated receptor gamma. 2007 , 282, 22910-20		176
223	Transforming growth factor (TGF)-beta1 stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-12. 2007 , 282, 7723-32		141
222	Experimental rodent models of prostatitis: limitations and potential. 2007 , 10, 15-29		83
221	Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. 2007 , 117, 524	-9	1016
220	BALF-derived fibroblasts differ from biopsy-derived fibroblasts in systemic sclerosis. 2007 , 29, 446-52		17
219	Bibliography. Current world literature. Myositis and myopathies. 2007 , 19, 651-3		
218	Therapeutic targeting of CC ligand 21 or CC chemokine receptor 7 abrogates pulmonary fibrosis induced by the adoptive transfer of human pulmonary fibroblasts to immunodeficient mice. 2007 , 170, 1152-64		63
217	Role of chemokines for the localization of leukocyte subsets in the kidney. 2007 , 27, 260-74		41
216	Native human IFN-alpha is a more potent suppressor of HDF response to profibrotic stimuli than recombinant human IFN-alpha. 2007 , 27, 481-90		3
215	Nephrogenic systemic fibrosis: a review and exploration of the role of gadolinium. 2007, 23, 131-54		60
214	Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. 2007 , 4, 413-37		531
213	Nephrogenic systemic fibrosis and gadolinium exposure: association and lessons for idiopathic fibrosing disorders. 2007 , 56, 3173-5		37
212	Bioengineering skin using mechanisms of regeneration and repair. 2007 , 28, 5100-13		179

(2008-2007)

211	Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options. 2007, 6, 7	99
210	The myofibroblast: phenotypic characterization as a prerequisite to understanding its functions in translational medicine. 2008 , 12, 22-37	162
209	Adenosine A2A receptor blockade or deletion diminishes fibrocyte accumulation in the skin in a murine model of scleroderma, bleomycin-induced fibrosis. 2008 , 31, 299-303	38
208	Fibrosis, chronic inflammation and new pathways for drug discovery. 2008 , 57, 410-8	34
207	Skin stem and progenitor cells: using regeneration as a tissue-engineering strategy. 2008 , 65, 24-32	34
206	Gadolinium and nephrogenic systemic fibrosis: time to tighten practice. 2008 , 38, 489-96; quiz 602-3	71
205	Elastofibroma: a histochemical, immunohistochemical, and ultrastructural study of two patients. 2008 , 41, 179-82	15
204	Cellular and molecular mechanisms of fibrosis. 2008 , 214, 199-210	2808
203	Nephrogenic systemic fibrosis: possible mechanisms and imaging management strategies. 2008 , 28, 797-804	21
202	SIMS imaging of gadolinium isotopes in tissue from Nephrogenic Systemic Fibrosis patients: Release of free Gd from magnetic resonance imaging (MRI) contrast agents. 2008 , 255, 1181-1184	20
201	Increased severity of bleomycin-induced skin fibrosis in mice with leukocyte-specific protein 1 deficiency. 2008 , 128, 2767-76	18
200	The oral mucosa: a model of wound healing with reduced scarring. 2008, 1, 11-21	15
199	Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. 2008 , 28, 1065-79	192
198	Changing the pathogenetic roadmap of liver fibrosis? Where did it start; where will it go?. 2008 , 23, 1024-35	55
197	A follow-up of four cases of nephrogenic systemic fibrosis: is gadolinium the specific trigger?. 2008 , 158, 1358-62	13
196	Nephrogenic systemic fibrosis: a histopathological study of eight cases of a recently described entity. 2008 , 52, 531-4	6
195	Fibrotic disorders in the eye: targets of gene therapy. 2008 , 27, 177-96	123
194	Mechanisms of fibrogenesis. 2008 , 233, 109-22	328

