Thermal comfort in outdoor urban spaces: Analysis acro

Building and Environment 41, 1455-1470 DOI: 10.1016/j.buildenv.2005.05.031

Citation Report

#	Article	IF	CITATIONS
1	Thermal Comfort Requirements for Occupants of Semi-Outdoor and Outdoor Environments in Hot-Humid Regions. Architectural Science Review, 2007, 50, 357-364.	1.1	127
2	Increased Temperature and Intensification of the Urban Heat Island: Implications for Human Comfort and Urban Design. Built Environment, 2007, 33, 85-96.	0.4	99
3	Climate and behaviour in a Nordic city. Landscape and Urban Planning, 2007, 82, 72-84.	3.4	227
4	Use of outdoor spaces and microclimate in a Mediterranean urban area. Building and Environment, 2007, 42, 3691-3707.	3.0	218
5	Geographies of embodied outdoor experience and the arrival of the patio heater. Area, 2007, 39, 340-348.	1.0	26
6	Thermal comfort in an east–west oriented street canyon in Freiburg (Germany) under hot summer conditions. Theoretical and Applied Climatology, 2007, 87, 223-237.	1.3	127
7	An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. International Journal of Biometeorology, 2007, 52, 69-84.	1.3	169
8	Estimating the radiation absorbed by a human. International Journal of Biometeorology, 2008, 52, 491-503.	1.3	47
9	Pedestrian comfort using clothing values and body temperatures. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96, 412-435.	1.7	67
10	Public Urban Open Space and Human Thermal Comfort: The Implications of Alternative Climate Change and Socio-economic Scenarios. Journal of Environmental Policy and Planning, 2008, 10, 31-45.	1.5	32
11	Psychological mechanisms in outdoor place and weather assessment: towards a conceptual model. International Journal of Biometeorology, 2009, 53, 101-111.	1.3	134
12	Part A: Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity. International Journal of Biometeorology, 2009, 53, 415-428.	1.3	92
13	Part B: Revisions to the COMFA outdoor thermal comfort model for application to subjects performing physical activity. International Journal of Biometeorology, 2009, 53, 429-441.	1.3	65
14	Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and Environment, 2009, 44, 2017-2026.	3.0	529
15	Studying thermal comfort in context. Building Research and Information, 2009, 37, 89-94.	2.0	30
16	Adaptive comfort model for tree-shaded outdoors in Taiwan. Building and Environment, 2010, 45, 1873-1879.	3.0	57
17	Engrained experience—a comparison of microclimate perception schemata and microclimate measurements in Dutch urban squares. International Journal of Biometeorology, 2010, 54, 141-150.	1.3	51
18	Qualitative and quantitative descriptions of temperature: a study of the terminology used by local television weather forecasters to describe thermal sensation. International Journal of Biometeorology, 2010, 54, 193-209.	1.3	2

	CITATION	Report	
#	ARTICLE Review of the physiology of human thermal comfort while exercising in urban landscapes and	IF	CITATIONS
19	implications for bioclimatic design. International Journal of Biometeorology, 2010, 54, 319-334.	1.3	160
20	Shading effect on long-term outdoor thermal comfort. Building and Environment, 2010, 45, 213-221.	3.0	486
21	An evaluation of three biometeorological indices for human thermal comfort in urban outdoor areas under real climatic conditions. Building and Environment, 2010, 45, 1346-1352.	3.0	96
22	A novel approach to enhance outdoor air quality: Pedestrian ventilation system. Building and Environment, 2010, 45, 1582-1593.	3.0	51
23	Outdoor thermal comfort of two public squares in temperate and dry region of Esfahan, Iran. , 2010, ,		11
24	Thermal Experience and Perception of the Built Environment in Dutch Urban Squares. Journal of Urban Design, 2010, 15, 375-401.	0.6	47
25	Assessing Wind Comfort in Urban Planning. Environment and Planning B: Planning and Design, 2010, 37, 857-873.	1.7	37
26	Immersed in microclimatic space: Microclimate experience and perception of spatial configurations in Dutch squares. Landscape and Urban Planning, 2010, 95, 1-15.	3.4	61
27	Benefits and opportunities of adopting GIS in thermal comfort studies in resting places: An urban park as an example. Landscape and Urban Planning, 2010, 98, 36-46.	3.4	87
28	Heat waves observed in 2007 in Athens, Greece: Synoptic conditions, bioclimatological assessment, air quality levels and health effects. Environmental Research, 2010, 110, 152-161.	3.7	91
29	Outdoor thermal comfort. Frontiers in Bioscience - Scholar, 2011, S3, 1552-1568.	0.8	25
30	Outdoor thermal comfort. Frontiers in Bioscience - Scholar, 2011, S3, 1552.	0.8	47
32	Pedestrians' perception of environmental stimuli through field surveys: Focus on particulate pollution. Science of the Total Environment, 2011, 409, 2493-2502.	3.9	50
33	Climatology of Discomfort Index and Air Quality Index in a Large Urban Mediterranean Agglomeration. Water, Air, and Soil Pollution, 2011, 222, 163-183.	1.1	53
34	Perception of temperature and wind by users of public outdoor spaces: relationships with weather parameters and personal characteristics. International Journal of Biometeorology, 2011, 55, 665-680.	1.3	133
35	Coping with the immediate experience of climate: regional variations and indoor trajectories. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 170-184.	3.6	27
36	Effect of personal and microclimatic variables on observed thermal sensation from a field study in southern Brazil. Building and Environment, 2011, 46, 690-697.	3.0	90
37	Green Areas, the Most Significant Indicator of the Sustainability of Cities: Research on Their Utility for Urban Planning. Journal of the Urban Planning and Development Division, ASCE, 2011, 137, 311-328.	0.8	43

#	Article	IF	CITATIONS
38	Summer Thermal Environment Measurement and Analysis of Subtropical Campus. Applied Mechanics and Materials, 0, 71-78, 4440-4443.	0.2	0
39	Perceived and Measured Adaptive Thermal Comfort at an Outdoor Shaded Recreational Area in Malaysia. Advanced Materials Research, 2012, 610-613, 1083-1086.	0.3	2
40	Landscape Attributes, Microclimate and Thermal Comfort of an Urban Square in Moderate and Dry Climate. Advanced Materials Research, 2012, 610-613, 3780-3784.	0.3	7
41	Human Energy Budget Modeling in Urban Parks in Toronto and Applications to Emergency Heat Stress Preparedness. Journal of Applied Meteorology and Climatology, 2012, 51, 1639-1653.	0.6	53
42	Quantity and quality of public open spaces in Israel. Proceedings of the Institution of Civil Engineers: Urban Design and Planning, 2012, 165, 177-187.	0.6	3
43	The Effects of Weather on Walking Rates in Nine Cities. Environment and Behavior, 2012, 44, 821-840.	2.1	55
44	Urban human thermal comfort in hot and humid Hong Kong. Energy and Buildings, 2012, 55, 51-65.	3.1	248
45	Subjective estimations of thermal environment in recreational urban spaces—Part 2: international comparison. International Journal of Biometeorology, 2012, 56, 1089-1101.	1.3	67
46	Subjective estimation of thermal environment in recreational urban spaces—Part 1: investigations in Szeged, Hungary. International Journal of Biometeorology, 2012, 56, 1075-1088.	1.3	101
47	A Study of the Ventilation and Thermal Comfort of the Environment Surrounding a New University Building under Construction. Indoor and Built Environment, 2012, 21, 568-582.	1.5	21
48	An analysis of influential factors on outdoor thermal comfort in summer. International Journal of Biometeorology, 2012, 56, 941-948.	1.3	74
49	Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Building and Environment, 2012, 51, 285-295.	3.0	196
50	Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Building and Environment, 2012, 57, 110-119.	3.0	119
51	Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities, 2012, 29, 118-125.	2.7	439
52	The effects of urban and building design parameters on solar access to the urban canyon and the potential for direct passive solar heating strategies. Energy and Buildings, 2012, 47, 189-200.	3.1	101
53	Thermal comfort modelling of body temperature and psychological variations of a human exercising in an outdoor environment. International Journal of Biometeorology, 2012, 56, 21-32.	1.3	63
54	Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong. International Journal of Biometeorology, 2012, 56, 43-56.	1.3	255
55	The perceived temperature – a versatile index for the assessment of the human thermal environment. Part A: scientific basics. International Journal of Biometeorology, 2012, 56, 165-176.	1.3	149

