A framework for better understanding membrane distil

Journal of Membrane Science 285, 4-29 DOI: 10.1016/j.memsci.2006.08.002

Citation Report

#	Article	IF	CITATIONS
1	Microporous membranes in membrane distillation. Pure and Applied Chemistry, 1986, 58, 1657-1662.	0.9	64
2	Design of a vibration isolation actuator for automotive seating systems - Part II: Controller design and actuator performance. International Journal of Vehicle Design, 2002, 29, 357.	0.1	8
3	Application of Response Surface Methodology and Experimental Design in Direct Contact Membrane Distillation. Industrial & Engineering Chemistry Research, 2007, 46, 5673-5685.	1.8	102
4	Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes. Journal of Membrane Science, 2007, 306, 134-146.	4.1	317
5	Application of vacuum membrane distillation for ammonia removal. Journal of Membrane Science, 2007, 301, 200-209.	4.1	204
6	Modeling and optimization of hollow fiber DCMD module for desalination. Journal of Membrane Science, 2008, 318, 154-166.	4.1	76
7	Flow rate influence on direct contact membrane distillation experiments: Different empirical correlations for Nusselt number. Journal of Membrane Science, 2008, 321, 356-363.	4.1	39
8	Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 2008, 323, 85-98.	4.1	700
9	Integration of direct contact membrane distillation and recirculating cooling water system for pure water production. Journal of Cleaner Production, 2008, 16, 1847-1855.	4.6	19
10	Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process. Journal of Membrane Science, 2008, 311, 371-379.	4.1	117
11	Fouling in direct contact membrane distillation process. Journal of Membrane Science, 2008, 325, 383-394.	4.1	379
12	Effect of coagulation pretreatment on membrane distillation process for desalination of recirculating cooling water. Separation and Purification Technology, 2008, 64, 108-115.	3.9	70
13	Concentration of ginseng extracts aqueous solution by vacuum membrane distillation. 1. Effects of operating conditions. Desalination, 2008, 234, 152-157.	4.0	46
14	Spatial variations of DCMD performance for desalination through countercurrent hollow fiber modules. Desalination, 2008, 234, 323-334.	4.0	6
15	Evaluation of energy requirements in membrane distillation. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1098-1105.	1.8	154
16	Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation. Chemical Engineering Science, 2008, 63, 2587-2594.	1.9	250
17	L-Lysine Monohydrochloride Syrup Concentration using a Membrane Hybrid Process of Ultrafiltration and Vacuum Membrane Distillation. Chemical Engineering and Technology, 2008, 31, 1569-1576.	0.9	1
18	Comparing the desalination performance of SMM blended polyethersulfone to SMM blended polyetherimide membranes by direct contact membrane distillation. Desalination and Water	1.0	21

#	Article	IF	CITATIONS
19	A novel approach to fabricate macrovoidâ€free and highly permeable PVDF hollow fiber membranes for membrane distillation. AICHE Journal, 2009, 55, 828-833.	1.8	55
20	Effect of surface modifying macromolecules stoichiometric ratio on composite hydrophobic/hydrophilic membranes characteristics and performance in direct contact membrane distillation. AICHE Journal, 2009, 55, 3145-3151.	1.8	49
21	Fabrication and characterization of hydrophobic PVDF hollow fiber membranes for desalination through direct contact membrane distillation. Separation and Purification Technology, 2009, 69, 78-86.	3.9	125
22	Guidelines for preparation of higher flux hydrophobic/hydrophilic composite membranes for membrane distillation. Journal of Membrane Science, 2009, 329, 193-200.	4.1	115
23	Heat transfer in vacuum membrane distillation: Effect of velocity slip. Journal of Membrane Science, 2009, 331, 117-125.	4.1	31
24	Novel porous composite hydrophobic/hydrophilic polysulfone membranes for desalination by direct contact membrane distillation. Journal of Membrane Science, 2009, 341, 139-148.	4.1	122
25	Surface modification of nanostructured ceramic membranes for direct contact membrane distillation. Journal of Membrane Science, 2009, 331, 1-10.	4.1	169
26	Preparation and characterization of novel hydrophobic/hydrophilic polyetherimide composite membranes for desalination by direct contact membrane distillation. Journal of Membrane Science, 2009, 327, 264-273.	4.1	144
27	Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes. Journal of Membrane Science, 2009, 337, 55-60.	4.1	194
28	Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach. Journal of Membrane Science, 2009, 331, 66-74.	4.1	148
29	Poly(vinyl alcohol)/polyelectrolyte complex blend membrane for pervaporation dehydration of isopropanol. Journal of Membrane Science, 2009, 343, 53-61.	4.1	32
30	Membrane distillation with hydrophobic macrovoid-free PVDF–PTFE hollow fiber membranes. Separation and Purification Technology, 2009, 66, 229-236.	3.9	206
31	High-salinity water desalination using VMD. Chemical Engineering Journal, 2009, 149, 191-195.	6.6	130
32	Production of black-currant juice concentrate by using membrane distillation. Desalination, 2009, 241, 309-314.	4.0	65
33	Simulation of membrane distillation modules for desalination by developing user's model on Aspen Plus platform. Desalination, 2009, 249, 380-387.	4.0	47
34	Application of Taguchi method in optimization of desalination by vacuum membrane distillation. Desalination, 2009, 249, 83-89.	4.0	78
35	Preparation and characterization of PVDF–HFP copolymer hollow fiber membranes for membrane distillation. Desalination, 2009, 245, 469-473.	4.0	54
36	Concentration of olive mill wastewater by membrane distillation for polyphenols recovery. Desalination, 2009, 245, 670-674.	4.0	96

#	Article	IF	CITATIONS
37	Preparation and properties of PVDF-fabric composite membrane for membrane distillation. Desalination, 2009, 249, 910-913.	4.0	31
38	Calcium sulphate scaling in membrane distillation process. Chemical Papers, 2009, 63, .	1.0	88
39	Membrane processes used for separation of effluents from wire productions. Chemical Papers, 2009, 63, .	1.0	9
40	Ammonia removal by sweep gas membrane distillation. Water Research, 2009, 43, 1693-1699.	5.3	136
41	Mixed Matrix PVDF Hollow Fiber Membranes with Nanoscale Pores for Desalination through Direct Contact Membrane Distillation. Industrial & Engineering Chemistry Research, 2009, 48, 4474-4483.	1.8	164
42	Numerical Simulation and Optimal Design of AGMD-Based Hollow Fiber Modules for Desalination. Industrial & Engineering Chemistry Research, 2009, 48, 4948-4959.	1.8	45
43	Vacuum membrane distillation on a microfluidic chip. Chemical Communications, 2009, , 2750.	2.2	27
44	Vacuum membrane distillation for an integrated seawater desalination process. Desalination and Water Treatment, 2009, 9, 287-296.	1.0	77
45	Scaling diminution by heterogeneous crystallization in a filtration element integrated with membrane distillation module. Polish Journal of Chemical Technology, 2009, 11, 60-65.	0.3	20
46	Novel Membrane Contactors Used in Waste Gas/Liquid Separation. Recent Patents on Engineering, 2009, 3, 18-24.	0.3	4
48	Feasibility study on petrochemical wastewater treatment and reuse using a novel submerged membrane distillation bioreactor. Separation and Purification Technology, 2010, 74, 138-143.	3.9	91
49	Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules. Journal of Membrane Science, 2010, 353, 85-93.	4.1	81
50	Influence of morphology of PVDF capillary membranes on the performance of direct contact membrane distillation. Journal of Membrane Science, 2010, 358, 158-167.	4.1	119
51	Fouling resistance in concentrating TCM extract by direct contact membrane distillation. Journal of Membrane Science, 2010, 362, 317-325.	4.1	31
52	Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD. Journal of Membrane Science, 2010, 364, 219-232.	4.1	184
54	Preparation and humic acid fouling resistance of poly(vinylidene fluoride)–fabric composite membranes for membrane distillation. Journal of Applied Polymer Science, 2010, 117, 3651-3658.	1.3	2
55	Modeling and optimization of a solar driven membrane distillation desalination system. Renewable Energy, 2010, 35, 2714-2722.	4.3	81
56	Boron removal from aqueous solution by direct contact membrane distillation. Journal of Hazardous Materials, 2010, 177, 613-619.	6.5	71

#	Article	IF	CITATIONS
57	Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation. Journal of Membrane Science, 2010, 351, 36-43.	4.1	279
58	Experimental design and optimization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation. Journal of Membrane Science, 2010, 351, 234-245.	4.1	114
59	Effects of PVDF-HFP concentration on membrane distillation performance and structural morphology of hollow fiber membranes. Journal of Membrane Science, 2010, 347, 209-219.	4.1	144
60	Membrane contactor with hydrophobic metallic membranes: 1. Modeling of coupled mass and heat transfers in membrane evaporation. Journal of Membrane Science, 2010, 355, 112-125.	4.1	22
61	Membrane contactor with hydrophobic metallic membranes: 2. Study of operating parameters in membrane evaporation. Journal of Membrane Science, 2010, 355, 126-132.	4.1	21
62	Immediate assisted solar direct contact membrane distillation in saline water desalination. Journal of Membrane Science, 2010, 358, 122-130.	4.1	86
63	Effect of thermal treatment on the characteristics of electrospun PVDFâ^'silica composite nanofibrous membrane. European Polymer Journal, 2010, 46, 1957-1965.	2.6	96
64	Experimental investigation on a membrane distillation based micro-separator. Chemical Engineering and Processing: Process Intensification, 2010, 49, 425-434.	1.8	36
65	Preparation and morphological characterization of narrow pore size distributed polypropylene hydrophobic membranes for vacuum membrane distillation via thermally induced phase separation. Desalination, 2010, 256, 27-36.	4.0	97
66	Desalination of thermally softened water by membrane distillation process. Desalination, 2010, 257, 30-35.	4.0	67
67	Numerical simulation and experimental studies on heat and mass transfer using sweeping gas membrane distillation. Desalination, 2010, 259, 84-96.	4.0	98
68	Simulation and optimisation of direct contact membrane distillation for energy efficiency. Desalination, 2010, 259, 29-37.	4.0	42
69	Development of novel surface modified phase inversion membranes having hydrophobic surface-modifying macromolecule (nSMM) for vacuum membrane distillation. Desalination, 2010, 261, 300-312.	4.0	52
70	Desalination/concentration of reverse osmosis and electrodialysis brines with membrane distillation. Desalination and Water Treatment, 2010, 24, 293-301.	1.0	21
71	Seawater desalination with memstill technology - a sustainable solution for the industry. Water Practice and Technology, 2010, 5, .	1.0	18
72	Membrane distillation and novel integrated membrane process for reverse osmosis drained wastewater treatment. Desalination and Water Treatment, 2010, 18, 286-291.	1.0	9
73	Carbon nanotube based composite membranes for water desalination by membrane distillation. Desalination and Water Treatment, 2010, 17, 72-79.	1.0	60
74	A theoretical study of a direct contact membrane distillation system coupled to a salt-gradient solar pond for terminal lakes reclamation. Water Research, 2010, 44, 4601-4615.	5.3	83

#	Article	IF	CITATIONS
75	Performance evaluation of ePTFE and PVDF flat-sheet module direct contact membrane distillation. Water Science and Technology, 2010, 62, 347-352.	1.2	5
76	Vacuum membrane distillation by microchip with temperature gradient. Lab on A Chip, 2010, 10, 899.	3.1	40
77	Fabrication and properties of poly(tetrafluoroethylene-co-hexafluoropropylene) hollow fiber membranes. Journal of Materials Chemistry, 2011, 21, 16510.	6.7	32
78	Experimental and simulation study of an air gap membrane distillation module with solar absorption function for desalination. Desalination and Water Treatment, 2011, 25, 251-258.	1.0	13
79	Membranes Used in MD and Design. , 2011, , 17-40.		3
80	Assessment of desalination technologies for high saline brine applications — Discussion Paper. Desalination and Water Treatment, 2011, 30, 22-36.	1.0	27
81	Effect of Membrane Properties on Performance of Membrane Distillation for Ammonia Removal. Journal of Materials Science Research, 2011, 1, .	0.1	2
82	Introduction to Membrane Distillation. , 2011, , 1-16.		33
83	The effect of ammonia initial concentration in membrane distillation process for high ammonia concentration wastewater treatment. , 2011, , .		6
84	MD Membrane Modules. , 2011, , 227-247.		2
85	The use of intermittent gas bubbling to control membrane fouling in concentrating TCM extract by membrane distillation. Journal of Membrane Science, 2011, 372, 172-181.	4.1	58
86	Water Desalination by Membrane Distillation. , 0, , .		7
87	Novel designs for improving the performance of hollow fiber membrane distillation modules. Journal of Membrane Science, 2011, 384, 52-62.	4.1	119
88	Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow. Journal of Membrane Science, 2011, 384, 107-116.	4.1	128
89	Sweeping gas membrane distillation of sucrose aqueous solutions: Response surface modeling and optimization. Separation and Purification Technology, 2011, 81, 12-24.	3.9	35
90	Preparation of High Concentration Polyaluminum Chloride with High Alc Content by Membrane Distillation. Chinese Journal of Chemical Engineering, 2011, 19, 173-176.	1.7	8
91	Energy efficiency evaluation and economic analyses of direct contact membrane distillation system using Aspen Plus. Desalination, 2011, 283, 237-244.	4.0	125
92	Nanostructured materials for water desalination. Nanotechnology, 2011, 22, 292001.	1.3	543

ARTICLE IF CITATIONS # Membrane distillation and applications for water purification in thermal cogeneration plants. 93 3.9 99 Separation and Purification Technology, 2011, 76, 231-237. Air gap membrane distillation on the different types of membrane. Korean Journal of Chemical 94 1.2 49 Engineering, 2011, 28, 770-777. Process energy efficiency in pervaporative and vacuum membrane distillation separation of 95 0.9 18 2,3â€butanediol. Canadian Journal of Chemical Engineering, 2011, 89, 1255-1265. Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater 96 desalination. Chemical Engineering Journal, 2011, 166, 596-606. Dual-layer PVDF/PTFE composite hollow fibers with a thin macrovoid-free selective layer for water 97 123 6.6 production via membrane distillation. Chemical Engineering Journal, 2011, 171, 684-691. Integrated forward osmosis–membrane distillation (FO–MD) hybrid system for the concentration of protein solutions. Chemical Engineering Science, 2011, 66, 2421-2430. Membranes and theoretical modeling of membrane distillation: A review. Advances in Colloid and 99 7.0 978 Interface Science, 2011, 164, 56-88. Study on the effects and properties of hydrophobic poly(tetrafluoroethylene) membrane. 100 4.0 64 Desalination, 2011, 277, 187-192. Towards practical implementations of membrane distillation. Chemical Engineering and Processing: 101 185 1.8 Process Intensification, 2011, 50, 139-150. Factors affecting biofilm formation and biofouling in membrane distillation of seawater. Journal of 4.1 94 Membrane Science, 2011, 376, 15-24. Enhanced air gap membrane desalination by novel finned tubular membrane modules. Journal of 103 41 4.1 Membrane Science, 2011, 378, 398-406. Modeling and analyses of membrane osmotic distillation using non-equilibrium thermodynamics. 4.1 Journal of Membrane Science, 2011, 378, 462-470. Moisture permeation through porous membranes. Journal of Membrane Science, 2011, 379, 496-503. 105 4.1 11 Generalized guidance for considering pore-size distribution in membrane distillation. Journal of 4.1 44 Membrane Science, 2011, 368, 124-133. Performance improvement of PVDF hollow fiber-based membrane distillation process. Journal of 107 4.1 216 Membrane Science, 2011, 369, 437-447. Direct contact membrane distillation (DCMD): Experimental study on the commercial PTFE membrane 192 and modeling. Journal of Membrane Science, 2011, 371, 90-98. Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane 109 4.1 124 distillation. Journal of Membrane Science, 2011, 376, 241-246. Compressible gases transport through porous membrane: A modified dusty gas model. Journal of 4.1 Membrane Science, 2011, 379, 200-206.

#	Article	IF	CITATIONS
111	Experimental analysis of an air gap membrane distillation solar desalination pilot system. Journal of Membrane Science, 2011, 379, 386-396.	4.1	233
112	The influence of magnetic water treatment on CaCO3 scale formation in membrane distillation process. Separation and Purification Technology, 2011, 80, 293-299.	3.9	71
113	Numerical Simulation of Cross-Flow Vacuum Membrane Distillation and Characteristics Analysis. Advanced Materials Research, 0, 396-398, 1846-1850.	0.3	0
114	Separation of volatile compounds from fermentation broth by membrane distillation. Polish Journal of Chemical Technology, 2011, 13, 56-60.	0.3	18
115	Study on air-bubbling strengthened membrane distillation process. Desalination and Water Treatment, 2011, 34, 2-5.	1.0	25
116	Direct Contact Membrane Distillation. , 2011, , 249-293.		23
117	Dynamic modeling of direct contact membrane distillation processes. Computer Aided Chemical Engineering, 2012, 31, 170-174.	0.3	7
118	Advanced purification of methyl orange high concentration. Desalination and Water Treatment, 2012, 42, 289-294.	1.0	1
119	Using Advanced Water Treatment Technologies To Treat Produced Water From The Petroleum Industry. , 2012, , .		22
120	Membrane Processes for Wastewater Treatment. , 2012, , 169-216.		1
121	Portable solar desalination system using membrane distillation. Water Practice and Technology, 2012, 7, .	1.0	2
122	Membranes and theoretical modelling of liquid-gas membrane separation for aromatic compounds removal from water: a review. International Journal of Global Environmental Issues, 2012, 12, 130.	0.1	4
123	Optimization of microstructured hollow fiber design for membrane distillation applications using CFD modeling. Journal of Membrane Science, 2012, 421-422, 258-270.	4.1	81
124	Optimal design and control of solar driven air gap membrane distillation desalination systems. Applied Energy, 2012, 100, 193-204.	5.1	35
125	Effectiveness of Water Desalination by Membrane Distillation Process. Membranes, 2012, 2, 415-429.	1.4	79
126	Numerical simulation and theoretical study on simultaneously effects of operating parameters in direct contact membrane distillation. Chemical Engineering and Processing: Process Intensification, 2012, 61, 42-50.	1.8	70
127	Development of a Membrane Distillation module for solar energy seawater desalination. Chemical Engineering Research and Design, 2012, 90, 2101-2121.	2.7	163
128	Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Progress in Polymer Science, 2012, 37, 1401-1424.	11.8	375

		CITATION REPORT		
# 129	ARTICLE A study of Computational Fluid Dynamics on membrane module in membrane distillation. , 2012, ,		Cita 4	TIONS
130	REMOVED: Modeling the Performance of Flat and Capillary Membrane Modules in Vacuum Membra Distillation. Procedia Engineering, 2012, 44, 181-183.	ine 1.2	. 1	
131	New Approach for Modeling Hybrid Pressure Swing Adsorption–Distillation Processes. Industrial & Engineering Chemistry Research, 2012, 51, 9343-9355.	1.8	3 14	
132	Permeate Flux Curve Characteristics Analysis of Cross-Flow Vacuum Membrane Distillation. Industrial & Engineering Chemistry Research, 2012, 51, 487-494.	1.8	3 17	
133	Effects of exposure time on variations in the structure and hydrophobicity of polyvinylidene fluorid membranes prepared via vapor-induced phase separation. Applied Surface Science, 2012, 258, 787	2 2-7881. 3.1	L 78	
134	Analysis of the effect of turbulence promoters in hollow fiber membrane distillation modules by computational fluid dynamic (CFD) simulations. Journal of Membrane Science, 2012, 415-416, 758	-769. 4.1	68	
135	Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in meml distillation. Journal of Membrane Science, 2012, 415-416, 850-863.	orane 4.1	422	
136	Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes. Chemical Engineering Science, 2012, 79, 94-102.	1.9	9 134	
137	The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation. Applied Surface Science, 2012, 263, 737-744.	3.1	L 47	
138	Concentration of lignocellulosic hydrolyzates by solar membrane distillation. Bioresource Technology, 2012, 123, 382-385.	4.8	3 26	
139	Effects of membrane properties on water production cost in small scale membrane distillation systems. Desalination, 2012, 306, 60-71.	4.() 77	
140	The influence of feed temperature and composition on the conversion of KCl into KHSO4 in a membrane reactor combined with direct contact membrane distillation. Separation and Purification Technology, 2012, 100, 59-65.	ו 3. 9	97	
141	Analysis of Membrane Distillation Crystallization System for High Salinity Brine Treatment with Zer Discharge Using Aspen Flowsheet Simulation. Industrial & Engineering Chemistry Research, 20 51, 13405-13413.	o)12, 1.8	85	
143	Ammonia removal from aqueous solution by membrane distillation. Water and Environment Journa 2013, 27, 425-434.	l, 1.0) 44	
144	A study of hydrophobic electrospun membrane applied in seawater desalination by membrane distillation. Fibers and Polymers, 2012, 13, 698-702.	1.1	. 55	
145	Direct contact membrane distillation for seawater desalination. Desalination and Water Treatment 2012, 49, 368-375.	1.0) 92	
146	Integration Design of Heat Exchanger Networks into Membrane Distillation Systems to Save Energ Industrial & Engineering Chemistry Research, 2012, 51, 6798-6810.	y. 1.8	3 12	
147	A New Method for Permeability Measurement of Hydrophobic Membranes used in Membrane Distillation. Procedia Engineering, 2012, 44, 1221-1222.	1.2	1	