193	Identification of transforming growth factor beta1-driven genetic programs of acute lung fibrosis. 2008 , 39, 324-36	40
192	Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. 2008, 40, 2129-40	285
191	Immune interactions in hepatic fibrosis. 2008 , 12, 861-82, x	74
190	The role of bone marrow-derived cells in fibrosis. 2008 , 188, 178-88	19
189	TGF-II as a therapeutic target for pulmonary fibrosis and ICOPD. 2008 , 1, 547-58	6
188	Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. 2008 , 294, L843-61	123
187	Lung vascular cell heterogeneity: endothelium, smooth muscle, and fibroblasts. 2008, 5, 783-91	72
186	Epithelial-mesenchymal transition as a therapeutic target for prevention of ocular tissue fibrosis. 2008 , 8, 69-76	52
185	Airway modeling and remodeling in the pathogenesis of asthma. 2008, 8, 44-8	40
184	TGF beta in fibroproliferative diseases in the eye. 2009 , 1, 376-90	77
184	TGF beta in fibroproliferative diseases in the eye. 2009 , 1, 376-90 Biomaterials, fibrosis, and the use of drug delivery systems in future antifibrotic strategies. 2009 , 37, 259-81	77
	Biomaterials, fibrosis, and the use of drug delivery systems in future antifibrotic strategies. 2009 ,	
183	Biomaterials, fibrosis, and the use of drug delivery systems in future antifibrotic strategies. 2009 , 37, 259-81	12
183	Biomaterials, fibrosis, and the use of drug delivery systems in future antifibrotic strategies. 2009, 37, 259-81 Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. 2009, 179, 588-94 Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory	12 420
183 182 181	Biomaterials, fibrosis, and the use of drug delivery systems in future antifibrotic strategies. 2009, 37, 259-81 Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. 2009, 179, 588-94 Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. 2009, 297, L238-50	12 420 115
183 182 181	Biomaterials, fibrosis, and the use of drug delivery systems in future antifibrotic strategies. 2009, 37, 259-81 Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. 2009, 179, 588-94 Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. 2009, 297, L238-50 Features of nephrogenic systemic fibrosis on radiology examinations. 2009, 193, 61-9 Sustained hypoxia leads to the emergence of cells with enhanced growth, migratory, and	12 420 115
183 182 181 180	Biomaterials, fibrosis, and the use of drug delivery systems in future antifibrotic strategies. 2009, 37, 259-81 Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. 2009, 179, 588-94 Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. 2009, 297, L238-50 Features of nephrogenic systemic fibrosis on radiology examinations. 2009, 193, 61-9 Sustained hypoxia leads to the emergence of cells with enhanced growth, migratory, and promitogenic potentials within the distal pulmonary artery wall. 2009, 297, L1059-72 Myofibroblast transformation in metastatic extramedullary chronic myeloid leukemia: a case	12 420 115 9 56

(2010-2009)

175	Nephrogenic systemic fibrosis: clinical spectrum of disease. 2009 , 30, 1289-97	23
174	Circulating osteogenic precursor cells in heterotopic bone formation. 2009 , 27, 2209-19	90
173	The science of endothelin-1 and endothelin receptor antagonists in the management of pulmonary arterial hypertension: current understanding and future studies. 2009 , 39 Suppl 2, 38-49	38
172	EpithelialMesenchymal Transition as a Mechanism of Metastasis. 2009 , 65-92	
171	Increased serum xylosyltransferase activity in patients with liver fibrosis. 2009, 409, 123-6	14
170	Spartathlon, a 246 kilometer foot race: effects of acute inflammation induced by prolonged exercise on circulating progenitor reparative cells. 2009 , 42, 294-9	39
169	Fibroblasts. 2009 , 193-200	5
168	Bone marrow-derived cells and epithelial tumours: more than just an inflammatory relationship. 2009 , 21, 77-82	22
167	Fibrosis is a key inhibitor of lymphatic regeneration. 2009 , 124, 438-450	89
166	Fibrosis in the GI Tract: Pathophysiology, Diagnosis and Treatment Options. 2009 , 15-31	5
165	Role of growth factors in the pathogenesis of tissue fibrosis in systemic sclerosis. 2010 , 6, 283-94	19
164	Is Nephrogenic Systemic Fibrosis a Disease of Fibrocytes?. 2010 , 6, 171-175	
163	Serum amyloid P: A novel antifibrotic agent with therapeutic potential. 2010 , 261-266	
162	Antifibrosis: to reverse the irreversible. 2010 , 38, 276-86	28
161	Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. 2010 , 48, 1-15	302
160	Abnormal expression of IGF-binding proteins, an initiating event in idiopathic pulmonary fibrosis?. 2010 , 206, 537-43	14
159	Mast cells and hypoxia drive tissue metaplasia and heterotopic ossification in idiopathic arthrofibrosis after total knee arthroplasty. 2010 , 3, 17	69
158	Dedifferentiation and Redifferentiation in Epithelial Repair. 2010 , 151-167	