#	Article	IF	CITATIONS
56	A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China. International Journal of Biometeorology, 2013, 57, 895-907.	1.3	117
57	Analysis of thermal bioclimate in various urban configurations in Athens, Greece. Urban Ecosystems, 2013, 16, 217-233.	1.1	110
58	Assessment of thermal bioclimate and tourism climate potential for central Europe—the example of Luxembourg. Theoretical and Applied Climatology, 2013, 114, 193-202.	1.3	49
59	Outdoor thermal sensation of pedestrians in a Mediterranean climate and a comparison with UTCI. Building and Environment, 2013, 66, 82-95.	3.0	172
60	Wind comfort in a public urban space—Case study within Dublin Docklands. Frontiers of Architectural Research, 2013, 2, 50-66.	1.3	35
61	Dependence of Visitors' Thermal Sensations on Built Environments at an Urban Square. Procedia, Social and Behavioral Sciences, 2013, 85, 523-534.	0.5	13
62	Outdoor mean radiant temperature estimation in the tropical urban environment. Building and Environment, 2013, 64, 118-129.	3.0	108
63	Research on ecological design to enhance comfort in open spaces of a city (Valencia, Spain). Utility of the physiological equivalent temperature (PET). Ecological Engineering, 2013, 57, 27-39.	1.6	65
64	Thermal comfort in outdoor urban spaces in Singapore. Building and Environment, 2013, 59, 426-435.	3.0	246
65	Human thermal perception of Coastal Mediterranean outdoor urban environments. Applied Geography, 2013, 37, 1-10.	1.7	200
66	Changing countries, changing climates: achieving thermal comfort through adaptation in everyday activities. Area, 2013, 45, 63-69.	1.0	41
67	Human Bioclimatic Conditions, Trends, and Variability in the Athens University Campus, Greece. Advances in Meteorology, 2013, 2013, 1-8.	0.6	27
68	Thermal Comfort for Urban Parks in Subtropics: Understanding Visitor's Perceptions, Behavior and Attendance. Advances in Meteorology, 2013, 2013, 1-8.	0.6	42
69	Advances in Urban Biometeorology. Advances in Meteorology, 2013, 2013, 1-3.	0.6	1
70	Field study of human thermal perception in urban parks in Singapore. International Journal of Sustainable Building Technology and Urban Development, 2013, 4, 125-133.	1.0	14
71	Application of Microclimate Modelling and Onsite Survey in Planning Practice Related to an Urban Micro-Environment. Advances in Meteorology, 2013, 2013, 1-10.	0.6	20
72	Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment. Journal of Environmental and Public Health, 2013, 2013, 1-10.	0.4	16
73	Building integrated concentrating solar systems. , 2013, , 563-606.		0

		15	0
#	Article	IF	CITATIONS
74	MODELO PREDITIVO DE SENSAÇÃO TÉRMICA EM ESPAÇOS ABERTOS EM CURITIBA, PR. RA'E GA - O Espaco Geografico Em Analise, 2013, 29, 209.	0.1	6
75	Experimental Investigation of the Indoor Thermal Comfort of the Public Buildings in the Typical Subtropical Climatic Region. Applied Mechanics and Materials, 2014, 525, 588-592.	0.2	0
76	Urban thermal comfort: proposed questionnaire to evaluate its social perception (Q-CTUp) / Confort térmico urbano: propuesta de un cuestionario para medir su percepción social (Q-CTUp). Psyecology, 2014, 5, 317-349.	1.1	1
77	The influence of outdoor thermal environment on young Japanese females. International Journal of Biometeorology, 2014, 58, 963-974.	1.3	12
78	Comparison of mean radiant temperature from field experiment and modelling: a case study in Freiburg, Germany. Theoretical and Applied Climatology, 2014, 118, 535-551.	1.3	94
79	Case study of skin temperature and thermal perception in a hot outdoor environment. International Journal of Biometeorology, 2014, 58, 1163-1173.	1.3	7
80	The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces. International Journal of Biometeorology, 2014, 58, 2111-2127.	1.3	65
81	The combination of digital technology and architectural design to develop a process for enhancing energy-saving: The case of Maanshan China. Technology in Society, 2014, 39, 77-87.	4.8	21
82	Thermal comfort requirements in the summer season in subtropical urban spaces. Intelligent Buildings International, 2014, 6, 224-238.	1.3	17
83	Evaluation of outdoor thermal comfort in sunlight, building shade, and pergola shade during summer in a humid subtropical region. Building and Environment, 2014, 82, 556-565.	3.0	104
84	Empirical calibration of thermal indices in an urban outdoor Mediterranean environment. Building and Environment, 2014, 80, 283-292.	3.0	75
85	Modeling thermal sensation in a Mediterranean climate—a comparison of linear and ordinal models. International Journal of Biometeorology, 2014, 58, 1355-1368.	1.3	13
86	Assessment of bioclimatic conditions on Crete Island, Greece. Regional Environmental Change, 2014, 14, 1967-1981.	1.4	59
87	Outdoor space quality: A field study in an urban residential community in central China. Energy and Buildings, 2014, 68, 713-720.	3.1	125
88	Instruments and methods in outdoor thermal comfort studies – The need for standardization. Urban Climate, 2014, 10, 346-366.	2.4	319
89	Effects of vertical greenery on mean radiant temperature in the tropical urban environment. Landscape and Urban Planning, 2014, 127, 52-64.	3.4	121
90	Outdoor thermal comfort in a hot and humid climate of Colombia: AÂfield study in Barranquilla. Building and Environment, 2014, 75, 142-152.	3.0	108
91	Studies of outdoor thermal comfort in northern China. Building and Environment, 2014, 77, 110-118.	3.0	346

#	Article	IF	CITATIONS
92	CityComfort+: A simulation-based method for predicting mean radiant temperature in dense urban areas. Building and Environment, 2014, 80, 84-95.	3.0	61
93	Evaluation of comfort conditions in urban open spaces. Application in the island of Crete. Energy Conversion and Management, 2014, 86, 250-258.	4.4	65
94	Environmental High Performance Urban Open Spaces Paving: Experimentations in Urban Barriera (Turin, Italy). Energy Procedia, 2015, 78, 669-674.	1.8	4
95	Assessment of the Impact of Metropolitan-Scale Urban Planning Scenarios on the Moist Thermal Environment under Global Warming: A Study of the Tokyo Metropolitan Area Using Regional Climate Modeling. Advances in Meteorology, 2015, 2015, 1-11.	0.6	9
96	A new method to assess spatial variations of outdoor thermal comfort: Onsite monitoring results and implications for precinct planning. Building and Environment, 2015, 91, 263-270.	3.0	148
97	Customized rating assessment of climate suitability (CRACS): climate satisfaction evaluation based on subjective perception. International Journal of Biometeorology, 2015, 59, 1825-1837.	1.3	20
98	Analysis of microclimatic diversity and outdoor thermal comfort perceptions in the tropical megacity Dhaka, Bangladesh. Building and Environment, 2015, 94, 734-750.	3.0	82
99	The Problems of Addressing Microclimate Factors in Urban Planning of the Subarctic Regions. Environment and Planning B: Planning and Design, 2015, 42, 415-430.	1.7	17
100	Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai. Building and Environment, 2015, 94, 644-653.	3.0	135
101	Looking for simple correction functions between the mean radiant temperature from the "standard black globe―and the "six-directional―techniques in Taiwan. Theoretical and Applied Climatology, 2015, 121, 99-111.	1.3	33
102	A review of human thermal comfort in the built environment. Energy and Buildings, 2015, 105, 178-205.	3.1	578
103	A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Building and Environment, 2015, 93, 245-257.	3.0	138
104	Suitability of acrylic and copper globe thermometers for diurnal outdoor settings. Building and Environment, 2015, 89, 279-294.	3.0	23
105	Q-PLOS, developing an alternative walking index. A method based on urban design quality. Cities, 2015, 45, 7-17.	2.7	103
106	A satellite-based system for continuous monitoring of Surface Urban Heat Islands. Urban Climate, 2015, 14, 141-153.	2.4	40
107	Microclimate development in open urban spaces: The influence of form and materials. Energy and Buildings, 2015, 108, 156-174.	3.1	107
108	Promotion of Urban Environment by Consideration of Human Thermal & Wind Comfort: A Literature Review. Procedia, Social and Behavioral Sciences, 2015, 201, 397-408.	0.5	14
109	Thermal human biometeorological conditions and subjective thermal sensation in pedestrian streets in Chengdu, China. International Journal of Biometeorology, 2015, 59, 99-108.	1.3	72

#	Article	IF	CITATIONS
110	Bioclimatic comfort and the thermal perceptions and preferences of beach tourists. International Journal of Biometeorology, 2015, 59, 37-45.	1.3	130
111	Urban Form and Microclimatic Conditions in Urban Open Spaces at the Densely Built Centre of a Greek City. Journal of Sustainable Development, 2016, 9, 132.	0.1	1
112	Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices. Energies, 2016, 9, 550.	1.6	45
113	Linear Parks along Urban Rivers: Perceptions of Thermal Comfort and Climate Change Adaptation in Cyprus. Sustainability, 2016, 8, 1023.	1.6	31
114	Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona. International Journal of Biometeorology, 2016, 60, 1849-1861.	1.3	222
115	The effects of urban microclimate on outdoor thermal sensation and neutral temperature in hot-summer and cold-winter climate. Energy and Buildings, 2016, 128, 190-197.	3.1	189
116	Urban Outdoor Thermal Comfort of The Hot-Humid Region. MATEC Web of Conferences, 2016, 66, 00084.	0.1	2
117	Study on the Outdoor Thermal Comfort Threshold of Lingnan Garden in Summer. Procedia Engineering, 2016, 169, 422-430.	1.2	16
118	Modeling urban microclimate to ameliorate thermal sensation conditions in outdoor areas in Athens (Greece). Building Simulation, 2016, 9, 251-267.	3.0	28
119	Seasonal differences in the subjective assessment of outdoor thermal conditions and the impact of analysis techniques on the obtained results. International Journal of Biometeorology, 2016, 60, 1615-1635.	1.3	64
120	Approaches for Building Community Resilience to Extreme Heat. Extreme Weather and Society, 2016, , 351-388.	1.4	5
121	New block design and laying parameters for interlocking concrete block pavements to improve human thermal comfort levels in urban spaces. International Journal of Sustainable Building Technology and Urban Development, 2016, 7, 104-115.	1.0	3
122	Outdoor thermal environments and activities in open space: An experiment study in humid subtropical climates. Building and Environment, 2016, 103, 238-249.	3.0	146
123	Extreme Weather, Health, and Communities. Extreme Weather and Society, 2016, , .	1.4	1
124	Weather sensitivity for zoo visitation in Toronto, Canada: a quantitative analysis of historical data. International Journal of Biometeorology, 2016, 60, 1645-1660.	1.3	21
125	Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate, 2016, 18, 33-57.	2.4	245
126	Outdoor thermal comfort and activities in the urban residential community in a humid subtropical area of China. Energy and Buildings, 2016, 133, 498-511.	3.1	164
127	Daytime thermal comfort in urban spaces: A field study in Brazil. Building and Environment, 2016, 107, 245-253.	3.0	92

