Role Of Immature Myeloid Cells in Mechanisms of Imm

Cancer Immunology, Immunotherapy 55, 237-245 DOI: 10.1007/s00262-005-0048-z

Citation Report

#	Article	IF	CITATIONS
1	Mechanisms of Immune Evasion by Tumors. Advances in Immunology, 2006, 90, 51-81.	1.1	580
2	Cancer Immunotherapy and Preclinical Studies: Why We Are Not Wasting Our Time with Animal Experiments. Hematology/Oncology Clinics of North America, 2006, 20, 567-584.	0.9	46
3	Allogeneic hematopoietic stem cell transplantation for malignant disease: How to prevent graft-versus-host disease without jeopardizing the graft-versus-tumor effect?. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 25-30.	0.5	2
4	Peroxisome proliferator-activated receptor γ (PPARγ) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood, 2006, 108, 525-535.	0.6	114
5	Cancer immunosuppression and autoimmune disease: beyond immunosuppressive networks for tumour immunity. Immunology, 2006, 119, 254-264.	2.0	158
6	Analysis of Immune Cell Infiltrates during Squamous Carcinoma Development. Journal of Investigative Dermatology Symposium Proceedings, 2006, 11, 36-43.	0.8	22
7	The role of stroma in immune recognition and destruction of well-established solid tumors. Current Opinion in Immunology, 2006, 18, 226-231.	2.4	117
8	Leukocyte Infiltration in Cancer Creates an Unfavorable Environment for Antitumor Immune Responses: A Novel Target for Therapeutic Intervention. Immunological Investigations, 2006, 35, 327-357.	1.0	36
9	Immunosuppression in Melanoma Immunotherapy: Potential Opportunities for Intervention. Clinical Cancer Research, 2006, 12, 2359s-2365s.	3.2	33
10	All-trans-Retinoic Acid Improves Differentiation of Myeloid Cells and Immune Response in Cancer Patients. Cancer Research, 2006, 66, 9299-9307.	0.4	506
11	Development of Vaccines for High-Risk Ductal Carcinoma <i>In situ</i> of the Breast. Cancer Research, 2007, 67, 6531-6534.	0.4	35
12	Targeting of Jak/STAT Pathway in Antigen Presenting Cells in Cancer. Current Cancer Drug Targets, 2007, 7, 71-77.	0.8	48
13	Report on the ISBTC Mini-symposium on Biologic Effects of Targeted Therapeutics. Journal of Immunotherapy, 2007, 30, 577-590.	1.2	2
14	Vascular Endothelial Growth Factor-Trap Overcomes Defects in Dendritic Cell Differentiation but Does Not Improve Antigen-Specific Immune Responses. Clinical Cancer Research, 2007, 13, 4840-4848.	3.2	171
15	Peptide Vaccine Given with a Toll-Like Receptor Agonist Is Effective for the Treatment and Prevention of Spontaneous Breast Tumors. Cancer Research, 2007, 67, 1326-1334.	0.4	97
16	Dynamics of the Immune Reaction to Pancreatic Cancer from Inception to Invasion. Cancer Research, 2007, 67, 9518-9527.	0.4	838
17	Mechanism of All- <i>Trans</i> Retinoic Acid Effect on Tumor-Associated Myeloid-Derived Suppressor Cells. Cancer Research, 2007, 67, 11021-11028.	0.4	367
18	Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood, 2007, 110, 624-631.	0.6	198

ARTICLE IF CITATIONS Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient 19 0.6 236 early activation of monocytes. Blood, 2007, 110, 587-595. Arginine and Immunity. Journal of Nutrition, 2007, 137, 1681S-1686S. 1.3 Identification of a New Subset of Myeloid Suppressor Cells in Peripheral Blood of Melanoma Patients 21 With Modulation by a Granulocyte-Macrophage Colony-Stimulation Factor–Based Antitumor Vaccine. 0.8 606 Journal of Clinical Óncology, 2007, 25, 2546-2553. CD11b+Ly-6Chi Suppressive Monocytes in Experimental Autoimmune Encephalomyelitis. Journal of Immunológy, 2007, 179, 5228-5237. Dendritic Cells and Coregulatory Signals: Immune Checkpoint Blockade to Stimulate Immunotherapy., 23 0 2007, , 257-275. Immune surveillance of tumors. Journal of Clinical Investigation, 2007, 117, 1137-1146. 1,198 Tumor-Associated Myeloid-Derived Suppressor Cells., 2007, , 309-331. 26 1 Altered macrophage differentiation and immune dysfunction in tumor development. Journal of 3.9 1,031 Clinical Investigation, 2007, 117, 1155-1166. Overlapping human leukocyte antigen class I/II binding peptide vaccine for the treatment of patients 28 2.0 37 with stage IV melanoma. Cancer, 2007, 110, 203-214. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature 29 Genetics, 2007, 39, 467-475. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nature Medicine, 30 15.2 1.000 2007, 13, 828-835. An Agonist Antibody Specific for CD40 Induces Dendritic Cell Maturation and Promotes Autologous Anti-tumour T-cell Responses in an In vitro Mixed Autologous Tumour Cell/Lymph Node Cell Model. 1.3 Scandinavian Journal of Immunology, 2007, 65, 479-486. Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor 32 1.9 135 cytotoxicity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1116-1123. Challenges and prospects of immunotherapy as cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1776, 108-123. 3.3 Making the tumor-specific effectors ineffective. Seminars in Cancer Biology, 2007, 17, 265-266. 34 4.3 0 Tumor immunoediting and immunosculpting pathways to cancer progression. Seminars in Cancer Biology, 2007, 17, 275-287. Gender dimorphism in the myeloid differentiation of bone marrow precursor cells in a murine host 36 0.8 24 bearing a T cell lymphoma. Journal of Reproductive Immunology, 2007, 74, 90-102. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive 188 network at the tumor microenvironment. Cancer Immunology, Immunotherapy, 2007, 56, 1687-1700.