157	Distinct types of fibrocyte can differentiate from mononuclear cells in the presence and absence of serum. <i>PLoS ONE</i> , 2010 , 5, e9730	3.7	45
156	The myofibroblast in connective tissue repair and regeneration. 2010 , 39-80		6
155	Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. 2010 , 35, 496-504		308
154	Caveolin-1 regulates leucocyte behaviour in fibrotic lung disease. 2010 , 69, 1220-6		50
153	Increased generation of fibrocytes in thyroid-associated ophthalmopathy. 2010, 95, 430-8		165
152	Expression of matrix metalloproteases by fibrocytes: possible role in migration and homing. 2010 , 182, 1144-52		83
151	Mesenchymal stem cells as therapeutics. 2010 , 12, 87-117		532
150	Update on the pathophysiology of liver fibrosis. 2010 , 4, 459-72		89
149	Bladder development following bladder outlet obstruction in fetal lambs: optimal timing of fetal therapy. 2010 , 45, 2423-30		6
148	Stem Cells in the Respiratory System. 2010 ,		
147	Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2010 ,	0.1	3
146	Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. 2011 , 80, 915-925		317
145	The Role of the Myofibroblast in Fibrosis and Cancer Progression. 2011 , 37-74		5
144	MicroRNAs as mediators and therapeutic targets in chronic kidney disease. 2011 , 7, 286-94		175
143	Monocyte development inhibitor PRM-151 decreases corneal myofibroblast generation in rabbits. 2011 , 93, 786-9		27
142	Clinicohistopathological correlations in juvenile localized scleroderma: studies on a subset of children with hypopigmented juvenile localized scleroderma due to loss of epidermal melanocytes. 2011 , 65, 364-373		25
141	Transition of asthmatic bronchial fibroblasts to myofibroblasts is inhibited by cell-cell contacts. 2011 , 105, 1467-75		20
140	The Fibrotic Response to Implanted Biomaterials: Implications for Tissue Engineering. 2011,		17

139	Bone marrow-derived stem cells and respiratory disease. 2011 , 140, 205-211	32
138	Blockade of cysteinyl leukotriene-1 receptors suppresses airway remodelling in mice overexpressing GATA-3. 2011 , 41, 116-28	14
137	Fibroblasts and myofibroblasts in renal fibrosis. 2011 , 92, 158-67	238
136	Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process. 2011 , 19, 274-85	62
135	Nephrogenic systemic fibrosis and gadolinium-containing radiological contrast agents: an update. 2011 , 89, 920-3	25
134	The pivotal role of fibrocytes and mast cells in mediating fibrotic reactions to biomaterials. 2011 , 32, 8394-403	67
133	IL-13 induces skin fibrosis in atopic dermatitis by thymic stromal lymphopoietin. 2011 , 186, 7232-42	105
132	Tissues use resident dendritic cells and macrophages to maintain homeostasis and to regain homeostasis upon tissue injury: the immunoregulatory role of changing tissue environments. 2012 , 2012, 951390	55
131	Idiopathic pulmonary fibrosis: an altered fibroblast proliferation linked to cancer biology. 2012, 9, 153-7	47
130	From acute injury to chronic disease: pathophysiological hypothesis of an epithelial/mesenchymal crosstalk alteration in CKD. 2012 , 27 Suppl 3, iii43-50	5
129	Fibrocytes in chronic lung diseasefacts and controversies. 2012 , 25, 263-7	14
128	Altered progenitor cell and cytokine profiles in bronchiolitis obliterans syndrome. 2012 , 31, 222-8	22
127	Chemokines and adult bone marrow stem cells. 2012 , 145, 47-54	45
126	Inhalation of sulfur mustard causes long-term T cell-dependent inflammation: possible role of Th17 cells in chronic lung pathology. 2012 , 13, 101-8	44
125	Corneal myofibroblast biology and pathobiology: generation, persistence, and transparency. 2012 , 99, 78-88	146
124	Epithelial-mesenchymal crosstalk alteration in kidney fibrosis. 2012 , 228, 131-47	38
123	Role of stem/progenitor cells in reparative disorders. 2012 , 5, 20	24
122	Fibrohistiocytic tumors and related neoplasms in children and adolescents. 2012 , 15, 181-210	23

