Superparamagnetic Iron Oxide Nanoparticle Probes for

Annals of Biomedical Engineering 34, 23-38

DOI: 10.1007/s10439-005-9002-7

Citation Report

#	Article	IF	CITATIONS
1	Macrophage Targeted N-(2-Hydroxypropyl)methacrylamide Conjugates for Magnetic Resonance Imaging. Molecular Pharmaceutics, 2006, 3, 550-557.	2.3	34
2	Structure-specific magnetic field inhomogeneities and its effect on the correlation time. Magnetic Resonance Imaging, 2006, 24, 1341-1347.	1.0	25
3	In vivo leukocyte labeling with intravenous ferumoxides/protamine sulfate complex and in vitro characterization for cellular magnetic resonance imaging. American Journal of Physiology - Cell Physiology, 2007, 293, C1698-C1708.	2.1	67
4	Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology, 2007, 18, 035603.	1.3	93
5	Noninvasive Tracking of Cardiac Embryonic Stem Cells In Vivo Using Magnetic Resonance Imaging Techniques. Stem Cells, 2007, 25, 2936-2944.	1.4	78
6	BioNanotechnology. Synthesis Lectures on Biomedical Engineering, 2007, 2, 1-139.	0.1	24
7	Poly(ethylene oxide)-block-poly(glutamic acid) coated maghemite nanoparticles:in vitrocharacterization andin vivobehaviour. Nanotechnology, 2007, 18, 115710.	1.3	25
8	The development of magnetic degradable DP-Bioglass for hyperthermia cancer therapy. Journal of Biomedical Materials Research - Part A, 2007, 83A, 828-837.	2.1	38
9	Veryâ€lowâ€frequency electron paramagnetic resonance (EPR) imaging of nitroxideâ€loaded cells. Magnetic Resonance in Medicine, 2007, 58, 850-854.	1.9	20
10	Labeling of macrophages using bacterial magnetosomes and their characterization by magnetic resonance imaging. Journal of Magnetism and Magnetic Materials, 2007, 311, 454-459.	1.0	23
11	Nanoplatforms for Targeted Molecular Imaging in Living Subjects. Small, 2007, 3, 1840-1854.	5.2	558
12	Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends in Biotechnology, 2007, 25, 145-152.	4.9	140
13	Thermally Cross-Linked Superparamagnetic Iron Oxide Nanoparticles:  Synthesis and Application as a Dual Imaging Probe for Cancer in Vivo. Journal of the American Chemical Society, 2007, 129, 12739-12745.	6.6	313
14	A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnology, 2007, 18, 165601.	1.3	100
15	Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol)) Tj ETQq0 0 0 0 Biomaterials, 2007, 28, 5426-5436.	rgBT /Ove	rlock 10 Tf 50 146
16	Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials, 2008, 29, 1473-1483.	5.7	114
17	Varied presentation of the Thomsen–Friedenreich disaccharide tumor-associated carbohydrate antigen on gold nanoparticles. Carbohydrate Research, 2008, 343, 1594-1604.	1.1	45
18	Imaging of integrin $\hat{l}\pm v\hat{l}^2$ 3 expression. Cancer and Metastasis Reviews, 2008, 27, 631-644.	2.7	208

#	Article	IF	CITATIONS
19	Magnetic nanoparticle imaging by means of minimum norm estimates from remanence measurements. Medical and Biological Engineering and Computing, 2008, 46, 1177-1185.	1.6	41
20	Ex-vivo cellular MRI with b-SSFP: quantitative benefits of 3ÂT over 1.5ÂT. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2008, 21, 251-259.	1.1	16
21	Cytotoxicity of Nanoparticles. Small, 2008, 4, 26-49.	5.2	2,488
22	Detection of targeted perfluorocarbon nanoparticle binding using 19F diffusion weighted MR spectroscopy. Magnetic Resonance in Medicine, 2008, 60, 1232-1236.	1.9	44
23	Semiconductor Nanoparticles as Energy Mediators for Photosensitizer-Enhanced Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2008, 72, 633-635.	0.4	53
24	Nanoimmunoliposome delivery of superparamagnetic iron oxide markedly enhances targeting and uptake in human cancer cells in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008, 4, 318-329.	1.7	61
25	Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008, 4, 340-349.	1.7	97
26	Zinc ferrite nanoparticles as MRI contrast agents. Chemical Communications, 2008, , 2224.	2.2	146
27	Reexamining the Effects of Particle Size and Surface Chemistry on the Magnetic Properties of Iron Oxide Nanocrystals: New Insights into Spin Disorder and Proton Relaxivity. Journal of Physical Chemistry C, 2008, 112, 8127-8131.	1.5	233
28	Superparamagnetic iron oxide nanoparticles – Proton Nuclear Magnetic Resonance Dispersion curves. EPJ Applied Physics, 2008, 43, 145-148.	0.3	3
29	Contrast Agents: Magnetic Resonance. Handbook of Experimental Pharmacology, 2008, , 135-165.	0.9	96
30	Human-related application and nanotoxicology of inorganic particles: complementary aspects. Journal of Materials Chemistry, 2008, 18, 615-620.	6.7	101
31	Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes. Nanotechnology, 2008, 19, 265102.	1.3	77
32	Quantum dots – Nano-sized probes for the exploration of cellular and intracellular targeting. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 153-168.	2.0	170
33	Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine, 2008, 3, 567-578.	1.7	200
34	Gastroenteropancreatic neuroendocrine tumours. Lancet Oncology, The, 2008, 9, 61-72.	5.1	1,474
35	Cellular Magnetic Resonance Imaging: In Vivo Imaging of Melanoma Cells in Lymph Nodes of Mice. Neoplasia, 2008, 10, 207-216.	2.3	53
36	Cellular magnetic resonance imaging: potential for use in assessing aspects of cardiovascular disease. Cytotherapy, 2008, 10, 575-586.	0.3	21

#	Article	IF	CITATIONS
37	Has Molecular and Cellular Imaging Enhanced Drug Discovery and Drug Development?. Drugs in R and D, 2008, 9, 351-368.	1.1	26
38	Modularly Assembled Magnetite Nanoparticles Enhance in Vivo Targeting for Magnetic Resonance Cancer Imaging. Bioconjugate Chemistry, 2008, 19, 1972-1979.	1.8	42
39	Synthesis of 64Cu-Labeled Magnetic Nanoparticles for Multimodal Imaging. Bioconjugate Chemistry, 2008, 19, 1496-1504.	1.8	157
40	Multimodality Molecular Imaging of Tumor Angiogenesis. Journal of Nuclear Medicine, 2008, 49, 113S-128S.	2.8	497
41	Targeted Microbubbles for Imaging Tumor Angiogenesis: Assessment of Whole-Body Biodistribution with Dynamic Micro-PET in Mice. Radiology, 2008, 249, 212-219.	3.6	175
42	Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, Science and Applications, 2008, Volume 1, 17-32.	4.6	652
43	MR and Iron Magnetic Nanoparticles. Imaging Opportunities in Preclinical and Translational Research. Tumori, 2008, 94, 226-233.	0.6	33
44	Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. International Journal of Nanomedicine, 2008, 3, 311.	3.3	308
45	Molecular Imaging of Proteases in Cancer. Cancer Growth and Metastasis, 2009, 2, CGM.S2814.	3.5	49
46	Dual-Modality Probes for in Vivo Molecular Imaging. Molecular Imaging, 2009, 8, 7290.2009.00013.	0.7	87
47	Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles., 2009, 2009, 4095-7.		5
48	<i>In Vivo</i> Magnetic Resonance Imaging of Spinal Cord Injury in the Mouse. Journal of Neurotrauma, 2009, 26, 753-762.	1.7	26
49	Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomarkers, 2009, 5, 99-107.	0.8	84
50	Nanomedicine: Promising Tiny Machine for the Healthcare in Future-A Review. Oman Medical Journal, 2009, 24, 242-7.	0.3	27
51	Iron Oxide Based MR Contrast Agents: from Chemistry to Cell Labeling. Current Medicinal Chemistry, 2009, 16, 4712-4727.	1.2	88
52	<i>In vivo</i> Off-Resonance Saturation Magnetic Resonance Imaging of $\hat{l}\pm\hat{v}\hat{l}^2$ 3-Targeted Superparamagnetic Nanoparticles. Cancer Research, 2009, 69, 1651-1658.	0.4	94
53	New Generation of Multifunctional Nanoparticles for Cancer Imaging and Therapy. Advanced Functional Materials, 2009, 19, 1553-1566.	7.8	405
54	Supercriticalâ€Fluidâ€Assisted Oneâ€Pot Synthesis of Biocompatible Core(<i>γ</i> â€Fe ₂ O ₃)/Shell(SiO ₂) Nanoparticles as High Relaxivity <i>T</i> ₂ â€Contrast Agents for Magnetic Resonance Imaging. Advanced Functional Materials. 2009. 19. 2319-2324.	7.8	132