#	Article	IF	CITATIONS
128	Walking in a Winter Wonderland? Strategies for Early and Middle Pleistocene Survival in Midlatitude Europe. Current Anthropology, 2016, 57, 653-682.	0.8	76
129	On the thermal and visual pedestrians' perception about cool natural stones for urban paving: A field survey in summer conditions. Building and Environment, 2016, 107, 198-214.	3.0	84
130	Management and estimation of thermal comfort, carbon dioxide emission and economic growth by support vector machine. Renewable and Sustainable Energy Reviews, 2016, 64, 466-476.	8.2	28
131	Modeling and in situ measurements of biometeorological conditions in microenvironments within the Athens University Campus, Greece. International Journal of Biometeorology, 2016, 60, 1463-1479.	1.3	15
132	Comparison of human thermal responses between the urban forest area and the central building district in Seoul, Korea. Urban Forestry and Urban Greening, 2016, 15, 133-148.	2.3	27
133	Combining measured thermal parameters and simulated wind velocity to predict outdoor thermal comfort. Building and Environment, 2016, 105, 185-197.	3.0	59
134	Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Building and Environment, 2016, 96, 46-61.	3.0	186
135	Examination and assessment of insolation conditions of streetscapes of traditional settlements in the Eastern Mediterranean area. Habitat International, 2016, 53, 442-452.	2.3	21
136	Resilience to heat in public space: a case study of Adelaide, South Australia. Journal of Environmental Planning and Management, 2016, 59, 1833-1854.	2.4	33
137	Outdoor thermal sensation in a Mediterranean climate (Athens): The effect of selected microclimatic parameters. Architectural Science Review, 2016, 59, 190-202.	1.1	21
138	Thermal perception of outdoor urban spaces in the hot arid region of Cairo, Egypt. Sustainable Cities and Society, 2016, 22, 136-145.	5.1	96
139	A systematic extreme learning machine approach to analyze visitors׳ thermal comfort at a public urban space. Renewable and Sustainable Energy Reviews, 2016, 58, 751-760.	8.2	27
140	Urban microclimate and thermal comfort modelling: strategies for urban renovation. International Journal of Sustainable Building Technology and Urban Development, 2016, 7, 22-37.	1.0	30
141	Evaluation of the health-risk reduction potential of countermeasures to urban heat islands. Energy and Buildings, 2016, 114, 27-37.	3.1	79
142	Effect of outdoor thermal environment on pedestrians' behavior selecting a shaded area in a humid subtropical region. Building and Environment, 2016, 95, 32-41.	3.0	40
143	Principles of climate sensitive urban design analysis in identification of suitable urban design proposals. Case study: Central zone of Leskovac competition. Energy and Buildings, 2016, 115, 23-35.	3.1	21
144	Adjustment of the thermal component of two tourism climatological assessment tools using thermal perception and preference surveys from Hungary. Theoretical and Applied Climatology, 2016, 125, 113-130.	1.3	36
145	Seasonal differences in thermal sensation in the outdoor urban environment of Mediterranean climates – the example of Athens, Greece. International Journal of Biometeorology, 2017, 61, 1191-1208.	1.3	38

#	Article	IF	CITATIONS
146	Experiencing and Responding to Everyday Weather in Darwin, Australia: The Important Role of Tolerance. Weather, Climate, and Society, 2017, 9, 141-154.	0.5	15
147	Adapting to â€~extreme' weather: mobile practice memories of keeping warm and cool as a climate change adaptation strategy. Environment and Planning A, 2017, 49, 1432-1450.	2.1	34
148	Sustainable Building and Built Environments to Mitigate Climate Change in the Tropics. , 2017, , .		3
149	Effects of lift-up design on pedestrian level wind comfort in different building configurations under three wind directions. Building and Environment, 2017, 117, 84-99.	3.0	101
150	The role of lobbies: short-term thermal transitions. Building Research and Information, 2017, 45, 759-782.	2.0	15
151	Modelling dynamic thermal sensation of human subjects in outdoor environments. Energy and Buildings, 2017, 149, 16-25.	3.1	66
152	On the study of thermal comfort and perceptions of environmental features in urban parks: A structural equation modeling approach. Building and Environment, 2017, 122, 171-183.	3.0	71
153	Multipoint measurement method for air temperature in outdoor spaces and application to microclimate and passive cooling studies for a house. Building and Environment, 2017, 114, 267-280.	3.0	15
154	Thermal comfort investigation of an outdoor air-conditioned area in a hot and arid environment. Science and Technology for the Built Environment, 2017, 23, 1113-1131.	0.8	17
155	Biometeorological indices explain outside dwelling patterns based on Wi-Fi data in support of sustainable urban planning. Building and Environment, 2017, 126, 422-430.	3.0	16
156	Simultaneous environmental parameter monitoring and human subject survey regarding outdoor thermal comfort and its modelling. Building and Environment, 2017, 125, 502-514.	3.0	105
157	Determination and application of outdoor thermal benchmarks. Building and Environment, 2017, 123, 333-350.	3.0	78
158	Heat Resilience in Public Space and Its Applications in Healthy and Low Carbon Cities. Procedia Engineering, 2017, 180, 944-954.	1.2	16
159	Measurements and predictions of the skin temperature of human subjects on outdoor environment. Energy and Buildings, 2017, 151, 476-486.	3.1	66
160	Effect of Spatial Ambience on Thermal Adaptation in Tropics: Case of Free-running Shared Spaces in Coastal Hotels of Sri Lanka. Procedia Engineering, 2017, 180, 975-985.	1.2	0
161	Effect of weather on pedestrian trip count and duration: City-scale evaluations using mobile phone application data. Preventive Medicine Reports, 2017, 8, 30-37.	0.8	35
162	Green open space in high-dense Asian cities: Site configurations, microclimates and users' perceptions. Sustainable Cities and Society, 2017, 34, 114-125.	5.1	70
163	Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city. Environmental Science and Pollution Research, 2017, 24, 1811-1820.	2.7	17

#	Article	IF	CITATIONS
164	Outdoor thermal comfort under subarctic climate of north Sweden – A pilot study in Umeå. Sustainable Cities and Society, 2017, 28, 387-397.	5.1	130
165	Thermal comfort in urban green spaces: a survey on a Dutch university campus. International Journal of Biometeorology, 2017, 61, 87-101.	1.3	74
166	Temperature and emotions: Effects of physical temperature on responses to emotional advertising. International Journal of Research in Marketing, 2017, 34, 302-320.	2.4	38
167	Assessment of the Thermal Comfort Conditions in a University Campus Using a 3D Microscale Climate Model, Utilizing Mobile Measurements. Springer Atmospheric Sciences, 2017, , 309-315.	0.4	2
168	The Extent and Implications of the Microclimatic Conditions in the Urban Environment: A Vienna Case Study. Sustainability, 2017, 9, 177.	1.6	18
169	Screening of Tree Species for Improving Outdoor Human Thermal Comfort in a Taiwanese City. Sustainability, 2017, 9, 340.	1.6	19
170	Investigation of subjective and objective thermal comfort in the case of ceiling and wall cooling systems. International Review of Applied Sciences and Engineering, 2017, 8, 153-162.	0.3	0
171	Assessing the accuracy of globe thermometer method in predicting outdoor mean radiant temperature under Malaysia tropical microclimate. E3S Web of Conferences, 2017, 23, 01006.	0.2	7
172	Thermal Environment Simulation of an East-West Street in Taipei. International Review for Spatial Planning and Sustainable Development, 2017, 5, 89-100.	0.6	4
173	The effect of personal and microclimatic variables on outdoor thermal comfort: A field study in a cold season in Lujiazui CBD, Shanghai. Sustainable Cities and Society, 2018, 39, 181-188.	5.1	50
174	Seasonal differences of subjective thermal sensation and neutral temperature in an outdoor shaded space in Tehran, Iran. Sustainable Cities and Society, 2018, 39, 751-764.	5.1	71
175	Effect of long-term acclimatization on summer thermal comfort in outdoor spaces: a comparative study between Melbourne and Hong Kong. International Journal of Biometeorology, 2018, 62, 1311-1324.	1.3	65
176	Complying with the demand of standardization in outdoor thermal comfort: a first approach to the Global Outdoor Comfort Index (GOCI). Building and Environment, 2018, 130, 104-119.	3.0	73
177	Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment, 2018, 631-632, 390-406.	3.9	340
178	An ordered probability model for predicting outdoor thermal comfort. Energy and Buildings, 2018, 168, 261-271.	3.1	21
179	Visitors' perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne. International Journal of Biometeorology, 2018, 62, 97-112.	1.3	70
180	Using synoptic weather types to predict visitor attendance at Atlanta and Indianapolis zoological parks. International Journal of Biometeorology, 2018, 62, 127-137.	1.3	17
181	Perceptions of thermal comfort in heatwave and non-heatwave conditions in Melbourne, Australia. Urban Climate, 2018, 23, 204-218.	2.4	45