121	Tissue microenvironments define and get reinforced by macrophage phenotypes in homeostasis or during inflammation, repair and fibrosis. 2012 , 4, 463-77		81
120	Effect of Microtopography on Fibrocyte Responses and Fibrotic Tissue Reactions at the Interface. 2012 , 339-353		2
119	Angiotensin II induces skin fibrosis: a novel mouse model of dermal fibrosis. 2012 , 14, R194		56
118	Duodenum clamping trauma induces significant postoperative intraperitoneal adhesions on a rat model. <i>PLoS ONE</i> , 2012 , 7, e49673	3.7	3
117	Caveolin-1 signaling in lung fibrosis. <i>Open Rheumatology Journal</i> , 2012 , 6, 116-22	0.2	13
116	Cellular and molecular mechanisms of intestinal fibrosis. 2012 , 18, 3635-61		159
115	Sequential analysis of myofibroblast differentiation and transforming growth factor-II/Smad pathway activation in murine pulmonary fibrosis. 2012 , 79, 46-59		14
114	Angiotensin-(1-7) suppresses the number and function of the circulating fibrocytes by upregulating endothelial nitric oxide synthase expression. 2012 , 365, 19-27		14
113	FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. 2013 , 119, 191-419		115
112	Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition. 2013 , 32, 231-44		131
111	Lipopolysaccharide induces a fibrotic-like phenotype in endothelial cells. 2013 , 17, 800-14		149
110	Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. 2013 , 6, 20		70
109	New approaches to modulating idiopathic pulmonary fibrosis. 2013 , 13, 607-12		12
108	Fibrocytes are associated with the fibrosis of coronary heart disease. 2013 , 209, 36-43		14
107	Gadolinium contrast agent-induced CD163+ ferroportin+ osteogenic cells in nephrogenic systemic fibrosis. 2013 , 183, 796-807		13
106	Fibrosis. 2013 , 167-186		
105	Cytokine mediated tissue fibrosis. 2013 , 1832, 1049-60		224
104	Pathobiology of Cancer Regimen-Related Toxicities. 2013,		5

(2017-2013)

103	Mechanoregulation of the Myofibroblast in Wound Contraction, Scarring, and Fibrosis: Opportunities for New Therapeutic Intervention. 2013 , 2, 122-141	137
102	Fibrocytes in pulmonary fibrosis: a brief synopsis. 2013 , 22, 552-7	36
101	Microvenular hemangioma presenting with numerous bilateral macules, patches, and plaques: a case report and review of the literature. 2013 , 35, 98-101	13
100	Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis. <i>Current Drug Targets</i> , 2013 , 14, 1347-1356	133
99	Trypsin potentiates human fibrocyte differentiation. <i>PLoS ONE</i> , 2013 , 8, e70795 3.7	25
98	Biological and chemical influence on immune and regenerative responses to joint replacements. 2014 , 62-78	1
97	Pathology of Tissue Regeneration Repair: Skin Regeneration. 2014 , 558-566	1
96	Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. 2014 , 20, 1726-34	108
95	Mechanisms that mediate the development of fibrosis in patients with Crohn® disease. 2014, 20, 1250-8	77
94	Gammaherpesviruses and pulmonary fibrosis: evidence from humans, horses, and rodents. 2014 , 51, 372-84	37
93	Monitoring fibrogenic progression in the liver. 2014 , 433, 111-22	36
92	Fibrocytes, inflammation, and fibrosis in Crohnß disease: another piece of the puzzle. 2014 , 59, 699-701	7
91	Lens Epithelium and Posterior Capsular Opacification. 2014,	2
90	Distinct FcTreceptors mediate the effect of serum amyloid p on neutrophil adhesion and fibrocyte differentiation. 2014 , 193, 1701-8	36
89	Biology and principles of scar management and burn reconstruction. 2014 , 94, 793-815	74
88	Possible involvement of fibrocytes in atrial fibrosis in patients with chronic atrial fibrillation. 2014 , 78, 338-44	17
87	Circulating fibrocytes are an indicator of severity and exacerbation in chronic obstructive pulmonary disease. 2014 , 63, 805-813	
86	Cellular and Molecular Mediators of Intestinal Fibrosis. 2017 , 11, 1491-1503	68