#	Article	IF	CITATIONS
55	Superparamagnetic Hyperbranched Polyglycerolâ€Grafted Fe ₃ O ₄ Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent: An In Vitro Assessment. Advanced Functional Materials, 2009, 19, 2615-2622.	7.8	125
57	Sizeâ€tunable synthesis of stable superparamagnetic iron oxide nanoparticles for potential biomedical applications. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1468-1475.	2.1	11
58	Magnetic resonance imaging enhanced by superparamagnetic iron oxide particles: Usefulness for distinguishing between focused ultrasoundâ€induced blood–brain barrier disruption and brain hemorrhage. Journal of Magnetic Resonance Imaging, 2009, 29, 31-38.	1.9	45
59	Critical Enhancements of MRI Contrast and Hyperthermic Effects by Dopantâ€Controlled Magnetic Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 1234-1238.	7.2	501
60	Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today, 2009, 4, 399-413.	6.2	234
61	Aqueous immune magnetite nanoparticles for immunoassay. Journal of Nanoparticle Research, 2009, 11, 441-448.	0.8	16
62	Imaging applications of nanotechnology in cancer. Targeted Oncology, 2009, 4, 169-181.	1.7	75
63	Superparamagnetic iron oxide labeling of spinal cord neural stem cells genetically modified by nerve growth factor-1². Journal of Huazhong University of Science and Technology [Medical Sciences], 2009, 29, 235-238.	1.0	4
64	The size distribution of 'gold standard' nanoparticles. Analytical and Bioanalytical Chemistry, 2009, 395, 1651-1660.	1.9	46
65	Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 583-609.	3.3	153
66	Hapten-derivatized nanoparticle targeting and imaging of gene expression by multimodality imaging systems. Cancer Gene Therapy, 2009, 16, 83-90.	2.2	12
67	Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system. International Journal of Pharmaceutics, 2009, 372, 169-176.	2.6	68
68	Molecular imaging with single-walled carbon nanotubes. Nano Today, 2009, 4, 252-261.	6.2	139
69	Optimization of nanoparticle core size for magnetic particle imaging. Journal of Magnetism and Magnetic Materials, 2009, 321, 1548-1551.	1.0	201
70	Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials, 2009, 30, 2919-2928.	5.7	325
71	Magnetoliposomes: versatile innovative nanocolloids for use in biotechnology and biomedicine. Nanomedicine, 2009, 4, 177-191.	1.7	101
72	(Carboxymethyl)chitosan-Modified Superparamagnetic Iron Oxide Nanoparticles for Magnetic Resonance Imaging of Stem Cells. ACS Applied Materials & Samp; Interfaces, 2009, 1, 328-335.	4.0	100
73	Molecular Imaging with Bioconjugates in Mouse Models of Cancer. Bioconjugate Chemistry, 2009, 20, 631-643.	1.8	30

#	Article	IF	Citations
74	Visualizing Implanted Tumors in Mice with Magnetic Resonance Imaging Using Magnetotactic Bacteria. Clinical Cancer Research, 2009, 15, 5170-5177.	3.2	101
75	Nanomedicine: Perspective and promises with ligand-directed molecular imaging. European Journal of Radiology, 2009, 70, 274-285.	1.2	98
76	Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology, 2009, 87, 133-170.	2.8	356
77	Production of nanoparticles using organisms. Critical Reviews in Biotechnology, 2009, 29, 279-306.	5.1	252
78	Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematology American Society of Hematology Education Program, 2009, 2009, 720-726.	0.9	85
79	A new family of biocompatible and stable magnetic nanoparticles: silica cross-linked pluronic F127 micelles loaded with iron oxides. New Journal of Chemistry, 2009, 33, 88-92.	1.4	40
80	Applications of nanotechnology in molecular imaging of the brain. Progress in Brain Research, 2009, 180, 72-96.	0.9	16
81	Synthesis, Magnetic Characterization, and Sensing Applications of Novel Dextran-Coated Iron Oxide Nanorods. Chemistry of Materials, 2009, 21, 1761-1767.	3.2	91
82	Feridex Preloading Permits Tracking of CNS-Resident Macrophages after Transient Middle Cerebral Artery Occlusion. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1229-1239.	2.4	44
83	Aptamer-Functionalized Nano-Biosensors. Sensors, 2009, 9, 10356-10388.	2.1	124
84	Toxicity of therapeutic nanoparticles. Nanomedicine, 2009, 4, 219-241.	1.7	79
85	Inorganic nanoparticles for predictive oncology of breast cancer. Nanomedicine, 2009, 4, 83-103.	1.7	38
86	Polymeric nanomedicine for cancer MR imaging and drug delivery. Chemical Communications, 2009, , 3497.	2.2	165
87	Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells. Inhalation Toxicology, 2009, 21, 123-130.	0.8	84
88	Receptor-Targeted Nanoparticles for <i>In vivo</i> Imaging of Breast Cancer. Clinical Cancer Research, 2009, 15, 4722-4732.	3.2	210
89	Comparative Analysis of Nanoparticle-Antibody Conjugations: Carbodiimide Versus Click Chemistry. Molecular Imaging, 2009, 8, 7290.2009.00021.	0.7	71
91	Imaging of Abdominal Aortic Aneurysm: The Present and the Future. Current Vascular Pharmacology, 2010, 8, 808-819.	0.8	55
92	Near-infrared-activated gold nanoshells for thermal ablation of macrophages in vitro. Proceedings of SPIE, $2010, , .$	0.8	0

#	Article	IF	CITATIONS
93	Nanotechnology in Neurosurgery. Journal of Nanotechnology in Engineering and Medicine, 2010, $1, \dots$	0.8	8
94	Magnetic nanoparticles: biomedical applications and challenges. Journal of Materials Chemistry, 2010, 20, 8760.	6.7	350
95	Ĵμ-Fe ₂ O ₃ : An Advanced Nanomaterial Exhibiting Giant Coercive Field, Millimeter-Wave Ferromagnetic Resonance, and Magnetoelectric Coupling. Chemistry of Materials, 2010, 22, 6483-6505.	3.2	276
96	Development of multiple-layer polymeric particles for targeted and controlled drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 355-361.	1.7	71
97	Dynamics of Magnetic Nanoparticle-Based Contrast Agents in Tissues Tracked Using Magnetomotive Optical Coherence Tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 691-697.	1.9	19
98	Polymer particle shape independently influences binding and internalization by macrophages. Journal of Controlled Release, 2010, 147, 408-412.	4.8	385
99	Ease of Synthesis, Controllable Sizes, and In Vivo Largeâ€Animal‣ymph Migration of Polymeric Nanoparticles. ChemMedChem, 2010, 5, 1435-1438.	1.6	20
100	Challenges for molecular neuroimaging with MRI. International Journal of Imaging Systems and Technology, 2010, 20, 71-79.	2.7	18
101	Remotely Triggerable Drug Delivery Systems. Advanced Materials, 2010, 22, 4925-4943.	11.1	553
102	Recent advances in syntheses and therapeutic applications of multifunctional porous hollow nanoparticles. Nano Today, 2010, 5, 183-196.	6.2	89
103	In situ preparation of high relaxivity iron oxide nanoparticles by coating with chitosan: A potential MRI contrast agent useful for cell tracking. Journal of Magnetism and Magnetic Materials, 2010, 322, 208-213.	1.0	88
104	Nanoparticles functionalised with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials, 2010, 31, 1307-1315.	5.7	68
105	The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core–shell nanoparticles. Biomaterials, 2010, 31, 1316-1324.	5.7	87
106	An Inteinâ€Mediated Siteâ€Specific Click Conjugation Strategy for Improved Tumor Targeting of Nanoparticle Systems. Small, 2010, 6, 2460-2468.	5.2	57
107	Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?. Stem Cells, 2010, 28, 1686-1702.	1.4	56
108	Nanoimaging and neurological surgery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 601-617.	3.3	1
109	Superparamagnetic Iron Oxide Nanoparticles: Diagnostic Magnetic Resonance Imaging and Potential Therapeutic Applications in Neurooncology and Central Nervous System Inflammatory Pathologies, a Review. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 15-35.	2.4	433
110	In Vivo, Multimodal Imaging of B Cell Distribution and Response to Antibody Immunotherapy in Mice. PLoS ONE, 2010, 5, e10655.	1.1	21