#	Article	IF	CITATIONS
182	Thermal comfort and urban canyons morphology in coastal temperate climate, Concepción, Chile. Urban Climate, 2018, 23, 159-172.	2.4	31
183	Impact of selected personal factors on seasonal variability of recreationist weather perceptions and preferences in Warsaw (Poland). International Journal of Biometeorology, 2018, 62, 113-125.	1.3	55
184	Qualitative methods to explore thermo-spatial perception in outdoor urban spaces. Urban Climate, 2018, 23, 231-249.	2.4	40
185	Confronting potential future augmentations of the physiologically equivalent temperature through public space design: The case of Rossio, Lisbon. Sustainable Cities and Society, 2018, 37, 7-25.	5.1	30
186	Investigation into sensitivities of factors in outdoor thermal comfort indices. Building and Environment, 2018, 128, 129-142.	3.0	110
187	Thermal comfort of pedestrian spaces and the influence of pavement materials on warming up during summer. Energy and Buildings, 2018, 159, 474-485.	3.1	39
188	Surrogate Model-Based Energy-Efficient Scheduling for LPWA-Based Environmental Monitoring Systems. IEEE Access, 2018, 6, 59940-59948.	2.6	7
189	Dressed for the season: Clothing and outdoor thermal comfort in the Mediterranean population. Building and Environment, 2018, 146, 50-63.	3.0	40
190	Study on the Prediction and Improvement of Indoor Natural Light and Outdoor Comfort in Apartment Complexes Using Daylight Factor and Physiologically Equivalent Temperature Indices. Energies, 2018, 11, 1872.	1.6	8
191	How subjective and non-physical parameters affect occupants' environmental comfort perception. Energy and Buildings, 2018, 178, 107-129.	3.1	57
192	Introduction of a spatio-temporal mapping based POE method for outdoor spaces: Suburban university campus as a case study. Building and Environment, 2018, 145, 125-139.	3.0	19
193	Assessment of outdoor thermal comfort in Hong Kong based on the individual desirability and acceptability of sun and wind conditions. Building and Environment, 2018, 145, 50-61.	3.0	51
194	Energy efficiency of residential buildings in the U.S.: Improvement potential beyond IECC. Building and Environment, 2018, 142, 278-287.	3.0	19
195	Hierarchical Bayesian modeling for predicting ordinal responses of personalized thermal sensation: Application to outdoor thermal sensation data. Building and Environment, 2018, 142, 414-426.	3.0	8
196	Outdoor thermal comfort and adaptation in severe cold area: A longitudinal survey in Harbin, China. Building and Environment, 2018, 143, 548-560.	3.0	109
197	Limits of thermal adaptation in cities: outdoor heat-activity dynamics in Sydney, Melbourne and Adelaide. Architectural Science Review, 2018, 61, 191-201.	1.1	26
198	Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere, 2018, 9, 108.	1.0	68
199	On the outdoor thermal perception and comfort of a Mediterranean subject across other Koppen-Geiger's climate zones. Environmental Research, 2018, 167, 115-128.	3.7	19

#	Article	IF	CITATIONS
200	Sensing transient outdoor comfort: A georeferenced method to monitor and map microclimate. Journal of Building Engineering, 2018, 20, 94-104.	1.6	30
201	Global pattern of human thermal adaptation and limit of thermal neutrality: Systematic analysis of outdoor neutral temperature. International Journal of Climatology, 2018, 38, 5037-5049.	1.5	23
202	Thermal comfort in urban spaces: a cross-cultural study in the hot arid climate. International Journal of Biometeorology, 2018, 62, 1901-1909.	1.3	54
203	The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban Forestry and Urban Greening, 2018, 34, 85-96.	2.3	148
204	Thermal sensation and climate: a comparison of UTCI and PET thresholds in different climates. International Journal of Biometeorology, 2018, 62, 1695-1708.	1.3	50
205	Short-term changes in thermal perception associated with heatwave conditions in Melbourne, Australia. Theoretical and Applied Climatology, 2019, 136, 651-660.	1.3	13
206	Design for climate resilience: influence of environmental conditions on thermal sensation in subtropical high-density cities. Architectural Science Review, 2019, 62, 3-13.	1.1	16
207	Association between neighbourhood green space and biological markers in school-aged children. Findings from the Generation XXI birth cohort. Environment International, 2019, 132, 105070.	4.8	37
208	The impact of sky view factor on thermal environments in urban parks in a subtropical coastal city of Australia. Urban Forestry and Urban Greening, 2019, 44, 126422.	2.3	37
209	Integration of Microclimate into the Multi-Agent System Simulation in Urban Public Space. Smart Cities, 2019, 2, 421-432.	5.5	4
210	Investigation into outdoor thermal comfort conditions by different seasonal field surveys in China, Guangzhou. International Journal of Biometeorology, 2019, 63, 1357-1368.	1.3	53
211	Conforto térmico em espaços abertos no clima quente e úmido: estudo de caso em um parque urbano no Bioma Mata Atlântica. Ambiente ConstruÃdo, 2019, 19, 109-127.	0.2	1
212	Urban outdoor thermal perception in hot arid Beer Sheva, Israel: Methodological and gender aspects. Building and Environment, 2019, 160, 106169.	3.0	43
213	Usage patterns and comfort of gardens: a seasonal survey of internal garden microclimate in the aged care homes of Chengdu City. International Journal of Biometeorology, 2019, 63, 1181-1192.	1.3	12
214	Perception of thermal comfort in outdoor public spaces in the medium-sized city of ChillÃ _i n, Chile, during a warm summer. Urban Climate, 2019, 30, 100525.	2.4	14
215	The Cooling Effect of Large-Scale Urban Parks on Surrounding Area Thermal Comfort. Energies, 2019, 12, 3904.	1.6	45
216	Development of artificial neural network models for predicting thermal comfort evaluation in urban parks in summer and winter. Building and Environment, 2019, 164, 106364.	3.0	51
217	Thermal perceptions of the elderly, use patterns and satisfaction with open space. Landscape and Urban Planning, 2019, 185, 44-60.	3.4	52

#	Article	IF	CITATIONS
218	Influence of Green Spaces on Outdoors Thermal Comfort—Structured Experiment in a Mediterranean Climate. Climate, 2019, 7, 20.	1.2	14
219	A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment, 2019, 661, 337-353.	3.9	405
220	Identifying solar access effects on visitors' behavior in outdoor resting areas in a subtropical location: a case study in Japan Square in Curitiba, Brazil. International Journal of Biometeorology, 2019, 63, 301-313.	1.3	1
221	Influence of Air Temperature on the UV Exposure of Different Body Sites Due to Clothing of Young Women During Daily Errands. Photochemistry and Photobiology, 2019, 95, 1068-1075.	1.3	11
222	A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, 2019, 112, 733-746.	8.2	128
223	Expanded comfort assessment in outdoor urban public spaces using Box-Cox transformation. Landscape and Urban Planning, 2019, 190, 103594.	3.4	14
224	Comparative evaluation of relationship between psychological adaptations in order to reach thermal comfort and sense of place in urban spaces. Urban Climate, 2019, 29, 100483.	2.4	15
225	Effects of thermal environment on elderly in urban and rural houses during heating season in a severe cold region of China. Energy and Buildings, 2019, 198, 61-74.	3.1	39
226	Outdoor thermal comfort and summer PET range: A field study in tropical city Dhaka. Energy and Buildings, 2019, 198, 149-159.	3.1	70
227	Thermal comfort range and influence factor of urban pedestrian streets in severe cold regions. Energy and Buildings, 2019, 198, 197-206.	3.1	53
228	Children's interactions with water in city centres: a case study from Sheffield, UK. Landscape Research, 2019, 44, 671-687.	0.7	11
229	Outdoor thermal sensation and logistic regression analysis of comfort range of meteorological parameters in Hong Kong. Building and Environment, 2019, 155, 175-186.	3.0	41
230	Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification. Building and Environment, 2019, 154, 227-238.	3.0	104
231	How â€~hot' is too hot? Evaluating acceptable outdoor thermal comfort ranges in an equatorial urban park. International Journal of Biometeorology, 2019, 63, 801-816.	1.3	50
232	Thermal comfort improvement in urban spaces with water spray systems: Field measurements and survey. Building and Environment, 2019, 156, 46-61.	3.0	58
233	The role of sky view factor and urban street greenery in human thermal comfort and heat stress in a desert climate. Journal of Arid Environments, 2019, 166, 68-76.	1.2	66
234	Outdoor thermal comfort of shaded spaces in an urban park in the cold region of China. Building and Environment, 2019, 155, 408-420.	3.0	115
235	Outdoor thermal comfort in urban canyon and courtyard in hot arid climate: A parametric study based on the vernacular settlement of Mardin. Sustainable Cities and Society, 2019, 48, 101398.	5.1	28