# 148	ARTICLE Membrane Distillation: Principle, Advances, Limitations and Future Prospects in Food Industry. , 0, , .	IF	CITATIONS 21
149	Desalination of Industrial Effluents Using Integrated Membrane Processes. , 2012, , .		0
150	Wettability of polypropylene capillary membranes during the membrane distillation process. Chemical Papers, 2012, 66, .	1.0	30
151	Process intensification strategies and membrane engineering. Green Chemistry, 2012, 14, 1561.	4.6	101
152	Effects of additives on dual-layer hydrophobic–hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance. Chemical Engineering Science, 2012, 68, 567-578.	1.9	134
153	Membrane distillation: A comprehensive review. Desalination, 2012, 287, 2-18.	4.0	1,999
154	Current trends and future prospects in the design of seawater reverse osmosis desalination technology. Desalination, 2012, 284, 1-8.	4.0	381
155	Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material. Desalination, 2012, 284, 297-308.	4.0	146
156	Polyphosphates used for membrane scaling inhibition during water desalination by membrane distillation. Desalination, 2012, 285, 170-176.	4.0	81
157	Technical evaluation of stand-alone solar powered membrane distillation systems. Desalination, 2012, 286, 332-341.	4.0	136
158	Effect of spinning conditions on the structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation. Desalination, 2012, 287, 326-339.	4.0	104
159	Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations. Desalination, 2012, 290, 54-66.	4.0	182
160	A novel concept of energy reuse from high concentration photovoltaic thermal (HCPVT) system for desalination. Desalination, 2012, 295, 70-81.	4.0	77
161	Preparation of high concentration polyaluminum chloride by chemical synthesis-membrane distillation method with self-made hollow fiber membrane. Journal of Environmental Sciences, 2012, 24, 834-839.	3.2	2
162	Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) – Clay nanocomposite nanofiber membranes (PVDF–clay NNMs) for desalination using direct contact membrane distillation. Journal of Membrane Science, 2012, 397-398, 80-86.	4.1	280
163	Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process. Journal of Membrane Science, 2012, 403-404, 41-46.	4.1	157
164	Analysis of heat and mass transfer by CFD for performance enhancement in direct contact membrane distillation. Journal of Membrane Science, 2012, 405-406, 38-47.	4.1	119
165	Preparation and properties of PVDF composite hollow fiber membranes for desalination through direct contact membrane distillation. Journal of Membrane Science, 2012, 405-406, 185-200	4.1	146

#	Article	IF	CITATIONS
166	Modeling and simulation for direct contact membrane distillation in hollow fiber modules. AICHE Journal, 2013, 59, 589-603.	1.8	39
167	Treatment of radioactive wastewater using direct contact membrane distillation. Journal of Hazardous Materials, 2013, 261, 307-315.	6.5	122
168	Design of an autonomous solar desalination plant using vacuum membrane distillation, the MEDINA project. Chemical Engineering Research and Design, 2013, 91, 2782-2788.	2.7	26
169	Experimental evaluation of a modified air-gap membrane distillation prototype. Desalination and Water Treatment, 2013, 51, 4998-5004.	1.0	5
170	Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. Journal of Membrane Science, 2013, 447, 26-35.	4.1	222
171	Water regeneration from human urine by vacuum membrane distillation and analysis of membrane fouling characteristics. Separation and Purification Technology, 2013, 118, 369-376.	3.9	85
172	A new method for permeability measurement of hydrophobic membranes in Vacuum Membrane Distillation process. Water Research, 2013, 47, 2096-2104.	5.3	27
173	The concentration of geothermal brines with iodine content by membrane distillation. Desalination, 2013, 325, 16-24.	4.0	27
174	Application of carbon nano-materials in desalination processes. Desalination and Water Treatment, 2013, 51, 627-636.	1.0	28
175	The role of membrane surface energy on direct contact membrane distillation performance. Desalination, 2013, 323, 22-30.	4.0	58
176	An experimentally optimized model for heat and mass transfer in direct contact membrane distillation. International Journal of Heat and Mass Transfer, 2013, 66, 855-867.	2.5	111
177	Experimental study of the memsys vacuum-multi-effect-membrane-distillation (V-MEMD) module. Desalination, 2013, 323, 150-160.	4.0	161
178	Experimental study on the performance evaluation of vacuum distillation process for NH4HCO3 removal. Journal of Mechanical Science and Technology, 2013, 27, 1171-1178.	0.7	10
179	Preparation and characterization of novel triple layer hydrophilic–hydrophobic composite membrane for desalination using air gap membrane distillation. Separation and Purification Technology, 2013, 118, 598-603.	3.9	80
180	Simulation of solar vacuum membrane distillation unit. Desalination, 2013, 324, 87-92.	4.0	28
181	Modeling the performance of flat and capillary membrane modules in vacuum membrane distillation. Journal of Membrane Science, 2013, 447, 369-375.	4.1	28
182	Experimental evaluation on concentrating cooling tower blowdown water by direct contact membrane distillation. Desalination, 2013, 323, 134-141.	4.0	44
183	Simulation study of desalination performance for two large-scale air gap membrane distillation modules. Desalination and Water Treatment, 2013, 51, 5475-5484.	1.0	1

#	ARTICLE Impact of characteristic membrane parameters on the transfer rate of ammonia in membrane	IF 3.9	Citations 36
185	Experimental evaluation and modeling of internal temperatures in an air gap membrane distillation unit. Desalination, 2013, 326, 47-54.	4.0	23
186	Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers, Technologies, and Future Directions. Environmental Science & Technology, 2013, 47, 9569-9583.	4.6	655
187	Fabrication and characterization of superhydrophobic poly (vinylidene fluoride) membrane for direct contact membrane distillation. Desalination, 2013, 324, 1-9.	4.0	153
188	Effects of salinity and feed temperature on permeate flux of an air gap membrane distillation unit for sea water desalination. , 2013, , .		5
189	Numerical modeling of the vacuum membrane distillation process. Desalination, 2013, 331, 46-55.	4.0	43
190	Potential of membrane distillation - a comprehensive review. International Journal of Water, 2013, 7, 317.	0.1	20
191	Effect of temperature-dependent microstructure evolution on pore wetting in PTFE membranes under membrane distillation conditions. Journal of Membrane Science, 2013, 429, 282-294.	4.1	157
192	Vacuum membrane distillation processes for aqueous solution treatment—A review. Chemical Engineering and Processing: Process Intensification, 2013, 74, 27-54.	1.8	154
193	Emulsion separation using hydrophobic grafted ceramic membranes by. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 402-407.	2.3	47
194	Preparation and characterization of poly(tetrafluoroethylene–cohexafluoropropylene) (FEP) hollow fiber membranes for desalination. Desalination and Water Treatment, 2013, 51, 3948-3953.	1.0	5
195	Application of Membrane Distillation for desalting brines from thermal desalination plants. Desalination, 2013, 314, 101-108.	4.0	192
196	Experimental study of thermal performance in air gap membrane distillation systems, including the direct solar heating of membranes. Desalination, 2013, 330, 100-111.	4.0	66
197	Optimization of morphology and perf ormance of PVDF hollow fiber for direct contact membrane distillation using experimental design. Chemical Engineering Science, 2013, 101, 130-143.	1.9	58
198	Evaluation of geothermal energy in desalination by vacuum membrane distillation. Applied Energy, 2013, 112, 737-746.	5.1	182
199	A Thermochromic Liquid Crystals Image Analysis technique to investigate temperature polarization in spacer-filled channels for Membrane Distillation. Journal of Membrane Science, 2013, 447, 260-273.	4.1	55
200	Preparation of Biodegradable Poly(lactic Acid) Electrospun Membrane with Decreased Pore Size by Post Heat Treatment. Key Engineering Materials, 2013, 594-595, 260-269.	0.4	0
201	Separation technologies in the processing of fruit juices. , 2013, , 381-395.		2

#	Article	IF	CITATIONS
202	Design of super-hydrophobic microporous polytetrafluoroethylene membranes. New Journal of Chemistry, 2013, 37, 373-379.	1.4	26
203	Fouling of dairy components on hydrophobic polytetrafluoroethylene (PTFE) membranes for membrane distillation. Journal of Membrane Science, 2013, 442, 149-159.	4.1	93
204	Preparation of polysulfone membranes via vapor-induced phase separation and simulation of direct-contact membrane distillation by measuring hydrophobic layer thickness. Desalination, 2013, 316, 53-66.	4.0	59
205	Effect of microwave irradiation on vacuum membrane distillation. Journal of Membrane Science, 2013, 429, 473-479.	4.1	38
206	Effect of dry-out on the fouling of PVDF and PTFE membranes under conditions simulating intermittent seawater membrane distillation (SWMD). Journal of Membrane Science, 2013, 438, 126-139.	4.1	114
207	Advances in Membrane Distillation for Water Desalination and Purification Applications. Water (Switzerland), 2013, 5, 94-196.	1.2	601
208	Effect of pretreatment on membrane fouling and VMD performance in the treatment of RO-concentrated wastewater. Desalination and Water Treatment, 2013, 51, 6994-7003.	1.0	7
210	Amphiphobic fluorinated polyurethane composite microfibrous membranes with robust waterproof and breathable performances. RSC Advances, 2013, 3, 2248-2255.	1.7	87
211	Integrated direct contact membrane distillation for olive mill wastewater treatment. Desalination, 2013, 323, 31-38.	4.0	129
212	Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications. Separation and Purification Technology, 2013, 115, 27-38.	3.9	106
213	Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination, 2013, 323, 66-74.	4.0	191
214	Experimental comparison of direct contact membrane distillation (DCMD) with vacuum membrane distillation (VMD). Desalination and Water Treatment, 2013, 51, 6299-6309.	1.0	27
215	Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). Journal of Membrane Science, 2013, 436, 57-67.	4.1	84
216	Development of simultaneous membrane distillation–crystallization (SMDC) technology for treatment of saturated brine. Chemical Engineering Science, 2013, 98, 160-172.	1.9	156
217	Nanoporous organosilica membrane for water desalination. Chemical Communications, 2013, 49, 4534.	2.2	53
218	Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. Journal of Membrane Science, 2013, 428, 104-115.	4.1	301
219	Fabrication of electrospun nanofibrous membranes for membrane distillation application. Desalination and Water Treatment, 2013, 51, 1337-1343.	1.0	47
220	Effect of temperature difference on performance of membrane crystallization-based membrane distillation system. Desalination and Water Treatment, 2013, 51, 1362-1365.	1.0	6

#	Article	IF	CITATIONS
221	Review and assessment of the newly developed MD for desalination processes. Desalination and Water Treatment, 2013, 51, 574-585.	1.0	29
222	Vacuum membrane distillation for purifying waters containing arsenic. Desalination, 2013, 323, 17-21.	4.0	70
223	Desalination by solar powered membrane distillation systems. Desalination, 2013, 308, 186-197.	4.0	314
224	New directions in nanofiltration applications — Are nanofibers the right materials as membranes in desalination?. Desalination, 2013, 308, 198-208.	4.0	145
225	Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. Journal of Membrane Science, 2013, 425-426, 30-39.	4.1	364
226	Performance investigation of a solar-assisted direct contact membrane distillation system. Journal of Membrane Science, 2013, 427, 345-364.	4.1	152
227	Influence of proteins content in the feed on the course of membrane distillation. Desalination and Water Treatment, 2013, 51, 2362-2367.	1.0	10
228	A continuousâ€effect membrane distillation process based on hollow fiber AGMD module with internal latentâ€heat recovery. AICHE Journal, 2013, 59, 1278-1297.	1.8	49
229	Advances in membrane-based concentration in the food and beverage industries: direct osmosis and membrane contactors. , 2013, , 244-283.		0
230	Performance of Surface Modification of Polyvinylidene Fluoride Hollow Fiber Membrane in Membrane Distillation. Advanced Materials Research, 2013, 795, 137-140.	0.3	4
231	Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fiber modules: a review. Desalination and Water Treatment, 2013, 51, 3604-3627.	1.0	104
232	Recent Progress in Membrane Distillation. Jurnal Teknologi (Sciences and Engineering), 2014, 70, .	0.3	1
234	Characteristic and Performance of Polyvinylidene Fluoride Membranes Blended with Lithium Chloride in Direct Contact Membrane Distillation. Jurnal Teknologi (Sciences and Engineering), 2014, 69, .	0.3	1
235	Athermal Membrane Processes for the Concentration of Liquid Foods and Natural Colors. , 2014, , 213-237.		2
236	Membrane processes for water recovery and decontamination. Current Opinion in Chemical Engineering, 2014, 6, 75-82.	3.8	20
237	Vacuum membrane distillation simulation of desalination using polypropylene hydrophobic microporous membrane. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
238	Preparation, characterisation and performance of polyvinylidene fluoride membrane for sodium chloride rejection in direct contact membrane distillation. Materials Research Innovations, 2014, 18, S6-359-S6-363.	1.0	1
239	Solar membrane distillation: desalination for the Navajo Nation. Reviews on Environmental Health, 2014, 29, 67-70.	1.1	6

#	Article	IF	CITATIONS
240	Performance simulation of a multi-VMD desalination process including the recycle flow. Desalination, 2014, 338, 39-48.	4.0	30
241	Study of membrane fouling in cross-flow vacuum membrane distillation. Separation and Purification Technology, 2014, 122, 133-143.	3.9	32
242	Utilization of solar energy for direct contact membrane distillation process: An experimental study for desalination of real seawater. Korean Journal of Chemical Engineering, 2014, 31, 155-161.	1.2	18
243	Distillation technology–Âstill young and full of breakthrough opportunities. Journal of Chemical Technology and Biotechnology, 2014, 89, 479-498.	1.6	201
244	Condensation studies in membrane evaporation and sweeping gas membrane distillation. Journal of Membrane Science, 2014, 462, 9-16.	4.1	62
245	Novel design of liquid distributors for VMD performance improvement based on cross-flow membrane module. Desalination, 2014, 336, 80-86.	4.0	16
246	Effect of selected spinning parameters on PVDF hollow fiber morphology for potential application in desalination by VMD. Desalination, 2014, 344, 28-35.	4.0	33
247	CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. Journal of Membrane Science, 2014, 456, 155-161.	4.1	196
248	Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production. Applied Energy, 2014, 130, 491-499.	5.1	188
249	Direct contact membrane distillation for treatment of oilfield produced water. Separation and Purification Technology, 2014, 126, 69-81.	3.9	136
250	Membrane distillation enhanced by an asymmetric electric field. AICHE Journal, 2014, 60, 2307-2313.	1.8	5
251	Numerical study on multi-stage vacuum membrane distillation with economic evaluation. Desalination, 2014, 339, 54-67.	4.0	54
252	Numerical simulation studies on heat and mass transfer using vacuum membrane distillation. Polymer Engineering and Science, 2014, 54, 2553-2559.	1.5	13
253	Separated performances of ammonium sulphate and ammonium chloride solutions treated by vacuum membrane distillation. Canadian Journal of Chemical Engineering, 2014, 92, 1306-1313.	0.9	7
254	Techno-economic viability of innovative membrane systems in water and mass recovery from dairy wastewater. Journal of Membrane Science, 2014, 458, 66-75.	4.1	58
255	Effect of a macromolecular- or bio-fouling layer on membrane distillation. Journal of Membrane Science, 2014, 456, 66-76.	4.1	48
256	Experimental study of hollow fiber AGMD modules with energy recovery for high saline water desalination. Desalination, 2014, 344, 55-63.	4.0	37
257	Membrane processes for heating, ventilation, and air conditioning. Renewable and Sustainable Energy Reviews, 2014, 33, 290-304.	8.2	174

#	Article	IF	CITATIONS
258	Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination. Journal of Membrane Science, 2014, 450, 197-206.	4.1	101
259	Cylindrical cell model for direct contact membrane distillation (DCMD) of densely packed hollow fibers. Journal of Membrane Science, 2014, 455, 168-186.	4.1	19
260	Study on a new air-gap membrane distillation module for desalination. Desalination, 2014, 334, 29-38.	4.0	63
261	Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions. Journal of Membrane Science, 2014, 455, 103-112.	4.1	116
262	Experiments and modeling of a vacuum membrane distillation for high saline water. Journal of Industrial and Engineering Chemistry, 2014, 20, 2174-2183.	2.9	47
263	Recent progress of membrane distillation using electrospun nanofibrous membrane. Journal of Membrane Science, 2014, 453, 435-462.	4.1	318
264	Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling. Journal of Membrane Science, 2014, 453, 498-515.	4.1	168
265	Pore structure control of PVDF membranes using a 2-stage coagulation bath phase inversion process for application in membrane distillation (MD). Journal of Membrane Science, 2014, 452, 470-480.	4.1	104
266	Formation and characterization of polytetrafluoroethylene nanofiber membranes for vacuum membrane distillation. Journal of Membrane Science, 2014, 453, 402-408.	4.1	97
267	Nanocrystalline cellulose reinforced PVDF-HFP membranes for membrane distillation application. Desalination, 2014, 332, 134-141.	4.0	153
268	A review on the recovery methods of draw solutes in forward osmosis. Journal of Water Process Engineering, 2014, 4, 212-223.	2.6	145
269	Separation and purification of biobutanol during bioconversion of biomass. Separation and Purification Technology, 2014, 132, 513-540.	3.9	139
270	A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation. Chemical Engineering Journal, 2014, 256, 155-159.	6.6	134
271	Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity. Applied Surface Science, 2014, 317, 338-349.	3.1	35
272	Evaluation method of membrane performance in membrane distillation process for seawater desalination. Environmental Technology (United Kingdom), 2014, 35, 2147-2152.	1.2	3
273	Development of a vacuum membrane distillation unit operation: From experimental data to a simulation model. Chemical Engineering and Processing: Process Intensification, 2014, 86, 90-95.	1.8	14
274	Treatment of Industrial Wastewater Containing High Levels of Ammonia and Salt Using Vacuum Membrane Distillation. Applied Mechanics and Materials, 0, 539, 805-810.	0.2	5
275	Compact microfluidic device for rapid concentration of PET tracers. Lab on A Chip, 2014, 14, 2293-2302.	3.1	13