#	Article	IF	CITATIONS
111	Cytotoxicity Studies of Superparamagnetic Iron Oxide Nanoparticles in Macrophage and Liver Cells. Current Research in Nanotechnology, 2010, 1, 78-85.	0.6	9
112	Nanoparticle-induced vascular blockade in human prostate cancer. Blood, 2010, 116, 2847-2856.	0.6	149
113	Approaches to Multimodality Imaging of Angiogenesis. Journal of Nuclear Medicine, 2010, 51, 66S-79S.	2.8	42
114	Development of nanostructured magnetic capsules by means of the layer by layer technique. , 2010, 2010, 6477-80.		1
115	Novel Biomaterials and Nano-Biotechnology Approaches in Tumor Diagnosis. Advances in Science and Technology, 2010, 76, 78-89.	0.2	0
116	Recent Development and Application of Magnetic Nanoparticles for Cell Labeling and Imaging. Mini-Reviews in Medicinal Chemistry, 2010, 10, 194-203.	1.1	25
117	Superparamagnetic Nanoparticles. Advanced Structured Materials, 2010, , 375-393.	0.3	1
118	Nanosized luminescent superparamagnetic hybrids. Green Chemistry, 2010, 12, 1175.	4.6	12
119	From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacological Research, 2010, 62, 126-143.	3.1	417
120	Nanomedicine. New England Journal of Medicine, 2010, 363, 2434-2443.	13.9	987
121	Hyaluronic Acid Immobilized Magnetic Nanoparticles for Active Targeting and Imaging of Macrophages. Bioconjugate Chemistry, 2010, 21, 2128-2135.	1.8	148
122	Polymer-Stabilized Lanthanide Fluoride Nanoparticle Aggregates as Contrast Agents for Magnetic Resonance Imaging and Computed Tomography. Chemistry of Materials, 2010, 22, 4728-4739.	3.2	114
123	Targeted probes for cardiovascular MRI. Future Medicinal Chemistry, 2010, 2, 451-470.	1.1	36
124	Magnetic Targeting Enhances Engraftment and Functional Benefit of Iron-Labeled Cardiosphere-Derived Cells in Myocardial Infarction. Circulation Research, 2010, 106, 1570-1581.	2.0	226
125	Magnetic iron oxide nanoparticles for biomedical applications. Future Medicinal Chemistry, 2010, 2, 427-449.	1.1	158
126	Molecular Magnetic Resonance Imaging Approaches Used to Aid in the Understanding of Angiogenesis <i>In Vivo</i> : Implications for Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 357-364.	1.6	32
127	Molecular Magnetic Resonance Imaging Approaches Used to Aid in the Understanding of the Tissue Regeneration Marker Met <i>In Vivo</i> : Implications for Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 365-371.	1.6	15
128	Inorganic nanoparticle-based contrast agents for molecular imaging. Trends in Molecular Medicine, 2010, 16, 561-573.	3.5	221

#	ARTICLE	IF	CITATIONS
129	Superparamagnetic iron oxide nanoparticle †theranostics†for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Expert Review of Clinical Pharmacology, 2010, 3, 117-130.	1.3	37
130	Liposomal Contrast Agents in Brain Tumor Imaging. Neuroimaging Clinics of North America, 2010, 20, 367-378.	0.5	7
131	Magnetic Glyco-Nanoparticles: A Tool To Detect, Differentiate, and Unlock the Glyco-Codes of Cancer via Magnetic Resonance Imaging. Journal of the American Chemical Society, 2010, 132, 4490-4499.	6.6	240
132	Gd2O3 nanoparticles as a positive MRI contrast agent for cell uptake. , 2010, , .		1
133	Dual contrast magnetic resonance imaging tracking of iron-labeled cells in vivo. Cytotherapy, 2010, 12, 859-869.	0.3	11
134	Synthesis of Iron Oxide Nanoparticles with Control over Shape Using Imidazolium-Based Ionic Liquids. ACS Applied Materials & amp; Interfaces, 2010, 2, 756-759.	4.0	62
135	Magnetic nanoparticles for magnetic resonance imaging: modulation of macrophage uptake by controlled PEGylation of the surface coating. Journal of Materials Chemistry, 2010, 20, 8512.	6.7	38
136	<i>In vivo</i> molecular imaging using nanomaterials: General <i>iin vivo</i> characteristics of nano-sized reagents and applications for cancer diagnosis (Review). Molecular Membrane Biology, 2010, 27, 274-285.	2.0	65
137	Nucleic acid delivery using magnetic nanoparticles: the Magnetofectionâ, ¢ technology. Therapeutic Delivery, 2011, 2, 471-482.	1.2	27
138	pH-Titratable Superparamagnetic Iron Oxide for Improved Nanoparticle Accumulation in Acidic Tumor Microenvironments. ACS Nano, 2011, 5, 9592-9601.	7.3	126
139	Biofunctionalization of Anisotropic Nanocrystalline Semiconductor–Magnetic Heterostructures. Langmuir, 2011, 27, 6962-6970.	1.6	22
140	Cell Delivery of Therapeutic Nanoparticles. Progress in Molecular Biology and Translational Science, 2011, 104, 563-601.	0.9	101
142	Functionalization of inorganic nanoparticles with polymers for stealth biomedical applications. Polymer Chemistry, 2011, 2, 747-759.	1.9	83
143	Targeted Iron Oxide Nanocomplex as a Theranostic Agent for Cancer. Else-Kröner-Fresenius-Symposia, 2011, , 145-153.	0.1	0
144	Application of factor analysis to XPS valence band of superparamagnetic iron oxide nanoparticles. Applied Surface Science, 2011, 257, 10863-10868.	3.1	30
145	Superparamagnetic Iron Oxide Nanoparticles: Promises for Diagnosis and Treatment of Multiple Sclerosis. ACS Chemical Neuroscience, 2011, 2, 118-140.	1.7	141
146	Investigation of <i>In Vivo</i> Targeting Kinetics of \hat{l} ± _v \hat{l} 2 ₃ -Specific Superparamagnetic Nanoprobes by Time-Resolved MRI. Theranostics, 2011, 1, 263-273.	4.6	36
147	Superparamagnetic Iron Oxide–Enhanced Magnetic Resonance Imaging of Neuroinflammation in a Rat Model of Radicular Pain. Molecular Imaging, 2011, 10, 7290.2010.00042.	0.7	17

#	Article	IF	Citations
148	$\label{eq:multimodality leading} \mbox{Multimodality Imaging of Integrin $\hat{l} \pm < \text{sub}>v < / \text{sub}> $\hat{l}^2 < \text{sub}>3 < / \text{sub}> \mbox{Expression. Theranostics, 2011, 1, 135-148.} }$	4.6	53
149	Laser and radiofrequency-induced hyperthermia treatment via gold-coated magnetic nanocomposites. International Journal of Nanomedicine, 2011, 6, 2155.	3.3	36
150	Radiolabelled Nanoparticles for Diagnosis and Treatment of Cancer., 2011, , .		2
151	Optimizing particle size for targeting diseased microvasculature: from experiments to artificial neural networks. International Journal of Nanomedicine, 2011, 6, 1517.	3.3	30
152	Molecular Imaging Probe Development Using Microfluidics. Current Organic Synthesis, 2011, 8, 473-487.	0.7	14
154	Facile preparation of carbon coated magnetic Fe3O4 particles by a combined reduction/CVD process. Materials Research Bulletin, 2011, 46, 748-754.	2.7	28
155	Recent progress in the understanding, diagnosis, and treatment of gastroenteropancreatic neuroendocrine tumors. Ca-A Cancer Journal for Clinicians, 2011, 61, 113-132.	157.7	116
156	Receptor-targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques. Biomaterials, 2011, 32, 7209-7216.	5.7	51
157	Gold–iron oxide nanoparticle chains scaffolded on DNA as potential magnetic resonance imaging agents. Journal of Materials Chemistry, 2011, 21, 939-943.	6.7	18
159	Responsive Theranostic Systems: Integration of Diagnostic Imaging Agents and Responsive Controlled Release Drug Delivery Carriers. Accounts of Chemical Research, 2011, 44, 1061-1070.	7.6	256
160	Magnetic ceramics based on hydroxyapatite modified by particles of M-type hexagonal ferrite for medical applications. Physics of the Solid State, 2011, 53, 1588-1593.	0.2	4
161	Engineered nanoparticles for biomolecular imaging. Nanoscale, 2011, 3, 3007.	2.8	246
162	MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles. Journal of Nanoparticle Research, 2011, 13, 2285-2293.	0.8	14
163	GoldMag nanoparticles with core/shell structure: characterization and application in MR molecular imaging. Journal of Nanoparticle Research, 2011, 13, 3867-3876.	0.8	14
164	Nanotechnology and its Relationship to Interventional Radiology. Part I: Imaging. CardioVascular and Interventional Radiology, 2011, 34, 221-226.	0.9	9
165	Nanotechnology and its Relationship to Interventional Radiology. Part II: Drug Delivery, Thermotherapy, and Vascular Intervention. CardioVascular and Interventional Radiology, 2011, 34, 676-690.	0.9	18
166	Biotinylated magnetic nanoparticles for pretargeting: synthesis and characterization study. Cancer Nanotechnology, 2011, 2, 111-120.	1.9	14
167	Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor applications. Nanoscale Research Letters, 2011, 6, 540.	3.1	17