#	Article	IF	CITATIONS
236	A Comparative Study of Thermal Comfort in Public Spaces in the Cities of Concepción and Chillán, Chile. , 2019, , 111-134.		0
237	Analysis of the environmental thermal comfort conditions in public squares in the semiarid region of northeastern Brazil. Building and Environment, 2019, 152, 145-159.	3.0	23
238	Study on Environment Regulation of Residential in Severe Cold Area of China in Winter: Base on Outdoor Thermal Comfort of the Elderly. Sustainability, 2019, 11, 6509.	1.6	9
239	Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes. Scientific Reports, 2019, 9, 19681.	1.6	14
240	Effect of Landscape Microclimates on Thermal Comfort and Physiological Wellbeing. Sustainability, 2019, 11, 5387.	1.6	23
241	Effects of windward and leeward wind directions on outdoor thermal and wind sensation in Tehran. Building and Environment, 2019, 150, 164-180.	3.0	12
242	Interferences of urban form on human thermal perception. Science of the Total Environment, 2019, 653, 1067-1076.	3.9	16
243	Outdoor thermal comfort conditions during summer in a cold semi-arid climate. A transversal field survey in Central Anatolia (Turkey). Building and Environment, 2019, 148, 212-224.	3.0	49
244	A path analysis of outdoor comfort in urban public spaces. Building and Environment, 2019, 148, 459-467.	3.0	53
245	Evaluating the effectiveness of outdoor evaporative cooling in a hot, arid climate. Building and Environment, 2019, 150, 281-288.	3.0	23
246	Holistic recommendations for future outdoor thermal comfort assessment in tropical Southeast Asia: A critical appraisal. Sustainable Cities and Society, 2019, 46, 101428.	5.1	39
247	Investigation into the differences among several outdoor thermal comfort indices against field survey in subtropics. Sustainable Cities and Society, 2019, 44, 676-690.	5.1	142
248	Assessment of thermally comfortable urban spaces in Amsterdam during hot summer days. International Journal of Biometeorology, 2019, 63, 129-141.	1.3	17
249	Investigation into the thermal comfort of university students conducting outdoor training. Building and Environment, 2019, 149, 26-38.	3.0	49
250	Light colors and comfortable warmth: Crossmodal correspondences between thermal sensations and color lightness influence consumer behavior. Food Quality and Preference, 2019, 72, 45-55.	2.3	40
251	Effects of microclimate and human parameters on outdoor thermal sensation in the high-density tropical context of Dhaka. International Journal of Biometeorology, 2020, 64, 187-203.	1.3	19
252	Photographic comparison: a method for qualitative outdoor thermal perception surveys. International Journal of Biometeorology, 2020, 64, 173-185.	1.3	16
253	The impact of microclimates on the variation of user density and the length of time users stay in areas of public space in arid regions. Intelligent Buildings International, 2020, 12, 133-149.	1.3	2

#	Article	IF	Citations
254	Comparison of microclimate measurements and perceptions as part of a global evaluation of environmental quality at neighbourhood scale. International Journal of Biometeorology, 2020, 64, 265-276.	1.3	10
255	Effect of seasonal adaptation on outdoor thermal comfort in a hot-summer and cold-winter city. Advances in Building Energy Research, 2020, 14, 202-217.	1.1	11
256	Semantics of outdoor thermal comfort in religious squares of composite climate: New Delhi, India. International Journal of Biometeorology, 2020, 64, 253-264.	1.3	23
257	Outdoor thermal comfort and adaptive behaviors in the residential public open spaces of winter cities during the marginal season. International Journal of Biometeorology, 2020, 64, 217-229.	1.3	33
258	Building in Hot and Humid Regions. , 2020, , .		3
259	Evaluation of Microclimatic Comfort Around Campus Buildings at the Pedestrian Level by Means of Field Measurements and Survey of Satisfaction. , 2020, , 75-106.		0
260	Assessing the effect of weather on human outdoor perception using Twitter. International Journal of Biometeorology, 2020, 64, 205-216.	1.3	9
261	Passive activity observation (PAO) method to estimate outdoor thermal adaptation in public space: case studies in Australian cities. International Journal of Biometeorology, 2020, 64, 231-242.	1.3	9
262	Gender differences in thermal comfort on pedestrian streets in cold and transitional seasons in severe cold regions in China. Building and Environment, 2020, 168, 106488.	3.0	48
263	The influence of thermal comfort conditions on user's exposure time in open spaces. International Journal of Biometeorology, 2020, 64, 243-252.	1.3	4
264	Exploring outdoor thermal perception—a revised model. International Journal of Biometeorology, 2020, 64, 293-300.	1.3	20
265	Evaluation of mist-spraying environment on thermal sensations, thermal environment, and skin temperature under different operation modes. Building and Environment, 2020, 168, 106484.	3.0	30
266	Estimating outdoor mean radiant temperature in a humid subtropical climate. Building and Environment, 2020, 171, 106658.	3.0	29
267	The impact of green space structure on physiological equivalent temperature index in open space. Urban Climate, 2020, 31, 100574.	2.4	40
268	Rethinking Urban Public Space: Physical and Functional Analysis through Visual Surveys. IOP Conference Series: Earth and Environmental Science, 2020, 409, 012002.	0.2	5
269	Outdoor thermal benchmarks and their application to climate‒responsive designs of residential open spaces in a cold region of China. Building and Environment, 2020, 169, 106592.	3.0	50
270	Clinical blood pressure responses to daily ambient temperature exposure in China: An analysis based on a representative nationwide population. Science of the Total Environment, 2020, 705, 135762.	3.9	21
271	The structural model for thermal comfort based on perceptions individuals in open urban spaces. Building and Environment, 2020, 185, 107260.	3.0	14

#	Article	IF	CITATIONS
272	Investigation of outdoor thermal sensation and comfort evaluation methods in severe cold area. Science of the Total Environment, 2020, 749, 141520.	3.9	46
273	Study on Outdoor Thermal Comfort in the Transitional Season of Hefei. E3S Web of Conferences, 2020, 165, 01026.	0.2	3
274	From thermal sensation to thermal affect: A multi-dimensional semantic space to assess outdoor thermal comfort. Building and Environment, 2020, 182, 107112.	3.0	20
275	Outdoor thermal comfort in different settings of a tropical planning region: A study on Sriniketan-Santiniketan Planning Area (SSPA), Eastern India. Sustainable Cities and Society, 2020, 63, 102433.	5.1	27
276	How parks provide thermal comfort perception in the metropolitan cores; a case study in Madrid Mediterranean climatic zone. Climate Risk Management, 2020, 30, 100245.	1.6	22
277	Planning for Supportive Green Spaces in the Winter City of China: Linking Exercise of Elderly Residents and Exercise Prescription for Cardiovascular Health. International Journal of Environmental Research and Public Health, 2020, 17, 5762.	1.2	3
278	Human thermal sensation over a mountainous area, revealed by the application of ANNs: the case of Ainos Mt., Kefalonia Island, Greece. International Journal of Biometeorology, 2020, 64, 2033-2045.	1.3	5
279	Outdoor Thermal Comfort: Coupling Microclimatic Parameters with Subjective Thermal Assessment to Design Urban Performative Spaces. Buildings, 2020, 10, 238.	1.4	20
280	Human-centric microclimate analysis of Urban Heat Island: Wearable sensing and data-driven techniques for identifying mitigation strategies in New York City. Urban Climate, 2020, 34, 100716.	2.4	18
281	Thermal Environment of Urban Schoolyards: Current and Future Design with Respect to Children's Thermal Comfort. Atmosphere, 2020, 11, 1144.	1.0	25
282	Shading analysis of urban squares using open-source software and free satellite imagery. Applied Geomatics, 2020, 12, 441-454.	1.2	5
283	Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort. Energies, 2020, 13, 2079.	1.6	14
284	Thermal comfort provided by street trees in cities. Arboricultural Journal, 2020, 42, 153-164.	0.3	6
285	Viability of public spaces in cities under increasing heat: A transdisciplinary approach. Sustainable Cities and Society, 2020, 59, 102215.	5.1	18
286	Impacts of form and design policies on urban microclimate: Assessment of zoning and design guideline choices in urban redevelopment projects. Landscape and Urban Planning, 2020, 202, 103870.	3.4	38
287	Study on importance, procedure, and scope of outdoor thermal comfort –A review. Sustainable Cities and Society, 2020, 61, 102297.	5.1	98
288	A comprehensive review of thermal comfort studies in urban open spaces. Science of the Total Environment, 2020, 742, 140092.	3.9	128
289	Outdoor thermal perception and comfort conditions in the Köppen-Geiger climate category BSk. One-year field survey and measurement campaign in Konya, Turkey. Science of the Total Environment, 2020, 738, 140295.	3.9	16