#	Article	IF	CITATIONS
276	Superhydrophobic PVDF–PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation. Desalination, 2014, 347, 175-183.	4.0	172
277	Physical modification of polytetrafluoroethylene flat membrane by a simple heat setting process and membrane wetting remission in SGMD for desalination. Desalination, 2014, 354, 143-152.	4.0	17
278	Highly Efficient Hydrophobic Titania Ceramic Membranes for Water Desalination. ACS Applied Materials & Interfaces, 2014, 6, 14223-14230.	4.0	95
280	Simplified flux prediction in direct-contact membrane distillation using a membrane structural parameter. Desalination, 2014, 351, 151-162.	4.0	33
281	Integration of Thermal Membrane Distillation Networks with Processing Facilities. Industrial & Engineering Chemistry Research, 2014, 53, 5284-5298.	1.8	43
282	Direct contact membrane distillation: An experimental and analytical investigation of the effect of membrane thickness upon transmembrane flux. Journal of Membrane Science, 2014, 470, 257-265.	4.1	67
283	Design strategy for networking membrane module and heat exchanger for direct contact membrane distillation process in seawater desalination. Desalination, 2014, 349, 126-135.	4.0	19
284	Electrospun Superhydrophobic Membranes with Unique Structures for Membrane Distillation. ACS Applied Materials & Interfaces, 2014, 6, 16035-16048.	4.0	234
285	Dual-Biomimetic Superhydrophobic Electrospun Polystyrene Nanofibrous Membranes for Membrane Distillation. ACS Applied Materials & Interfaces, 2014, 6, 2423-2430.	4.0	141
286	Omniphobic Membrane for Robust Membrane Distillation. Environmental Science and Technology Letters, 2014, 1, 443-447.	3.9	288
287	Modeling and optimization of air gap membrane distillation system for desalination. Desalination, 2014, 354, 68-75.	4.0	49
288	Preparation and characterization of PVDF flat-sheet membranes for direct contact membrane distillation. Separation and Purification Technology, 2014, 135, 211-222.	3.9	104
289	Fluoride removal from aqueous solution by direct contact membrane distillation: theoretical and experimental studies. Environmental Science and Pollution Research, 2014, 21, 10493-10501.	2.7	44
290	Vacuum Membrane Dryer (VMDr) for the recovery of solid microparticles from aqueous solutions. Journal of Membrane Science, 2014, 472, 67-76.	4.1	15
291	Application of vacuum membrane distillation for small scale drinking water production. Desalination, 2014, 354, 53-61.	4.0	32
292	A non-invasive study of flow dynamics in membrane distillation hollow fiber modules using low-field nuclear magnetic resonance imaging (MRI). Journal of Membrane Science, 2014, 451, 46-54.	4.1	34
293	Application of response surface methodology for modeling and optimization of membrane distillation desalination process. Journal of Industrial and Engineering Chemistry, 2014, 20, 3163-3169.	2.9	81
294	Fabrication of Bioinspired Composite Nanofiber Membranes with Robust Superhydrophobicity for Direct Contact Membrane Distillation. Environmental Science & Technology, 2014, 48, 6335-6341.	4.6	216

#	Article	IF	CITATIONS
295	The potential of membrane distillation in recovering water from hot dyeing solution. Journal of Water Process Engineering, 2014, 2, 71-78.	2.6	46
296	Hollow fibers for seawater desalination from blends of PVDF with different molecular weights: Morphology, properties and VMD performance. Polymer, 2014, 55, 1296-1306.	1.8	63
297	Concentration of glycerol from dilute glycerol wastewater using sweeping gas membrane distillation. Chemical Engineering and Processing: Process Intensification, 2014, 78, 58-66.	1.8	60
298	Taguchi optimization approach for phenolic wastewater treatment by vacuum membrane distillation. Desalination and Water Treatment, 2014, 52, 1341-1349.	1.0	40
299	Production of drinking water from seawater using membrane distillation (MD) alternative: direct contact MD and sweeping gas MD approaches. Desalination and Water Treatment, 2014, 52, 2372-2381.	1.0	41
300	Study of the performances of different configurations of seawater desalination with a solar membrane distillation. Desalination and Water Treatment, 2014, 52, 2362-2371.	1.0	12
301	Treatment of Produced Water from Unconventional Resources by Membrane Distillation. , 2014, , .		5
302	Efficient Desalination by Reverse Osmosis: A guide to RO practice. Water Intelligence Online, 2015, 14, .	0.3	1
305	Preparation of a hydrophobically enhanced antifouling isotactic polypropylene/silicone dioxide flatâ€sheet membrane via thermally induced phase separation for vacuum membrane distillation. Journal of Applied Polymer Science, 2015, 132, .	1.3	7
306	Analysis of countercurrent membrane vapor extraction of a dilute aqueous biosolute. AICHE Journal, 2015, 61, 2795-2809.	1.8	10
308	Daily Estimate of Pure Water in a Desalination Unit by Solar Membrane Distillation. Journal of Material Science & Engineering, 2015, 04, .	0.2	1
310	Solar-assisted multi-stage vacuum membrane distillation system with heat recovery unit. Desalination, 2015, 367, 161-171.	4.0	67
311	High-performance polyvinylidene fluoride/poly(styrene–butadiene–styrene)/functionalized MWCNTs-SCN-Ag nanocomposite membranes. Iranian Polymer Journal (English Edition), 2015, 24, 549-559.	1.3	17
312	Morphological and hydrophobic modifications of PVDF flat membrane with silane coupling agent grafting via plasma flow for VMD of ethanol–water mixture. Journal of Membrane Science, 2015, 491, 110-120.	4.1	49
313	Assessment of temperature polarization in membrane distillation channels by liquid crystal thermography. Desalination and Water Treatment, 2015, 55, 2747-2765.	1.0	13
314	CO2 Capture using a Superhydrophobic Ceramic Membrane Contactor. Energy Procedia, 2015, 75, 2287-2292.	1.8	12
315	CFD Simulation of Direct Contact Membrane Distillation Modules with Rough Surface Channels. Energy Procedia, 2015, 75, 3083-3090.	1.8	15
316	Statistical analysis of air-gap membrane desalination experimental data: Hypothesis testing.	4.0	8

#	Article	IF	CITATIONS
317	Membrane Distillation Crystallization Applied to Brine Desalination: A Hierarchical Design Procedure. Industrial & Engineering Chemistry Research, 2015, 54, 2776-2793.	1.8	35
318	Treatment of high salinity brines by direct contact membrane distillation: Effect of membrane characteristics and salinity. Chemosphere, 2015, 140, 143-149.	4.2	67
319	Evaluation of heat utilization in membrane distillation desalination system integrated with heat recovery. Desalination, 2015, 366, 80-93.	4.0	70
320	Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane. Journal of Membrane Science, 2015, 478, 85-95.	4.1	89
321	Membranes used in membrane distillation: preparation and characterization. , 2015, , 317-359.		12
322	Modelling of pore wetting inÂmembrane distillation compared with pervaporation. , 2015, , 385-413.		8
323	Next generation membranes forÂmembrane distillation andÂfuture prospects. , 2015, , 415-447.		8
324	Nanoporous organosilica membrane for water desalination: Theoretical study on the water transport. Journal of Membrane Science, 2015, 482, 56-66.	4.1	33
325	Emerging desalination technologies for water treatment: A critical review. Water Research, 2015, 75, 164-187.	5.3	681
326	Water Desalination Using Solar Energy. Advanced Materials Research, 0, 1116, 73-93.	0.3	6
327	Persian Gulf desalination using air gap membrane distillation: Numerical simulation and theoretical study. Desalination, 2015, 374, 92-100.	4.0	33
328	Driving force and activation energy in air-gap membrane distillation process. Chemical Papers, 2015, 69,	1.0	24
329	A novel membrane distillation response technology for nucleation detection, metastable zone width measurement and analysis. Chemical Engineering Science, 2015, 134, 671-680.	1.9	27
330	An experimental review on coupling of solar pond with membrane distillation. Solar Energy, 2015, 119, 319-331.	2.9	65
331	Impact of volatile fatty acid recovery on economics of ethanol production from brown algae via mixed alcohol synthesis. Chemical Engineering Research and Design, 2015, 98, 107-122.	2.7	29
332	Performance evaluation of novel PVDF–Cloisite 15A hollow fiber composite membranes for treatment of effluents containing dyes and salts using membrane distillation. RSC Advances, 2015, 5, 38011-38020.	1.7	35
333	Review of thermal efficiency and heat recycling in membrane distillation processes. Desalination, 2015, 367, 223-239.	4.0	122
334	Removal of volatile organic compounds from aqueous solutions applying thermally driven membrane processes. 1. Thermopervaporation. Chemical Engineering and Processing: Process Intensification, 2015, 94, 62-71.	1.8	30

ARTICLE IF CITATIONS # Recovery of salts from ion-exchange regeneration streams by a coupled nanoï¬ltrationâ€"membrane 335 1.2 5 distillation process. Water Science and Technology, 2015, 72, 252-259. Fundamentals of membrane distillation., 2015, , 277-316. Hydrophobic polyethersulfone porous membranes for membrane distillation. Frontiers of Chemical 337 2.3 16 Science and Engineering, 2015, 9, 84-93. Fouling analysis and control in a DCMD process for SWRO brine. Desalination, 2015, 367, 21-27. 338 4.0 Synthesis of mesoporous carbonâ€"silica nanocomposite water-treatment membranes using a 339 5.2 32 triconstituent co-assembly method. Journal of Materials Chemistry A, 2015, 3, 10480-10491. Electrospun Superhydrophobic Organic/Inorganic Composite Nanofibrous Membranes for Membrane Distillation. ACS Applied Materials & Amp; Interfaces, 2015, 7, 21919-21930. 4.0 Humic acid fouling mitigation by ultrasonic irradiation in membrane distillation process. Separation 341 3.9 41 and Purification Technology, 2015, 154, 328-337. Study on the heat and mass transfer in air-bubbling enhanced vacuum membrane distillation. 4.0 38 Desalination, 2015, 373, 16-26. 343 Solar membrane distillation: A control perspective., 2015,,. 3 Renewable water: Direct contact membrane distillation coupled with solar ponds. Applied Energy, 344 5.1 2015, 158, 532-539. Simultaneous concentration and detoxification of lignocellulosic hydrolyzates by vacuum membrane 345 4.8 33 distillation coupled with adsorption. Bioresource Technology, 2015, 197, 276-283. Direct contact membrane distillation: Capability to treat hyper-saline solution. Desalination, 2015, 376, 346 4.0 117-129. Flux stabilization in membrane distillation desalination of seawater and brine using corrugated PVDF 347 4.1 70 membranes. Journal of Membrane Science, 2015, 495, 404-414. CO2 capture using a superhydrophobic ceramic membrane contactor. Journal of Membrane Science, 348 4.1 104 2015, 496, 1-12 Evaluation of cellulose acetate membrane with carbon nanotubes additives. Journal of Industrial and 349 2.9 62 Engineering Chemistry, 2015, 26, 259-264. Treatment of bentazon herbicide solutions by vacuum membrane distillation. Journal of Water Process Engineering, 2015, 8, e17-e22. Plasma deposited fluorinated films on porous membranes. Materials Chemistry and Physics, 2015, 151, 351 2.0 31 233-242. Prevention of surfactant wetting with agarose hydrogel layer for direct contact membrane 4.1 distillation used in dyeing wastewater treatment. Journal of Membrane Science, 2015, 475, 511-520.

#	Article	IF	CITATIONS
353	An ultrasonic assisted direct contact membrane distillation hybrid process for desalination. Journal of Membrane Science, 2015, 476, 59-67.	4.1	31
354	Titanium dioxide nanotubes embedded mixed matrix PES membranes characterization and membrane performance. Chemical Engineering Research and Design, 2015, 95, 307-316.	2.7	43
355	Potential of Membrane Distillation for Production of High Quality Fruit Juice Concentrate. Critical Reviews in Food Science and Nutrition, 2015, 55, 1098-1113.	5.4	31
356	Shale gas produced water treatment using innovative microbial capacitive desalination cell. Journal of Hazardous Materials, 2015, 283, 847-855.	6.5	93
357	Condensation, re-evaporation and associated heat transfer in membrane evaporation and sweeping gas membrane distillation. Journal of Membrane Science, 2015, 475, 445-454.	4.1	39
358	A research on water desalination using membrane distillation. Desalination and Water Treatment, 2015, 56, 2618-2630.	1.0	19
359	Membrane distillation: Recent developments and perspectives. Desalination, 2015, 356, 56-84.	4.0	833
360	A comprehensive review of vacuum membrane distillation technique. Desalination, 2015, 356, 1-14.	4.0	264
361	Nanofiber based triple layer hydro-philic/-phobic membrane - a solution for pore wetting in membrane distillation. Scientific Reports, 2014, 4, 6949.	1.6	65
362	Preparation and characterization of hydrophobic alumina planar membranes for water desalination. Journal of the European Ceramic Society, 2015, 35, 723-730.	2.8	81
363	Influence of salt concentration on DCMD performance for treatment of highly concentrated NaCl, KCl, MgCl2 and MgSO4 solutions. Desalination, 2015, 355, 110-117.	4.0	50
364	Effect of operating parameters on temperature and concentration polarization in vacuum membrane distillation process. Desalination and Water Treatment, 2015, 54, 871-880.	1.0	14
365	Membrane Distillation (MD). , 2015, , 61-99.		6
366	Fouling and its control in membrane distillation—A review. Journal of Membrane Science, 2015, 475, 215-244.	4.1	776
367	Crystallization behavior of salts during membrane distillation with hydrophobic and superhydrophobic capillary membranes. Journal of Membrane Science, 2015, 473, 165-176.	4.1	93
368	Characteristic and performance of polyvinylidene fluoride membranes blended with different additives in direct contact membrane distillation. Desalination and Water Treatment, 2015, 54, 3218-3226.	1.0	17
369	Analysis of heat and mass transfer in vacuum membrane distillation for water desalination using computational fluid dynamics (CFD). Desalination and Water Treatment, 2015, 55, 39-52.	1.0	19
370	Submerged membrane distillation for seawater desalination. Desalination and Water Treatment, 2015, 55, 2741-2746.	1.0	24

#	Article	IF	CITATIONS
371	Scaling and fouling in membrane distillation for desalination applications: A review. Desalination, 2015, 356, 294-313.	4.0	607
372	Performance of different hollow fiber membranes for seawater desalination using membrane distillation. Desalination and Water Treatment, 2015, 55, 2786-2791.	1.0	16
373	Vacuum membrane distillation–crystallization process of high ammonium salt solutions. Desalination and Water Treatment, 2015, 55, 368-380.	1.0	11
374	Theoretical modeling of direct contact membrane distillation (DCMD): effects of operation parameters on flux. Desalination and Water Treatment, 2015, 56, 2013-2022.	1.0	10
375	Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science, 2015, 474, 39-56.	4.1	740
376	Modelisation of Membrane Distillation: Mass and Heat Transfer in Air Gap Membrane Distillation. Journal of Membrane Science & Technology, 2016, 6, .	0.5	2
377	EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATION. Brazilian Journal of Chemical Engineering, 2016, 33, 675-690.	0.7	15
378	Experimental Evaluation of Corrugated Feed Channel of Direct Contact Membrane Distillation. Journal of Membrane Science & Technology, 2016, 6, .	0.5	5
380	Salinity gradient engines. , 2016, , 219-256.		5
381	Performance Investigation of O-Ring Vacuum Membrane Distillation Module for Water Desalination. Journal of Chemistry, 2016, 2016, 1-11.	0.9	10
382	Membrane Distillation. , 2016, , 191-251.		12
383	Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation. Water (Switzerland), 2016, 8, 586.	1.2	43
384	A hybrid process combining homogeneous catalytic ozonation and membrane distillation for wastewater treatment. Chemosphere, 2016, 160, 134-140.	4.2	30
386	Application of direct contact membrane distillation process to treat anaerobic digestate. Journal of Membrane Science, 2016, 511, 20-28.	4.1	59
387	Distillation technology and need of simultaneous design and control: A review. Chemical Engineering and Processing: Process Intensification, 2016, 104, 219-242.	1.8	29
388	Investigation of a solar energy driven and hollow fiber membrane-based humidification–dehumidification desalination system. Applied Energy, 2016, 177, 393-408.	5.1	70
389	Calibration and analysis of a direct contact membrane distillation model using Monte Carlo filtering. Journal of Membrane Science, 2016, 515, 63-78.	4.1	22
390	Response surface modeling and optimization of direct contact membrane distillation for water desalination. Desalination, 2016, 394, 108-122.	4.0	45

ARTICLE IF CITATIONS # Characterization and performance evaluation of commercially available hydrophobic membranes for 391 4.0 90 direct contact membrane distillation. Desalination, 2016, 392, 63-73. Surface Wetting Study via Pseudocontinuum Modeling. Journal of Physical Chemistry C, 2016, 120, 1.5 11528-11534. Dewatering of source-separated human urine for nitrogen recovery by membrane distillation. Journal 393 4.1 65 of Membrane Science, 2016, 512, 13-20. Performance evaluation of hollow fiber air gap membrane distillation module with multiple cooling 394 4.0 channels. Desalination, 2016, 385, 58-68. Evaluation of commercial PTFE membranes for desalination of brine water through vacuum membrane 396 1.8 26 distillation. Chemical Engineering and Processing: Process Intensification, 2016, 110, 52-63. Solar-driven membrane distillation demonstration in Leupp, Arizona. Reviews on Environmental 1.1 Health, 2016, 31, 79-83. Membrane distillation pilot plant trials with pharmaceutical residues and energy demand analysis. 398 6.6 74 Chemical Engineering Journal, 2016, 306, 471-483. A critical review of membrane crystallization for the purification of water and recovery of minerals. 3.9 Reviews in Environmental Science and Biotechnology, 2016, 15, 411-439. Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review. 400 4.0 292 Desalination, 2016, 398, 222-246. Effect of Ethylene Glycol on Polymeric Membrane Fabrication for Membrane Distillation. Key 0.4 Engineering Materials, 0, 701, 250-254. A novel profiled core–shell nanofibrous membrane for wastewater treatment by direct contact 404 5.2 42 membrane distillation. Journal of Materials Chemistry A, 2016, 4, 14453-14463. Leather Industry, Soaking., 2016, , 1095-1095. 405 How To Optimize the Membrane Properties for Membrane Distillation: A Review. Industrial & amp; 406 1.8 211 Engineering Chemistry Research, 2016, 55, 9333-9343. Electrospun nanofiber membranes incorporating fluorosilane-coated TiO2 nanocomposite for direct 4.1 contact membrane distillation. Journal of Membrane Science, 2016, 520, 145-154. Hydrophobic Al<sub>2</sub>0<sub>3</sub> Membrane for Sucrose Concentration via Vacuum Membrane Distillation System. Journal of Chemical Engineering of Japan, 408 0.35 2016, 49, 915-919. Lamellar Copolymers., 2016, , 1083-1086. 409 How to select a membrane distillation configuration? Process conditions and membrane influence 410 4.0 73 unraveled. Desalination, 2016, 399, 105-115. Liquid Crystal Polymer Membranes., 2016, , 1103-1104.