#	Article	IF	CITATIONS
168	Characterization of quaternized chitosanâ€stabilized iron oxide nanoparticles as a novel potential magnetic resonance imaging contrast agent for cell tracking. Polymer International, 2011, 60, 945-950.	1.6	25
169	Molecular Imaging with SERSâ€Active Nanoparticles. Small, 2011, 7, 3261-3269.	5.2	92
170	Chondrocyte gene expression is affected by very small iron oxide particlesâ€labeling in longâ€term in vitro MRI tracking. Journal of Magnetic Resonance Imaging, 2011, 33, 724-730.	1.9	15
174	Modification of MR molecular imaging probes with cysteineâ€terminated peptides and their potential for <i>in vivo</i> tumour detection. Contrast Media and Molecular Imaging, 2011, 6, 46-54.	0.4	7
175	Imaging of activated macrophages in experimental osteoarthritis using folate-targeted animal single-photon-emission computed tomography/computed tomography. Arthritis and Rheumatism, 2011, 63, 1898-1907.	6.7	57
176	Preparation, characterization and application of superparamagnetic iron oxide encapsulated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride. Carbohydrate Polymers, 2011, 84, 781-787.	5.1	19
177	Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials, 2011, 32, 5167-5176.	5.7	131
178	Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (â^') prostate cancers. Biomaterials, 2011, 32, 2124-2132.	5.7	124
179	Instant magnetic labeling of tumor cells by ultrasound in vitro. Journal of Magnetism and Magnetic Materials, 2011, 323, 2287-2294.	1.0	4
180	Off-resonance saturation MRI of superparamagnetic nanoprobes: Theoretical models and experimental validations. Journal of Magnetic Resonance, 2011, 209, 53-60.	1.2	16
181	Environmentally Sensitive Paramagnetic and Diamagnetic Contrast Agents for Nuclear Magnetic Resonance Imaging and Spectroscopy. Current Topics in Medicinal Chemistry, 2011, 11, 115-130.	1.0	15
182	Molecular Characterization of Rheumatoid Arthritis With Magnetic Resonance Imaging. Topics in Magnetic Resonance Imaging, 2011, 22, 61-69.	0.7	7
183	Functionalized Nanomaterials., 2011,, 493-521.		0
184	Drug Delivery System for Controlled Cancer Therapy Using Physico-Chemically Stabilized Bioconjugated Gold Nanoparticles Synthesized from Marine Macroalgae, Padina Gymnospora. Journal of Nanomedicine & Nanotechnology, 2011, s5, .	1.1	3
185	Efficient In Vitro Labeling of Human Prostate Cancer Cells with Superparamagnetic Iron Oxide Nanoparticles. Cancer Biotherapy and Radiopharmaceuticals, 2011, 26, 461-467.	0.7	9
186	Magnetic resonance for in vitro in vin vitro in	1.2	26
187	Superparamagnetic Nanoparticles and RNAi-Mediated Gene Silencing: Evolving Class of Cancer Diagnostics and Therapeutics. Journal of Nanomaterials, 2012, 2012, 1-15.	1.5	8
188	Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture. International Journal of Molecular Sciences, 2012, 13, 5554-5570.	1.8	252

#	Article	IF	CITATIONS
189	Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. Journal of Clinical Biochemistry and Nutrition, 2012, 50, 211-216.	0.6	119
190	Synthesis and characterization of iron-rich FexPt1â^'xferrofluid for magnetic resonance imaging. Physica Scripta, 2012, 85, 035802.	1.2	12
191	Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. International Journal of Nanomedicine, 2012, 7, 4447.	3.3	51
192	First Multiparametric Cardiovascular Magnetic Resonance Study Using Ultrasmall Superparamagnetic Iron Oxide Nanoparticles in a Patient With Acute Myocardial Infarction. Circulation, 2012, 126, 1932-1934.	1.6	27
194	Functionalisation of Magnetic Iron Oxide Nanoparticles. , 2012, , 151-192.		3
195	Current Limitations of Molecular Magnetic Resonance Imaging for Tumors as Evaluated With High-Relaxivity CD105-Specific Iron Oxide Nanoparticles. Investigative Radiology, 2012, 47, 383-391.	3.5	23
196	Coating Evaluation and Purification of Monodisperse, Water-Soluble, Magnetic Nanoparticles Using Sucrose Density Gradient Ultracentrifugation. Chemistry of Materials, 2012, 24, 4008-4010.	3.2	17
197	A Simple and Widely Applicable Method to ⁵⁹ Fe-Radiolabel Monodisperse Superparamagnetic Iron Oxide Nanoparticles for <i>In Vivo</i> Quantification Studies. ACS Nano, 2012, 6, 7318-7325.	7. 3	82
198	Nanotechnology Applications for Glioblastoma. Neurosurgery Clinics of North America, 2012, 23, 439-449.	0.8	29
199	Synthesis of Inorganic Nanoparticles. Frontiers of Nanoscience, 2012, 4, 35-79.	0.3	23
200	Designed Polyelectrolyte Shell on Magnetite Nanocore for Dilution-Resistant Biocompatible Magnetic Fluids. Langmuir, 2012, 28, 16638-16646.	1.6	48
201	Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response. Nanomedicine, 2012, 7, 705-717.	1.7	67
202	Nanobased Technological Applications for Central Nervous System Injuries. ACS Symposium Series, 2012, , 289-315.	0.5	0
203	Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chemical Reviews, 2012, 112, 5818-5878.	23.0	1,769
204	La "rivoluzione―nanotecnologica in ortopedia. Archivio Di Ortopedia E Reumatologia, 2012, 123, 11-12.	0.0	0
205	A nanosized delivery system of superparamagnetic iron oxide for tumor MR imaging. International Journal of Pharmaceutics, 2012, 439, 342-348.	2.6	19
206	Insight of key factors influencing tumor targeting characteristics of glycol chitosan-based nanoparticles and In vivo applications. Macromolecular Research, 2012, 20, 1109-1117.	1.0	6
207	Orthopaedic applications of nanoparticle-based stem cell therapies. Stem Cell Research and Therapy, 2012, 3, 13.	2.4	38

#	Article	IF	CITATIONS
208	Fluorescent-magnetic poly(poly(ethyleneglycol)monomethacrylate)-grafted Fe3O4 nanoparticles from post-atom-transfer-radical-polymerization modification: synthesis, characterization, cellular uptake and imaging. Journal of Materials Chemistry, 2012, 22, 6965.	6.7	30
209	Avidin Functionalized Maghemite Nanoparticles and Their Application for Recombinant Human Biotinyl-SERCA Purification. Langmuir, 2012, 28, 15392-15401.	1.6	50
210	Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Review of Clinical Pharmacology, 2012, 5, 173-186.	1.3	114
211	Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale, 2012, 4, 6135.	2.8	197
212	Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy. International Journal of Nanomedicine, 2012, 7, 4037.	3.3	40
213	Design of deformable chitosan microspheres loaded with superparamagnetic iron oxide nanoparticles for embolotherapy detectable by magnetic resonance imaging. Carbohydrate Polymers, 2012, 90, 1725-1731.	5.1	42
214	Structural transition of large lead monoxide clusters. Computational and Theoretical Chemistry, 2012, 983, 61-64.	1.1	4
215	Ferritin as a novel reporter gene for photoacoustic molecular imaging. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 910-915.	1.1	7
216	A Molecular Imaging Primer: Modalities, Imaging Agents, and Applications. Physiological Reviews, 2012, 92, 897-965.	13.1	928
217	Nanoâ€regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans. Journal of Cellular and Molecular Medicine, 2012, 16, 1991-2000.	1.6	42
218	Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene, 2012, 31, 3754-3763.	2.6	203
219	Synthesis of \hat{l}^2 -cyclodextrin conjugated superparamagnetic iron oxide nanoparticles for selective binding and detection of cholesterol crystals. Chemical Communications, 2012, 48, 3385.	2.2	56
221	Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Reviews, 2012, 3, 18496.	3.7	392
223	Dual-purpose magnetic micelles for MRI and gene delivery. Journal of Controlled Release, 2012, 163, 82-92.	4.8	83
224	Magnetic composites based on metallic nickel and molybdenum carbide: A potential material for pollutants removal. Journal of Hazardous Materials, 2012, 241-242, 73-81.	6.5	21
225	G-Quadruplex-Forming Oligonucleotide Conjugated to Magnetic Nanoparticles: Synthesis, Characterization, and Enzymatic Stability Assays. Bioconjugate Chemistry, 2012, 23, 382-391.	1.8	27
226	Near-infrared fluorescent amphiphilic polycation wrapped magnetite nanoparticles as multimodality probes. Science Bulletin, 2012, 57, 4012-4018.	1.7	14
227	Relaxometric Studies of \hat{I}^3 -Fe ₂ O ₃ @SiO ₂ Core Shell Nanoparticles: When the Coating Matters. Journal of Physical Chemistry C, 2012, 116, 2285-2291.	1.5	65