85	Biphasic presence of fibrocytes in a porcine hypertrophic scar model. 2015 , 36, e125-35	17
84	Epithelial-Mesenchymal Transition [A Possible Pathogenic Pathway of Fibrotic Gingival Overgrowth. 2015 ,	
83	CXCL9 Regulates TGF-II-Induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells. 2015 , 195, 2788-96	18
82	A brief exposure to tryptase or thrombin potentiates fibrocyte differentiation in the presence of serum or serum amyloid p. 2015 , 194, 142-50	19
81	DC-SIGN activation mediates the differential effects of SAP and CRP on the innate immune system and inhibits fibrosis in mice. 2015 , 112, 8385-90	41
80	Pathophysiology of Liver Fibrosis. 2015 , 33, 492-7	82
79	Pathogenesis and Evolution of Liver Fibrosis: Cirrhosis or Cirrhoses?. 2015 , 3-12	1
78	Cancer associated fibroblasts have phenotypic and functional characteristics similar to the fibrocytes that represent a novel MDSC subset. 2015 , 4, e1034918	34
77	Involvement of collagen-binding heat shock protein 47 in scleroderma-associated fibrosis. 2015 , 6, 589-598	13
76	Galectin-3 Binding Protein Secreted by Breast Cancer Cells Inhibits Monocyte-Derived Fibrocyte Differentiation. 2015 , 195, 1858-67	32
75	Foreign Body Reaction and Stem Cell Responses. 2016 , 49-69	
74	Cutaneous Applications of Stem Cells for Skin Tissue Engineering. 2016 , 317-336	1
73	Serum Decorin, Interleukin-1 pand Transforming Growth Factor-Predict Hypertrophic Scarring Postburn. 2016 , 37, 356-366	12
72	Advantages and Limitations of Focal Liver Lesion Assessment with Ultrasound Contrast Agents: Comments on the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) Guidelines. 2016 , 25, 399-407	21
71	Macrophages programmed by apoptotic cells inhibit epithelial-mesenchymal transition in lung alveolar epithelial cells via PGE2, PGD2, and HGF. 2016 , 6, 20992	23
70	Immune Mechanisms in Pulmonary Fibrosis. 2016 , 55, 309-22	145
69	Development and Regression of Cirrhosis. 2016 , 34, 374-81	17
68	Skin fibrosis: Models and mechanisms. 2016 , 64, 185-193	27