#	Article	IF	Citations
412	High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation. Water Research, 2016, 103, 362-371.	5.3	193
413	Selective hydrophilization of the permeate surface to enhance flux in membrane distillation. Separation and Purification Technology, 2016, 170, 427-433.	3.9	22
414	Experimental investigation of nanofibrous poly(vinylidene fluoride) membranes for desalination through air gap membrane distillation process. Korean Journal of Chemical Engineering, 2016, 33, 2953-2960.	1.2	36
415	Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporousÂmembranes. Nature Energy, 2016, 1, .	19.8	226
416	A novel multi-stage direct contact membrane distillation module: Design, experimental and theoretical approaches. Water Research, 2016, 107, 47-56.	5.3	72
417	Vacuum enhanced membrane distillation for trace contaminant removal of heavy metals from water by electrospun PVDF/TiO2 hybrid membranes. Korean Journal of Chemical Engineering, 2016, 33, 2160-2168.	1.2	51
418	Study on the performance of double-pipe air gap membrane distillation module. Desalination, 2016, 396, 48-56.	4.0	22
419	Recovery and development of correlations for heat and mass transfer in vacuum membrane distillation for desalination. Desalination and Water Treatment, 2016, 57, 26886-26898.	1.0	10
420	Desalination by Membrane Distillation. , 2016, , 77-109.		11
421	Numerical simulation of 3D hollow-fiber vacuum membrane distillation by computational fluid dynamics. Chemical Engineering Science, 2016, 152, 172-185.	1.9	40
422	Understanding wetting phenomena in membrane distillation and how operational parameters can affect it. Journal of Membrane Science, 2016, 515, 163-174.	4.1	119
423	Improvement of the Membrane Distillation performance through the integration of different configurations. Chemical Engineering Research and Design, 2016, 111, 316-322.	2.7	20
424	The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environmental Science & Technology, 2016, 50, 6846-6855.	4.6	682
425	Membrane assisted cooling crystallization: Process model, nucleation, metastable zone, and crystal size distribution. AICHE Journal, 2016, 62, 829-841.	1.8	46
426	Review of membrane distillation process for water purification. Desalination and Water Treatment, 2016, 57, 2959-2981.	1.0	78
427	Ammonia recovery from high concentration wastewater of soda ash industry with membrane distillation process. Desalination and Water Treatment, 2016, 57, 6792-6800.	1.0	25
428	Theoretical and experimental studies of immediate assisted solar air gap membrane distillation systems. Desalination and Water Treatment, 2016, 57, 3846-3860.	1.0	8
429	DCMD modelling and experimental study using PTFE membrane. Desalination and Water Treatment, 2016, 57, 3835-3845.	1.0	14

#	Article	IF	CITATIONS
430	Hydrophobic surface modification of membrane distillation (MD) membranes using water-repelling polymer based on urethane rubber. Desalination and Water Treatment, 2016, 57, 10031-10041.	1.0	13
431	A review on fouling of membrane distillation. Desalination and Water Treatment, 2016, 57, 10052-10076.	1.0	83
432	Efficient thermal desalination technologies with renewable energy systems: A state-of-the-art review. Korean Journal of Chemical Engineering, 2016, 33, 351-387.	1.2	59
433	Effect of humic-acid fouling on membrane distillation. Journal of Membrane Science, 2016, 504, 263-273.	4.1	41
434	Thermally rearranged polymer membranes for desalination. Energy and Environmental Science, 2016, 9, 878-884.	15.6	53
435	Ionic liquid and water separation by membrane distillation. Chemical Engineering Journal, 2016, 288, 557-561.	6.6	48
436	Comparison of hollow fiber module designs in membrane distillation process employed lumen-side and shell-side feed. Desalination and Water Treatment, 2016, 57, 7700-7710.	1.0	4
437	Air gap membrane distillation for enrichment of H218O isotopomers in natural water using poly(vinylidene fluoride) nanofibrous membrane. Chemical Engineering and Processing: Process Intensification, 2016, 100, 26-36.	1.8	47
438	A novel plasma-induced surface hydrophobization strategy for membrane distillation: Etching, dipping and grafting. Journal of Membrane Science, 2016, 499, 544-554.	4.1	58
439	Evaluation of silica fouling for coal seam gas produced water in a submerged vacuum membrane distillation system. Desalination, 2016, 393, 52-64.	4.0	24
440	Preparation and properties of iPP hollow fiber membranes for air gap membrane distillation. Desalination and Water Treatment, 2016, 57, 23546-23555.	1.0	7
441	Desalination by pervaporation: A review. Desalination, 2016, 387, 46-60.	4.0	232
442	A numerical approach to module design for crossflow vacuum membrane distillation systems. Journal of Membrane Science, 2016, 510, 489-496.	4.1	44
443	Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation. Chemical Engineering and Processing: Process Intensification, 2016, 102, 16-26.	1.8	81
444	Exploration and optimization of two-stage vacuum membrane distillation process for the treatment of saline wastewater produced by natural gas exploitation. Desalination, 2016, 385, 117-125.	4.0	38
445	Development of PVDF membranes for membrane distillation via vapour induced crystallisation. European Polymer Journal, 2016, 77, 164-173.	2.6	37
446	Study of the rectangular cross-flow flat-sheet membrane module for desalination by vacuum membrane distillation. Chemical Engineering and Processing: Process Intensification, 2016, 102, 169-185.	1.8	16
447	Highly porous PVDF hollow fiber membranes for VMD application by applying a simultaneous co-extrusion spinning process. Journal of Membrane Science, 2016, 505, 82-91.	4.1	36

#	Article	IF	CITATIONS
448	Membranes and crystallization processes: State of the art and prospects. Journal of Membrane Science, 2016, 509, 57-67.	4.1	83
449	How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes. ACS Applied Materials & Interfaces, 2016, 8, 7564-7577.	4.0	56
450	Critical review of membrane distillation performance criteria. Desalination and Water Treatment, 2016, 57, 20093-20140.	1.0	58
451	Ultrasonic irradiation control of silica fouling during membrane distillation process. Desalination, 2016, 386, 48-57.	4.0	34
452	Materials and membrane technologies for water and energy sustainability. Sustainable Materials and Technologies, 2016, 7, 1-28.	1.7	279
453	Direct As(III) removal from brackish groundwater by vacuum membrane distillation: Effect of organic matter and salts on membrane fouling. Separation and Purification Technology, 2016, 157, 35-44.	3.9	36
454	Amphiphobic PVDF composite membranes for anti-fouling direct contact membrane distillation. Journal of Membrane Science, 2016, 505, 61-69.	4.1	141
455	Heat and mass transfer in membrane distillation used for desalination with slip flow. Desalination, 2016, 381, 135-142.	4.0	25
456	Integrated forward osmosis-membrane distillation process for human urine treatment. Water Research, 2016, 91, 45-54.	5.3	96
457	Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. Journal of Membrane Science, 2016, 502, 158-170.	4.1	320
458	The Effect of Module Geometry on Heat and Mass Transfer in Membrane Distillation. Chemical Product and Process Modeling, 2016, 11, 35-39.	0.5	9
459	Flux enhancement in membrane distillation by incorporating AC particles into PVDF polymer matrix. Journal of Membrane Science, 2016, 500, 46-54.	4.1	47
460	Preparation of Hyflon AD60/PVDF composite hollow fiber membranes for vacuum membrane distillation. Separation and Purification Technology, 2016, 157, 1-8.	3.9	62
461	Influence of membrane thickness and process conditions on direct contact membrane distillation at different salinities. Journal of Membrane Science, 2016, 498, 353-364.	4.1	139
462	Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation. Journal of Membrane Science, 2016, 497, 239-247.	4.1	136
463	Surface treatment of polyethersulfone membranes for applying in desalination by direct contact membrane distillation. Desalination, 2016, 377, 99-107.	4.0	51
464	Removal of volatile organic compounds from aqueous solutions applying thermally driven membrane processes. 2. Air gap membrane distillation. Journal of Membrane Science, 2016, 499, 245-256.	4.1	40
465	Î ² -Sialon ceramic hollow fiber membranes with high strength and low thermal conductivity for membrane distillation. Journal of the European Ceramic Society, 2016, 36, 59-65.	2.8	91

ARTICLE IF CITATIONS # Computational Fluid Dynamic (CFD) opportunities applied to the membrane distillation process: 466 4.0 116 State-of-the-art and perspectives. Desalination, 2016, 377, 73-90. Study on the heat and mass transfer in AGMD module with latentÂheat recovery. Desalination and 1.0 Water Treatment, 2016, 57, 15276-15284. Evaluation of membrane-based desalting processes for RO brine treatment. Desalination and Water 468 1.0 12 Treatment, 2016, 57, 7432-7439. Fouling study on vacuum-enhanced direct contact membrane distillation for seawater desalination. Desalination and Water Treatment, 2016, 57, 10042-10051. Assessment of direct contact membrane distillation under different configurations, velocities and 470 5.1 52 membrane properties. Applied Energy, 2017, 185, 2058-2073. Characteristics of membrane foulants at different degrees of SWRO brine concentration by membrane 471 4.0 distillation. Desalination, 2017, 409, 7-20. Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling 472 4.0 61 Resistant Membrane Distillation. ACS Applied Materials & amp; Interfaces, 2017, 9, 1737-1745. Exergetic and economic analysis of two-pass RO desalination proposed plant for domestic water and 4.5 irrigation. Energy, 2017, 122, 319-328. Desalination Performances of Large Hollow Fiber-Based DCMD Devices. Industrial & amp; Engineering 474 1.8 4 Chemistry Research, 2017, 56, 1594-1603. Simulation of heat and mass transfer with cross-flow hollow fiber vacuum membrane distillation: The influence of fiber arrangement. Chemical Engineering Research and Design, 2017, 119, 12-22. Removal of strontium ions from simulated radioactive wastewater by vacuum membrane distillation. 476 0.9 62 Annals of Nuclear Energy, 2017, 103, 363-368. Fluoride removal from groundwater using direct contact membrane distillation (DCMD) and vacuum enhanced DCMD (VEDČMD). Separation and Purification Technology, 2017, 180, 125-132. Sweeping air membrane distillation: Conjugate heat and mass transfer in a hollow fiber membrane tube bank with an in-line arrangement. International Journal of Heat and Mass Transfer, 2017, 108, 479 2.5 11 2191-2197. Post-fabrication modification of electrospun nanofiber mats with polymer coating for membrane distillation applications. Journal of Membrane Science, 2017, 530, 158-165. 480 4.1 Enhanced water desalination performance through hierarchically-structured ceramic membranes. 481 2.8 30 Journal of the European Ceramic Society, 2017, 37, 2431-2438. Membrane crystallization for mineral recovery from saline solution: Study case Na 2 SO 4 crystals. 482 33 Desalination, 2017, 412, 1-12. District Heat-Driven Water Purification via Membrane Distillation: New Possibilities for Applications 483 1.8 15 in Pharmaceutical Industries. Industrial & amp; Engineering Chemistry Research, 2017, 56, 2540-2548. Separation of cesium ions from aqueous solution by vacuum membrane distillation process. Progress 484 1.3 54 in Nuclear Energy, 2017, 98, 293-300.

#	Article	IF	CITATIONS
485	Anti-wetting behavior of negatively charged superhydrophobic PVDF membranes in direct contact membrane distillation of emulsified wastewaters. Journal of Membrane Science, 2017, 535, 230-238.	4.1	126
486	Integrated processes for desalination and salt production: A mini-review. AIP Conference Proceedings, 2017, , .	0.3	23
487	Enhancing wetting resistance of poly(vinylidene fluoride) membranes for vacuum membrane distillation. Desalination, 2017, 415, 58-66.	4.0	66
488	Fabrication of hierarchical poly (vinylidene fluoride) micro/nano-composite membrane with anti-fouling property for membrane distillation. Journal of Membrane Science, 2017, 535, 258-267.	4.1	59
489	Energy transfer and energy saving potentials of air-to-air membrane energy exchanger for ventilation in cold climates. Energy and Buildings, 2017, 135, 95-108.	3.1	40
490	Developing PES membrane by modified Co ₃ O ₄ –OA nanoparticles for direct contact membrane distillation process. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 582-594.	0.8	10
491	Study of advancement to higher temperature membrane distillation. Desalination, 2017, 419, 88-100.	4.0	40
492	PVDF hollow fibers with novel sandwich structure and superior wetting resistance for vacuum membrane distillation. Desalination, 2017, 417, 94-101.	4.0	41
493	Numerical modeling and economic evaluation of two multi-effect vacuum membrane distillation (ME-VMD) processes. Desalination, 2017, 419, 39-48.	4.0	17
494	Aeration waste heat for membrane evaporation of desalination brine concentrate. Journal of Membrane Science, 2017, 539, 1-13.	4.1	6
495	Fabrication of super-hydrophobic polypropylene hollow fiber membrane and its application in membrane distillation. Desalination, 2017, 414, 10-17.	4.0	77
496	Experimental study of the optimal vacuum pressure in vacuum assisted air gap membrane distillation process. Desalination, 2017, 414, 63-72.	4.0	40
497	Dehydration of diethylene glycol using a vacuum membrane distillation process. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 233-237.	2.7	6
498	Laminar flow and conjugate heat and mass transfer in a hollow fiber membrane bundle used for seawater desalination. International Journal of Heat and Mass Transfer, 2017, 111, 123-137.	2.5	24
499	Full-scale validated Air Gap Membrane Distillation (AGMD) model without calibration parameters. Journal of Membrane Science, 2017, 533, 309-320.	4.1	43
500	Seawater desalination with solar-energy-integrated vacuum membrane distillation system. Journal of Water Reuse and Desalination, 2017, 7, 16-24.	1.2	6
501	Membrane and spacer evaluation with respect to future module design in membrane distillation. Desalination, 2017, 413, 154-167.	4.0	38
502	Fabrication of a super-hydrophobic polyvinylidene fluoride hollow fiber membrane using a particle coating process. Journal of Membrane Science, 2017, 533, 130-140.	4.1	40

#	Article	IF	CITATIONS
504	Experimental and numerical study of air-gap membrane distillation (AGMD): Novel AGMD module for Oxygen-18 stable isotope enrichment. Chemical Engineering Journal, 2017, 322, 667-678.	6.6	51
505	Mass transfer in hollow fiber vacuum membrane distillation process based on membrane structure. Journal of Membrane Science, 2017, 532, 115-123.	4.1	21
506	High-Performance Polymers for Separation and Purification Processes: An Overview. Polymer-Plastics Technology and Engineering, 2017, 56, 2019-2042.	1.9	12
507	A review on membrane applications and transport mechanisms in vacuum membrane distillation. Reviews in Chemical Engineering, 2017, 34, 73-106.	2.3	21
508	Integrating membrane distillation with waste heat from natural gas compressor stations for produced water treatment in Pennsylvania. Desalination, 2017, 413, 144-153.	4.0	99
509	Membrane synthesis for membrane distillation: A review. Separation and Purification Technology, 2017, 182, 36-51.	3.9	318
510	Polytetrafluoroethylene Sputtered PES Membranes for Membrane Distillation: Influence of RF Magnetron Sputtering Conditions. Plasma Chemistry and Plasma Processing, 2017, 37, 223-241.	1.1	10
511	Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation. Journal of Membrane Science, 2017, 524, 712-720.	4.1	123
512	Heat extraction and brine management from salinity gradient solar pond and membrane distillation. Chemical Engineering Research and Design, 2017, 118, 226-237.	2.7	34
513	Selecting membranes for treating hydraulic fracturing produced waters by membrane distillation. Separation Science and Technology, 2017, 52, 266-275.	1.3	20
514	Photothermal nanocomposite membranes for direct solar membrane distillation. Journal of Materials Chemistry A, 2017, 5, 23712-23719.	5.2	129
515	Preparation and characterization of novel modified PVDF-HFP/GO/ODS composite hollow fiber membrane for Caspian Sea water desalination. Desalination, 2017, 424, 62-73.	4.0	55
516	Removal of Toxic Compounds from Water by Membrane Distillation (Case Study on Arsenic). Green Chemistry and Sustainable Technology, 2017, , 243-263.	0.4	0
517	Modelling of air gap membrane distillation and its application in heavy metals removal. Desalination, 2017, 424, 27-36.	4.0	55
518	Laminated PTFE membranes to enhance the performance in direct contact membrane distillation for high salinity solution. Desalination, 2017, 424, 140-148.	4.0	35
519	Direct observation of flow and bubble behavior in flat sheet modules with a distributor. RSC Advances, 2017, 7, 19050-19059.	1.7	2
520	A theoretical approach of a vacuum multi-effect membrane distillation system. Desalination, 2017, 422, 25-41.	4.0	29
521	Direct contact and air gap membrane distillation: Differences and similarities between lab and pilot scale. Desalination, 2017, 422, 91-100.	4.0	67

#	Article	IF	CITATIONS
522	Total water production capacity inversion phenomenon in multi-stage direct contact membrane distillation: A theoretical study. Journal of Membrane Science, 2017, 544, 126-134.	4.1	35
523	Novel α-Si3N4 planar nanowire superhydrophobic membrane prepared through in-situ nitridation of silicon for membrane distillation. Journal of Membrane Science, 2017, 543, 98-105.	4.1	37
524	Membrane Engineering for Green Process Engineering. Engineering, 2017, 3, 290-298.	3.2	69
525	Methodical design and operation of membrane distillation plants for desalination. Chemical Engineering Research and Design, 2017, 125, 265-281.	2.7	19
526	Experimental study on vacuum membrane distillation based on brine desalination by PVDF. IOP Conference Series: Earth and Environmental Science, 2017, 67, 012002.	0.2	1
527	Membrane distillation research & amp; implementation: Lessons from the past five decades. Separation and Purification Technology, 2017, 189, 108-127.	3.9	174
528	Fabrication and characterization of electrospun superhydrophobic PVDF-HFP/SiNPs hybrid membrane for membrane distillation. Separation and Purification Technology, 2017, 189, 82-89.	3.9	84
529	Direct contact membrane distillation for textile wastewater treatment: a state of the art review. Water Science and Technology, 2017, 76, 2565-2579.	1.2	60
530	Superhydrophobic polysulfone/polydimethylsiloxane electrospun nanofibrous membranes for water desalination by direct contact membrane distillation. Journal of Membrane Science, 2017, 542, 308-319.	4.1	72
532	Performance of vacuum poly(propylene) membrane distillation (VMD) for saline water desalination. Chemical Engineering and Processing: Process Intensification, 2017, 120, 68-80.	1.8	33
533	Excellent wetting resistance and anti-fouling performance of PVDF membrane modified with superhydrophobic papillae-like surfaces. Journal of Membrane Science, 2017, 540, 401-410.	4.1	53
534	Superhydrophobic modification of ceramic membranes for vacuum membrane distillation. Chinese Journal of Chemical Engineering, 2017, 25, 1395-1401.	1.7	51
535	Simultaneous recovery and crystallization control of saline organic wastewater by membrane distillation crystallization. AICHE Journal, 2017, 63, 2187-2197.	1.8	39
536	Energy saving potential of emerging technologies in milk powder production. Trends in Food Science and Technology, 2017, 60, 31-42.	7.8	38
537	Membrane-assisted crystallization: Membrane characterization, modelling and experiments. Chemical Engineering Science, 2017, 158, 277-286.	1.9	25
538	PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. Journal of Membrane Science, 2017, 525, 57-67.	4.1	310
539	Membrane distillation (MD) integrated with crystallization (MDC) for shale gas produced water (SGPW) treatment. Desalination, 2017, 403, 172-178.	4.0	110
540	Air gap membrane distillation: A detailed study of high saline solution. Desalination, 2017, 403, 179-186.	4.0	75

#	Article	IF	CITATIONS
541	The effects of iCVD film thickness and conformality on the permeability and wetting of MD membranes. Journal of Membrane Science, 2017, 523, 470-479.	4.1	43
542	Open-source predictive simulators for scale-up of direct contact membrane distillation modules for seawater desalination. Desalination, 2017, 402, 72-87.	4.0	35
543	Hydrophobic/hydrophilic PVDF/Ultem® dual-layer hollow fiber membranes with enhanced mechanical properties for vacuum membrane distillation. Journal of Membrane Science, 2017, 523, 103-110.	4.1	112
544	Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation. Journal of Membrane Science, 2017, 523, 1-7.	4.1	110
545	Theoretical Analysis of Pressure Retarded Membrane Distillation (PRMD) Process for Simultaneous Production of Water and Electricity. Industrial & Engineering Chemistry Research, 2017, 56, 14888-14901.	1.8	27
546	Electrospun porous poly(tetrafluoroethylene- <i>co</i> -hexafluoropropylene- <i>co</i> -vinylidene) Tj ETQq1 1 0.7	84314 rgE 1.7	BT /Qverlock
547	Direct contact membrane distillation: Capability to desalt raw water. Arabian Journal of Chemistry, 2017, 10, S3475-S3481.	2.3	40
548	FOULING AND WETTING STUDIES RELATING TO THE VACUUM MEMBRANE DISTILLATION PROCESS FOR BRACKISH AND GREY WATER TREATMENT. Journal of Porous Media, 2017, 20, 531-547.	1.0	3
549	1.7 PVDF Hollow Fibers Membranes. , 2017, , 137-189.		10
550	Membrane-Based Desalination Technology for Energy Efficiency and Cost Reduction. , 2017, , 31-74.		2
551	Hydrophobic Ceramic Membranes for Water Desalination. Applied Sciences (Switzerland), 2017, 7, 402.	1.3	48
552	Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation. Applied Sciences (Switzerland), 2017, 7, 637.	1.3	9
553	Reactive Blue Dye Removal by Membrane Distillation using PVDF Membrane. Indian Journal of Science and Technology, 2017, 9, .	0.5	6
554	3.10 Membrane Distillation and Osmotic Distillation. , 2017, , 282-296.		5
555	Preparation of super-hydrophobic PVDF membrane for MD purpose via hydroxyl induced crystallization-phase inversion. Journal of Membrane Science, 2017, 543, 288-300.	4.1	62
556	Membrane Distillation: Principles, Applications and Perspectives. Journal of Membrane Science & Technology, 2017, 07, .	0.5	2
557	Modeling and multi-objective optimization of vacuum membrane distillation for enhancement of water productivity and thermal efficiency in desalination. Chemical Engineering Research and Design, 2018, 132, 697-713.	2.7	19
558	A polyethersulfone–bisphenol sulfuric acid hollow fiber ultrafiltration membrane fabricated by a reverse thermally induced phase separation process. RSC Advances, 2018, 8, 7800-7809.	1.7	9