#	Article	IF	CITATIONS
228	Low Concentration of Silver Nanoparticles Not Only Enhances the Activity of Horseradish Peroxidase but Alter the Structure Also. PLoS ONE, 2012, 7, e41422.	1.1	38
229	Potential of magnetic nanoparticles for targeted drug delivery. Nanotechnology, Science and Applications, 2012, 5, 73.	4.6	64
230	In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles. International Journal of Nanomedicine, 2012, 7, 2833.	3.3	37
231	Tracking Tumor Cells in Lymphatics in a Mice Xenograft Model by Magnetic Resonance Imaging. Molecular Imaging, 2012, 11, 7290.2012.00007.	0.7	2
232	Multifunctional Magnetic Hybrid Nanoparticles as a Nanomedical Platform for Cancer-Targeted Imaging and Therapy. , 0 , , .		2
233	Principles and emerging applications of nanomagnetic materials in medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 345-365.	3.3	24
234	Nanoformulations for molecular MRI. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 448-457.	3.3	22
235	Smart polymersomes for therapy and diagnosis: fast progress toward multifunctional biomimetic nanomedicines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 525-546.	3.3	68
236	In vivo Imaging and Biodistribution of Multimodal Polymeric Nanoparticles Delivered to the Optic Nerve. Small, 2012, 8, 1579-1589.	5.2	40
237	Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opinion on Drug Delivery, 2012, 9, 367-381.	2.4	90
238	Magnetic carbon nanostructures in medicine. Journal of Materials Chemistry, 2012, 22, 31-37.	6.7	33
239	Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor. Journal of Materials Chemistry, 2012, 22, 4704.	6.7	111
240	Improved dynamic response assessment for intraâ€articular injected iron oxide nanoparticles. Magnetic Resonance in Medicine, 2012, 68, 1544-1552.	1.9	7
241	Rapid Transformation of Protein-Caged Nanomaterials into Microbubbles As Bimodal Imaging Agents. ACS Nano, 2012, 6, 5111-5121.	7.3	23
242	Detection of viability of transplanted beta cells labeled with a novel contrast agent – polyvinylpyrrolidoneâ€coated superparamagnetic iron oxide nanoparticles by magnetic resonance imaging. Contrast Media and Molecular Imaging, 2012, 7, 35-44.	0.4	16
243	Limitations and caveats of magnetic cell labeling using transfection agent complexed iron oxide nanoparticles. Contrast Media and Molecular Imaging, 2012, 7, 140-152.	0.4	12
244	Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology, 2012, 23, 215602.	1.3	83
245	Graphene: a versatile nanoplatform for biomedical applications. Nanoscale, 2012, 4, 3833.	2.8	478

#	ARTICLE	IF	CITATIONS
246	Charge binding of rhodamine derivative to OHâ^ stabilized nanomaghemite: Universal nanocarrier for construction of magnetofluorescent biosensors. Acta Biomaterialia, 2012, 8, 2068-2076.	4.1	69
247	Water-dispersible multiwalled carbon nanotube/iron oxide hybrids as contrast agents for cellular magnetic resonance imaging. Carbon, 2012, 50, 2162-2170.	5.4	49
248	ICP-MS analysis of lanthanide-doped nanoparticles as a non-radiative, multiplex approach to quantify biodistribution and blood clearance. Biomaterials, 2012, 33, 1509-1519.	5 . 7	60
249	Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging. Biomaterials, 2012, 33, 5363-5375.	5.7	159
250	Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 275-290.	1.7	275
251	Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of Magnetism and Magnetic Materials, 2012, 324, 903-915.	1.0	620
252	Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters, 2012, 7, 144.	3.1	948
253	Magnetic nanoparticles and their applications in image-guided drug delivery. Drug Delivery and Translational Research, 2012, 2, 3-21.	3.0	19
254	Composite nanoparticles: the best of two worlds. Analytical and Bioanalytical Chemistry, 2012, 402, 83-89.	1.9	24
255	The application of super paramagnetic iron oxide-labeled mesenchymal stem cells in cell-based therapy. Molecular Biology Reports, 2013, 40, 2733-2740.	1.0	27
256	Ischemic brain imaging using fluorescent gold nanoprobes sensitive to reactive oxygen species. Journal of Controlled Release, 2013, 170, 352-357.	4.8	28
257	Magnetic Resonance Imaging of the Bone Marrow Contrast Media for Bone Marrow Imaging. Medical Radiology, 2013, , 355-365.	0.0	0
258	Nanoparticles in Biocatalysis., 2013,, 95-123.		0
259	Magnetic nanocomplexes and the physiological challenges associated with their use for cancer imaging and therapy. Journal of Materials Chemistry B, 2013, 1, 729-739.	2.9	36
260	Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials, 2013, 34, 8511-8520.	5 . 7	316
261	Metal-Based MRI Contrast Agents. , 2013, , 901-932.		1
262	Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles. Biomaterials, 2013, 34, 9615-9622.	5.7	61
263	SPION primes THP1 derived M2 macrophages towards M1-like macrophages. Biochemical and Biophysical Research Communications, 2013, 441, 737-742.	1.0	94

#	Article	IF	Citations
264	Optimized multimodal nanoplatforms for targeting $\hat{l} \pm v \hat{l}^2 3$ integrins. Nanoscale, 2013, 5, 11478.	2.8	32
265	New carboxysilaneâ€coated iron oxide nanoparticles for nonspecific cell labelling. Contrast Media and Molecular Imaging, 2013, 8, 466-474.	0.4	23
267	Magnetic Iron Oxide Nanoparticles for Multimodal Imaging and Therapy of Cancer. International Journal of Molecular Sciences, 2013, 14, 15910-15930.	1.8	223
268	Computed Tomography and Magnetic Resonance Imaging. Recent Results in Cancer Research, 2013, 187, 3-63.	1.8	6
269	Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clsuters as effective magnetic resonance imaging probes. Biomaterials, 2013, 34, 1193-1203.	5.7	89
270	Effectiveness of micronâ€sized superparamagnetic iron oxide particles as markers for detection of migration of bone marrowâ€derived mesenchymal stromal cells in a stroke model. Journal of Magnetic Resonance Imaging, 2013, 37, 1409-1418.	1.9	20
271	Synthesis, adsorption and selectivity studies of N-propyl quaternized magnetic poly(4-vinylpyridine) for hexavalent chromium. Talanta, 2013, 116, 670-677.	2.9	41
272	Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 2013, 34, 4078-4088.	5.7	384
274	Engineering multifunctional nanoparticles: allâ€inâ€one versus oneâ€forâ€all. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 250-265.	3.3	73
275	A Protein Transduction Domain with Cell Uptake and Selectivity Profiles that Are Controlled by Multivalency Effects. Chemistry and Biology, 2013, 20, 434-444.	6.2	7
276	Nanoâ€SAR Development for Bioactivity of Nanoparticles with Considerations of Decision Boundaries. Small, 2013, 9, 1842-1852.	5.2	75
277	Implementation of P22 Viral Capsids As Intravascular Magnetic Resonance <i>T</i> <csub>1 Contrast Conjugates via Site-Selective Attachment of Gd(III)-Chelating Agents. Biomacromolecules, 2013, 14, 2332-2339.</csub>	2.6	45
278	Cleaved Iron Oxide Nanoparticles as <i>T</i> ₂ Contrast Agents for Magnetic Resonance Imaging. Chemistry - A European Journal, 2013, 19, 4217-4222.	1.7	17
279	Evaluation of the novel USPIO GEH121333 for MR imaging of cancer immune responses. Contrast Media and Molecular Imaging, 2013, 8, 281-288.	0.4	23
280	Hyperbranched polymers for bioimaging. RSC Advances, 2013, 3, 2071-2083.	1.7	92
281	Dextran-encapsulated barium sulfate nanoparticles prepared for aqueous dispersion as an X-ray contrast agent. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	17
283	Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. European Heart Journal, 2013, 34, 462-475.	1.0	133
284	Application of Nanoparticles on Diagnosis and Therapy in Gliomas. BioMed Research International, 2013, 2013, 1-20.	0.9	62

#	Article	IF	CITATIONS
285	Tumour Cell Labelling by Magnetic Nanoparticles with Determination of Intracellular Iron Content and Spatial Distribution of the Intracellular Iron. International Journal of Molecular Sciences, 2013, 14, 9111-9125.	1.8	44
286	Microfluidic Biosensing Systems Using Magnetic Nanoparticles. International Journal of Molecular Sciences, 2013, 14, 18535-18556.	1.8	53
287	Increased nanoparticleâ€loaded exogenous macrophage migration into the brain following PDTâ€induced blood–brain barrier disruption. Lasers in Surgery and Medicine, 2013, 45, 524-532.	1.1	40
288	Inâ€Vivo Magnetic Resonance Imaging Detection of Paramagnetic Liposomes Loaded with Amphiphilic Gadolinium(III) Complexes: Impact of Molecular Structure on Relaxivity and Excretion Efficiency. ChemPlusChem, 2013, 78, 712-722.	1.3	16
290	Biomedical Detection via Macro- and Nano-Sensors Fabricated with Metallic and Semiconducting Oxides. Journal of Biomedical Nanotechnology, 2013, 9, 1-25.	0.5	93
291	Recent Advances in Superparamagnetic Iron Oxide Nanoparticles for Cellular Imaging and Targeted Therapy Research. Current Pharmaceutical Design, 2013, 19, 6575-6593.	0.9	102
292	Serial MR Imaging of Magnetically Labeled Humen Umbilical Vein Endothelial Cells in Acute Renal Failure Rat Model. Journal of the Korean Society of Magnetic Resonance in Medicine, 2013, 17, 181.	0.1	0
293	Co-Transplantation of GDNF-Overexpressing Neural Stem Cells and Fetal Dopaminergic Neurons Mitigates Motor Symptoms in a Rat Model of Parkinson's Disease. PLoS ONE, 2013, 8, e80880.	1.1	49
294	Synthesis and Evaluation of Magnetic Nanoparticles for Biomedical Applications. Journal of Nanoparticles, 2013, 2013, 1-9.	1.4	17
295	Magnetic Resonance Technologies: Molecules to Medicine. , 0, , .		0
296	Distribution and accumulation of Cy5.5-labeled thermally cross-linked superparamagnetic iron oxide nanoparticles in the tissues of ICR mice. Journal of Veterinary Science, 2013, 14, 473.	0.5	25
297	Fast Release of Sulfosalicylic Acid from Polymer Implants Consisting of Regenerated Cellulose/γ-Ferric Oxide/Polypyrrole. Hindawi Journal of Chemistry, 2014, 2014, 1-7.	1.6	2
298	Surface engineered antifouling optomagnetic SPIONs for bimodal targeted imaging of pancreatic cancer cells. International Journal of Nanomedicine, 2014, 9, 1601.	3.3	39
299	The application of magnetic nanoparticles for the treatment of brain tumors. Frontiers in Chemistry, 2014, 2, 109.	1.8	46
300	Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells. International Journal of Nanomedicine, 2014, 9, 5025.	3.3	47
301	Mechanism Study of Gene Delivery and Expression in PK-15 Cells Using Magnetic Iron Oxide Nanoparticles as Gene Carriers. Nano LIFE, 2014, 04, 1441018.	0.6	9
302	Preparation of magnetic nanocomposite beads and optimizing the conditions for effective removal of U(VI) from aqueous solutions. Toxicological and Environmental Chemistry, 2014, 96, 998-1011.	0.6	1
303	Nanobiology in Medicine. Nanostructure Science and Technology, 2014, , 15-31.	0.1	0