		LEPORT	
#	Article	IF	Citations
38	Anti-inflammatory pretreatment enables an efficient dendritic cell-based immunotherapy against established tumors. Cancer Immunology, Immunotherapy, 2008, 57, 701-718.	2.0	23
39	Spontaneous immune responses to sporadic tumors: tumor-promoting, tumor-protective or both?. Cancer Immunology, Immunotherapy, 2008, 57, 1531-1539.	2.0	27
40	Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunology, Immunotherapy, 2008, 57, 1579-1587.	2.0	137
41	Therapeutics targeting tumor immune escape: Towards the development of new generation anticancer vaccines. Medicinal Research Reviews, 2008, 28, 413-444.	5.0	31
42	Strategies for use of ILâ€10 or its antagonists in human disease. Immunological Reviews, 2008, 223, 114-131.	2.8	383
43	How tumours escape mass destruction. Oncogene, 2008, 27, 5894-5903.	2.6	175
44	The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews Cancer, 2008, 8, 618-631.	12.8	1,404
45	Myeloid-Derived Suppressor Cells in Inflammatory Bowel Disease: A New Immunoregulatory Pathway. Gastroenterology, 2008, 135, 871-881.e5.	0.6	262
46	Immune surveillance: a balance between protumor and antitumor immunity. Current Opinion in Genetics and Development, 2008, 18, 11-18.	1.5	404
47	Host A2B Adenosine Receptors Promote Carcinoma Growth. Neoplasia, 2008, 10, 987-995.	2.3	131
48	Regulation of tumor immunity: the role of NKT cells. Expert Opinion on Biological Therapy, 2008, 8, 725-734.	1.4	26
49	Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. Journal of Experimental Medicine, 2008, 205, 2235-2249.	4.2	796
50	Migratory neighbors and distant invaders: tumor-associated niche cells. Genes and Development, 2008, 22, 559-574.	2.7	350
51	Tumor-Induced CD11b+Gr-1+ Myeloid Cells Suppress T Cell Sensitization in Tumor-Draining Lymph Nodes. Journal of Immunology, 2008, 181, 3291-3300.	0.4	121
52	Tumor microenvironment genesis and implications on cancer immune response. , 2008, , 25-43.		4
53	Equilibrium between Host and Cancer Caused by Effector T Cells Killing Tumor Stroma. Cancer Research, 2008, 68, 1563-1571.	0.4	70
54	Outlining the Gap Between Preclinical Models and Clinical Situation. Translational Medicine Series, 2008, , 31-54.	0.0	0
55	Subsets of Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Journal of Immunology, 2008, 181, 5791-5802.	0.4	1,447

#	Article	IF	CITATIONS
56	Interleukin-15/Interleukin-15Rα Complexes Promote Destruction of Established Tumors by Reviving Tumor-Resident CD8+ T Cells. Cancer Research, 2008, 68, 2972-2983.	0.4	151
57	Three Phase II Cytokine Working Group Trials of gp100 (210M) Peptide Plus High-Dose Interleukin-2 in Patients With HLA-A2–Positive Advanced Melanoma. Journal of Clinical Oncology, 2008, 26, 2292-2298.	0.8	103
58	Tumor Escape Mechanism Governed by Myeloid-Derived Suppressor Cells. Cancer Research, 2008, 68, 2561-2563.	0.4	292
59	Myeloidâ€Ðerived Suppressor Cells in Cancer Cachexia Syndrome: A New Explanation for an Old Problem. Journal of Parenteral and Enteral Nutrition, 2008, 32, 651-655.	1.3	18
60	Cancer Neovascularization and Proinflammatory Microenvironments. Current Cancer Drug Targets, 2008, 8, 253-265.	0.8	30
61	Immunogenicity of premalignant lesions is the primary cause of general cytotoxic T lymphocyte unresponsiveness. Journal of Experimental Medicine, 2008, 205, 1687-1700.	4.2	105
63	Therapeutic vaccines for malignant brain tumors. Biologics: Targets and Therapy, 2008, 2, 753.	3.0	8
64	Potential Therapeutic Use of PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>-Programed Human Monocyte-Derived Dendritic Cells in Cancer Vaccination Therapy. PPAR Research, 2008, 2008, 1-10.</mml:math 	1.1	2
65	Potential differentiation of tumor bearing mouse CD11b+Gr-1+ immature myeloid cells into both suppressor macrophages and immunostimulatory dendritic cells. Biomedical Research, 2009, 30, 7-15.	0.3	45
66	Tumor-Educated CD11bhighIalow Regulatory Dendritic Cells Suppress T Cell Response through Arginase I. Journal of Immunology, 2009, 182, 6207-6216.	0.4	170
67	Fas Signal Promotes Lung Cancer Growth by Recruiting Myeloid-Derived Suppressor Cells via Cancer Cell-Derived PGE2. Journal of Immunology, 2009, 182, 3801-3808.	0.4	109
68	Sunitinib Mediates Reversal of Myeloid-Derived Suppressor Cell Accumulation in Renal Cell Carcinoma Patients. Clinical Cancer Research, 2009, 15, 2148-2157.	3.2	792
69	Physiology and Therapeutics of Vascular Endothelial Growth Factor in Tumor Immunosuppression. Current Molecular Medicine, 2009, 9, 702-707.	0.6	50
70	Retinoids as Critical Modulators of Immune Functions: New Therapeutic Perspectives for Old Compounds. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2009, 9, 113-131.	0.6	29
71	Potential Factors Induced by Filoviruses that Lead to Immune Supression. Current Molecular Medicine, 2009, 9, 174-185.	0.6	18
72	Inducible Cutaneous Inflammation Reveals a Protumorigenic Role for Keratinocyte CXCR2 in Skin Carcinogenesis. Cancer Research, 2009, 69, 319-328.	0.4	65
73	Monocyte Dependent Regulation of Autoimmune Inflammation. Current Molecular Medicine, 2009, 9, 23-29.	0.6	54
74	Effect of Granulocyte/Macrophage Colony-Stimulating Factor on Vaccination with an Allogeneic Whole-Cell Melanoma Vaccine. Clinical Cancer Research, 2009, 15, 7029-7035.	3.2	82