#	Article	IF	CITATIONS
559	Atmospheric plasma coatings for membrane distillation. Journal of Membrane Science, 2018, 554, 175-183.	4.1	16
560	Reversible photochromic nanofibrous membranes with excellent water/windproof and breathable performance. Journal of Applied Polymer Science, 2018, 135, 46342.	1.3	27
561	Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation. Applied Surface Science, 2018, 450, 57-65.	3.1	118
562	Enrichment of hydrazine from aqueous solutions by vacuum membrane distillation through microporous polystyrene membranes of enhanced hydrophobicity. Separation and Purification Technology, 2018, 203, 159-167.	3.9	7
563	Air gap and water gap multistage membrane distillation for water desalination. Desalination, 2018, 437, 175-183.	4.0	47
564	Comparison between dual-layer (superhydrophobic–hydrophobic) and single superhydrophobic layer electrospun membranes for heavy metal recovery by air-gap membrane distillation. Desalination, 2018, 439, 31-45.	4.0	40
565	Novel technique for fabrication of electrospun membranes with high hydrophobicity retention. Desalination, 2018, 436, 98-106.	4.0	13
566	Energy efficiency of direct contact membrane distillation. Desalination, 2018, 433, 56-67.	4.0	122
567	Boron removal from geothermal water by air gap membrane distillation. Desalination, 2018, 433, 141-150.	4.0	57
568	Reverse osmosis brine treatment using direct contact membrane distillation (DCMD): effect of membrane characteristics on desalination performance and the wetting phenomenon. Environmental Science: Water Research and Technology, 2018, 4, 428-437.	1.2	23
569	Characterization of triple electrospun layers of PVDF for direct contact membrane distillation process. Journal of Polymer Research, 2018, 25, 1.	1.2	12
570	Domestic wastewater treatment by forward osmosis-membrane distillation (FO-MD) integrated system. Water Science and Technology, 2018, 77, 1514-1523.	1.2	32
571	Comparison of fouling behaviors of hydrophobic microporous membranes in pressure- and temperature-driven separation processes. Desalination, 2018, 428, 264-271.	4.0	6
572	Experimental and theoretical investigation of air gap membrane distillation process for water desalination. Chemical Engineering Research and Design, 2018, 130, 95-108.	2.7	33
573	Polyoxadiazole hollow fibers for produced water treatment by direct contact membrane distillation. Desalination, 2018, 432, 32-39.	4.0	38
575	Amphiphobic surface modification of electrospun nanofibrous membranes for anti-wetting performance in membrane distillation. Desalination, 2018, 432, 23-31.	4.0	96
576	Sustainable Desalination Process and Nanotechnology. Environmental Chemistry for A Sustainable World, 2018, , 185-228.	0.3	1
577	Detailed modeling and simulation of an out-in configuration vacuum membrane distillation process. Water Research, 2018, 132, 23-33.	5.3	9

#	Article	IF	CITATIONS
578	A feedback control system with reference governor for a solar membrane distillation pilot facility. Renewable Energy, 2018, 120, 536-549.	4.3	34
579	An industrial perspective on membrane distillation processes. Journal of Chemical Technology and Biotechnology, 2018, 93, 2047-2055.	1.6	71
580	Coarse-grained molecular dynamics study of membrane distillation through meso-size graphene channels. Journal of Membrane Science, 2018, 558, 34-44.	4.1	28
581	Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. Water Research, 2018, 139, 329-352.	5.3	498
582	Graphene quantum dots modified polyvinylidenefluride (PVDF) nanofibrous membranes with enhanced performance for air Gap membrane distillation. Chemical Engineering and Processing: Process Intensification, 2018, 126, 222-231.	1.8	66
583	Titanium white waste acid concentration by DCMD: Wetting, crystallization, and fouling. Desalination, 2018, 440, 161-174.	4.0	6
584	Pore channel surface modification for enhancing anti-fouling membrane distillation. Applied Surface Science, 2018, 443, 217-226.	3.1	48
585	Geothermal Membrane Distillation in Industrial Greenhouse Applications: Membrane Fabrication and Characterization. Environmental Engineering Science, 2018, 35, 815-828.	0.8	5
586	Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy and Environmental Science, 2018, 11, 1177-1196.	15.6	740
587	Dynamic solar-powered multi-stage direct contact membrane distillation system: Concept design, modeling and simulation. Desalination, 2018, 435, 278-292.	4.0	48
588	Performance and fouling mechanism of direct contact membrane distillation (DCMD) treating fermentation wastewater with high organic concentrations. Journal of Environmental Sciences, 2018, 65, 253-261.	3.2	38
589	Plasma treatment of polyethersulfone membrane for benzene removal from water by air gap membrane distillation. Environmental Technology (United Kingdom), 2018, 39, 157-171.	1.2	8
590	Membrane technology in renewable-energy-driven desalination. Renewable and Sustainable Energy Reviews, 2018, 81, 1-21.	8.2	287
591	Fouling behavior and scaling mitigation strategy of CaSO 4 in submerged vacuum membrane distillation. Desalination, 2018, 425, 86-93.	4.0	62
592	Comparative study of air gap and permeate gap membrane distillation using internal heat recovery hollow fiber membrane module. Desalination, 2018, 426, 42-49.	4.0	52
593	Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 2018, 77, 69-94.	11.8	582
594	Composite membrane with electrospun multiscale-textured surface for robust oil-fouling resistance in membrane distillation. Journal of Membrane Science, 2018, 546, 179-187.	4.1	83
595	Assessing the Thermal Efficiency of Brackish Water Desalination by Membrane Distillation Using Exergy Analysis. Arabian Journal for Science and Engineering, 2018, 43, 2413-2424.	1.7	7

ARTICLE

IF CITATIONS

596 FO/MD hybrid system for real dairy wastewater recycling. Environmental Technology (United) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 742

597	Removal of cobalt ions from simulated radioactive wastewater by vacuum membrane distillation. Progress in Nuclear Energy, 2018, 103, 20-27.	1.3	75
598	Systematic structure control of ammonium iodide salts as feasible UCST-type forward osmosis draw solutes for the treatment of wastewater. Journal of Materials Chemistry A, 2018, 6, 1255-1265.	5.2	19
599	Comparative studies of different membrane distillation configurations and membranes for potential use on board cruise vessels. Desalination, 2018, 429, 44-51.	4.0	40
600	Optimization of novel composite membranes for water and mineral recovery by vacuum membrane distillation. Desalination, 2018, 440, 39-47.	4.0	32
601	Microwave-Induced Desalination via Direct Contact Membrane Distillation. ACS Sustainable Chemistry and Engineering, 2018, 6, 626-632.	3.2	40
602	Influence of high range of mass transfer coefficient and convection heat transfer on direct contact membrane distillation performance. Desalination, 2018, 426, 127-134.	4.0	18
604	Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC Advances, 2018, 8, 37915-37938.	1.7	61
606	8. Membrane-based operations and integrated membrane systems in fruit juice processing. , 2018, , 255-288.		0
607	Membrane Technologies for Fruit Juice Processing. Food Engineering Series, 2018, , 211-248.	0.3	2
608	Heat and Mass Transport in Modeling Membrane Distillation Configurations: A Review. Frontiers in Energy Research, 2018, 6, .	1.2	88
610	Immobilization of Graphene Oxide on the Permeate Side of a Membrane Distillation Membrane to Enhance Flux. Membranes, 2018, 8, 63.	1.4	31
611	Recent Advance on Draw Solutes Development in Forward Osmosis. Processes, 2018, 6, 165.	1.3	62
612	Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock Engineering Chemistry Research, 2018, 57, 14535-14543.	10 Tf 50 2 1.8	27 Td (fluo 39
613	Enhanced membrane distillation of organic solvents from their aqueous mixtures using a carbon nanotube immobilized membrane. Journal of Membrane Science, 2018, 568, 134-140.	4.1	34
614	Molecular Dynamic Simulations of Fibrous Distillation Membranes. International Communications in Heat and Mass Transfer, 2018, 98, 304-309.	2.9	10
615	Enhancement of brackish water desalination using hybrid membrane distillation and reverse osmosis systems. PLoS ONE, 2018, 13, e0205012.	1.1	11
616	Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study. Korean Journal of Chemical Engineering, 2018, 35, 2241-2255.	1.2	8

#	Article	IF	CITATIONS
617	Flux model for the membrane distillation process to treat wastewater: Effect of solids concentration. Journal of Membrane Science, 2018, 566, 396-405.	4.1	13
618	How to select the optimal membrane distillation system for industrial applications. Journal of Membrane Science, 2018, 565, 402-410.	4.1	14
619	Structure design and applications of dual-layer polymeric membranes. Journal of Membrane Science, 2018, 562, 85-111.	4.1	94
620	Developments in forward osmosis and membrane distillation for desalination of waters. Environmental Chemistry Letters, 2018, 16, 1247-1265.	8.3	63
621	Self-roughened omniphobic coatings on nanofibrous membrane for membrane distillation. Separation and Purification Technology, 2018, 206, 14-25.	3.9	82
622	Nanofibers for Membrane Applications. , 2018, , 1-24.		2
623	Fabrication of novel Janus membrane by nonsolvent thermally induced phase separation (NTIPS) for enhanced performance in membrane distillation. Journal of Membrane Science, 2018, 563, 298-308.	4.1	68
624	Simulation and experimental study of an AGMD membrane distillation pilot for the desalination of seawater or brackish water with zero liquid discharged. Heat and Mass Transfer, 2018, 54, 3521-3531.	1.2	20
625	Introduction to Renewable Energy Powered Desalination. , 2018, , 3-46.		7
626	Membrane Distillation, Forward Osmosis, and Pressure-Retarded Osmosis Through Polymer Membranes. , 2018, , 323-346.		1
627	Investigating on plasma polymerization of polyethersulfone membranes by ethylene for membrane distillation. Plasma Processes and Polymers, 2018, 15, 1800016.	1.6	5
628	Membranes and Membrane Processes. , 2018, , 45-70.		10
629	Combined electrocoagulation and membrane distillation for treating high salinity produced waters. Journal of Membrane Science, 2018, 564, 82-96.	4.1	79
630	Membrane contactors: An alternative for de-aeration of salt solutions?. Separation and Purification Technology, 2018, 205, 231-240.	3.9	12
631	Antiwettability and Performance Stability of a Composite Hydrophobic/Hydrophilic Dual-Layer Membrane in Wastewater Treatment by Membrane Distillation. Industrial & Engineering Chemistry Research, 2018, 57, 9313-9322.	1.8	33
632	Highly permeable PVDF membrane with PS/ZnO nanocomposite incorporated for distillation process. RSC Advances, 2018, 8, 23499-23515.	1.7	29
633	An ultrathin, porous and in-air hydrophilic/underwater oleophobic coating simultaneously increasing the flux and antifouling property of membrane for membrane distillation. Desalination, 2018, 445, 40-50.	4.0	57
634	Tube-in-tube hollow fiber catalytic membrane microreactor for the hydrogenation of nitrobenzene. Chemical Engineering Journal, 2018, 354, 35-41.	6.6	32

#	Article	IF	CITATIONS
635	Parabolic-trough plant integrated with direct-contact membrane distillation system: Concept, simulation, performance, and economic evaluation. Solar Energy, 2018, 173, 348-361.	2.9	45
636	3D printed triply periodic minimal surfaces as spacers for enhanced heat and mass transfer in membrane distillation. Desalination, 2018, 443, 256-271.	4.0	135
637	Approaches and processes for ammonia removal from side-streams of municipal effluent treatment plants. Bioresource Technology, 2018, 268, 797-810.	4.8	53
638	Performance and Fouling Study of Asymmetric PVDF Membrane Applied in the Concentration of Organic Fertilizer by Direct Contact Membrane Distillation (DCMD). Membranes, 2018, 8, 9.	1.4	10
639	Performance manipulations of a composite membrane of low thermal conductivity for seawater desalination. Chemical Engineering Science, 2018, 192, 61-73.	1.9	25
640	Visualizing and evaluating wetting in membrane distillation: New methodology and indicators based on Detection of Dissolved Tracer Intrusion (DDTI). Desalination, 2018, 443, 307-322.	4.0	37
641	Kinetic model for surfactant-induced pore wetting in membrane distillation. Journal of Membrane Science, 2018, 564, 275-288.	4.1	54
642	Membrane crystallization via membrane distillation. Chemical Engineering and Processing: Process Intensification, 2018, 123, 258-271.	1.8	77
643	Performance and economic investigations of solar power tower plant integrated with direct contact membrane distillation system. Energy Conversion and Management, 2018, 174, 626-638.	4.4	61
644	Anti-wetting behaviour of a superhydrophobic octadecyltrimethoxysilane blended PVDF/recycled carbon black composite membrane for enhanced desalination. Environmental Science: Water Research and Technology, 2018, 4, 1612-1623.	1.2	27
645	Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process. Journal of Materials Chemistry A, 2018, 6, 18799-18807.	5.2	138
646	An overview of process systems engineering approaches for process intensification: State of the art. Chemical Engineering and Processing: Process Intensification, 2018, 133, 160-210.	1.8	216
647	Flashed-feed VMD configuration as a novel method for eliminating temperature polarization effect and enhancing water vapor flux. Journal of Membrane Science, 2018, 563, 175-182.	4.1	34
648	Application of membrane distillation for the treatment of anaerobic membrane bioreactor effluent: An especial attention to the operating conditions. Chemosphere, 2018, 208, 530-540.	4.2	25
649	Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery. Desalination, 2018, 443, 110-121.	4.0	72
650	Membrane distillation—Principles, applications, configurations, design, and implementation. , 2018, , 55-106.		33
651	Membrane properties in membrane distillation. , 2018, , 107-156.		52
652	Desalination by pervaporation. , 2018, , 205-226.		11

#	ARTICLE	IF	Citations
653	Application of direct contact membrane distillation for saline dairy effluent treatment: performance and fouling analysis. Environmental Science and Pollution Research, 2019, 26, 18979-18992.	2.7	27
654	Hybrid organic-inorganic functionalized polyethersulfone membrane for hyper-saline feed with humic acid in direct contact membrane distillation. Separation and Purification Technology, 2019, 210, 20-28.	3.9	20
655	Separation Technologies for Salty Wastewater Reduction in the Dairy Industry. Separation and Purification Reviews, 2019, 48, 325-353.	2.8	19
656	Principles and advancements of air gap membrane distillation. Reviews in Chemical Engineering, 2019, 35, 817-859.	2.3	28
657	Membrane distillation and pervaporation for ethanol removal: are we comparing in the right way?. Separation Science and Technology, 2019, 54, 110-127.	1.3	16
658	Experimental and mathematical study of air gap membrane distillation for aqueous HCl azeotropic separation. Journal of Chemical Technology and Biotechnology, 2019, 94, 63-78.	1.6	16
659	Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review. Applied Energy, 2019, 254, 113698.	5.1	126
660	Air gap membrane distillation: A review. Journal of Renewable and Sustainable Energy, 2019, 11, .	0.8	36
661	Influence of operating conditions on wetting and wettability in membrane distillation using Detection of Dissolved Tracer Intrusion (DDTI). Desalination, 2019, 468, 114086.	4.0	22
662	Mining phosphorus from anaerobically treated dairy manure by forward osmosis membrane. Journal of Industrial and Engineering Chemistry, 2019, 78, 425-432.	2.9	16
663	Membrane distillation of high salinity water by induction heated thermally conducting membranes. Journal of Membrane Science, 2019, 589, 117253.	4.1	62
664	Electrospun nanofibrous omniphobic membrane for anti-surfactant-wetting membrane distillation desalination. Desalination, 2019, 468, 114068.	4.0	61
665	Pathways and challenges for efficient solar-thermal desalination. Science Advances, 2019, 5, eaax0763.	4.7	311
666	Innovative swirling flow-type microbubble generator for multi-stage DCMD desalination system: Focus on the two-phase flow pattern, bubble size distribution, and its effect on MD performance. Journal of Membrane Science, 2019, 588, 117197.	4.1	26
667	Economic performance of membrane distillation configurations in optimal solar thermal desalination systems. Desalination, 2019, 472, 114164.	4.0	53
668	Desalination of Produced Water by Membrane Distillation: Effect of the Feed Components and of a Pre-treatment by Fenton Oxidation. Scientific Reports, 2019, 9, 14964.	1.6	57
669	Dye removal using hydrophobic polyvinylidene fluoride hollow fibre composite membrane by vacuum membrane distillation. Coloration Technology, 2019, 135, 451-466.	0.7	8
670	Maximizing quality of life remains an ultimate goal in the era of precision medicine: exemplified by lung cancer. Precision Clinical Medicine, 2019, 2, 8-12.	1.3	9

#	Article	IF	CITATIONS
671	Sparkle: Speculative Deterministic Concurrency Control for Partially Replicated Transactional Stores. , 2019, , .		3
672	Microwave Induced Membrane Distillation for Enhanced Ethanol–Water Separation on a Carbon Nanotube Immobilized Membrane. Industrial & Engineering Chemistry Research, 2019, 58, 18313-18319.	1.8	28
673	A unique permeate gap membrane distillation system for combined fresh water and power production. Energy Procedia, 2019, 160, 170-177.	1.8	5
674	Characterization and Assessment of a Novel Plate and Frame MD Module for Single Pass Wastewater Concentration–FEED Gap Air Gap Membrane Distillation. Membranes, 2019, 9, 118.	1.4	15
675	Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review. Journal of Environmental Management, 2019, 251, 109524.	3.8	76
676	Impact of Operating Conditions on Measured and Predicted Concentration Polarization in Membrane Distillation. Environmental Science & amp; Technology, 2019, 53, 11869-11876.	4.6	27
677	Water and Wastewater Treatment Systems by Novel Integrated Membrane Distillation (MD). ChemEngineering, 2019, 3, 8.	1.0	63
678	Removal of As(<scp>iii</scp>) and As(<scp>v</scp>) from water using green, silica-based ceramic hollow fibre membranes <i>via</i> direct contact membrane distillation. RSC Advances, 2019, 9, 3367-3376.	1.7	25
679	Silver Nanoparticle-Enabled Photothermal Nanofibrous Membrane for Light-Driven Membrane Distillation. Industrial & Engineering Chemistry Research, 2019, 58, 3269-3281.	1.8	70
680	Development of A Novel Corrugated Polyvinylidene difluoride Membrane via Improved Imprinting Technique for Membrane Distillation. Polymers, 2019, 11, 865.	2.0	31
681	Aluminum fumarate MOF/PVDF hollow fiber membrane for enhancement of water flux and thermal efficiency in direct contact membrane distillation. Journal of Membrane Science, 2019, 588, 117204.	4.1	64
683	Highly Effective Scaling Mitigation in Membrane Distillation Using a Superhydrophobic Membrane with Gas Purging. Environmental Science and Technology Letters, 2019, 6, 423-429.	3.9	69
684	Crosslinked PVDFâ€HFPâ€based hydrophobic membranes incorporated with CNF for enhanced stability and permeability in membrane distillation. Journal of Applied Polymer Science, 2019, 136, 48021.	1.3	17
685	Membrane distillation as post-treatment for anaerobic fluidized bed membrane bioreactor for organic and nitrogen removal. Chemosphere, 2019, 234, 756-762.	4.2	25
686	Zirconyl chloride as a novel and efficient green Lewis acid catalyst for direct acetylation of cotton cellulose in the presence and absence of solvent. Journal of Polymer Research, 2019, 26, 1.	1.2	12
687	Surface modification of polyvinylidene fluoride membrane for enhanced wetting resistance. Applied Surface Science, 2019, 491, 32-42.	3.1	16
688	Air-gap diffusion distillation: Theory and experiment. Desalination, 2019, 467, 64-78.	4.0	24
689	Efficient Gas Adsorption Using Superamphiphobic Porous Monoliths as the under-Liquid Gas-Conductive Circuits. ACS Applied Materials & Interfaces, 2019, 11, 24795-24801.	4.0	7