67	Die Biokompatibilit peritonealer Adh ionsbarrieren. 2016 ,	4
66	TGF- / SMAD Pathway and Its Regulation in Hepatic Fibrosis. 2016 , 64, 157-67	320
65	A Novel Nude Mouse Model of Hypertrophic Scarring Using Scratched Full Thickness Human Skin Grafts. 2016 , 5, 299-313	13
64	Idiopathic Pulmonary Fibrosis. 2017 , 39-69	1
63	Myofibroblast repair mechanisms post-inflammatory response: a fibrotic perspective. 2017 , 66, 451-465	41
62	Traumatic muscle fibrosis: From pathway to prevention. 2017 , 82, 174-184	21
61	Monitoring of Liver Fibrogenesis and Biochemical Diagnosis of Fibrosis. 2017 , 547-561	
60	Basics of Radiation Biology When Treating Hyperproliferative Benign Diseases. 2017 , 8, 519	17
59	The murine lens: A model to investigate in vivo epithelial-mesenchymal transition. 2018, 247, 340-345	17
58	Mechanisms of carbon nanotube-induced pulmonary fibrosis: a physicochemical characteristic perspective. 2018 , 10, e1498	38
57	Adult Pulmonary Mesenchymal Progenitors. 2018 , 337-337	
56	Transforming growth factor-ßignaling in systemic sclerosis. 2018 , 32, 3-12	17
55	Cytokines and radiation-induced pulmonary injuries. 2018 , 59, 709-753	34
54	The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis. 2018, 5, 43	122
53	RhoA-Dependent HGF and c-Met Mediate Gas6-Induced Inhibition of Epithelial-Mesenchymal Transition, Migration, and Invasion of Lung Alveolar Epithelial Cells. 2019 , 9,	3
52	Fibrocytes and fibroblasts-Where are we now. 2019 , 116, 105595	28
51	Understanding the mechanism of radiation induced fibrosis and therapy options. 2019 , 204, 107399	16
50	Pericyte Biology in Disease. 2019 ,	1

49	Pericytes in Muscular Dystrophies. 2019 , 1147, 319-344	3
48	MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN. 2019 , 8, 328-340	20
47	Pericytes in Skeletal Muscle. 2019 , 1122, 59-72	2
46	Forgotten Fibrocytes: A Neglected, Supporting Cell Type of the Cochlea With the Potential to be an Alternative Therapeutic Target in Hearing Loss. 2019 , 13, 532	12
45	Fibrotic Signaling Pathways of Skin Fibroblasts in Nephrogenic Systemic Fibrosis. 2019, 8, 338-345	
44	Is it time to relax nephrogenic systemic fibrosis guidelines and safely offer magnetic resonance imaging to more patients?. 2019 , 9, 1918-1921	2
43	Immunopathogenesis and biomarkers of recurrent atrial fibrillation following ablation therapy in patients with preexisting atrial fibrillation. 2019 , 17, 193-207	5
42	Systemic Molecular Mediators of Inflammation Differentiate Between Crohn ß Disease and Ulcerative Colitis, Implicating Threshold Levels of IL-10 and Relative Ratios of Pro-inflammatory Cytokines in Therapy. 2020 , 14, 118-129	12
41	Mechanisms Underlying Adenomyosis-Related Fibrogenesis. 2020 , 85, 1-12	10
40	Pulmonary toxicants and fibrosis: innate and adaptive immune mechanisms. 2020 , 409, 115272	6
39	Fibrocytes, Wound Healing, and Corneal Fibrosis. 2020 , 61, 28	22
38	The effects of methanolic extract of on the prevention and treatment of bleomycin-induced pulmonary fibrosis in rat: experimental study. 2021 , 44, 365-371	11
37	Stromal-Cell Deletion of STAT3 Protects Mice from Kidney Fibrosis by Inhibiting Pericytes Trans-Differentiation and Migration.	
36	Molecular mechanisms and treatments for ocular symblephara. 2021,	1
35	Interleukin-1 and Transforming Growth Factor Beta: Commonly Opposing, but Sometimes Supporting, Master Regulators of the Corneal Wound Healing Response to Injury. 2021 , 62, 8	8
34	Evolving Perspectives on Innate Immune Mechanisms of IPF. 2021 , 8, 676569	3
33	Stromal-cell deletion of STAT3 protects mice from kidney fibrosis by inhibiting pericytes trans-differentiation and migration.	
32	Development of improved method to identify and analyze lung fibrocytes with flow cytometry in a reporter mouse strain. 2021 , 9, 120-127	1