#	Article	IF	CITATIONS
75	Interferon regulatory factorâ€8 modulates the development of tumourâ€induced CD11b ⁺ Grâ€1 ⁺ myeloid cells. Journal of Cellular and Molecular Medicine, 2009, 13, 3939-3950.	1.6	43
76	Cure of established GL261 mouse gliomas after combined immunotherapy with GMâ€CSF and IFNγ is mediated by both CD8 ⁺ and CD4 ⁺ Tâ€cells. International Journal of Cancer, 2009, 124, 630-637.	2.3	25
77	Altered Expression of 15-Hydroxyprostaglandin Dehydrogenase in Tumor-Infiltrated CD11b Myeloid Cells: A Mechanism for Immune Evasion in Cancer. Journal of Immunology, 2009, 182, 7548-7557.	0.4	68
78	Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. International Immunopharmacology, 2009, 9, 900-909.	1.7	307
79	Mechanism Regulating Reactive Oxygen Species in Tumor-Induced Myeloid-Derived Suppressor Cells. Journal of Immunology, 2009, 182, 5693-5701.	0.4	655
80	Tumor-associated macrophages as targets for tumor immunotherapy. Immunotherapy, 2009, 1, 83-95.	1.0	37
81	Tumor immunosuppressive environment: effects on tumor-specific and nontumor antigen immune responses. Expert Review of Anticancer Therapy, 2009, 9, 1317-1332.	1.1	61
82	Interleukin 2-mediated Conversion of Ovarian Cancer-associated CD4+ Regulatory T Cells Into Proinflammatory Interleukin 17-producing Helper T Cells. Journal of Immunotherapy, 2009, 32, 101-108.	1.2	58
83	III. Angiogenesis: Complexity of Tumor Vasculature and Microenvironment. Current Pharmaceutical Design, 2009, 15, 1854-1867.	0.9	38
84	A Ribonucleotide Reductase Inhibitor Reverses Burn-Induced Inflammatory Defects. Shock, 2010, 34, 535-544.	1.0	21
85	Local and Distant Immunity Induced by Intralesional Vaccination with an Oncolytic Herpes Virus Encoding GM-CSF in Patients with Stage IIIc and IV Melanoma. Annals of Surgical Oncology, 2010, 17, 718-730.	0.7	451
86	Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2′-deoxycytidine. Cancer Immunology, Immunotherapy, 2010, 59, 697-706.	2.0	57
87	How do Tumors Actively Escape from Host Immunosurveillance?. Archivum Immunologiae Et Therapiae Experimentalis, 2010, 58, 435-448.	1.0	24
88	Mononuclear phagocytes in head and neck squamous cell carcinoma. European Archives of Oto-Rhino-Laryngology, 2010, 267, 335-344.	0.8	13
89	Subsets, expansion and activation of myeloid-derived suppressor cells. Medical Microbiology and Immunology, 2010, 199, 273-281.	2.6	150
90	Ex vivo expansion protocol for human tumor specific T cells for adoptive T cell therapy. Journal of Immunological Methods, 2010, 355, 52-60.	0.6	34
91	Better understanding tumor–host interaction in head and neck cancer to improve the design and development of immunotherapeutic strategies. Head and Neck, 2010, 32, 946-958.	0.9	50
92	"Hard―and "soft―lesions underlying the HLA class I alterations in cancer cells: Implications for immunotherapy. International Journal of Cancer, 2010, 127, 249-256.	2.3	232

#	Article	IF	CITATIONS
93	Myeloid Cells in the Tumor Microenvironment: Modulation of Tumor Angiogenesis and Tumor Inflammation. Journal of Oncology, 2010, 2010, 1-10.	0.6	143
94	A Novel Chemoimmunomodulating Property of Docetaxel: Suppression of Myeloid-Derived Suppressor Cells in Tumor Bearers. Clinical Cancer Research, 2010, 16, 4583-4594.	3.2	439
95	Myeloid cells in tumour–immune interactions. Journal of Biological Dynamics, 2010, 4, 315-327.	0.8	15
96	HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. Journal of Experimental Medicine, 2010, 207, 2439-2453.	4.2	966
97	PD-1 deficiency results in the development of fatal myocarditis in MRL mice. International Immunology, 2010, 22, 443-452.	1.8	208
98	Perioperative arginine-supplemented nutrition in malnourished patients with head and neck cancer improves long-term survival. American Journal of Clinical Nutrition, 2010, 92, 1151-1156.	2.2	102
99	A Metalloporphyrin Antioxidant Alters Cytokine Responses after Irradiation in a Prostate Tumor Model. Radiation Research, 2010, 173, 441-452.	0.7	17
100	Usage of cancer associated autoantibodies in the detection of disease. Cancer Biomarkers, 2010, 6, 257-270.	0.8	30
101	IL-1-induced inflammation promotes development of leishmaniasis in susceptible BALB/c mice. International Immunology, 2010, 22, 245-257.	1.8	58
102	Antibodies in cancer immunotherapy. Cancer Biomarkers, 2010, 6, 291-305.	0.8	2
103	Pivotal Advance: Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE2 catabolism in myeloid cells. Journal of Leukocyte Biology, 2010, 88, 839-848.	1.5	135
104	Lipid A in Cancer Therapy. Advances in Experimental Medicine and Biology, 2010, , .	0.8	2
105	Immunotherapy in human glioblastoma. Revue Neurologique, 2011, 167, 668-672.	0.6	9
106	Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. Journal of Leukocyte Biology, 2010, 89, 311-317.	1.5	274
107	Autoantibodies as biomarkers for ovarian cancer. Cancer Biomarkers, 2011, 8, 187-201.	0.8	18
108	Melanoma Immunomodulation: A War of Attrition. , 2011, , .		0
109	The role of interleukin-12 on modulating myeloid-derived suppressor cells, increasing overall survival and reducing metastasis. Immunology, 2011, 133, 221-238.	2.0	101
110	Tumor Entrained Neutrophils Inhibit Seeding in the Premetastatic Lung. Cancer Cell, 2011, 20, 300-314.	7.7	639

#	Article	IF	CITATIONS
111	Molecular mechanisms of liver metastasis. International Journal of Clinical Oncology, 2011, 16, 464-472.	1.0	27
112	Monocyte-derived DC maturation strategies and related pathways: a transcriptional view. Cancer Immunology, Immunotherapy, 2011, 60, 457-466.	2.0	102
113	Targeting myeloid regulatory cells in cancer by chemotherapeutic agents. Immunologic Research, 2011, 50, 276-285.	1.3	36
114	Immunosuppressive Tumor Microenvironment in Cervical Cancer Patients. Cancer Microenvironment, 2011, 4, 361-375.	3.1	105
115	Nuclear JAK2: Form and Function in Cancer. Anatomical Record, 2011, 294, 1446-1459.	0.8	20
116	Anti-angiogenesis immunotherapy. Hum Vaccin, 2011, 7, 976-981.	2.4	17
117	Tyrosine Isomers Mediate the Classical Phenomenon of Concomitant Tumor Resistance. Cancer Research, 2011, 71, 7113-7124.	0.4	33
118	Tumor Stress Inside Out: Cell-Extrinsic Effects of the Unfolded Protein Response in Tumor Cells Modulate the Immunological Landscape of the Tumor Microenvironment. Journal of Immunology, 2011, 187, 4403-4409.	0.4	73
119	CpG Blocks Immunosuppression by Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Clinical Cancer Research, 2011, 17, 1765-1775.	3.2	218
120	The Dendritic Cell-Regulatory T Lymphocyte Crosstalk Contributes to Tumor-Induced Tolerance. Clinical and Developmental Immunology, 2011, 2011, 1-14.	3.3	75
121	Immunotherapy for Lung Cancers. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-10.	3.0	10
122	N-(3,5-Dimethylphenyl)-3-Methoxybenzamide (A3B5) Targets TRP-2 and Inhibits Melanogenesis and Melanoma Growth. Journal of Investigative Dermatology, 2011, 131, 1701-1709.	0.3	13
123	LAP+CD4+ T Cells Are Suppressors Accumulated in the Tumor Sites and Associated with the Progression of Colorectal Cancer. Clinical Cancer Research, 2012, 18, 5224-5233.	3.2	15
124	A pilot study of sunitinib malate in patients with metastatic uveal melanoma. Melanoma Research, 2012, 22, 440-446.	0.6	76
125	Present and Future of Tyrosine Kinase Inhibitors in Renal Cell Carcinoma: Analysis of Hematologic Toxicity. Recent Patents on Anti-infective Drug Discovery, 2012, 7, 104-110.	0.5	20
126	Bone marrow and the control of immunity. Cellular and Molecular Immunology, 2012, 9, 11-19.	4.8	256
127	Impaired CXCL4 expression in tumor-associated macrophages (TAMs) of ovarian cancers arising in endometriosis. Cancer Biology and Therapy, 2012, 13, 671-680.	1.5	26
128	Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncolmmunology, 2012, 1, 1484-1494.	2.1	108