#	Article	IF	Citations
304	Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects. International Scholarly Research Notices, 2014, 2014, 1-18.	0.9	279
305	High-Relaxivity Superparamagnetic Iron Oxide Nanoworms with Decreased Immune Recognition and Long-Circulating Properties. ACS Nano, 2014, 8, 12437-12449.	7.3	58
306	Molecular imaging for In vivo tracking of stem cell fate. Macromolecular Research, 2014, 22, 1141-1151.	1.0	2
307	Synthesis and Study of the New Class of Magnetic Bioceramics for Biomedical Applications: Mossbauer Studies. Solid State Phenomena, 0, 215, 480-488.	0.3	2
309	Simulational validation of color magnetic particle imaging (cMPI). Physics in Medicine and Biology, 2014, 59, 6521-6536.	1.6	7
310	CD44 Targeting Magnetic Glyconanoparticles for Atherosclerotic Plaque Imaging. Pharmaceutical Research, 2014, 31, 1426-1437.	1.7	44
311	Carboxy-silane coated iron oxide nanoparticles: a convenient platform for cellular and small animal imaging. Journal of Materials Chemistry B, 2014, 2, 387-397.	2.9	36
312	Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation. Advanced Functional Materials, 2014, 24, 4584-4594.	7.8	50
313	<i>In vitro</i> and <i>in vivo</i> experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: Magnetic targeting. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 860-868.	1.6	77
314	Green Synthesis of Anisotropic Gold Nanoparticles for Photothermal Therapy of Cancer. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8080-8089.	4.0	164
315	High-field small animal magnetic resonance oncology studies. Physics in Medicine and Biology, 2014, 59, R65-R127.	1.6	13
316	Positive effect of intravenous iron-oxide administration on left ventricular remodelling in patients with acute ST-elevation myocardial infarction – A cardiovascular magnetic resonance (CMR) study. International Journal of Cardiology, 2014, 173, 184-189.	0.8	46
317	Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. Journal of Controlled Release, 2014, 183, 114-123.	4.8	66
318	Molecular imaging for cancer diagnosis and surgery. Advanced Drug Delivery Reviews, 2014, 66, 90-100.	6.6	265
319	Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	18
320	Impact of serum proteins on MRI contrast agents: cellular binding and T ₂ relaxation. RSC Advances, 2014, 4, 31735-31744.	1.7	16
321	Ferrofluids: Synthetic Strategies, Stabilization, Physicochemical Features, Characterization, and Applications. ChemPlusChem, 2014, 79, 1382-1420.	1.3	83
322	Targeted multimodal imaging modalities. Advanced Drug Delivery Reviews, 2014, 76, 60-78.	6.6	113

#	Article	IF	Citations
323	Synthesis of cationic magnetite nanoparticles for intracellular protein delivery. Journal of Applied Polymer Science, 2014, 131, .	1.3	1
324	Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells. Toxicology in Vitro, 2014, 28, 1402-1412.	1.1	89
325	Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets. Nanoscale, 2014, 6, 10792-10797.	2.8	59
326	Polyethylene Glycol Backfilling Mitigates the Negative Impact of the Protein Corona on Nanoparticle Cell Targeting. Angewandte Chemie - International Edition, 2014, 53, 5093-5096.	7.2	276
327	Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. Journal of Colloid and Interface Science, 2014, 436, 234-242.	5.0	102
328	Functionalization of magnetic nanoparticles for biomedical applications. Korean Journal of Chemical Engineering, 2014, 31, 1289-1305.	1.2	50
329	PET imaging with multimodal upconversion nanoparticles. Dalton Transactions, 2014, 43, 5535.	1.6	21
330	Superparamagnetic iron oxide nanoparticles stabilized by a poly(amidoamine)-rhenium complex as potential theranostic probe. Dalton Transactions, 2014, 43, 1172-1183.	1.6	18
331	Advances in Noninvasive Functional Imaging of Bone. Academic Radiology, 2014, 21, 281-301.	1.3	5
332	Preparation, characterization and application of NaHCO3 leached bulk U(VI) imprinted polymers endowed with \hat{I}^3 -MPS coated magnetite in contaminated water. Journal of Hazardous Materials, 2014, 267, 221-228.	6.5	25
333	Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles. Chemosphere, 2014, 108, 70-75.	4.2	38
335	Molecular magnetic resonance imaging of brainââ,¬â€œimmune interactions. Frontiers in Cellular Neuroscience, 2014, 8, 389.	1.8	65
337	Phosphatidylserine-Targeted Molecular Imaging of Tumor Vasculature by Magnetic Resonance Imaging. Journal of Biomedical Nanotechnology, 2014, 10, 846-855.	0.5	25
338	Biosafe Nanoscale Pharmaceutical Adjuvant Materials. Journal of Biomedical Nanotechnology, 2014, 10, 2393-2419.	0.5	27
340	Detection of Cyto- and Genotoxicity of Rod-Shaped Gold Nanoparticles in Human Blood Lymphocytes Using Comet-FISH. Cytologia, 2015, 80, 173-181.	0.2	10
341	Scalable fractionation of iron oxide nanoparticles using a CO2 gas-expanded liquid system. Journal of Nanoparticle Research, $2015,17,1.$	0.8	4
342	Metal–Organic Frameworkâ€Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. Small, 2015, 11, 4806-4822.	5.2	375
343	Preclinical evaluation of a urokinase plasminogen activator receptor-targeted nanoprobe in rhesus monkeys. International Journal of Nanomedicine, 2015, 10, 6689.	3.3	9

#	Article	IF	CITATIONS
344	Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonance imaging. International Journal of Nanomedicine, 2015, 10, 6997.	3.3	16
345	High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging. International Journal of Nanomedicine, 2015, 10, 1155.	3.3	30
346	Targeting of cell death and neuroinflammation with peptide-linked iron oxide nanoparticles and Gd-DTPA in a mouse model of Parkinson's disease. Journal of Biomedical Engineering and Informatics, 2015, 2, 13.	0.2	1
347	Exploiting Size-Dependent Drag and Magnetic Forces for Size-Specific Separation of Magnetic Nanoparticles. International Journal of Molecular Sciences, 2015, 16, 20001-20019.	1.8	10
348	C5b-9-Targeted Molecular MR Imaging in Rats with Heymann Nephritis: A New Approach in the Evaluation of Nephrotic Syndrome. PLoS ONE, 2015, 10, e0121244.	1.1	6
349	Endothelin B receptors targeted by iron oxide nanoparticles functionalized with a specific antibody: toward immunoimaging of brain tumors. Journal of Materials Chemistry B, 2015, 3, 2939-2942.	2.9	13
350	Synthesis and surface modification of magnetic nanoparticles for potential applications in sarcomas. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	3
351	External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1107-1112.	2.5	18
352	Self-assembled superparamagnetic nanoparticles as MRI contrast agents— A review. Chinese Physics B, 2015, 24, 127506.	0.7	12
353	Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging. Journal of Magnetism and Magnetic Materials, 2015, 381, 151-157.	1.0	85
354	The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution. Materials Chemistry and Physics, 2015, 153, 376-383.	2.0	5
355	The cytotoxicity of iron oxide nanoparticles with different modifications evaluated in vitro. Journal of Magnetism and Magnetic Materials, 2015, 380, 85-89.	1.0	49
356	Synthesis and processing of magnetic nanoparticles. Current Opinion in Chemical Engineering, 2015, 8, 7-14.	3.8	55
357	Effects of 2,3-dimercaptosuccinic acid modified Fe ₂ O ₃ nanoparticles on microstructure and biological activity of cardiomyocytes. RSC Advances, 2015, 5, 19493-19501.	1.7	11
358	Advanced targeted nanomedicine. Journal of Biotechnology, 2015, 202, 88-97.	1.9	54
359	Evaluation of a PSMA-targeted BNF nanoparticle construct. Nanoscale, 2015, 7, 4432-4442.	2.8	35
360	In vitro cytotoxicity and genotoxicity studies of gold nanoparticles-mediated photo-thermal therapy versus 5-fluorouracil. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	9
361	Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chemical Reviews, 2015, 115, 10637-10689.	23.0	827