#	Article	IF	CITATIONS
690	Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review. Science of the Total Environment, 2019, 681, 551-563.	3.9	230
691	Membrane distillation crystallization for brine mining and zero liquid discharge: opportunities, challenges, and recent progress. Environmental Science: Water Research and Technology, 2019, 5, 1202-1221.	1.2	53
692	Membrane distillation coupled with a novel two-stage pretreatment process for petrochemical wastewater treatment and reuse. Separation and Purification Technology, 2019, 224, 23-32.	3.9	38
693	A review of membrane development in membrane distillation for emulsified industrial or shale gas wastewater treatments with feed containing hybrid impurities. Journal of Environmental Management, 2019, 243, 45-66.	3.8	56
694	Open-source industrial-scale module simulation: Paving the way towards the right configuration choice for membrane distillation. Desalination, 2019, 464, 48-62.	4.0	18
695	Scaling mitigation in membrane distillation: From superhydrophobic to slippery. Desalination, 2019, 466, 36-43.	4.0	117
696	Morphological changes and creep recovery behavior of expanded polytetrafluoroethylene (ePTFE) membranes used for membrane distillation. Journal of Membrane Science, 2019, 584, 236-245.	4.1	13
697	Membrane distillation development. , 2019, , 133-159.		4
699	Investigation of salt penetration mechanism in hydrolyzed polyacrylonitrile asymmetric membranes for pervaporation desalination. Desalination, 2019, 463, 32-39.	4.0	34
700	A molecular level performance manipulation of thermal conductivity and moisture diffusivity through a composite membrane considering interfacial resistance. Journal of Membrane Science, 2019, 583, 231-247.	4.1	12
701	Fabrication of α â€6i 3 N 4 â€nanowire/ γ ‥ 2 Si 2 O 7 composite superhydrophobic membrane for membrane distillation. International Journal of Applied Ceramic Technology, 2019, 16, 2173-2180.	1.1	11
702	Fouling and wetting in the membrane distillation driven wastewater reclamation process – A review. Advances in Colloid and Interface Science, 2019, 269, 370-399.	7.0	164
703	Development of a novel perfluoropolyether (PFPE) hydrophobic/hydrophilic coated membranes for water treatment. Journal of Membrane Science, 2019, 581, 58-71.	4.1	32
704	Heat and mass transfer in a hollow fiber membrane contactor for sweeping gas membrane distillation. Separation and Purification Technology, 2019, 220, 334-344.	3.9	20
705	Influence of hexagonal boron nitride nanosheets as the additives on the characteristics and performance of PVDF for air gap membrane distillation. Desalination, 2019, 460, 81-91.	4.0	28
706	Performance analysis of vacuum membrane distillation regenerator in liquid desiccant air conditioning system. International Journal of Refrigeration, 2019, 102, 112-121.	1.8	20
707	Effect of intermittent operation on performance of a solar-powered membrane distillation system. Separation and Purification Technology, 2019, 220, 300-308.	3.9	32
708	Air gap membrane distillation of MEG solution using PDMS coated polysulfone hollow fiber membrane. Polymer Testing, 2019, 76, 1-9.	2.3	14

#	Article	IF	CITATIONS
709	Electrospun nanofibrous membranes in membrane distillation: Recent developments and future perspectives. Separation and Purification Technology, 2019, 221, 44-63.	3.9	75
710	Computational and experimental study for the desalination of petrochemical industrial effluents using direct contact membrane distillation. Applied Water Science, 2019, 9, 1.	2.8	11
711	Mineral scaling in membrane desalination: Mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes. Journal of Membrane Science, 2019, 579, 52-69.	4.1	170
712	Co-axial hollow fiber module for air gap membrane distillation. Journal of Membrane Science, 2019, 578, 172-182.	4.1	21
713	Full-Scale Membrane Distillation Systems and Performance Improvement Through Modeling. , 2019, , 105-140.		3
714	Membrane Wetting in Membrane Distillation. , 2019, , 143-174.		4
715	Recent Progress of Membrane Distillation Technology Applied in Desalination. E3S Web of Conferences, 2019, 131, 01039.	0.2	1
717	Concentration of 1,3-dimethyl-2-imidazolidinone in Aqueous Solutions by Sweeping Gas Membrane Distillation: From Bench to Industrial Scale. Membranes, 2019, 9, 158.	1.4	8
718	A Novel Technique In Water Treatment Using Membrane Distillation Process. , 2019, , .		0
719	An Overview of Membrane Distillation. , 2019, , 251-281.		10
720	Water Reduction and Nutrient Reconcentration of Hydrolyzed Urine via Direct-Contact Membrane Distillation: Ammonia Loss and Its Control. Journal of Environmental Engineering, ASCE, 2019, 145, .	0.7	21
721	Evaluation of a real-time visualization system for scaling detection during DCMD, and its correlation with wetting. Desalination, 2019, 454, 59-70.	4.0	21
722	Anti-fouling TiO2 nanowires membrane for oil/water separation: Synergetic effects of wettability and pore size. Journal of Membrane Science, 2019, 572, 596-606.	4.1	97
723	Improved performances of vacuum membrane distillation for desalination applications: Materials vs process engineering potentialities. Desalination, 2019, 452, 208-218.	4.0	15
724	Further investigation of simultaneous fresh water production and power generation concept by permeate gap membrane distillation system. Journal of Membrane Science, 2019, 572, 230-245.	4.1	17
725	Effect of seawater-coolant feed arrangement in a waste heat driven multi-stage vacuum membrane distillation system. Separation and Purification Technology, 2019, 212, 12-20.	3.9	7
726	Microbubble aeration enhances performance of vacuum membrane distillation desalination by alleviating membrane scaling. Water Research, 2019, 149, 588-595.	5.3	73
727	PVDF membranes containing reduced graphene oxide: Effect of degree of reduction on membrane distillation performance. Desalination, 2019, 452, 196-207.	4.0	92

#	Article	IF	CITATIONS
728	Effects of embedding functionalized multi-walled carbon nanotubes and alumina on the direct contact poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) membrane distillation performance. Chemical Engineering Communications, 2019, 206, 1035-1057.	1.5	33
729	Thermal Conductivity of Polyvinylidene Fluoride Membranes for Direct Contact Membrane Distillation. Environmental Engineering Science, 2019, 36, 420-430.	0.8	11
730	Integrated electrocoagulation – Forward osmosis – Membrane distillation for sustainable water recovery from hydraulic fracturing produced water. Journal of Membrane Science, 2019, 574, 325-337.	4.1	62
731	Multi-stage air gap membrane distillation reversal for hot impaired quality water treatment: Concept and simulation study. Desalination, 2019, 450, 1-11.	4.0	28
732	Water recovery from hydrolysed human urine samples via direct contact membrane distillation using PVDF/PTFE membrane. Separation and Purification Technology, 2019, 211, 610-617.	3.9	57
733	Treatment of anaerobic digestion effluent using membrane distillation: Effects of feed acidification on pollutant removal, nutrient concentration and membrane fouling. Desalination, 2019, 449, 6-15.	4.0	54
734	Continuous juice concentration by integrating forward osmosis with membrane distillation using potassium sorbate preservative as a draw solute. Journal of Membrane Science, 2019, 573, 192-199.	4.1	85
735	Effective modeling and optimization of PVDF–PTFE electrospinning parameters and membrane distillation process by response surface methodology. Journal of Applied Polymer Science, 2019, 136, 47125.	1.3	18
736	Water Treatment by Renewable Energy-Driven Membrane Distillation. , 2019, , 179-211.		6
737	Fabrication of low thermal conductivity yttrium silicate ceramic flat membrane for membrane distillation. Journal of the European Ceramic Society, 2019, 39, 442-448.	2.8	31
738	Integrating Pressure-Retarded Osmosis and Membrane Distillation. , 2019, , 385-402.		1
739	Enhanced fouling and wetting resistance of composite Hyflon AD/poly(vinylidene fluoride) membrane in vacuum membrane distillation. Separation and Purification Technology, 2019, 211, 135-140.	3.9	27
740	Fabrication of PVDF nanofibrous hydrophobic composite membranes reinforced with fabric substrates via electrospinning for membrane distillation desalination. Journal of Environmental Sciences, 2019, 75, 277-288.	3.2	62
741	Ceramic Membrane Distillation for Desalination. Separation and Purification Reviews, 2020, 49, 317-356.	2.8	31
742	Assessment of air gap membrane distillation for milk concentration. Journal of Membrane Science, 2020, 594, 117403.	4.1	22
743	Fabrication of triple layer composite membrane and its application in membrane distillation (MD): Effect of hydrophobic-hydrophilic membrane structure on MD performance. Separation and Purification Technology, 2020, 234, 116087.	3.9	34
744	Preparation of re-entrant and anti-fouling PVDF composite membrane with omniphobicity for membrane distillation. Journal of Membrane Science, 2020, 595, 117563.	4.1	51
745	Liquid low-level radioactive wastes treatment by using hydrophobized track-etched membranes. Progress in Nuclear Energy, 2020, 118, 103128.	1.3	22

		15	0
#	ARTICLE	IF	CITATIONS
746	direct contact membrane distillation. Journal of Membrane Science, 2020, 596, 117608.	4.1	19
747	Apple juice concentration using submerged direct contact membrane distillation (SDCMD). Journal of Food Engineering, 2020, 272, 109807.	2.7	30
748	Patterned superhydrophobic polyvinylidene fluoride (PVDF) membranes for membrane distillation: Enhanced flux with improved fouling and wetting resistance. Journal of Membrane Science, 2020, 595, 117596.	4.1	93
749	Novel hydrophobic PVDF membranes prepared by nonsolvent induced phase separation for membrane distillation. Journal of Membrane Science, 2020, 596, 117575.	4.1	88
750	An experimental study on liquid regeneration process of a liquid desiccant air conditioning system (LDACs) based on vacuum membrane distillation. Energy, 2020, 194, 116891.	4.5	27
751	Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation. Desalination, 2020, 478, 114288.	4.0	95
752	Engineering construction of robust superhydrophobic two-tier composite membrane with interlocked structure for membrane distillation. Journal of Membrane Science, 2020, 598, 117813.	4.1	41
753	Membrane technologies assisting plant-based and agro-food by-products processing: A comprehensive review. Trends in Food Science and Technology, 2020, 95, 219-232.	7.8	143
754	Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review. Journal of Membrane Science, 2020, 598, 117672.	4.1	238
755	Biomimetic superhydrophobic membrane for membrane distillation with robust wetting and fouling resistance. Journal of Membrane Science, 2020, 599, 117708.	4.1	68
756	Modeling and optimization of solar thermal-photovoltaic vacuum membrane distillation system by response surface methodology. Solar Energy, 2020, 195, 230-238.	2.9	38
757	Review on Blueprint of Designing Anti-Wetting Polymeric Membrane Surfaces for Enhanced Membrane Distillation Performance. Polymers, 2020, 12, 23.	2.0	29
758	A Systematic Framework for Optimizing a Sweeping Gas Membrane Distillation (SGMD). Membranes, 2020, 10, 254.	1.4	12
759	Membrane desalination processes for water recovery from pre-treated brewery wastewater: Performance and fouling. Separation and Purification Technology, 2020, 252, 117420.	3.9	13
760	Hybridizing photovoltaic cell with direct contact membrane distillation for electricity and freshwater cogeneration: Concept and performance evaluation. Desalination, 2020, 496, 114701.	4.0	10
761	Application of membrane distillation for the treatment of oil field produced water. Desalination, 2020, 494, 114678.	4.0	43
762	Effect of operating parameters on removal of boron from wastewater containing high boron concentration by vacuum assisted air gap membrane distillation. Journal of Water Process Engineering, 2020, 38, 101579.	2.6	14
763	Vacuum membrane distillation multi-component numerical model for ammonia recovery from liquid streams. Journal of Membrane Science, 2020, 614, 118399.	4.1	16

#	Article	IF	CITATIONS
764	Development of Shale Gas in China and Treatment Options for Wastewater Produced from the Exploitation: Sustainability Lessons from the United States. Journal of Environmental Engineering, ASCE, 2020, 146, .	0.7	13
765	Analysis and output tracking design for the direct contact membrane distillation parabolic system. Journal of Mathematical Analysis and Applications, 2020, 491, 124367.	0.5	2
766	Review on the Evaluation of the Impacts of Wastewater Disposal in Hydraulic Fracturing Industry in the United States. Technologies, 2020, 8, 67.	3.0	30
767	Modeling of Air-Gap Membrane Distillation and Comparative Study with Direct Contact Membrane Distillation. Industrial & Engineering Chemistry Research, 2020, 59, 21930-21947.	1.8	33
768	Monolithic and self-roughened Janus fibrous membrane with superhydrophilic/omniphobic surface for robust antifouling and antiwetting membrane distillation. Journal of Membrane Science, 2020, 615, 118499.	4.1	68
769	Investigating the effect of various foulants on the performance of intrinsically superhydrophobic polyvinylidene fluoride membranes for direct contact membrane distillation. Separation and Purification Technology, 2020, 252, 117416.	3.9	17
770	A few-layer graphene for advanced composite PVDF membranes dedicated to water desalination: a comparative study. Nanoscale Advances, 2020, 2, 4728-4739.	2.2	19
771	Enhanced Performance of Carbon Nanotube Immobilized Membrane for the Treatment of High Salinity Produced Water via Direct Contact Membrane Distillation. Membranes, 2020, 10, 325.	1.4	6
772	Achievements in membrane distillation processes for wastewater and water treatment. , 2020, , 221-238.		1
773	Fouling and its mitigation in thermal induced membrane separation processes. , 2020, , 229-249.		0
774	A novel internal heat recycling concept for reducing energy consumption and increasing flux through three-stage air-gap–water-gap membrane distillation system. Water Science and Technology: Water Supply, 2020, 20, 2858-2874.	1.0	0
776	A Numerical Simulation of Membrane Distillation Treatment of Mine Drainage by Computational Fluid Dynamics. Water (Switzerland), 2020, 12, 3403.	1.2	5
777	Performance of electrospun polystyrene membranes in synthetic produced industrial water using direct-contact membrane distillation. Desalination, 2020, 493, 114663.	4.0	30
778	Interplay of the Factors Affecting Water Flux and Salt Rejection in Membrane Distillation: A State-of-the-Art Critical Review. Water (Switzerland), 2020, 12, 2841.	1.2	38
779	Experimental investigation of a solar-heated direct contact membrane distillation system using evacuated tube collectors. Desalination, 2020, 487, 114497.	4.0	45
780	Low-cost high-efficiency solar membrane distillation for treatment of oil produced waters. Separation and Purification Technology, 2020, 250, 117170.	3.9	24
781	The design of a unit sweeping gas membrane distillation: experimental study on a membrane and operating parameters. Applied Water Science, 2020, 10, 1.	2.8	11
782	Membrane distillation for the removal of micro-pollutants. , 2020, , 253-280.		1

#	Article	IF	CITATIONS
783	Simulation and multi-objective optimization of heat and mass transfer in direct contact membrane distillation by response surface methodology integrated modeling. Chemical Engineering Research and Design, 2020, 159, 565-581.	2.7	13
784	Fabrication of polymeric membranes for membrane distillation process and application for wastewater treatment: Critical review. Chemical Engineering Research and Design, 2020, 141, 190-201.	2.7	79
785	Sweeping gas membrane distillation (SGMD) for wastewater treatment, concentration, and desalination: A comprehensive review. Chemical Engineering and Processing: Process Intensification, 2020, 153, 107960.	1.8	48
786	Application of polymer-based membranes for nutrient removal and recovery in wastewater. , 2020, , 103-134.		0
787	Nitric oxide reduction by hydrogen peroxide absorption through a ceramic hollow fiber membrane contactor. Journal of Environmental Chemical Engineering, 2020, 8, 104129.	3.3	4
788	Enhanced performance of membrane distillation using radio-frequency induction heated thermally conducting feed spacers. Separation and Purification Technology, 2020, 250, 117276.	3.9	14
789	Development of hierarchical surface roughness on porous poly (vinylidene fluoride) membrane for membrane distillation process. Polymer Engineering and Science, 2020, 60, 1686-1698.	1.5	12
790	Energy for desalination: A state-of-the-art review. Desalination, 2020, 491, 114569.	4.0	247
791	Novel chemical modification of polyvinyl chloride membrane by free radical graft copolymerization for direct contact membrane distillation (DCMD) application. Journal of Membrane Science, 2020, 611, 118266.	4.1	28
792	Roughness-enhanced hydrophobic graphene oxide membrane for water desalination via membrane distillation. Journal of Membrane Science, 2020, 611, 118364.	4.1	85
793	Application of membranes in district energy systems. , 2020, , 31-47.		2
794	Membrane distillation: Progress in the improvement of dedicated membranes for enhanced hydrophobicity and desalination performance. Journal of Industrial and Engineering Chemistry, 2020, 86, 13-34.	2.9	64
795	Performance evaluation of the different nano-enhanced polysulfone membranes via membrane distillation for produced water desalination in Sert Basin-Libya. Arabian Journal of Chemistry, 2020, 13, 5118-5136.	2.3	10
796	Permeate Flux and Rejection Behavior in Submerged Direct Contact Membrane Distillation Process Treating a Low-Strength Synthetic Wastewater. Applied Sciences (Switzerland), 2020, 10, 677.	1.3	8
797	Highly Saline Water Desalination Using Direct Contact Membrane Distillation (DCMD): Experimental and Simulation Study. Water (Switzerland), 2020, 12, 1575.	1.2	28
798	State-of-the-art methods for overcoming temperature polarization in membrane distillation process: A review. Journal of Membrane Science, 2020, 616, 118413.	4.1	149
799	Mercury, Arsenic and Lead Removal by Air Gap Membrane Distillation: Experimental Study. Water (Switzerland), 2020, 12, 1574.	1.2	22
800	Recent Developments in Nanomaterials-Modified Membranes for Improved Membrane Distillation Performance. Membranes, 2020, 10, 140.	1.4	55

#	Article	IF	CITATIONS
801	Nanocarbon-Immobilized Membranes for Separation of Tetrahydrofuran from Water via Membrane Distillation. ACS Applied Nano Materials, 2020, 3, 6344-6353.	2.4	23
802	A solar driven hybrid photovoltaic module/direct contact membrane distillation system for electricity generation and water desalination. Energy Conversion and Management, 2020, 221, 113146.	4.4	38
803	Optimization of nanocomposite membrane for vacuum membrane distillation (VMD) using static and continuous flow cells: Effect of nanoparticles and film thickness. Separation and Purification Technology, 2020, 241, 116685.	3.9	29
804	Variable air gap membrane distillation for hybrid solar desalination. Journal of Environmental Chemical Engineering, 2020, 8, 103751.	3.3	25
805	Hybrid membrane distillation: Resource, nutrient and energy recovery. Journal of Membrane Science, 2020, 599, 117832.	4.1	90
806	Covalent organic frameworks for separation applications. Chemical Society Reviews, 2020, 49, 708-735.	18.7	804
807	Hyper-branched dendritic structure modified PVDF electrospun membranes for air gap membrane distillation. Desalination, 2020, 479, 114307.	4.0	31
808	Simultaneous evaporation and decontamination of water on a novel membrane under simulated solar light irradiation. Applied Catalysis B: Environmental, 2020, 267, 118695.	10.8	42
809	The role of osmotic agent in water flux enhancement during osmotic membrane distillation (OMD) for treatment of highly saline brines. Desalination, 2020, 481, 114353.	4.0	14
810	Modeling of mass transfer in vacuum membrane distillation process for radioactive wastewater treatment using artificial neural networks. Toxin Reviews, 2021, 40, 1526-1535.	1.5	42
811	Novel Isothermal Membrane Distillation with Acidic Collector for Selective and Energy-Efficient Recovery of Ammonia from Urine. ACS Sustainable Chemistry and Engineering, 2020, 8, 7324-7334.	3.2	49
812	CFD modeling of vacuum membrane distillation for removal of Naphthol blue black dye from aqueous solution using COMSOL multiphysics. Chemical Engineering Research and Design, 2020, 158, 77-88.	2.7	17
813	Computational study of sweeping gas membrane distillation process – Flux performance and polarization characteristics. Desalination, 2020, 485, 114444.	4.0	23
814	Formation of Superhydrophobic Coatings on the Track-Etched Membrane Surface by the Method of Electron-Beam Deposition of Polymers in Vacuum. Inorganic Materials: Applied Research, 2020, 11, 476-487.	0.1	4
815	Cyclic olefin polymer as a novel membrane material for membrane distillation applications. Journal of Membrane Science, 2021, 621, 118845.	4.1	17
816	Sugarcane Stillage Treatment Using Direct Contact Membrane Distillation. Waste and Biomass Valorization, 2021, 12, 3987-3999.	1.8	4
817	Direct contact membrane distillation for liquid desiccant regeneration and fresh water production: Experimental investigation, response surface modeling and optimization. Applied Thermal Engineering, 2021, 184, 116293.	3.0	16
818	Hydrophobizing polyether sulfone membrane by sol-gel for water desalination using air gap membrane distillation. Polymer-Plastics Technology and Materials, 2021, 60, 47-59.	0.6	1