#	Article	IF	CITATIONS
129	New Roads Open Up for Implementing Immunotherapy in Mesothelioma. Clinical and Developmental Immunology, 2012, 2012, 1-13.	3.3	21
130	Blockade of Myeloid-Derived Suppressor Cells after Induction of Lymphopenia Improves Adoptive T Cell Therapy in a Murine Model of Melanoma. Journal of Immunology, 2012, 189, 5147-5154.	0.4	101
131	An Oncolytic Adenovirus Enhanced for Toll-like Receptor 9 Stimulation Increases Antitumor Immune Responses and Tumor Clearance. Molecular Therapy, 2012, 20, 2076-2086.	3.7	84
132	Myeloid-derived suppressor cells from tumor-bearing mice impair TGF-β-induced differentiation of CD4+CD25+FoxP3+ Tregs from CD4+CD25â^'FoxP3â^' T cells. Journal of Leukocyte Biology, 2012, 92, 987-997.	1.5	84
133	Proangiogenic immature myeloid cells populate the human placenta and their presence correlates with placental and birthweight. American Journal of Obstetrics and Gynecology, 2012, 207, 141.e1-141.e5.	0.7	11
134	Concomitant tumor resistance. Cancer Letters, 2012, 324, 133-141.	3.2	41
136	The effects of dietary flavonoids on the regulation of redox inflammatory networks. Frontiers in Bioscience - Landmark, 2012, 17, 2396.	3.0	107
137	Characterization and clinical implications of myeloid-derived suppressor cells in head and neck cancer. Journal of Japan Society of Immunology & Allergology in Otolaryngology, 2012, 30, 271-278.	0.0	0
138	Myeloid Derived Suppressor Cells: Subsets, Expansion, and Role in Cancer Progression. , 0, , .		4
139	Concomitant Tumor Resistance: The Role of Tyrosine Isomers in the Mechanisms of Metastases Control. Cancer Research, 2012, 72, 1043-1050.	0.4	47
140	Myeloid-derived suppressor cells in transplantation and cancer. Immunologic Research, 2012, 54, 275-285.	1.3	73
141	Tumor-Derived Granulocyte-Macrophage Colony-Stimulating Factor Regulates Myeloid Inflammation and T Cell Immunity in Pancreatic Cancer. Cancer Cell, 2012, 21, 822-835.	7.7	809
142	Strategies to Use Immune Modulators in Therapeutic Vaccines Against Cancer. Seminars in Oncology, 2012, 39, 348-357.	0.8	36
143	Building the niche: The role of the S100 proteins in metastatic growth. Seminars in Cancer Biology, 2012, 22, 216-225.	4.3	125
144	lmmunosuppressive activity of <scp>CD</scp> 14 ⁺ <scp> HLA</scp> â€ <scp>DR</scp> csup>â^` cells in squamous cell carcinoma of the head and neck. Cancer Science, 2012, 103, 976-983.	1.7	96
145	Historical Perspectives and Current Trends in Cancer Immunotherapy. , 2013, , 3-15.		3
148	Amplification of functional myeloid-derived suppressor cells during stem cell mobilization induced by granulocyte colony-stimulation-factor. Journal of Huazhong University of Science and Technology [Medical Sciences], 2013, 33, 817-821.	1.0	4
149	Expansion of CD11b+Ly6G+Ly6Cint cells driven by medroxyprogesterone acetate in mice bearing breast tumors restrains NK cell effector functions. Cancer Immunology, Immunotherapy, 2013, 62, 1781-1795.	2.0	17

#	Article	IF	CITATIONS
150	Immune classification of colorectal cancer patients: impressive but how complete?. Expert Opinion on Biological Therapy, 2013, 13, 517-526.	1.4	18
151	Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go?. Purinergic Signalling, 2013, 9, 145-165.	1.1	89
152	LPS converts Gr-1+CD115+ myeloid-derived suppressor cells from M2 to M1 via P38 MAPK. Experimental Cell Research, 2013, 319, 1774-1783.	1.2	35
153	CD33+/p-STAT1+ double-positive cell as a prognostic factor for stage Illa gastric cancer. Medical Oncology, 2013, 30, 442.	1.2	25
154	Immune system targeting by biodegradable nanoparticles for cancer vaccines. Journal of Controlled Release, 2013, 168, 179-199.	4.8	212
155	Immunotherapy for Renal Cell Carcinoma. , 2013, , 279-301.		0
156	βâ€Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloidâ€derived suppressor cells. European Journal of Immunology, 2013, 43, 1220-1230.	1.6	108
157	The Cardioprotective Protein Apolipoprotein A1 Promotes Potent Anti-tumorigenic Effects. Journal of Biological Chemistry, 2013, 288, 21237-21252.	1.6	204
159	Tumor microenvironment profoundly modifies functional status of macrophages: Peritoneal and tumor-associated macrophages are two very different subpopulations. Cellular Immunology, 2013, 283, 51-60.	1.4	28
160	Ways to Enhance Lymphocyte Trafficking into Tumors and Fitness of Tumor Infiltrating Lymphocytes. Frontiers in Oncology, 2013, 3, 231.	1.3	132
161	Neutrophils and Myeloid-Derived Suppressor Cells in Cancer. , 2013, , 378-398.		0
162	Induction of myelodysplasia by myeloid-derived suppressor cells. Journal of Clinical Investigation, 2013, 123, 4595-4611.	3.9	254
163	A PK2/Bv8/PROK2 Antagonist Suppresses Tumorigenic Processes by Inhibiting Angiogenesis in Glioma and Blocking Myeloid Cell Infiltration in Pancreatic Cancer. PLoS ONE, 2013, 8, e54916.	1.1	43
164	Surveillance on the Status of Immune Cells after Echinnococcus granulosus Protoscoleces Infection in Balb/c Mice. PLoS ONE, 2013, 8, e59746.	1.1	67
165	Lineageâ^'CD34+CD31+ Cells That Appear in Association with Severe Burn Injury Are Inhibitory on the Production of Antimicrobial Peptides by Epidermal Keratinocytes. PLoS ONE, 2014, 9, e82926.	1.1	9
166	<scp>TLR</scp> 8 signaling enhances tumor immunity by preventing tumorâ€induced Tâ€cell senescence. EMBO Molecular Medicine, 2014, 6, 1294-1311.	3.3	110
167	Immune regulation of bone metastasis. BoneKEy Reports, 2014, 3, 600.	2.7	28
168	DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment. Journal of Leukocyte Biology, 2014, 95, 743-753.	1.5	43