#	Article	IF	CITATIONS
290	Analysis of different urban spaces on thermal comfort in cold regions: a case from Erzurum. Theoretical and Applied Climatology, 2020, 141, 1593-1609.	1.3	9
291	Perceived impact of meteorological conditions on the use of public space in winter settlements. International Journal of Biometeorology, 2020, 64, 631-642.	1.3	8
292	Outdoor Thermal Comfort of Urban Park—A Case Study. Sustainability, 2020, 12, 1961.	1.6	45
293	Thermal sensation and indices in the urban outdoor hot Mediterranean environment of Cyprus. Theoretical and Applied Climatology, 2020, 140, 1315-1329.	1.3	7
294	Outdoor thermal comfort in various microentrepreneurial settings in hot humid tropical Kolkata: Human biometeorological assessment of objective and subjective parameters. Science of the Total Environment, 2020, 721, 137741.	3.9	37
295	Urban Morphology and Outdoor Microclimate around the "Shophouse―Dwellings in Ho Chi Minh City, Vietnam. Buildings, 2020, 10, 40.	1.4	4
296	Impacts of Tree Canopy Cover on Microclimate and Human Thermal Comfort in a Shallow Street Canyon in Wuhan, China. Atmosphere, 2020, 11, 588.	1.0	19
297	Summer thermal comfort conditions in shopping arcades and their adjoining streets in hot and dry climates. The case of the Nicosia's historic centre IOP Conference Series: Earth and Environmental Science, 2020, 410, 012093.	0.2	1
298	Cross-cultural differences in thermal comfort in campus open spaces: A longitudinal field survey in China's cold region. Building and Environment, 2020, 172, 106739.	3.0	56
299	Behavioural Perspectives of Outdoor Thermal Comfort in Urban Areas: A Critical Review. Atmosphere, 2020, 11, 51.	1.0	48
300	Strategies for improving the microclimate and thermal comfort of a classical Chinese garden in the hot-summer and cold-winter zone. Energy and Buildings, 2020, 215, 109914.	3.1	21
301	Thermal Adaptation and Comfort Zones in Urban Semi-Outdoor Environments. Frontiers in Built Environment, 2020, 6, .	1.2	19
302	Evaluation of plantation design methodology to improve the human thermal comfort in hot-arid climatic responsive open spaces. Sustainable Cities and Society, 2020, 59, 102198.	5.1	34
303	Willingness to pay for green buildings: A survey on students' perception in higher education. Energy and Buildings, 2020, 216, 109956.	3.1	22
304	Thermal comfort models and their developments: A review. Energy and Built Environment, 2021, 2, 21-33.	2.9	154
305	The effect of kharkhona on outdoor thermal comfort in Hot and dry climate: A case study of Sistan Region in Iran. Sustainable Cities and Society, 2021, 65, 102607.	5.1	6
306	Interactive effect between long-term and short-term thermal history on outdoor thermal comfort: Comparison between Guangzhou, Zhuhai and Melbourne. Science of the Total Environment, 2021, 760, 144141.	3.9	34
307	Outdoor space quality: Impact of deep canyon thermal comfort in an urban residential community. Science and Technology for the Built Environment, 2021, 27, 477-488.	0.8	3

#	Article	IF	CITATIONS
308	Thermal comfort and pedestrian behaviors in urban public spaces in cities with warm and dry climates. Open House International, 2021, 46, 143-159.	0.6	6
309	Proposed Framework for Establishing a Global Database for Outdoor Thermal Comfort Research. , 2021, , 209-223.		2
310	Outdoor Thermal Comfort & Human Behavior Factors, Models, and Methodologies. , 2021, , 131-149.		0
311	Influence of Stroller upon Thermal Insulation of Infant. Health, 2021, 13, 955-974.	0.1	0
312	Analysis of Eco-Tourism Climate Resources in Xingwen, China Based on the Comfort Index and the Negative Air (Oxygen) Ion. Journal of Geoscience and Environment Protection, 2021, 09, 154-163.	0.2	2
313	Field study of pedestrians' comfort temperatures under outdoor and semi-outdoor conditions in Malaysian university campuses. International Journal of Biometeorology, 2021, 65, 453-477.	1.3	15
314	Temporal and spatial analysis of thermal stress and its trend in <scp>Iran</scp> . Meteorological Applications, 2021, 28, e1977.	0.9	3
315	Regional Adaptation of the UTCI: Comparisons Between Different Datasets in Brazil. , 2021, , 113-135.		1
316	Thermal Comfort in Urban Spaces. , 2021, , 55-77.		0
317	Assessing Comfort in Urban Public Spaces: A Structural Equation Model Involving Environmental Attitude and Perception. International Journal of Environmental Research and Public Health, 2021, 18, 1287.	1.2	19
318	Thermal responses of workers during summer: An outdoor investigation of construction sites in South China. Sustainable Cities and Society, 2021, 66, 102705.	5.1	32
319	Evaluating outdoor thermal comfort in "Haats―– The open air markets in a humid subtropical region. Building and Environment, 2021, 190, 107527.	3.0	18
320	The role of blue and green infrastructure in thermal sensation in public urban areas: A case study of summer days in four Czech cities. Sustainable Cities and Society, 2021, 66, 102683.	5.1	31
321	Analysis of outdoor thermal comfort and air pollution under the ınfluence of urban morphology in cold-climate cities: Erzurum/Turkey. Environmental Science and Pollution Research, 2021, 28, 64068-64083.	2.7	8
322	Utilizing thermal comfort and walking facilities to propose a comfort walkability index (CWI) at the neighbourhood level. Building and Environment, 2021, 193, 107627.	3.0	31
323	Thermal comfort interventions of landscape elements in a humid and subtropical residential area in China. Journal of Asian Architecture and Building Engineering, 2022, 21, 1106-1123.	1.2	3
325	Summer outdoor thermal benchmarks in Melbourne: Applications of different techniques. Building and Environment, 2021, 195, 107658.	3.0	6
326	Estimación del confort térmico por variable fÃsica del entorno térmico: Un estudio en los espacios abiertos de la UABC-Sauzal, México. Revista De Ciencias TecnolÓgicas, 2021, 4, 58-80.	0.0	1

#	Article	IF	CITATIONS
327	Dynamic thermal pleasure in outdoor environments - temporal alliesthesia. Science of the Total Environment, 2021, 771, 144910.	3.9	29
328	Parametric Design and Comfort Optimization of Dynamic Shading Structures. Sustainability, 2021, 13, 7670.	1.6	6
329	Measurement of Thermal Comfort in Urban Public Spaces Semarang, Indonesia. Pertanika Journal of Science and Technology, 2021, 29, .	0.3	0
330	Exploring the perceived dimensions of open spaces' elements influencing outdoor thermal comfort in the Indonesian context. International Review for Spatial Planning and Sustainable Development, 2021, 9, 41-57.	0.6	1
331	Evaluation of sustainable strategies and design solutions at high-latitude urban settlements to enhance outdoor thermal comfort. Energy and Buildings, 2021, 244, 111037.	3.1	19
332	Urban geometry as an adaptation strategy to improve the outdoor thermal performance in hot arid regions: Aswan University as a case study. Sustainable Cities and Society, 2021, 71, 102965.	5.1	22
333	Research on outdoor thermal comfort of high-density urban center in severe cold area. Building and Environment, 2021, 200, 107938.	3.0	44
334	Thermal perception in outdoor urban spaces under the Mediterranean climate of Annaba, Algeria. Urban Climate, 2021, 39, 100970.	2.4	9
335	Regression forecasting of â€~neutral' adaptive thermal comfort: A field study investigation in the south-eastern Mediterranean climate of Cyprus. Building and Environment, 2021, 202, 108013.	3.0	29
336	Cross-analysis for the assessment of urban environmental quality: An interdisciplinary and participative approach. Environment and Planning B: Urban Analytics and City Science, 2022, 49, 1024-1047.	1.0	1
337	Urban green space and health: The role of thermal comfort on the health benefits from the urban green space; a review study. Building and Environment, 2021, 202, 108039.	3.0	24
338	Human Thermal Comfort in Sub-tropical Urban Environments. SpringerBriefs in Architectural Design and Technology, 2022, , 13-33.	0.3	Ο
339	Quantitative seasonal outdoor thermal sensitivity in Guangzhou, China. Urban Climate, 2021, 39, 100938.	2.4	17
340	Environmental Perception and Outdoor Thermal Comfort in High-Density Cities. SpringerBriefs in Architectural Design and Technology, 2022, , 51-65.	0.3	1
341	Characteristics of Thermal Comfort in Outdoor Environments. SpringerBriefs in Architectural Design and Technology, 2022, , 1-9.	0.3	1
342	Forehead temperatures as an indicator of outdoor thermal comfort and the influence of tree shade. Urban Climate, 2021, 39, 100965.	2.4	8
343	Outdoor thermal benchmarks and thermal safety for children: A study in China's cold region. Science of the Total Environment, 2021, 787, 147603.	3.9	36
344	Heterogeneity in outdoor comfort assessment in urban public spaces. Science of the Total Environment, 2021, 790, 147941.	3.9	12