#	Article	IF	CITATIONS
819	Environmental Biotechnology Vol. 3. Environmental Chemistry for A Sustainable World, 2021, , .	0.3	0
820	Hybrid forward osmosis/membrane distillation integrated with anaerobic fluidized bed bioreactor for advanced wastewater treatment. Journal of Hazardous Materials, 2021, 404, 124160.	6.5	16
821	Hydrophobic ceramic membranes in MD processes – Impact of material selection and layer characteristics. Journal of Membrane Science, 2021, 618, 118678.	4.1	15
822	Fabrication and characterisation of superhydrophobic bio-ceramic hollow fibre membranes prepared from cow bone waste. Ceramics International, 2021, 47, 4178-4186.	2.3	19
823	Recent developments in membrane technology for the elimination of ammonia from wastewater: A review. Polymer Bulletin, 2021, 78, 5399-5425.	1.7	16
824	Step-by-step improvement of mixed-matrix nanofiber membrane with functionalized graphene oxide for desalination via air-gap membrane distillation. Separation and Purification Technology, 2021, 256, 117809.	3.9	33
826	Porous evaporators with special wettability for low-grade heat-driven water desalination. Journal of Materials Chemistry A, 2021, 9, 702-726.	5.2	60
827	Solar-assisted membrane technology for water purification: a review. Journal of Water Reuse and Desalination, 2021, 11, 1-32.	1.2	12
828	Performance analysis of multistage water gap membrane distillation system with economic evaluation. Applied Thermal Engineering, 2021, 184, 116297.	3.0	14
829	Development of non-woven fabric-based ECTFE membranes for direct contact membrane distillation application. Desalination, 2021, 500, 114879.	4.0	15
830	Feasibility of membrane distillation process for potable water reuse: A barrier for dissolved organic matters and pharmaceuticals. Journal of Hazardous Materials, 2021, 409, 124499.	6.5	33
831	Treatment of dye wastewater by direct contact membrane distillation using superhydrophobic nanofibrous high-impact polystyrene membranes. International Journal of Environmental Science and Technology, 2021, 18, 1513-1528.	1.8	16
832	Membrane-based technologies for industrial wastewater treatment and resource recovery. , 2021, , 403-421.		1
833	Emerging forward osmosis and membrane distillation for liquid food concentration: A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1910-1936.	5.9	24
834	Zero liquid discharge wastewater treatment technologies. , 2021, , 209-234.		2
835	Correlation between the feed composition and membrane wetting in a direct contact membrane distillation process. Environmental Science: Water Research and Technology, 2021, 7, 1020-1031.	1.2	6
836	High performance self-heated membrane distillation system for energy efficient desalination process. Journal of Materials Chemistry A, 2021, 9, 7868-7880.	5.2	36
837	Solvent transport properties of POSS nanocomposites. , 2021, , 405-419.		0

#	Article	IF	CITATIONS
838	Evaluating Critical Influencing Factors of Desalination by Membrane Distillation Process—Using Multi-Criteria Decision-Making. Membranes, 2021, 11, 164.	1.4	3
839	Surface Modification of Polytetrafluoroethylene Hollow Fiber Membrane for Direct Contact Membrane Distillation through Low-Density Polyethylene Solution Coating. ACS Omega, 2021, 6, 4609-4618.	1.6	13
840	Effect of temperature and salt on PVDF membrane wetting properties. Journal of Construction Materials, 0, , .	0.4	2
841	New insights of nanomaterials usage toward superhydrophobic membranes for water desalination via membrane distillation: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 2104-2149.	6.6	51
842	Novel Triple-Layer HIPS/SBR/PP Nanofibrous Membranes for Robust DCMD Desalination. Industrial & Engineering Chemistry Research, 2021, 60, 2911-2920.	1.8	11
843	A Conductive Hydrophobic Polyaniline Sandwiched Polyvinylidene Fluoride Membrane for Early Detection of Surfactant-Induced Wetting in Membrane Distillation Using Impedance. ACS Applied Polymer Materials, 2021, 3, 679-690.	2.0	17
844	Concentration of Bioactive Phenolic Compounds in Olive Mill Wastewater by Direct Contact Membrane Distillation. Molecules, 2021, 26, 1808.	1.7	31
845	Selection of membranes and operational parameters aiming for the highest rejection of petrochemical pollutants via membrane distillation. Separation and Purification Technology, 2021, 259, 118143.	3.9	4
846	Fully Polymeric Distillation Unit Based on Polypropylene Hollow Fibers. Polymers, 2021, 13, 1031.	2.0	14
847	Preparation and Characterization of a Novel Poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 387 1 Method of Mixing Electrospinning and Phase Inversion. Polymers, 2021, 13, 790.	Td (fluoride 2.0	e-co-hexaflu⊙ 5
848	POSS-Functionalized Graphene Oxide/PVDF Electrospun Membranes for Complete Arsenic Removal Using Membrane Distillation. ACS Applied Polymer Materials, 2021, 3, 1854-1865.	2.0	32
849	Combined electrocoagulation-microfiltration-membrane distillation for treatment of hydraulic fracturing produced water. Desalination, 2021, 500, 114886.	4.0	41
850	Fabrication of omniphobic PVDF composite membrane with dual-scale hierarchical structure via chemical bonding for robust membrane distillation. Journal of Membrane Science, 2021, 622, 119038.	4.1	43
851	Silane-grafted sand membrane for the treatment of oily wastewater via air gap membrane distillation: Study of the efficiency in comparison with microfiltration and ultrafiltration ceramic membranes. Materials Chemistry and Physics, 2021, 261, 124186.	2.0	32
852	Performance evaluation of boron removal from wastewater containing high boron content according to operating parameters by air gap membrane distillation. Environmental Technology and Innovation, 2021, 22, 101493.	3.0	18
853	Development of a self-sustained model to predict the performance of direct contact membrane distillation. Separation and Purification Technology, 2021, 263, 118407.	3.9	17
854	Advances in seawater membrane distillation (SWMD) towards stand-alone zero liquid discharge (ZLD) desalination. Reviews in Chemical Engineering, 2022, 38, 959-990.	2.3	8
855	Membrane distillation for concentrated blackwater: Influence of configuration (air gap, direct) Tj ETQq1 1 0.7843 263, 118390.	314 rgBT / 3.9	Overlock 10 24

#	Article	IF	CITATIONS
856	Conducting thermal energy to the membrane/water interface for the enhanced desalination of hypersaline brines using membrane distillation. Journal of Membrane Science, 2021, 626, 119188.	4.1	21
857	Transient performance of a solar humidification–dehumidification desalination system based on hollow fiber membrane. Journal of Computational Design and Engineering, 2021, 8, 923-934.	1.5	4
858	Power effect of ultrasonically vibrated spacers in air gap membrane distillation: Theoretical and experimental investigations. Separation and Purification Technology, 2021, 262, 118319.	3.9	18
859	Enhancing DCMD vapor flux of PVDF-HFP membrane with hydrophilic silica fibers. Separation and Purification Technology, 2021, 263, 118361.	3.9	11
860	Klimaschonung durch Membrananwendung – Membrandestillation zur Erzeugung von pharmazeutischem Reinstwasser. Chemie-Ingenieur-Technik, 2021, 93, 1345-1351.	0.4	1
861	Integration of Forward Osmosis Membrane Bioreactor (FO-MBR) and Membrane Distillation (MD) units for water reclamation and regeneration of draw solutions. Journal of Water Process Engineering, 2021, 41, 102045.	2.6	4
862	Flux decline induced by scaling of calcium sulfate in membrane distillation: Theoretical analysis on the role of different mechanisms. Journal of Membrane Science, 2021, 628, 119257.	4.1	10
863	Recovery of high quality water from human urine using a novel vertical up-flow forward osmosis reactor. Sustainable Energy Technologies and Assessments, 2021, 45, 101124.	1.7	1
864	Bispacer Multi-Stage Direct Contact Membrane Distillation System: Analytical and Experimental Study. Processes, 2021, 9, 1297.	1.3	3
865	Recent Progress in the Membrane Distillation and Impact of Track-Etched Membranes. Polymers, 2021, 13, 2520.	2.0	20
866	Development of new pervaporation composite membranes for desalination: Theoretical and experimental investigations. Desalination, 2021, 507, 115006.	4.0	18
867	Integration of membrane distillation as volume reduction technology for in-land desalination brines management: Pre-treatments and scaling limitations. Journal of Environmental Management, 2021, 289, 112549.	3.8	19
868	Modeling of the flow inside a pore in vacuum membrane distillation. Euro-Mediterranean Journal for Environmental Integration, 2021, 6, 1.	0.6	1
869	Mass and Heat Transfer Coefficients in a Thermophilic Membrane Distillation Bioreactor. Chemical Engineering and Technology, 2021, 44, 1668-1676.	0.9	0
870	Influence of N-Butanol Composition on Membrane Performance in Coagulation Bath for Membrane Distillation. Journal of Physics: Conference Series, 2021, 2007, 012043.	0.3	0
871	Optimal cleaning strategy to alleviate fouling in membrane distillation process to treat anaerobic digestate. Chemosphere, 2021, 279, 130524.	4.2	23
872	Fabrication and optimization of tunable pore size poly(ethylene glycol) modified poly(vinylidene-co-hexafluoropropylene) membranes in vacuum membrane distillation for desalination. Separation and Purification Technology, 2021, 271, 118840.	3.9	31
873	Integration of seeding- and heating-induced crystallization with membrane distillation for membrane gypsum scaling and wetting control. Desalination, 2021, 511, 115115.	4.0	27

#	Article	IF	CITATIONS
874	Process intensification through magnetic treatment of seawater for production of drinking water by membrane distillation process: A novel approach for commercialization membrane distillation process. Chemical Engineering and Processing: Process Intensification, 2021, 167, 108543.	1.8	10
875	Membrane distillation using low-grade energy for desalination: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105818.	3.3	90
876	Ultrasound-assisted membrane technologies for fouling control and performance improvement: A review. Journal of Water Process Engineering, 2021, 43, 102268.	2.6	21
877	An ultra-robust fabric-embedded PVDF membrane fabricated by NTIPS method and its application for monosodium glutamate concentration in membrane distillation. Journal of Membrane Science, 2021, 635, 119448.	4.1	9
878	Decontamination of uranium contained low-level radioactive wastewater from UO2 fuel element industry with vacuum membrane distillation. Desalination, 2021, 516, 115226.	4.0	31
879	Preparation and characterization of hydrophobic P(VDF-HFP) flat sheet membranes using Tamisolve® NxG solvent for the treatment of saline water by direct contact membrane distillation and membrane crystallization. Separation and Purification Technology, 2021, 275, 119144.	3.9	22
880	Pilot-scale vacuum membrane distillation for decontamination of simulated radioactive wastewater: System design and performance evaluation. Separation and Purification Technology, 2021, 275, 119129.	3.9	32
881	Metal oxide and carbon nanomaterial based membranes for reverse osmosis and membrane distillation: A comparative review. Environmental Research, 2021, 202, 111716.	3.7	29
882	Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination, 2021, 520, 115359.	4.0	92
883	Evaluation of applying membrane distillation for landfill leachate treatment. Desalination, 2021, 520, 115358.	4.0	33
884	Enhanced desalination performance of aluminium fumarate MOF-incorporated electrospun nanofiber membrane with bead-on-string structure for membrane distillation. Desalination, 2021, 520, 115338.	4.0	33
885	Development of a novel dual-bioinspired method for synthesis of a hydrophobic/hydrophilic polyethersulfone coated membrane for membrane distillation. Desalination, 2021, 517, 115242.	4.0	29
886	Comprehensive review of membrane design and synthesis for membrane distillation. Desalination, 2021, 518, 115168.	4.0	68
887	Effect of interactions between ammonium and organic fouling simulated by sodium alginate on performance of direct contact membrane distillation. Separation and Purification Technology, 2021, 278, 119551.	3.9	11
888	Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use. Separation and Purification Technology, 2021, 278, 119494.	3.9	13
889	Mechanically strong Janus tri-bore hollow fiber membranes with asymmetric pores for anti-wetting and anti-fouling membrane distillation. Chemical Engineering Journal, 2022, 429, 132455.	6.6	21
890	Fuelling a solid oxide fuel cell with ammonia recovered from water by vacuum membrane stripping. Chemical Engineering Journal, 2022, 428, 131081.	6.6	13
891	The use of carbon nanomaterials in membrane distillation membranes: a review. Frontiers of Chemical Science and Engineering, 2021, 15, 755-774.	2.3	37

#	Article	IF	CITATIONS
892	Recent advances in membrane distillation using electrospun membranes: advantages, challenges, and outlook. Environmental Science: Water Research and Technology, 2021, 7, 1002-1019.	1.2	11
893	Development of robust and superamphiphobic membranes using reduced graphene oxide (rGO)/PVDF-HFP nanocomposite mats for membrane distillation. Environmental Science: Nano, 2021, 8, 2883-2893.	2.2	12
895	Experimental and Theoretical Investigations of a Novel Multi-Stage Direct Contact Membrane Distillation Module. , 0, , .		2
897	Application of membrane distillation process for tap water purification. Membrane Water Treatment, 2010, 1, 1-12.	0.5	22
898	Water desalination by membrane distillation using PVDF-HFP hollow fiber membranes. Membrane Water Treatment, 2010, 1, 215-230.	0.5	12
899	Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis. Membrane Water Treatment, 2011, 2, 1-24.	0.5	6
900	Desalination of geothermal water by membrane distillation. Membrane Water Treatment, 2011, 2, 147-158.	0.5	7
901	Osmotic membrane distillation with continuous regeneration of stripping solution by natural evaporation. Membrane Water Treatment, 2013, 4, 223-236.	0.5	1
902	Experimental determination of liquid entry pressure (LEP) in vacuum membrane distillation for oily wastewaters. Membrane Water Treatment, 2015, 6, 237-249.	0.5	26
903	Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations. Membrane Water Treatment, 2016, 7, 71-86.	0.5	7
904	MEMBRANE DISTILLATION FOR SEAWATER DESALINATION APPLICATIONS IN VIETNAM: POTENTIAL AND CHALLENGES. Science and Technology, 2017, 55, 659.	0.1	9
906	Separation and Recycling of Concentrated Heavy Metal Wastewater by Tube Membrane Distillation Integrated with Crystallization. Membranes, 2020, 10, 19.	1.4	19
907	Economic Design of Solar-Driven Membrane Distillation Systems for Desalination. Membranes, 2021, 11, 15.	1.4	9
908	Comparative Analysis of Seawater Desalination Technology in Korea and Overseas. Daehan Hwan'gyeong Gonghag Hoeji, 2016, 38, 255-268.	0.4	8
909	Experimental Investigation of Heat and Mass Transfer in Tubular Membrane Distillation Module for Desalination. ISRN Chemical Engineering, 2012, 2012, 1-8.	1.2	23
910	New Concept for Dual-Layer Hydrophilic/Hydrophobic Composite Membrane for Membrane Distillation. Journal of Membrane and Separation Technology, 2015, 4, 122-133.	0.4	6
911	Assessment of module arrangements of a direct contact membrane distillation process for a small-scale desalination plant. Brazilian Journal of Chemical Engineering, 2022, 39, 773-787.	0.7	0
912	PPy nanotubes-enabled in-situ heating nanofibrous composite membrane for solar-driven membrane distillation. Separation and Purification Technology, 2022, 281, 119995.	3.9	27

#	Article	IF	CITATIONS
913	A comparison of vacuum and direct contact membrane distillation for phosphorus and ammonia recovery from wastewater. Journal of Water Process Engineering, 2021, 44, 102350.	2.6	23
915	The Influence of the Hydrodynamic Conditions on the Performance of Membrane Distillation. , 0, , .		0
916	Desalination seawater desalination Technology for Sustainable Water Resource desalination for sustainable water resource. , 2012, , 2897-2929.		0
917	Integrating Hydrophobic Surface-Modifying Macromolecules into Hydrophilic Polymers to Produce Membranes for Membrane Distillation. , 2012, , 159-178.		0
918	Effects of slip velocity on air gap membrane distillation process. Membrane Water Treatment, 2014, 5, 57-71.	0.5	2
919	Mathematical Model of Direct Contact Membrane Distillation for Orange Juice Concentration. International Journal of Chemical Engineering and Applications (IJCEA), 2014, 5, 147-150.	0.3	1
921	Membrane Distillation (MD). , 2015, , 1-9.		0
922	Membrane Distillation Applications. , 2015, , 1-4.		0
923	Applying Vacuum Membrane Distillation to Regenerate the Working Solutions of Absorption Air-Conditioning Systems for Sustainability and Energy Conservation. International Journal of Electrical Energy, 2015, 3, .	0.4	0
924	Liquid Entry Pressure (LEP or LEPW). , 2015, , 1-1.		1
925	Feasibility study on the application of membrane distillation process to treat high strength wastewater. Journal of the Korean Society of Water and Wastewater, 2015, 29, 261-269.	0.3	1
927	Liquid Entry Pressure (LEP or LEPW). , 2016, , 1105-1105.		0
928	Effects of various foulants on flux changes in membrane distillation process. Journal of the Korean Society of Water and Wastewater, 2016, 30, 327-334.	0.3	0
929	Fruit and Vegetable Juice Processing Applications. Contemporary Food Engineering, 2017, , 195-240.	0.2	0
930	An Experimental Study on the Characteristic of Thermal Performance according to Feed Water Conditions to of Vacuum Membrane Distillation Module using PVDF Hollow Fiber. Journal of the Korean Society of Water and Wastewater, 2017, 31, 339-346.	0.3	0
931	Scale formation on vacuum membrane distillation for SWRO brine treatment. Journal of the Korean Society of Water and Wastewater, 2017, 31, 311-319.	0.3	0
932	Intensified Food Processing Through Membrane Operations. RSC Green Chemistry, 2018, , 397-429.	0.0	1
933	Nanofibers for Membrane Applications. , 2019, , 937-960.		1

#	Article	IF	CITATIONS
934	Desalination of Highly Saline Water Using Direct Contact Membrane Distillation (DCMD). Al-Khawarizmi Engineering Journal, 2018, 14, 116-122.	0.3	3
935	Desalination of Brackish Water Utilizing Air Gap Membrane Distillation at Two Different Cooling Water Levels. Journal of Soil Sciences and Agricultural Engineering, 2020, 11, 91-98.	0.0	0
936	Comparison of Sweeping Gas and Direct Contact Membrane Distillation: Module Length Effect. , 2020, ,		0
937	Desalination via solar membrane distillation and conventional membrane distillation: Life cycle assessment case study in Jordan. Desalination, 2022, 522, 115383.	4.0	25
938	Membrane technologies in toilet urine treatment for toilet urine resource utilization: a review. RSC Advances, 2021, 11, 35525-35535.	1.7	10
939	Exergetic Relationship Between the Thermal Properties of Direct Contact Membrane Distillation. Journal of Heat Transfer, 2020, 142, .	1.2	1
940	Mass Transfer Phenomenon and Transport Resistances in Membrane Separation. Impact of Meat Consumption on Health and Environmental Sustainability, 2020, , 25-71.	0.4	0
941	Synthetic polymeric membranes for the removal of toxic pollutants and other harmful contaminants from water. , 2020, , 43-99.		6
942	Fabrication and Characterization of Metakaolin Based Flat Sheet Membrane for Membrane Distillation. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 651-661.	0.2	0
943	Inorgainc fouling and it fouling reduction in direct contact membrane distillation process. Journal of the Korean Society of Water and Wastewater, 2020, 34, 115-125.	0.3	0
945	Sustainable Innovation in Membrane Technologies for Produced Water Treatment: Challenges and Limitations. Sustainability, 2021, 13, 6759.	1.6	13
946	Study on recent progress and advances in air-to-air membrane enthalpy exchangers: Materials selection, performance improvement, design optimisation and effects of operating conditions. Renewable and Sustainable Energy Reviews, 2022, 156, 111941.	8.2	11
947	Insights into Membrane Distillation Application for Textile Wastewater Treatment – A Review. Journal of Applied Membrane Science & Technology, 2021, 25, 29-51.	0.3	0
948	Poly(vinylidene fluoride-co-hexafluoro propylene) membranes prepared via thermally induced phase separation and application in direct contact membrane distillation. Frontiers of Chemical Science and Engineering, 2022, 16, 720-730.	2.3	5
949	Membranes for the Gas/Liquid Phase Separation at Elevated Temperatures: Characterization of the Liquid Entry Pressure. Membranes, 2021, 11, 907.	1.4	4
950	Membrane distillation technology for molecular separation: A review on the fouling, wetting and transport phenomena. Journal of Molecular Liquids, 2022, 349, 118115.	2.3	56
951	Membrane Distillation: Recent Configurations, Membrane Surface Engineering, and Applications. Membranes, 2021, 11, 934.	1.4	27
952	Engineering a covalently constructed superomniphobic membrane for robust membrane distillation. Journal of Membrane Science, 2022, 644, 120124.	4.1	10