#	Article	IF	Citations
362	Multifunctional dextran micelles as drug delivery carriers and magnetic resonance imaging probes. Science Bulletin, 2015, 60, 1272-1280.	4.3	36
363	Dendrimers for theranostic applications. Biomolecular Concepts, 2015, 6, 205-217.	1.0	37
364	Selective adsorption of uranium (VI) on NaHCO3 leached composite \hat{I}^3 -Methacryloxypropyltrimethoxysilane coated magnetic Ion-imprinted polymers prepared by precipitation polymerization. South African Journal of Chemistry, 2015, 68, .	0.3	4
365	Macrophages as nanoparticle delivery vectors for photothermal therapy of brain tumors. Therapeutic Delivery, 2015, 6, 371-384.	1.2	30
366	Bioresponsive probes for molecular imaging: concepts and <i>in vivo</i> applications. Contrast Media and Molecular Imaging, 2015, 10, 282-308.	0.4	29
367	Structural characterization of copolymer embedded magnetic nanoparticles. Applied Surface Science, 2015, 352, 109-116.	3.1	10
368	PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine, 2015, 10, 375-386.	1.7	85
369	Ultrastable Suspensions of Polyoxazoline-Functionalized ZnO Single Nanocrystals. Chemistry of Materials, 2015, 27, 2957-2964.	3.2	25
370	Hydroxy, carboxylic and amino acid functionalized superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vitro anti-cancer studies. Journal of Chemical Sciences, 2015, 127, 1155-1166.	0.7	43
371	On-demand drug delivery from local depots. Journal of Controlled Release, 2015, 219, 8-17.	4.8	123
372	Magnetic Iron Oxide Nanoparticles as Contrast Agents: Hydrothermal Synthesis, Characterization and Properties. Solid State Phenomena, 0, 232, 111-145.	0.3	17
373	Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation. British Journal of Radiology, 2015, 88, 20150185.	1.0	27
374	Structural characterization and magnetic properties of sol–gel derived Zn x Fe 3–x O 4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2015, 378, 429-435.	1.0	26
375	Solid silica nanoparticles: applications in molecular imaging. Contrast Media and Molecular Imaging, 2015, 10, 1-17.	0.4	38
376	Molecular Imaging of Folate Receptor β–Positive Macrophages during Acute Lung Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 50-59.	1.4	51
377	Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging. Oncotarget, 2016, 7, 38693-38706.	0.8	15
378	The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer. Stem Cells International, 2016, 2016, 1-15.	1.2	182
379	Modified Nanoemulsions with Iron Oxide for Magnetic Resonance Imaging. Nanomaterials, 2016, 6, 223.	1.9	8

#	Article	IF	CITATIONS
380	Nanobiomaterials involved in medical imaging technologies. , 2016, , 303-337.		3
381	Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 2016, Volume 9, 49-67.	4.6	1,043
382	Effects of iron oxide nanoparticles on biological responses and <scp>MR</scp> imaging properties in human mammary healthy and breast cancer epithelial cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1032-1042.	1.6	14
383	Corrosionâ€Resistant Hybrid Nanoparticles of Polydimethylsiloxane@Fe Obtained by Thermolysis of Fe(CO) ₅ . European Journal of Inorganic Chemistry, 2016, 2016, 1488-1496.	1.0	8
384	Tumour-specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer. Gut, 2016, 65, 1838-1849.	6.1	71
385	Tumor Molecular Imaging with Nanoparticles. Engineering, 2016, 2, 132-140.	3.2	33
386	Molecular evaluation of thrombosis using X-ray phase contrast imaging with microbubbles targeted to P-selectin in mice. European Radiology, 2016, 26, 3253-3261.	2.3	7
387	Electrodeposited Fe and Fe–Au nanowires as MRI contrast agents. Chemical Communications, 2016, 52, 12634-12637.	2.2	47
388	Design and Development of Approved Nanopharmaceutical Products., 2016,, 279-318.		0
390	Superparamagnetic iron oxide nanoparticles for MR imaging of pancreatic cancer: Potential for early diagnosis through targeted strategies. Asia-Pacific Journal of Clinical Oncology, 2016, 12, 13-21.	0.7	22
391	Ion-Mobility-Based Quantification of Surface-Coating-Dependent Binding of Serum Albumin to Superparamagnetic Iron Oxide Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24482-24490.	4.0	15
392	Theoretical development of a magnetic force and an induced motion in elastic media for a magneto-motive technique. Journal of the Korean Physical Society, 2016, 69, 461-471.	0.3	2
393	Quantifying intra- and extracellular aggregation of iron oxide nanoparticles and its influence on specific absorption rate. Nanoscale, 2016, 8, 16053-16064.	2.8	58
395	Colloidal Surface Active Maghemite Nanoparticles for Biologically Safe Cr ^{VI} Remediation: from Coreâ€Shell Nanostructures to Pilot Plant Development. Chemistry - A European Journal, 2016, 22, 14219-14226.	1.7	16
396	Molecular Imaging of Brain Tumors Using Liposomal Contrast Agents andÂNanoparticles. Magnetic Resonance Imaging Clinics of North America, 2016, 24, 751-763.	0.6	7
397	Recent advances in the preparation and application of multifunctional iron oxide and liposome-based nanosystems for multimodal diagnosis and therapy. Interface Focus, 2016, 6, 20160055.	1.5	26
398	Magnetic iron oxide nanoparticles encapsulating horseradish peroxidase (HRP): synthesis, characterization and carrier for the generation of free radicals for potential applications in cancer therapy. RSC Advances, 2016, 6, 111099-111108.	1.7	14
399	Magnetic Nanoparticles as a Potential Vehicle for Corneal Endothelium Repair. Military Medicine, 2016, 181, 232-239.	0.4	10

#	Article	IF	Citations
400	Molecular Imaging in Neurovascular Diseases. Topics in Magnetic Resonance Imaging, 2016, 25, 57-61.	0.7	4
401	Anticancer activity of Ru- and Os(arene) compounds of a maleimide-functionalized bioactive pyridinecarbothioamide ligand. Journal of Inorganic Biochemistry, 2016, 165, 100-107.	1.5	38
402	A lock-in-based method to examine the thermal signatures of magnetic nanoparticles in the liquid, solid and aggregated states. Nanoscale, 2016, 8, 13321-13332.	2.8	19
403	Protein-Poly(amino acid) Nanocore–Shell Mediated Synthesis of Branched Gold Nanostructures for Computed Tomographic Imaging and Photothermal Therapy of Cancer. ACS Applied Materials & District Sensors (2016, 8, 15889-15903.	4.0	50
404	Noninvasive targeting delivery and in vivo magnetic resonance tracking method for live apoptotic cells in cerebral ischemia with functional Fe2O3 magnetic nanoparticles. Journal of Nanobiotechnology, 2016, 14, 19.	4.2	9
405	Synthesis and properties of hybrid hydroxyapatite–ferrite (Fe3O4) particles for hyperthermia applications. Physics of the Solid State, 2016, 58, 763-770.	0.2	16
406	The effect of neighbor distance of magnetic nanoparticle clusters on magnetic resonance relaxation properties. Science Bulletin, 2016, 61, 1023-1030.	4.3	16
407	Design of Magnetic Nanoparticles for MRI-Based Theranostics. Springer Series in Biomaterials Science and Engineering, 2016, , 3-37.	0.7	1
408	Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids and Surfaces B: Biointerfaces, 2016, 143, 224-232.	2.5	136
409	Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. International Journal of Pharmaceutics, 2016, 501, 331-341.	2.6	47
410	Structure, Synthesis, and Application ofÂNanoparticles., 2016,, 19-76.		12
411	A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe 3 O 4 nanoparticles and the luminol–H 2 O 2 –gold nanoparticle chemiluminescence detection system. Sensors and Actuators B: Chemical, 2016, 223, 713-722.	4.0	121
412	Water-dispersible magnetite nanoparticles as T 2 MR imaging contrast agent. Biomedical Physics and Engineering Express, 2017, 3, 015011.	0.6	11
413	Individually Stabilized, Superparamagnetic Nanoparticles with Controlled Shell and Size Leading to Exceptional Stealth Properties and High Relaxivities. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3343-3353.	4.0	53
414	Ferroic ordering and chargeâ€spinâ€lattice order coupling in Gdâ€doped Fe ₃ O ₄ nanoparticles relaxor multiferroic system. Journal of the American Ceramic Society, 2017, 100, 1534-1541.	1.9	10
415	Analysis of progress and challenges for various patterns of c-MET-targeted molecular imaging: a systematic review. EJNMMI Research, 2017, 7, 41.	1.1	12
416	Functionalized graphene oxide/Fe 3 O 4 hybrids for cellular magnetic resonance imaging and fluorescence labeling. Materials Science and Engineering C, 2017, 78, 817-825.	3.8	30
417	Facile Preparation of Drug-Loaded Tristearin Encapsulated Superparamagnetic Iron Oxide Nanoparticles Using Coaxial Electrospray Processing. Molecular Pharmaceutics, 2017, 14, 2010-2023.	2.3	55