#	Article	IF	CITATIONS
345	Extending the adaptive thermal comfort models for courtyards. Building and Environment, 2021, 203, 108094.	3.0	25
346	Evaluating the impact of urban design scenarios on walking accessibility: the case of the Madrid â€~Centro' district Sustainable Cities and Society, 2021, 74, 103156.	5.1	18
347	Improving the suitability of selected thermal indices for predicting outdoor thermal sensation in Tehran. Sustainable Cities and Society, 2021, 74, 103205.	5.1	17
348	Validation of a CFD model for the evaluation of urban microclimate at high latitudes: A case study in Trondheim, Norway. Building and Environment, 2021, 205, 108175.	3.0	20
349	The Street Walkability and Thermal Comfort Index (SWTCI): A new assessment tool combining street design measurements and thermal comfort. Science of the Total Environment, 2021, 795, 148663.	3.9	24
350	Clothing adjustment in outdoor environment: A new clothing model based on temperature change. Building and Environment, 2021, 206, 108395.	3.0	14
351	Sensitivity of UTCI Thermal Comfort Prediction to Personal and Situational Factors—Residual Analysis of Pedestrian Survey Data. , 2021, , 67-80.		0
352	The Energy Consumption of Terraces in the Barcelona Public Space: Heating the Street. Sustainability, 2021, 13, 865.	1.6	4
353	Natural Elements and Physical Activity in Urban Green Space Planning and Design. , 2011, , 245-282.		7
354	Thermal Adaptation Outdoors and the Effect of Wind on Thermal Comfort. Springer Geography, 2012, , 33-58.	0.3	9
355	Foreword to the Special Issue on Subjective Approaches to Thermal Perception. International Journal of Biometeorology, 2020, 64, 167-171.	1.3	8
356	Urban heat resilience at the time of global warming: evaluating the impact of the urban parks on outdoor thermal comfort. Environmental Sciences Europe, 2020, 32, .	2.6	36
357	Thermal perception of teenagers in a cool outdoor environment: A case study. Geofizika, 2015, 32, 79-92.	0.1	1
358	SPATIAL DISTRIBUTION OF THERMAL STRESSES IN IRAN BASED ON PET AND UTCI INDICES. Applied Ecology and Environmental Research, 2018, 16, 5423-5445.	0.2	10
359	Vamos passear na floresta! O conforto térmico em fragmentos florestais urbanos. Ambiente ConstruÃdo, 2010, 10, 115-132.	0.2	19
360	Conforto térmico em espaços públicos de passagem: estudos em ruas de pedestres no estado de São Paulo. Ambiente ConstruÃdo, 2012, 12, 167-183.	0.2	14
361	Definição de faixas de conforto e desconforto térmico para espaços abertos em Curitiba, PR, com o Ãndice UTCI. Ambiente ConstruÃdo, 2012, 12, 41-59.	0.2	24
362	Expansion of metropolitan areas, land use and sustainability indicators: the case of Valencia (Spain). , 2010, , .		2

ARTICLE IF CITATIONS # The importance of thermal comfort in different elevation for city planning. Global Nest Journal, 2013, 363 0.3 15 15, 408-420. Adaptive Comfort Criteria in Transitional Spaces. A Proposal for Outdoor Comfort. Proceedings 364 0.2 (mdpi), 2019, 38, 13. Mapping of thermal comfort for outdoor recreation planning using GIS: the case of Isparta Province 366 0.8 12 (Turkey). Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 0, , . Ethnic Differences in Thermal Responses between Thai and Japanese Females in Tropical Urban Climate. 0.5 American Journal of Climate Change, 2016, 05, 52-68. Seasonal Differences of Psychological and Physiological Responses in Tropical Urban Climate. Health, 368 0.1 7 2017, 09, 896-920. Skin Temperature and Body Surface Section in Non-Uniform and Asymmetric Outdoor Thermal Environment. Health, 2018, 10, 1321-1341. 0.1 La calidad peatonal como método para evaluar entornos de movilidad urbana. Documents D' Analisi 370 0.1 18 Geografica, 2014, 60, 161. Analysis of Land Surface Temperature from MODIS and Landsat Satellites using by AWS Temperature in 371 0.4 Capital Area. Korean Journal of Remote Sensing, 2014, 30, 315-329. Thermal Comfort and Perceptions of the Ecosystem Services and Disservices of Urban Trees in 372 0.9 7 Florence. Forests, 2021, 12, 1387. In search of new paradigms to interpret and design the contemporary city. WIT Transactions on Ecology and the Environment, 2012, , . Thermal Comfort Conditions and Evaluation of the Thermal Bioclimate Index PET in Two European 374 0 0.4 Cities During Summer. Springer Atmospheric Sciences, 2013, , 779-786. An Outdoor Comfort Index Framework Based on GIS for Supporting Optimal Environment. International Journal of Software Engineering and Its Applications, 2013, 7, 211-220. Considerations of user comfort in open spaces: lessons learned from the design of public spaces in 376 0.0 0 the Eastern Mediterranean. WIT Transactions on the Built Environment, 2015, , 1237-1247. Evaluation of Climatic Characteristics for Tourism and Recreation in Northeast Anatolia (TRA1 NUTS) Tj ETQq1 1 0.784314 rgBT /Over 0.2 53-53. Plant Selection and Placement Criteria for Landscape Design., 2017, , 249-260. 378 1 The Influence of the Solar Radiation Absorptivity up on the Outdoor Thermal Environment Evaluation 379 Index and the Thermal Sensory Perception's. American Journal of Climate Change, 2018, 07, 204-217. Kent dışı bir üniversite kampüsünün dıÅŸ mekânlarında ısıl konfor, kullanım ve mekân dizim analjzi. Journal 380 of the Faculty of Engineering and Architecture of Gazi University, 2018, 2018, .

381	Users' Perceptions, Experiences and Level of Satisfaction with the Quality of a Courtyard Garden in a Malaysian Public Hospital. Environment-Behaviour Proceedings Journal, 2018, 3, 63.	0.1	1
-----	--	-----	---

#	Article	IF	CITATIONS
382	Studies of Elderly Thermal Comfort in Outdoor Environments in Severe Cold Area of China. Smart Innovation, Systems and Technologies, 2019, , 32-42.	0.5	1
383	Effects of Outdoor Thermal Environment upon the Human Responses. Engineering, 2019, 11, 475-503.	0.4	3
384	What are Users' Perceptions of the Hospital Courtyard Garden and How Satisfied are they with it?. Asian Journal of Environment-Behaviour Studies, 2019, 4, 60-76.	0.4	3
385	Urban Geometry Optimization to Mitigate Climate Change: Towards Energy-Efficient Buildings. Sustainability, 2021, 13, 27.	1.6	8
386	Assessing the outdoor thermal comfort conditions of exercising people in the semi-arid region of India. Sustainable Cities and Society, 2022, 76, 103366.	5.1	22
388	Influences of Different Meteorological Parameters on Outdoor Thermal Comfort in Cold Climate Regions in China. Environmental Science and Engineering, 2020, , 725-734.	0.1	0
389	Extreme Weather Conditions and Cardiovascular Hospitalizations in Southern Brazil. Sustainability, 2021, 13, 12194.	1.6	8
390	Developing Resilience to Emergencies: Evaluation of Thermal Indices and Outdoor Comfort Before and During the COVID-19 Pandemic. Frontiers in Built Environment, 2021, 7, .	1.2	1
391	Variations in outdoor thermal comfort in an urban park in the hot-summer and cold-winter region of China. Sustainable Cities and Society, 2022, 77, 103535.	5.1	78
392	The role of building morphology on pedestrian level comfort in Northern climate. Journal of Physics: Conference Series, 2021, 2042, 012053.	0.3	4
393	Meta-analysis of outdoor thermal comfort surveys in different European cities using the RUROS database: The role of background climate and gender. Energy and Buildings, 2022, 256, 111757.	3.1	8
394	Ameliorating cold stress in a hot climate: Effect of Winter Storm Uri on residents of subsidized housing neighborhoods. Building and Environment, 2022, 209, 108646.	3.0	9
395	Evaluating outdoor thermal comfort in urban open spaces in a humid subtropical climate: Chandigarh, India. Building and Environment, 2022, 209, 108659.	3.0	19
396	Performance of the Outdoor Evaporative Cooling: A Case Study of Thammasat University Rangsit Campus. , 2020, , .		0
397	Thermal comfort improvement by applying parametric design panel as a second skin on the facade in building refurbishment in moderate climate. , 2021, , .		5
398	llıman-Nemli İklim Bölgelerinde Kentsel Alanlarda Biyoklimatik Konfor. European Journal of Science and Technology, 0, , .	0.5	2
399	Impact of the socio-environmental quality of the courtyard house on occupant satisfaction:. International Review for Spatial Planning and Sustainable Development, 2022, 10, 74-98.	0.6	2
400	Evaluation of urban planning methods toward bioclimatic and resilient urban spaces. Environment and Planning B: Urban Analytics and City Science, 2022, 49, 1354-1370.	1.0	2