		CITATION R	EPORT	
#	Article		IF	CITATIONS
169	Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. ,	, 2014, , 143-205.		2
170	G-CSF preferentially supports the generation of gut-homing Gr-1highmacrophages in N bone marrow cells. Journal of Leukocyte Biology, 2014, 96, 549-561.	1-CSF-treated	1.5	9
171	The synthetic retinoid Am80 delays recovery in a model of multiple sclerosis by modula myeloid-derived suppressor cell fate and viability. Neurobiology of Disease, 2014, 67, 1	iting .49-164.	2.1	29
172	Concomitant resistance and early-breast cancer: should we change treatment strategic Metastasis Reviews, 2014, 33, 271-283.	es?. Cancer and	2.7	11
174	Interaction of Immune and Cancer Cells. , 2014, , .			0
175	CpG-mediated modulation of MDSC contributes to the efficacy of Ad5-TRAIL therapy a carcinoma. Cancer Immunology, Immunotherapy, 2014, 63, 1213-1227.	gainst renal cell	2.0	32
176	BMP4 Inhibits Breast Cancer Metastasis by Blocking Myeloid-Derived Suppressor Cell A Research, 2014, 74, 5091-5102.	Activity. Cancer	0.4	99
177	Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in of spontaneous medulloblastoma. Journal of Leukocyte Biology, 2013, 95, 357-367.	a murine model	1.5	53
178	Radiation as Immunomodulator: Implications for Dendritic Cell-Based Immunotherapy. Research, 2014, 182, 211-218.	Radiation	0.7	43
179	Myeloid Lineage–Specific Deletion of Antioxidant System Enhances Tumor Metastas Prevention Research, 2014, 7, 835-844.	is. Cancer	0.7	81
180	Transient Increase in Circulating Myeloid-Derived Suppressor Cells after Partial Bladder Obstruction. Journal of Urology, 2014, 192, 1569-1573.	Outlet	0.2	10
181	Cycloamyloseâ€nanogel drug delivery systemâ€mediated intratumor silencing of the v growth factor regulates neovascularization in tumor microenvironment. Cancer Scienc 1616-1625.		1.7	46
182	Micro <scp>RNA</scp> â€155 deficiency enhances the recruitment and functions of my suppressor cells in tumor microenvironment and promotes solid tumor growth. Interna Journal of Cancer, 2015, 136, E602-13.		2.3	91
183	The cholesterolâ€binding protein <scp>NPC</scp> 2 restrains recruitment of stromal macrophageâ€lineage cells to earlyâ€stage lung tumours. EMBO Molecular Medicine, 2	2015, 7, 1119-1137.	3.3	31
184	Manipulation of Innate Immunity for Cancer Therapy in Dogs. Veterinary Sciences, 201	5, 2, 423-439.	0.6	17
185	Phenylhydrazine administration accelerates the development of experimental cerebral Experimental Parasitology, 2015, 156, 1-11.	malaria.	0.5	7
186	Inflammatory and Innate Immune Cells in Cancer Microenvironment and Progression. ,	2015, , 9-28.		6
187	Cancer and the Immune System: Basic Concepts and Targets for Intervention. Seminar 2015, 42, 523-538.	s in Oncology,	0.8	220

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
188	The inflammatory microenvironment in MDS. Cellular and Molecular Life Sciences, 2015, 72, 1959)-1966.	2.4	56
189	Challenges and future perspectives of T cell immunotherapy in cancer. Immunology Letters, 2015 117-133.	, 166,	1.1	41
190	Cancer Immunotherapy with Vaccines and Checkpoint Blockade. , 2015, , 709-738.e8.			0
191	Cancer prevention and therapy through the modulation of the tumor microenvironment. Seminar Cancer Biology, 2015, 35, S199-S223.	s in	4.3	285
192	Microencapsulation of tumor lysates and live cell engineering with MIP-31± as an effective vaccine Biomaterials, 2015, 53, 554-565.		5.7	9
193	Circulating CD14+HLA-DRâ^'/low myeloid-derived suppressor cell is an indicator of poor prognosis patients with ESCC. Tumor Biology, 2015, 36, 7987-7996.	in	0.8	30
194	CpG expedites regression of local and systemic tumors when combined with activatable nanodeli Journal of Controlled Release, 2015, 220, 253-264.	very.	4.8	26
195	Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases. Frontiers of Medicine, 2015, 9, 288-303.		1.5	26
196	Cyclic adenosine monophosphate–responsive element modulator alpha overexpression impairs function of hepatic myeloidâ€derived suppressor cells and aggravates immuneâ€mediated hepati Hepatology, 2015, 61, 990-1002.		3.6	31
197	The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenvironme 2015, 8, 125-158.	nt,	3.1	315
198	Dopamine inhibits the function of Gr-1+CD115+ myeloid-derived suppressor cells through D1-like receptors and enhances anti-tumor immunity. Journal of Leukocyte Biology, 2015, 97, 191-200.		1.5	29
199	Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion function. Molecular Immunology, 2015, 63, 579-585.	1 and	1.0	98
200	Stress and Non-Stress Roles of Inflammatory Signals during HSC Emergence and Maintenance. Frontiers in Immunology, 2016, 7, 487.		2.2	41
201	Tumor-Induced Myeloid-Derived Suppressor Cells. Microbiology Spectrum, 2016, 4, .		1.2	28
202	Oncolytic Adenovirus Expressing Monoclonal Antibody Trastuzumab for Treatment of HER2-Posit Cancer. Molecular Cancer Therapeutics, 2016, 15, 2259-2269.	ive	1.9	31
203	Enhanced expression of PD-L1 in oral squamous cell carcinoma-derived CD11b + Gr-1 + cells and i contribution to immunosuppressive activity. Oral Oncology, 2016, 59, 20-29.	ts	0.8	23
204	Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden. Immunologic Research, 2016, 64, 931-939.		1.3	24
205	Natural killer cells require monocytic Gr-1 ⁺ /CD11b ⁺ myeloid cells to era orthotopically engrafted glioma cells. Oncolmmunology, 2016, 5, e1163461.	dicate	2.1	28