#	Article	IF	CITATIONS
953	Scaling resistance by fluoro-treatments: the importance of wetting states. Journal of Materials Chemistry A, 2022, 10, 3058-3068.	5.2	13
954	A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater. Separation and Purification Technology, 2022, 286, 120454.	3.9	43
955	Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies. Applied Energy, 2022, 308, 118394.	5.1	51
956	Experimental evaluation of solar multistage direct contact membrane distillation system for water desalination. Sustainable Energy Technologies and Assessments, 2022, 51, 101921.	1.7	2
957	Investigation of the Effects of Temperature on the Microstructure of PTFE Microfiltration Membranes Under Membrane Distillation Conditions. Journal of Advanced Thermal Science Research, 0, 7, 11-21.	0.4	6
958	Manufacture of hydrophobic membranes using recycled polymers for the brackish water distillation. , 2020, , .		2
959	Gypsum Scaling Mechanisms on Hydrophobic Membranes and its Mitigation Strategies in Membrane Distillation. SSRN Electronic Journal, 0, , .	0.4	0
960	Ammonia Recovery with Sweeping Gas Membrane Distillation: Energy and Removal Efficiency Analysis. ACS ES&T Engineering, 2022, 2, 617-628.	3.7	11
961	Development of high performance pervaporation desalination membranes: A brief review. Chemical Engineering Research and Design, 2022, 159, 1092-1104.	2.7	18
962	Transport phenomena in membrane distillation processes. , 2022, , 111-128.		0
962 963	Transport phenomena in membrane distillation processes. , 2022, , 111-128. Super Waterâ€Extracting Gels for Solarâ€Powered Volatile Organic Compounds Management in the Hydrological Cycle. Advanced Materials, 2022, 34, e2110548.	11.1	0
962 963 964	Transport phenomena in membrane distillation processes. , 2022, , 111-128. Super Waterâ€Extracting Gels for Solarâ€Powered Volatile Organic Compounds Management in the Hydrological Cycle. Advanced Materials, 2022, 34, e2110548. Gypsum scaling mechanisms on hydrophobic membranes and its mitigation strategies in membrane distillation. Journal of Membrane Science, 2022, 648, 120297.	11.1	0 50 19
962 963 964 965	Transport phenomena in membrane distillation processes., 2022, , 111-128. Super Waterâ€Extracting Gels for Solarâ€Powered Volatile Organic Compounds Management in the Hydrological Cycle. Advanced Materials, 2022, 34, e2110548. Gypsum scaling mechanisms on hydrophobic membranes and its mitigation strategies in membrane distillation. Journal of Membrane Science, 2022, 648, 120297. Water Flux Prediction in Direct Contact Membrane Distillation Subject to Inorganic Fouling. Membranes, 2022, 12, 157.	11.1 4.1 1.4	0 50 19 2
962 963 964 965	Transport phenomena in membrane distillation processes., 2022, , 111-128. Super Waterâ€Extracting Gels for Solarâ€Powered Volatile Organic Compounds Management in the Hydrological Cycle. Advanced Materials, 2022, 34, e2110548. Gypsum scaling mechanisms on hydrophobic membranes and its mitigation strategies in membrane distillation. Journal of Membrane Science, 2022, 648, 120297. Water Flux Prediction in Direct Contact Membrane Distillation Subject to Inorganic Fouling. Membranes, 2022, 12, 157. Colloidal silica fouling mechanism in direct-contact membrane distillation. Desalination, 2022, 527, 115554.	11.1 4.1 1.4 4.0	0 50 19 2 11
962 963 964 965 966	Transport phenomena in membrane distillation processes., 2022, , 111-128. Super Waterâ€Extracting Cels for Solarâ€Powered Volatile Organic Compounds Management in the Hydrological Cycle. Advanced Materials, 2022, 34, e2110548. Gypsum scaling mechanisms on hydrophobic membranes and its mitigation strategies in membrane distillation. Journal of Membrane Science, 2022, 648, 120297. Water Flux Prediction in Direct Contact Membrane Distillation Subject to Inorganic Fouling. Membranes, 2022, 12, 157. Colloidal silica fouling mechanism in direct-contact membrane distillation. Desalination, 2022, 527, 115554. Elucidation of physicochemical scaling mechanisms in membrane distillation (MD): Implication to the control of inorganic fouling. Desalination, 2022, 527, 115573.	11.1 4.1 1.4 4.0 4.0	0 50 19 2 11 16
962 963 964 965 966	Transport phenomena in membrane distillation processes., 2022, , 111-128. Super Waterâ€Extracting Gels for Solarâ€Powered Volatile Organic Compounds Management in the Hydrological Cycle. Advanced Materials, 2022, 34, e2110548. Gypsum scaling mechanisms on hydrophobic membranes and its mitigation strategies in membrane distillation. Journal of Membrane Science, 2022, 648, 120297. Water Flux Prediction in Direct Contact Membrane Distillation Subject to Inorganic Fouling. Membranes, 2022, 12, 157. Colloidal silica fouling mechanism in direct-contact membrane distillation. Desalination, 2022, 527, 115554. Elucidation of physicochemical scaling mechanisms in membrane distillation (MD): Implication to the control of inorganic fouling. Desalination, 2022, 527, 115573. Techno-economic assessment of pervaporation desalination of hypersaline water. Desalination, 2022, 527, 115538.	11.1 4.1 1.4 4.0 4.0	0 50 19 2 11 16 7
 962 963 964 965 966 967 968 969 	Transport phenomena in membrane distillation processes., 2022, , 111-128. Super Waterâ Super Waterâ Fundational de la comparation d	11.1 4.1 1.4 4.0 4.0 4.0 3.0	0 50 19 2 11 16 7 8

#	Article	IF	CITATIONS
971	Membrane distillation for wastewater treatment: Current trends, challenges and prospects of dense membrane distillation. Journal of Water Process Engineering, 2022, 46, 102615.	2.6	25
972	Closed-loop pressure retarded osmosis draw solutions and their regeneration processes: A review. Renewable and Sustainable Energy Reviews, 2022, 159, 112191.	8.2	6
977	Numerical Analysis of Conjugated Heat and Mass Transfer of Helical Hollow Fiber Membrane Tube Bank for Seawater Distillation. Journal of Renewable Materials, 2022, 10, 1845-1858.	1.1	0
978	Integration of Catalytic Wet Peroxidation and Membrane Distillation Processes for Olive Mill Wastewater Treatment and Water Recovery. SSRN Electronic Journal, 0, , .	0.4	0
979	Polymer-based membranes for membrane distillation. , 2022, , 597-635.		0
980	Produced Water from Oil and Gas Exploration—Problems, Solutions and Opportunities. Journal of Water Resource and Protection, 2022, 14, 142-185.	0.3	20
981	Heat-Integration of Solar-Heated Membrane Distillation and Fuel Cell for Desalination System Based on the Dynamic Optimization Approach. Processes, 2022, 10, 663.	1.3	2
982	Micromechanism Underlying Wetting Behavior of the Vacuum Membrane Distillation during Desalination. Industrial & Engineering Chemistry Research, 2022, 61, 4428-4435.	1.8	5
983	Concentrating phosphoric acid by direct contact membrane distillation using a low-cost polyethylene separator. Desalination, 2022, 530, 115664.	4.0	6
984	Comparative analysis of separation methods used for the elimination of pharmaceuticals and personal care products (PPCPs) from water – A critical review. Separation and Purification Technology, 2022, 290, 120797.	3.9	41
985	Membrane Distillation-Crystallization for inland desalination brine treatment. Separation and Purification Technology, 2022, 290, 120788.	3.9	24
986	Membrane cleaning in membrane distillation of reverse osmosis concentrate generated in landfill leachate treatment. Water Science and Technology, 2022, 85, 244-256.	1.2	9
987	Membrane Distillation for Wastewater Treatment: A Mini Review. Water (Switzerland), 2021, 13, 3480.	1.2	15
988	Introduction to Membrane Distillation and Its Application in Emerging Contaminants Removal. Energy, Environment, and Sustainability, 2022, , 427-462.	0.6	0
989	Industrial application of membrane distillation technology using palm oil mill effluent in Malaysia. Materials Today: Proceedings, 2022, 57, 1282-1287.	0.9	4
990	Pervaporation and membrane distillation technology in biorefinery. , 2022, , 251-280.		0
991	Introduction to the fundamentals of the membrane engineering. , 2022, , 3-33.		0
992	Grand Challenge in Membrane Fabrication: Membrane Science and Technology. , 2022, 1, .		11

#	Article	IF	CITATIONS
993	Parametric investigation of modular configuration of multi-stage direct contact membrane distillation powered by waste heat of wind turbine. Desalination, 2022, 533, 115770.	4.0	10
994	Sonicated direct contact membrane distillation: Influence of sonication parameters. Desalination, 2022, 533, 115779.	4.0	0
995	Computational fluid dynamics based numerical simulations of heat transfer, fluid flow and mass transfer in vacuum membrane distillation process. Water Science and Technology: Water Supply, 2022, 22, 6262-6280.	1.0	6
996	Optimal design of multi-stage vacuum membrane distillation and integration with supercritical water desalination for improved zero liquid discharge desalination. Journal of Cleaner Production, 2022, 361, 132189.	4.6	8
997	Applications of responsive hydrogel to enhance the water recovery via membrane distillation and forward osmosis: A review. Journal of Water Process Engineering, 2022, 47, 102828.	2.6	9
998	Performance of an air gap membrane distillation system and enhancement using a low-cost surface modification. International Journal of Green Energy, 2023, 20, 714-724.	2.1	0
999	Drivers, challenges, and emerging technologies for desalination of high-salinity brines: A critical review. Desalination, 2022, 538, 115827.	4.0	67
1000	Integration of catalytic wet peroxidation and membrane distillation processes for olive mill wastewater treatment and water recovery. Chemical Engineering Journal, 2022, 448, 137586.	6.6	4
1001	Performance Investigation of a Novel Ultrasonic-Assisted Non-Contact Membrane Distillation Process for Preventing Membrane Fouling. SSRN Electronic Journal, 0, , .	0.4	0
1003	Fouling studies on hydrophobic PVDF-bentonite hollow fiber membrane during membrane distillation of palm oil mill effluent. Journal of Water Process Engineering, 2022, 49, 102969.	2.6	10
1004	Engineering beads-on-string structural electrospun nanofiber Janus membrane with multi-level roughness for membrane distillation. Desalination, 2022, 539, 115950.	4.0	14
1005	Dielectrophoresis-Based Universal Membrane Antifouling Strategy toward Colloidal Foulants. Environmental Science & Technology, 2022, 56, 10997-11005.	4.6	4
1006	Multi-objective optimization of a direct contact membrane distillation regenerator for liquid desiccant regeneration. Journal of Cleaner Production, 2022, 373, 133736.	4.6	3
1007	A Zero-Brine Discharge Seawater Desalination Using a Pilot-Scale Membrane Distillation System Integrated with Crystallizer. Membranes, 2022, 12, 799.	1.4	3
1008	Superhydrophobic Cellulosic Membranes for Membrane Distillation. ACS ES&T Water, 2022, 2, 1822-1833.	2.3	6
1009	Zero liquid discharge technology for recovery, reuse, and reclamation of wastewater: A critical review. Journal of Water Process Engineering, 2022, 49, 103129.	2.6	31
1010	Effect of highly saturated superhydrophilic porous media on air gap diffusion distillation considering preferential flow. Desalination, 2022, 542, 116084.	4.0	0
1011	Recent advances and prospects in electrochemical coupling technologies for metal recovery from water. Journal of Hazardous Materials, 2023, 442, 130023.	6.5	41

#	Article	IF	CITATIONS
1012	Reclaiming Water from a Direct Air Capture Plant Using Vacuum Membrane Distillation – a Bench-Scale Study. SSRN Electronic Journal, 0, , .	0.4	0
1013	Electrospun nanofibrous membranes for membrane distillation. , 2022, , 215-261.		2
1014	Formation of Hydrophobic and Superhydrophobic Coatings on Track-Etched Membrane Surfaces to Create Composite Membranes for Water Desalination. Colloid Journal, 2022, 84, 427-444.	0.5	2
1015	Preparation and Evaluation of Hydrophobic Grafted Ceramic Membrane: For Application in Water Desalination. , 0, , .		0
1016	Simulation study of membrane distillation regenerator based on reduced pressure air gap. Journal of Building Engineering, 2022, 62, 105273.	1.6	1
1017	Unraveling relative roles of bulk precipitation and surface growth in developing a scaling layer in membrane distillation. Desalination, 2022, 544, 116133.	4.0	5
1018	Structural design of the electrospun nanofibrous membrane for membrane distillation application: a review. Environmental Science and Pollution Research, 2022, 29, 82632-82659.	2.7	4
1019	Solar Energy Driven Membrane Desalination: Experimental Heat Transfer Analysis. Energies, 2022, 15, 8051.	1.6	0
1020	A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems. Renewable Energy, 2022, 201, 563-593.	4.3	8
1021	Molecular dynamics simulation of steady-state droplet condensation on a fiber in direct contact membrane distillation settings. Journal of Molecular Liquids, 2022, 368, 120736.	2.3	1
1022	Water recovery from cleaning wastewater of traditional Chinese medicine processing via vacuum membrane distillation: Parameters optimization and membrane fouling investigation. Chemical Engineering Research and Design, 2022, 188, 555-563.	2.7	3
1023	Enhanced permeability and stability of PVDF hollow fiber membrane in DCMD via heat-stretching treatment. Separation and Purification Technology, 2023, 304, 122325.	3.9	10
1024	Reclaiming water from a direct air capture plant using vacuum membrane distillation – A bench-scale study. Separation and Purification Technology, 2023, 305, 122418.	3.9	4
1025	Recovery of ammonia from centrate water in urban waste water treatment plants via direct contact membrane distillation: Process performance in long-term pilot-scale operation. Journal of Membrane Science, 2023, 667, 121161.	4.1	10
1026	Performance analysis of non-contact nanostructure solar desalination system by varying water depth at a constant air gap. Solar Energy, 2022, 247, 485-498.	2.9	7
1027	Performance Analysis of an Eductor-Based Membrane Distillation Unit. Water (Switzerland), 2022, 14, 3624.	1.2	1
1028	Evolution of Membrane Surface Properties for Membrane Distillation: A Mini Review. Journal of Applied Membrane Science & Technology, 2022, 26, 45-64.	0.3	0
1029	Polyamide Thin-Film Composite Janus Membranes Avoiding Direct Contact between Feed Liquid and Hydrophobic Pores for Excellent Wetting Resistance in Membrane Distillation. ACS ES&T Water, 2023, 3. 176-184.	2.3	8

#	Article	IF	CITATIONS
1030	Treatment to surfactant containing wastewater with membrane distillation membrane with novel sandwich structure. Science of the Total Environment, 2023, 867, 161195.	3.9	8
1031	Membrane distillation assisting food production processes of thermally sensitive food liquid items: a review. Critical Reviews in Food Science and Nutrition, 0, , 1-14.	5.4	4
1032	Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon, 2023, 9, e12810.	1.4	20
1033	New Materials and Phenomena in Membrane Distillation. Chemistry, 2023, 5, 65-84.	0.9	2
1034	Study on the synergistic heat transfer of double boundary layers in the jacketed vacuum membrane distillation process. Desalination, 2023, 549, 116356.	4.0	5
1035	Experimental and economic investigation of sweeping gas membrane distillation/pervaporation modules using novel pilot scale device. Separation and Purification Technology, 2023, 310, 123165.	3.9	7
1036	Research Progress of Water Treatment Technology Based on Nanofiber Membranes. Polymers, 2023, 15, 741.	2.0	10
1038	Solar Interfacial Evaporation at the Water–Energy Nexus: Bottlenecks, Approaches, and Opportunities. Solar Rrl, 2023, 7, .	3.1	2
1039	Towards the technological maturity of membrane distillation: the MD module performance curve. Npj Clean Water, 2023, 6, .	3.1	3
1040	Engineering hydrophobic surface on polyethersulfone membrane with bioâ€inspired coating for desalination with direct contact membrane distillation. Polymers for Advanced Technologies, 2023, 34, 2419-2436.	1.6	1
1041	Anti-fouling/wetting electrospun nanofibrous membranes for membrane distillation desalination: A comprehensive review. Desalination, 2023, 553, 116475.	4.0	16
1042	Critical review on membrane designs for enhanced flux performance in membrane distillation. Desalination, 2023, 553, 116484.	4.0	14
1043	A deep dive into membrane distillation literature with data analysis, bibliometric methods, and machine learning. Desalination, 2023, 553, 116482.	4.0	8
1044	Zwitterionic poly(sulfobetaine methacrylate-co-acrylic acid) assisted simultaneous anti-wetting and anti-fouling membranes for membrane distillation. Desalination, 2023, 555, 116527.	4.0	8
1045	Electro mitigation of calcium carbonate and calcium sulfate scaling in an optimized thermal conductive membrane distillation process. Separation and Purification Technology, 2023, 316, 123796.	3.9	4
1046	Distillation performance in a novel minichannel membrane distillation device. Chemical Engineering Journal, 2023, 462, 142335.	6.6	8
1047	Development of Hydrophobic Coal-Fly-Ash-Based Ceramic Membrane for Vacuum Membrane Distillation. Materials, 2023, 16, 3153.	1.3	2
1048	An experimental study on recovering and concentrating ammonia by sweep gas membrane distillation. Chemical Engineering Research and Design, 2023, 171, 555-560.	2.7	7

#	Article	IF	CITATIONS
1049	Nickel Chalcogenide Nanoparticles-Assisted Photothermal Solar Driven Membrane Distillation (PSDMD). Membranes, 2023, 13, 195.	1.4	1
1050	Membrane distillation for wastewater treatment: Recent advances in process optimization and membrane modification. , 2023, , 355-385.		1
1051	Confined mass transfer mechanism and preparation strategies of separation membranes: A review. Materials and Design, 2023, 227, 111805.	3.3	1
1052	Nanoparticle-Enhanced PVDF Flat-Sheet Membranes for Seawater Desalination in Direct Contact Membrane Distillation. Membranes, 2023, 13, 317.	1.4	6
1053	Nanomaterials incorporated electrospun membranes for membrane distillation. , 2023, , 737-762.		0
1066	Desalination Technology for Sustainable Water Resource. , 2012, , 197-230.		0
1069	Remediation and recycling of inorganic acids and their green alternatives for sustainable industrial chemical processes. Environmental Science Advances, 2023, 2, 1306-1339.	1.0	0
1076	Future directions in the global rise of Zero Liquid Discharge (ZLD) for wastewater management. , 2023, , 227-244.		0
1081	Electrospun Nanofibers for Water Distillation and Pervaporation. Nanostructure Science and Technology, 2023, , 195-225.	0.1	0
1089	EXTREME COOLING VIA SWEEPING GAS MEMBRANE DISTILLATION. , 2023, , .		0
1094	Saline Water Desalination Using Direct Contact Membrane Distillation: A Theoretical and Experimental Investigation. Earth and Environmental Sciences Library, 2024, , 253-269.	0.3	0
1097	Hybrid membrane processes equipped with crystallization unit for a simultaneous recovery of freshwater and minerals from saline wastewater. , 2024, , 71-91.		0
1100	Membrane distillation process: Fundamentals, applications, and challenges. , 0, , .		0
1101	Membrane distillation for ammonia separation. , 2024, , 131-177.		О