#	Article	IF	CITATIONS
401	The Future of the City in the Name of Proximity: A New Perspective for the Urban Regeneration of Council Housing Suburbs in Italy after the Pandemic. Sustainability, 2022, 14, 1252.	1.6	6
402	Detection and Attribution of Changes in Thermal Discomfort over China during 1961–2014 and Future Projections. Advances in Atmospheric Sciences, 2022, 39, 456-470.	1.9	7
403	Investigating relationships among perceptions of yielding, safety, and comfort for pedestrians in unsignalized crosswalks. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 85, 179-194.	1.8	9
404	Perceptive and physiological adaptation of migrants with different thermal experiences: A long-term climate chamber experiment. Building and Environment, 2022, 211, 108727.	3.0	9
405	Evaluating Outdoor Thermal Comfort Using a Mixed-Method to Improve the Environmental Quality of a University Campus. Energies, 2022, 15, 1577.	1.6	9
406	Temporal analysis of thermal bioclimate conditions between Kolkata (India) and its three neighbouring suburban sites. Theoretical and Applied Climatology, 0, , 1.	1.3	6
407	A review of studies and modelling of solar radiation on human thermal comfort in outdoor environment. Building and Environment, 2022, 214, 108891.	3.0	30
408	Impact of post-socialist vertical extensions of buildings on outdoor microclimate in collective housing areas: a study of NiÅ;, Serbia. Energy and Buildings, 2022, , 112081.	3.1	0
409	Analyzing outdoor thermal comfort conditions in a university campus in hot-arid climate: A case study in Birjand, Iran. Urban Climate, 2022, 43, 101128.	2.4	15
410	The Metamatrix of Thermal Comfort: A compendious graphical methodology for appropriate selection of outdoor thermal comfort indices and thermo-physiological models for human-biometeorology research and urban planning. Sustainable Cities and Society, 2022, 81, 103852.	5.1	13
411	Comparing the effects of sun and wind on outdoor thermal comfort: A case study based on longitudinal subject tests in cold climate region. Science of the Total Environment, 2022, 825, 154009.	3.9	10
412	Pedestrian thermal perception: studies around two high-rise buildings in the Mediterranean climate. Building Research and Information, 2022, 50, 171-191.	2.0	7
413	A Review of Urban Microclimate Research Based on CiteSpace and VOSviewer Analysis. International Journal of Environmental Research and Public Health, 2022, 19, 4741.	1.2	26
414	Findings from a field study of urban microclimate in Korea using mobile meteorological measurements. Open House International, 2022, 47, 473-493.	0.6	4
420	Mobile Measurements of Microclimatic Variables Through the Central Area of Singapore. SSRN Electronic Journal, 0, , .	0.4	0
422	Assessing the effects of different urban landscapes and built environment patterns on thermal comfort and air pollution in Erzurum city, Turkey. Building and Environment, 2022, 219, 109210.	3.0	17
423	Characteristics, Progress and Trends of Urban Microclimate Research: A Systematic Literature Review and Bibliometric Analysis. Buildings, 2022, 12, 877.	1.4	8
424	Modification effects of seasonal and temperature variation on the association between exposure to nitrogen dioxide and ischemic stroke onset in Shenzhen, China. International Journal of Biometeorology, 0, , .	1.3	0

#	Article	IF	CITATIONS
425	Urban climate walk: A stop-and-go assessment of the dynamic thermal sensation and perception in two waterfront districts in Rome, Italy. Building and Environment, 2022, 221, 109267.	3.0	10
426	Urban Heat Island and Thermal Comfort Assessment in a Medium-Sized Mediterranean City. Atmosphere, 2022, 13, 1102.	1.0	8
427	New developments and future challenges in reducing and controlling heat island effect in urban areas. Environment, Development and Sustainability, 2023, 25, 10485-10531.	2.7	12
428	An experimental technique based on globe thermometers for the measurement of mean radiant temperature in urban settings. Building and Environment, 2022, 222, 109373.	3.0	4
429	The impact of street geometry on outdoor thermal comfort within three different urban forms in severe cold region of China. Building and Environment, 2022, 222, 109342.	3.0	18
430	Shading Design For Outdoor Learning in Warm And Hot Climates Using Evolutionary Computation: A Case Study In Houston Tx , 2022, , .		0
431	Revealing Impacts of Trees on Modeling Microclimate Behavior in Spaces between Buildings through Simulation Monitoring. Buildings, 2022, 12, 1168.	1.4	3
432	A Preliminary Study of Summer Thermo-Hygrometric Comfort under Different Environmental Conditions in a Mediterranean City. Urban Science, 2022, 6, 51.	1.1	1
433	A method of predicting the dynamic thermal sensation under varying outdoor heat stress conditions in summer. Building and Environment, 2022, 223, 109454.	3.0	15
434	A Field Study of Outdoor Human Thermal Perception in Three Seasons in Shanghai, China. Buildings, 2022, 12, 1453.	1.4	3
435	Effects of different exercise types on outdoor thermal comfort in a severe cold city. Journal of Thermal Biology, 2022, 109, 103330.	1.1	10
436	PanoMRT: Panoramic Infrared Thermography to Model Human Thermal Exposure and Comfort. SSRN Electronic Journal, 0, , .	0.4	Ο
437	Effects of Acoustic Perception on Outdoor Thermal Comfort in Campus Open Spaces in China's Cold Region. SSRN Electronic Journal, 0, , .	0.4	3
438	Effects of Acoustic Perception on Outdoor Thermal Comfort in Campus Open Spaces in China's Cold Region. Buildings, 2022, 12, 1518.	1.4	2
439	Temporal and Spatial Distribution of Outdoor Thermal Comfort Conditions: The Case of Konyaaltı-Antalya, Turkey. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.4	0
440	Forest structure and composition alleviate human thermal stress. Global Change Biology, 2022, 28, 7340-7352.	4.2	20
441	Development of a modified thermal humidity index and its application to human thermal comfort of urban vegetation patches. Ecosystem Health and Sustainability, 2022, 8, .	1.5	3
442	Discussion on inapplicability of Universal Thermal Climate Index (UTCI) for outdoor thermal comfort in cold region. Urban Climate, 2022, 46, 101304.	2.4	20

#	Article	IF	CITATIONS
443	Wintertime outdoor thermal sensations and comfort in cold-humid environments of Chongqing China. Sustainable Cities and Society, 2022, 87, 104203.	5.1	16
444	Landscape pattern optimization strategy of coastal mountainside greenway from a microclimatic comfort view in hot and humid areas. Urban Climate, 2022, 46, 101297.	2.4	3
445	Summer Outdoor Thermal Perception for the Elderly in a Comprehensive Park of Changsha, China. Atmosphere, 2022, 13, 1853.	1.0	4
446	Physiological and perceptual responses of exposure to different thermal environments at low pressure (61.6ÂkPa). Building and Environment, 2022, 226, 109774.	3.0	5
447	PanoMRT: Panoramic infrared thermography to model human thermal exposure and comfort. Science of the Total Environment, 2023, 859, 160301.	3.9	1
448	Influence of street configuration on human thermal comfort and benefits for climate-sensitive urban planning in Santiago de Chile. Urban Climate, 2023, 47, 101361.	2.4	14
449	Analysis of Thermal Comfort under Different Exercise Modes in Winter in Universities in Severe Cold Regions. Sustainability, 2022, 14, 15796.	1.6	1
451	Effects of mask wearing duration and relative humidity on thermal perception in the summer outdoor built environment. Building Simulation, 2023, 16, 1601-1616.	3.0	6
452	Human outdoor thermal comfort analysis for the Qatar 2022 FIFA World Cup's climate. SN Applied Sciences, 2023, 5, .	1.5	0
453	Data generative machine learning model for the assessment of outdoor thermal and wind comfort in a northern urban environment. Frontiers of Architectural Research, 2023, 12, 541-555.	1.3	4
454	Thermal comfort in urban areas on hot summer days and its improvement through participatory mapping: A case study of two Central European cities. Landscape and Urban Planning, 2023, 233, 104713.	3.4	5
455	Outdoor thermal comfort in urban and rural open spaces: A comparative study in China's cold region. Urban Climate, 2023, 49, 101501.	2.4	7
456	On kids' environmental wellbeing and their access to nature in urban heat islands: Hyperlocal microclimate analysis via surveys, modelling, and wearable sensing in urban playgrounds. Urban Climate, 2023, 49, 101447.	2.4	2
457	Assessment of urban physical features on summer thermal perceptions using the local climate zone classification. Building and Environment, 2023, 236, 110265.	3.0	5
458	Investigating an accurate method for measuring the outdoor mean radiation temperature. International Journal of Thermal Sciences, 2023, 188, 108219.	2.6	1
459	Outdoor clothing choice for different populations in cold regions: A clothing choice prediction model based on machine learning. Energy and Buildings, 2023, 289, 113069.	3.1	1
460	Cross-evaluation of thermal comfort in semi-outdoor spaces according to geometry in Southern Spain. Urban Climate, 2023, 49, 101491.	2.4	4
461	Influence of Microclimate on Older Peoples' Outdoor Thermal Comfort and Health during Autumn in Two European Cities. Designs, 2023, 7, 27.	1.3	1

		ITATION REPORT		
#	Article	IF	CITATIONS	
470	Application of microcontroller-based systems in human biometeorology studies: a bibliometric analysis. International Journal of Biometeorology, 2023, 67, 1397-1407.	1.3	1	
484	The Use of Newly Developed Public Transportation System in Relation to People's Thermal Perce of Outdoor Climate. , 2023, , .	ption	Ο	
500	Outdoor Education and Thermal Comfort. , 2024, , 345-381.		0	