#	Article	IF	CITATIONS
206	Immunosuppressive CD11b+Ly6Chi monocytes in pristane-induced lupus mouse model. Journal of Leukocyte Biology, 2016, 99, 1121-1129.	1.5	20
207	Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncolmmunology, 2016, 5, e1062208.	2.1	97
208	Cancer therapy targeting the fibrinolytic system. Advanced Drug Delivery Reviews, 2016, 99, 172-179.	6.6	20
209	Myeloidâ€derived suppressor cells mediate tolerance induction in autoimmune disease. Immunology, 2017, 151, 26-42.	2.0	32
210	Checkpoint Inhibitors for the Treatment of Renal Cell Carcinoma. Current Treatment Options in Oncology, 2017, 18, 7.	1.3	46
211	Novel therapeutic approach to improve hematopoiesis in low risk MDS by targeting MDSCs with the Fc-engineered CD33 antibody BI 836858. Leukemia, 2017, 31, 2172-2180.	3.3	55
212	CXCL17 Attenuates Imiquimod-Induced Psoriasis-like Skin Inflammation by Recruiting Myeloid-Derived Suppressor Cells and Regulatory T Cells. Journal of Immunology, 2017, 198, 3897-3908.	0.4	47
213	Bone Metastasis from Solid Tumors: Biologic and Clinical State of the Art. Clinical Reviews in Bone and Mineral Metabolism, 2017, 15, 115-122.	1.3	0
214	Recruitment of CD11b+Ly6C+ monocytes in non-small cell lung cancer xenografts challenged by anti-VEGF antibody. Oncology Letters, 2017, 14, 615-622.	0.8	8
215	Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response. Neoplasia, 2017, 19, 595-605.	2.3	35
216	Effects of Shugan Jianpi Formula (ç–è,å¥è,,¾æ–1) on myeloid-derived suppression cells-mediated depression brea cancer mice. Chinese Journal of Integrative Medicine, 2017, 23, 453-460.	st 0.7	12
217	Characterization of peritoneal leukemia-associated macrophages in Notch1-induced mouse T cell acute lymphoblastic leukemia. Molecular Immunology, 2017, 81, 35-41.	1.0	16
218	On the ultimate dynamics of myeloid cells in a tumor-immune system model. , 2017, , .		0
219	Use of autoantibodies against tumor-associated antigens as serum biomarkers for primary screening of cervical cancer. Oncotarget, 2017, 8, 105425-105439.	0.8	10
220	The Role of Myeloid-Derived Suppressor Cells in Immunosuppression in Brain Tumors. , 2017, , 63-82.		5
221	l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis. Frontiers in Immunology, 2017, 8, 839.	2.2	29
222	Tumorâ€associated myeloid cells: new understandings on their metabolic regulation and their influence in cancer immunotherapy. FEBS Journal, 2018, 285, 717-733.	2.2	45
223	AMD3100 Augments the Efficacy of Mesothelin-Targeted, Immune-Activating VIC-008 in Mesothelioma by Modulating Intratumoral Immunosuppression. Cancer Immunology Research, 2018, 6, 539-551.	1.6	29

#	Article	IF	CITATIONS
224	Induction of enhanced immunogenic cell death through ultrasound-controlled release of doxorubicin by liposome-microbubble complexes. OncoImmunology, 2018, 7, e1446720.	2.1	59
225	Myeloid-derived suppressor cells in lymphoma: The good, the bad and the ugly. Blood Reviews, 2018, 32, 490-498.	2.8	29
227	Myeloidâ€derived suppressor cells: Important contributors to tumor progression and metastasis. Journal of Cellular Physiology, 2018, 233, 3024-3036.	2.0	141
228	Metabolic influence on the differentiation of suppressive myeloid cells in cancer. Carcinogenesis, 2018, 39, 1095-1104.	1.3	24
229	VISTA is highly expressed on MDSCs and mediates an inhibition of T cell response in patients with AML. Oncolmmunology, 2018, 7, e1469594.	2.1	107
230	IKZF1 Enhances Immune Infiltrate Recruitment in Solid Tumors and Susceptibility to Immunotherapy. Cell Systems, 2018, 7, 92-103.e4.	2.9	48
231	Association of Chemokines and Chemokine Receptor Expression with Monocytic-Myeloid-Derived Suppressor Cells during Tumor Progression. Immune Network, 2018, 18, e23.	1.6	10
232	Overcoming Barriers of Age to Enhance Efficacy of Cancer Immunotherapy: The Clout of the Extracellular Matrix. Frontiers in Cell and Developmental Biology, 2018, 6, 19.	1.8	19
233	Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. British Journal of Cancer, 2019, 121, 809-818.	2.9	232
234	Myeloid Derived Suppressor Cells Expansion Persists After Early ART and May Affect CD4 T Cell Recovery. Frontiers in Immunology, 2019, 10, 1886.	2.2	15
235	Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nature Cell Biology, 2019, 21, 1113-1126.	4.6	202
236	Phase II trial of continuous treatment with sunitinib in patients with high-risk (BCG-refractory) non-muscle invasive bladder cancer. Investigational New Drugs, 2019, 37, 1231-1238.	1.2	22
237	The Combination of MEK Inhibitor With Immunomodulatory Antibodies Targeting Programmed Death 1 and Programmed Death Ligand 1 Results in Prolonged Survival in Kras/p53-Driven Lung Cancer. Journal of Thoracic Oncology, 2019, 14, 1046-1060.	0.5	52
238	Autoantibodies as diagnostic and prognostic cancer biomarker: Detection techniques and approaches. Biosensors and Bioelectronics, 2019, 139, 111315.	5.3	53
239	The Uncovered Role of Immune Cells and NK Cells in the Regulation of Bone Metastasis. Frontiers in Endocrinology, 2019, 10, 145.	1.5	10
240	Dual blockade of CXCL12 XCR4 and PDâ€1–PDâ€11 pathways prolongs survival of ovarian tumor–bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB Journal, 2019, 33, 6596-6608.	0.2	120
241	Myeloid-derived suppressor cells in the patients with liver resection for hepatitis B virus-related hepatocellular carcinoma. Scientific Reports, 2019, 9, 2269.	1.6	17
242	Cancer Immunotherapy. , 2019, , 231-250.		0