31	Pulmonary Vascular Remodeling: Cellular and Molecular Mechanisms. 2011, 759-777		1
30	Role of Proteases in Lung Disease: A Brief Overview. 2017 , 333-374		8
29	Systemic Sclerosis and the Scleroderma-Spectrum Disorders. 2009 , 1311-1351		8
28	Transglutaminase 2 in human diseases. <i>BioMedicine (Taiwan</i> , 2017 , 7, 15	1.1	40
27	NaCl potentiates human fibrocyte differentiation. <i>PLoS ONE</i> , 2012 , 7, e45674	3.7	23
26	First identification of resident and circulating fibrocytes in Dupuytrenß disease shown to be inhibited by serum amyloid P and Xiapex. <i>PLoS ONE</i> , 2014 , 9, e99967	3.7	8
25	Circulating fibrocytes serve as a marker for clinical diagnosis. <i>Annals of Translational Medicine</i> , 2016 , 4, S38	3.2	5
24	Role of MicroRNAs in Fibrosis. <i>Open Rheumatology Journal</i> , 2012 , 6, 130-9	0.2	125
23	Pathophysiology and Treatment of Diffuse Lamellar Keratitis. <i>Journal of Refractive Surgery</i> , 2020 , 36, 124-130	3.3	4
22	Immunohistochemical Localization of Epithelial Mesenchymal Transition Markers in Cyclosporine A Induced Gingival Overgrowth. <i>Journal of Clinical and Diagnostic Research JCDR</i> , 2016 , 10, ZC48-52	Ο	3
21	[Nephrogenic systemic fibrosis]. <i>Orvosi Hetilap</i> , 2007 , 148, 1801-4	0.8	
20	Dermal Precursors and the Origins of the Wound Fibroblast. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2010 , 55-70	0.1	
19	The Role of Progenitor Cells in Lung Disease Prognosis. 2010 , 43-62		
18	Regeneration of Mammalian Skin.		1
17	Wound Healing and Epithelial Mesenchymal Transition in the Lens Epithelium: Roles of Growth Factors and Extracellular Matrix. 2014 , 159-174		O
16	Molecular mechanisms and treatment of radiation-induced lung fibrosis. <i>Current Drug Targets</i> , 2013 , 14, 1347-56	3	93
15	Resolvin E1 analog RX-10045 0.1% reduces corneal stromal haze in rabbits when applied topically after PRK. <i>Molecular Vision</i> , 2014 , 20, 1710-6	2.3	10
14	Fibrosis Is a Basement Membrane-Related Disease in the Cornea: Injury and Defective Regeneration of Basement Membranes May Underlie Fibrosis in Other Organs <i>Cells</i> , 2022 , 11,	7.9	1

13	Expression of Fibrosis-Related Genes in Liver and Kidney Fibrosis in Comparison to Inflammatory Bowel Diseases <i>Cells</i> , 2022 , 11,	7.9	1
12	Heterogeneity and dynamic of EMT through the plasticity of ribosome and mRNA translation <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2022 , 1877, 188718	11.2	O
11	Deletion of STAT3 from Foxd1 cell population protects mice from kidney fibrosis by inhibiting pericytes trans-differentiation and migration <i>Cell Reports</i> , 2022 , 38, 110473	10.6	2
10	MRI in the era of nephrogenic systemic fibrosis: Review, controversies and suggestions for risk reduction. 22-33		6
9	Monitoring of hepatic fibrosis. 2022 , 231-244		
8	Function and regulation of GPX4 in the development and progression of fibrotic disease. <i>Journal of Cellular Physiology</i> ,	7	O
7	Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation. <i>Histochemistry and Cell Biology</i> ,	2.4	1
6	Role of Mesenchymal Stem Cells and Extracellular Vesicles in Idiopathic Pulmonary Fibrosis. 2022 , 23, 11212		2
5	Increased Expression of Galectin-3 in Skin Fibrosis: Evidence from In Vitro and In Vivo Studies. 2022 , 23, 15319		О
4	Fibrocyte: a missing piece in the pathogenesis of fibrous epulis.		O
3	Immune Mechanisms of Pulmonary Fibrosis with Bleomycin. 2023 , 24, 3149		0
2	Early response to intravenous methylprednisolone therapy for restrictive myopathy in patients with thyroid eye disease.		O
1	Relaxin in fibrotic ligament diseases: Its regulatory role and mechanism. 11,		О