#	Article	IF	CITATIONS
243	Cancer Immunology. , 2020, , 84-96.e5.		0
244	Synergies of Antiangiogenic Therapy and Immune Checkpoint Blockade in Renal Cell Carcinoma: From Theoretical Background to Clinical Reality. Frontiers in Oncology, 2020, 10, 1321.	1.3	22
245	Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biology, 2020, 10, 200111.	1.5	58
246	Molecular and Cellular Factors Associated with Racial Disparity in Breast Cancer. International Journal of Molecular Sciences, 2020, 21, 5936.	1.8	13
247	CXCR4 antagonist AMD3100 (plerixafor): From an impurity to a therapeutic agent. Pharmacological Research, 2020, 159, 105010.	3.1	61
248	The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunology, 2020, 21, 8.	0.9	19
249	PD-L1+ exosomes from bone marrow-derived cells of tumor-bearing mice inhibit antitumor immunity. Cellular and Molecular Immunology, 2021, 18, 2402-2409.	4.8	23
250	Renal cancer-derived exosomes induce tumor immune tolerance by MDSCs-mediated antigen-specific immunosuppression. Cell Communication and Signaling, 2020, 18, 106.	2.7	29
251	<p>Paradoxes in the Phenotype, Frequency and Roles of Myeloid-Derived Suppressor Cells During HIV Infection</p> . HIV/AIDS - Research and Palliative Care, 2020, Volume 12, 151-156.	0.4	2
252	Doxil chemotherapy plus liposomal P5 immunotherapy decreased myeloid-derived suppressor cells in murine model of breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102150.	1.7	25
253	Transcriptomic profiling disclosed the role of DNA methylation and histone modifications in tumor-infiltrating myeloid-derived suppressor cell subsets in colorectal cancer. Clinical Epigenetics, 2020, 12, 13.	1.8	52
254	Recent advances in myeloid-derived suppressor cell biology. Frontiers of Medicine, 2021, 15, 232-251.	1.5	17
255	High <scp>CD8</scp> / <scp>CD33</scp> ratio in peritoneal metastatic lesions is associated with favorable prognosis in gastric cancer. Cancer Reports, 2021, 4, e1389.	0.6	2
256	Host Cxcr2-Dependent Regulation of Pancreatic Cancer Growth, Angiogenesis, and Metastasis. American Journal of Pathology, 2021, 191, 759-771.	1.9	17
257	Generation of αCD11b-CpG antibody conjugates for the targeted stimulation of myeloid cells. Journal of Controlled Release, 2021, 332, 148-159.	4.8	0
258	Arginine-dependent immune responses. Cellular and Molecular Life Sciences, 2021, 78, 5303-5324.	2.4	93
259	Cryo-EM structures of inhibitory antibodies complexed with arginase 1 provide insight into mechanism of action. Communications Biology, 2021, 4, 927.	2.0	2
260	Nature or Nurture? Role of the Bone Marrow Microenvironment in the Genesis and Maintenance of Myelodysplastic Syndromes. Cancers, 2021, 13, 4116.	1.7	11

# 261	ARTICLE Tumor-Induced Immune Suppression. , 2008, , .	IF	Citations
262	Myeloid-Derived Suppressor Cells in Cancer. , 2008, , 157-195.		3
263	Lipid A-Mediated Tolerance and Cancer Therapy. Advances in Experimental Medicine and Biology, 2009, 667, 81-99.	0.8	9
264	The Angiogenic Switch: Role of Immune Cells. , 2011, , 57-75.		2
265	Tumor-Associated Myeloid Cells in Cancer Progression. , 2020, , 29-46.		1
266	Cancer Immunology. , 2014, , 78-97.e5.		3
267	<i>Ganoderma lucidum</i> polysaccharide (GLP) enhances antitumor immune response by regulating differentiation and inhibition of MDSCs via a CARD9-NF-κB-IDO pathway. Bioscience Reports, 2020, 40, .	1.1	27
268	Tumor-Induced Myeloid-Derived Suppressor Cells. , 0, , 833-856.		1
269	Tregs and rethinking cancer immunotherapy. Journal of Clinical Investigation, 2007, 117, 1167-1174.	3.9	464
270	Antibody association with HER-2/neu–targeted vaccine enhances CD8+ T cell responses in mice through Fc-mediated activation of DCs. Journal of Clinical Investigation, 2008, 118, 1700-1711.	3.9	74
271	FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. Journal of Clinical Investigation, 2011, 121, 1361-1372.	3.9	121
272	Activation of MDL-1 (CLEC5A) on immature myeloid cells triggers lethal shock in mice. Journal of Clinical Investigation, 2011, 121, 4446-4461.	3.9	53
273	Activation of TRPV4 Channel Regulates Differentiation to and Function of Myeloid-Derived Suppressor Cells. BPB Reports, 2020, 3, 70-75.	0.1	2
274	Tumor Growth Decreases NK and B Cells as well as Common Lymphoid Progenitor. PLoS ONE, 2008, 3, e3180.	1.1	22
275	Pancreatic Tumors and Immature Immunosuppressive Myeloid Cells in Blood and Spleen: Role of Inhibitory Co-Stimulatory Molecules PDL1 and CTLA4. An In Vivo and In Vitro Study. PLoS ONE, 2013, 8, e54824.	1.1	44
276	Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells. PLoS ONE, 2016, 11, e0158503.	1.1	7
277	Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques. PLoS Pathogens, 2017, 13, e1006395.	2.1	24
278	Emerging paradigms and questions on pro-angiogenic bone marrow-derived myelomonocytic cells. International Journal of Developmental Biology, 2011, 55, 527-534.	0.3	19

		CITATION REPORT		
#	Article		IF	CITATIONS
279	Lentiviral Vectors: A Versatile Tool to Fight Cancer. Current Molecular Medicine, 2013,	13, 602-625.	0.6	27
280	The Role of Immune Checkpoints after Cellular Therapy. International Journal of Molect 2020, 21, 3650.	ular Sciences,	1.8	7
281	JAK-STAT pathway in carcinogenesis: Is it relevant to cholangiocarcinoma progression? of Gastroenterology, 2007, 13, 6478.	. World Journal	1.4	24
282	Increased frequency and clinical significance of myeloid-derived suppressor cells in hun colorectal carcinoma. World Journal of Gastroenterology, 2012, 18, 3303-9.	nan	1.4	117
283	Extravasated platelet aggregation contributes to tumor progression via the accumulat myeloid‑derived suppressor cells in gastric cancer with peritoneal metastasis. Oncolo 20, 1879-1887.	ion of ogy Letters, 2020,	0.8	14
284	Altered Cd8+ T lymphocyte Response Triggered by Arginase 1: Implication for Fatigue during Localized Radiation Therapy in Prostate Cancer Patients. Neuropsychiatry, 2018	Intensification 8, 08, 1249-1262.	0.4	9
285	"Abscopal―Effect of Radiation Therapy Combined with Immune-Therapy Using IFN Syngeneic Tumor Cells, in Rats with Bilateral Implanted N29 Tumors. ISRN Immunolog	√-Î ³ Gene Transfected y, 2011, 2011, 1-13.	0.7	4
286	Role of myeloid-derived suppressor cells in viral respiratory infections; Hints for discove therapeutic targets for COVID-19. Biomedicine and Pharmacotherapy, 2021, 144, 112		2.5	27
287	T-cell Unresponsiveness in Renal Cell Carcinoma Patients. , 2008, , 115-130.			0
288	Development of Vaccine Therapy for Pancreas Cancer. , 2008, , 683-704.			0
289	Cancer Immunology. , 2008, , 77-93.			1
290	Immune Cells and the Tumor Microenvironment. , 2009, , 818-829.			0
291	Effects of Tumor Microenvironment on Immunity and Consequent Clinical Consideration 157-179.	ons. , 2009, ,		0
292	The Immune System of Cancer Patients. Anti-Inflammatory and Anti-Allergy Agents in M Chemistry, 2011, 10, 262-274.	Medicinal	1.1	0
293	Immuno-Oncology and Immunotherapy. , 0, , .			0
294	Dendritic Cell-Based Cancer Immunotherapy: Achievements and Novel Concepts. , 201	3, , 71-108.		0
295	Signaling of Tumor-Induced Immunosuppression of Dendritic Cells. , 2013, , 339-360.			1
296	Dendritic Cells for Cancer Immunotherapy. , 2013, , 251-270.			0

#	Article	IF	CITATIONS
297	Myeloid-Derived Suppressor Cells in Tumor-Induced T Cell Suppression and Tolerance. , 2014, , 99-150.		2
298	Dendritic Cell-Based Cancer Vaccines. , 2014, , 69-87.		0
299	The acceleration of metastases after tumor removal and the paradoxical phenomenon of concomitant tumor resistance. Journal of Cancer Research & Therapy, 2018, 6, 41-51.	0.1	3
300	Role of Reactive Oxygen Species in T-Cell Defects in Cancer. , 2008, , 259-280.		0
301	Hyperthermia as an immunotherapy strategy for cancer. Current Opinion in Investigational Drugs, 2009, 10, 550-8.	2.3	92
302	Isolation of myeloid-derived suppressor cells subsets from spleens of orthotopic liver cancer-bearing mice by fluorescent-activated and magnetic-activated cell sorting: similarities and differences. International Journal of Clinical and Experimental Pathology, 2014, 7, 7545-53.	0.5	3
303	Protection by LPS-induced inhibitory CD11b(+) cells on corneal allograft. International Journal of Clinical and Experimental Medicine, 2015, 8, 4101-7.	1.3	2
304	Dynamic changes in trauma-induced myeloid-derived suppressor cells after polytrauma are associated with an increased susceptibility to infection. International Journal of Clinical and Experimental Pathology, 2017, 10, 11063-11068.	0.5	6
305	A heptamethine cyanine dye serves as a potential marker for myeloid-derived suppressor cells. American Journal of Cancer Research, 2021, 11, 2853-2866.	1.4	0
306	Healthy Longevity and Immune System: A Brief Introduction. Healthy Ageing and Longevity, 2022, , 1-12.	0.2	0
307	The Bone Marrow Microenvironment Mechanisms in Acute Myeloid Leukemia. Frontiers in Cell and Developmental Biology, 2021, 9, 764698.	1.8	21
308	Anatomical Distribution of Myeloid-Derived Suppressor Cells During HIV Infection. Viral Immunology, 2021, 34, 673-678.	0.6	3
309	The proprotein convertase furin in cancer: more than an oncogene. Oncogene, 2022, 41, 1252-1262.	2.6	23
310	Immunodepletion of MDSC by AMV564, a novel bivalent, bispecific CD33/CD3 TÂcell engager, exÂvivo in MDS and melanoma. Molecular Therapy, 2022, 30, 2315-2326.	3.7	18
311	Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. Experientia Supplementum (2012), 2022, 113, 1-57.	0.5	8
313	Recent Reviews on Dendrimers as an Immunotherapy-based Nanosystem for the Effective Treatment of Cancer. Drug Delivery Letters, 2022, 12, 243-257.	0.2	2
314	Therapeutic strategy for rheumatoid arthritis by induction of myeloid-derived suppressor cells with high suppressive potential. Biological and Pharmaceutical Bulletin, 2022, , .	0.6	0
315	Depleting Ly6G Positive Myeloid Cells Reduces Pancreatic Cancer-Induced Skeletal Muscle Atrophy. Cells, 2022, 11, 1893.	1.8	6

#	Article	IF	CITATIONS
316	The Microbiome-Immune Axis Therapeutic Effects in Cancer Treatments. Journal of Microbiology and Biotechnology, 2022, 32, 1086-1097.	0.9	2
317	The paradoxical role of MDSCs in inflammatory bowel diseases: From bench to bedside. Frontiers in Immunology, 0, 13, .	2.2	3
318	The immunological role of mesenchymal stromal cells in patients with myelodysplastic syndrome. Frontiers in Immunology, 0, 13, .	2.2	6
319	In vitro differentiation of myeloid suppressor cells (MDSC-like) from an immature myelomonocytic precursor THP-1. Journal of Immunological Methods, 2023, 515, 113441.	0.6	0
320	Apolipoprotein E induces pathogenic senescent-like myeloid cells in prostate cancer. Cancer Cell, 2023, 41, 602-619.e11.	7.7	19
321	The role of myeloid-derived immunosuppressive cells in cardiovascular disease. International Immunopharmacology, 2023, 117, 109955.	1.7	1
322	Role of voltage-gated proton channel (Hv1) in cancer biology. Frontiers in Pharmacology, 0, 14, .	1.6	1