#	Article	IF	CITATIONS
418	In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules. Nature Communications, 2017, 8, 15653.	5.8	41
419	Epitaxially stabilized thin films of Îμ-Fe2O3 (001) grown on YSZ (100). Scientific Reports, 2017, 7, 3712.	1.6	30
420	PEGylated GdF ₃ :Fe Nanoparticles as Multimodal <i>T</i> ₁ / <i>T</i> ₂ -Weighted MRI and X-ray CT Imaging Contrast Agents. ACS Applied Materials & Date: Applied Materials &	4.0	45
421	Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential. Molecular Imaging, 2017, 16, 153601211770872.	0.7	15
422	Bioconjugated Nanoparticles for Biosensing, in Vivo Imaging, and Medical Diagnostics. Analytical Chemistry, 2017, 89, 1015-1031.	3.2	120
423	Forming Magnetosome-Like Nanoparticles in Mammalian Cells for Molecular MRI. , 2017, , 187-203.		5
424	Biosynthesis of Nanoparticles and Their Application in Pharmaceutical Industry., 2017,, 331-349.		3
425	Hydroxyapatite as a Vehicle for the Selective Effect of Superparamagnetic Iron Oxide Nanoparticles against Human Glioblastoma Cells. ACS Applied Materials & Interfaces, 2017, 9, 39283-39302.	4.0	44
426	New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Research on Chemical Intermediates, 2017, 43, 7423-7442.	1.3	67
427	Multifunctional superparamagnetic nanoparticles conjugated with fluorescein-labeled designed ankyrin repeat protein as an efficient HER2-targeted probe in breast cancer. Biomaterials, 2017, 147, 86-98.	5.7	21
428	Biosynthesis of Nanoparticles and Their Application in Pharmaceutical Industry., 2017,, 235-252.		11
429	The effect of Al substitution on the structural and magnetic properties of epitaxial thin films of epsilon ferrite. Scripta Materialia, 2017, 140, 63-66.	2.6	20
430	Activatable interpolymer complex-superparamagnetic iron oxide nanoparticles as magnetic resonance contrast agents sensitive to oxidative stress. Colloids and Surfaces B: Biointerfaces, 2017, 158, 578-588.	2.5	18
431	Reduced-order models for the dynamics of superparamagnetic nanoparticles interacting with cargoes transported by kinesins. Nonlinear Dynamics, 2017, 90, 425-442.	2.7	4
432	Nanoparticles as contrast agents for brain nuclear magnetic resonance imaging in Alzheimer's disease diagnosis. Journal of Materials Chemistry B, 2017, 5, 7216-7237.	2.9	30
434	MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	38
435	Ferumoxytol-enhanced magnetic resonance imaging assessing inflammation after myocardial infarction. Heart, 2017, 103, 1528-1535.	1.2	50
436	Functionalized nanoparticles enable tracking the rapid entry and release of doxorubicin in human pancreatic cancer cells. Micron, 2017, 92, 25-31.	1.1	40

#	Article	IF	CITATIONS
437	Assessment of in vivo systemic toxicity and biodistribution of iron-doped silica nanoshells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 933-942.	1.7	22
438	In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning. Materials Science and Engineering C, 2017, 70, 512-519.	3.8	29
439	Using Nanoparticles in Medicine for Liver Cancer Imaging. Oman Medical Journal, 2017, 32, 269-274.	0.3	11
440	The Application, Neurotoxicity, and Related Mechanism of Silica Nanoparticles., 2017,, 227-257.		6
441	Drug delivery approaches for breast cancer. International Journal of Nanomedicine, 2017, Volume 12, 6205-6218.	3.3	151
442	Dual-targeting Theranostic System with Mimicking Apoptosis to Promote Myocardial Infarction Repair <i>via </i> Modulation of Macrophages. Theranostics, 2017, 7, 4149-4167.	4.6	37
443	Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles. Theranostics, 2017, 7, 1976-1989.	4.6	37
444	Identification of epidermal growth factor receptor-positive glioblastoma using lipid-encapsulated targeted superparamagnetic iron oxide nanoparticles in vitro. Journal of Nanobiotechnology, 2017, 15, 86.	4.2	17
445	BiofuNctionalized nanomaterials for targeting cancer cells. , 2017, , 51-86.		4
446	Inorganic nanoparticles in diagnosis and treatment of breast cancer. Journal of Biological Inorganic Chemistry, 2018, 23, 331-345.	1.1	66
447	Protoporphyrin IX (PpIX)â€Coated Superparamagnetic Iron Oxide Nanoparticle (SPION) Nanoclusters for Magnetic Resonance Imaging and Photodynamic Therapy. Advanced Functional Materials, 2018, 28, 1707030.	7.8	84
448	Ferritin Nanocages with Biologically Orthogonal Conjugation for Vascular Targeting and Imaging. Bioconjugate Chemistry, 2018, 29, 1209-1218.	1.8	32
449	Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochemistry and Biophysics Reports, 2018, 13, 63-72.	0.7	169
450	Use of nanostructured materials in drug delivery. , 2018, , 503-549.		3
451	L-arginine modified magnetic nanoparticles: green synthesis and characterization. Nanotechnology, 2018, 29, 075706.	1.3	18
452	Simultaneous quantitative susceptibility mapping (QSM) and for high iron concentration quantification with 3D ultrashort echo time sequences: An echo dependence study. Magnetic Resonance in Medicine, 2018, 79, 2315-2322.	1.9	26
453	Facile surface modification of nickel ferrite nanoparticles for inherent multiple fluorescence and catalytic activities. RSC Advances, 2018, 8, 38-43.	1.7	11
454	Effects of Nanoprobe Morphology on Cellular Binding and Inflammatory Responses: Hyaluronan-Conjugated Magnetic Nanoworms for Magnetic Resonance Imaging of Atherosclerotic Plaques. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11495-11507.	4.0	29

#	Article	IF	CITATIONS
455	Insight from X-ray Absorption Spectroscopy to Octahedral/Tetrahedral Site Distribution in Sm-Doped Iron Oxide Magnetic Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 8543-8552.	1.5	17
456	Fabrication and characterization of iron oxide dextran composite layers. AIP Conference Proceedings, 2018, , .	0.3	0
457	Microniosomes for concurrent doxorubicin and iron oxide nanoparticles loading; preparation, characterization and cytotoxicity studies. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 118-125.	1.9	15
458	Paramagnetic Quantum Dots as Multimodal Probes for Potential Applications in Nervous System Imaging. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 711-720.	1.9	4
459	Application of New Sodium Vinyl Sulfonate–co-2-Acrylamido-2-me[thylpropane Sulfonic Acid Sodium Salt-Magnetite Cryogel Nanocomposites for Fast Methylene Blue Removal from Industrial Waste Water. Nanomaterials, 2018, 8, 878.	1.9	8
460	Constraining the magnetic properties of ultrafine- and fine-grained biogenic magnetite. Earth, Planets and Space, 2018, 70, .	0.9	10
461	A Theoritical and Simulational Study on the Chemical Shift Effects on the Magnetic Susceptibility of Iron at Ultra-Short Echo Times , 2018 , , .		0
462	Laser-Ablated Vortex Fluidic-Mediated Synthesis of Superparamagnetic Magnetite Nanoparticles in Water Under Flow. ACS Omega, 2018, 3, 11172-11178.	1.6	28
463	Current aspects in treatment of breast cancer based of nanodrug delivery systems and future prospects. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, S755-S762.	1.9	38
464	Magnetite-silica nanoparticles with core-shell structure: single-step synthesis, characterization and magnetic behavior. Journal of Sol-Gel Science and Technology, 2018, 88, 609-617.	1.1	14
465	Emerging use of nanoparticles in diagnosis of atherosclerosis disease: A review. AIP Conference Proceedings, $2018, \ldots$	0.3	6
466	Surface characterization of nanoparticles using near-field light scattering. Beilstein Journal of Nanotechnology, 2018, 9, 1228-1238.	1.5	6
467	Magnetic responsive cell-based strategies for diagnostics and therapeutics. Biomedical Materials (Bristol), 2018, 13, 054001.	1.7	24
468	Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study. Journal of Photochemistry and Photobiology B: Biology, 2018, 185, 100-110.	1.7	42
469	Responsive polymer nanoparticles for drug delivery applications. , 2018, , 289-320.		17
470	Gadolinium-conjugated star-block copolymer polylysine-modified polyethylenimine as high-performance T1 MR imaging blood pool contrast agents. RSC Advances, 2018, 8, 5005-5012.	1.7	9
471	Beyond the Blood–Brain Barrier. , 2018, , 397-437.		6
472	Nanoparticles for Hyperthermia Applications. , 2018, , 563-576.		9

#	Article	IF	CITATIONS
473	Analytical methods for investigating in vivo fate of nanoliposomes: A review. Journal of Pharmaceutical Analysis, 2018, 8, 219-225.	2.4	27
474	The Local Atomic Structure of Colloidal Superparamagnetic Iron Oxide Nanoparticles for Theranostics in Oncology. Biomedicines, 2018, 6, 78.	1.4	11
475	A Simulation Study on the Fat Caused Chemical Shift Effects on the Magnetic Susceptibility Measurement of IONPs With Ultra-Short TEs. IEEE Transactions on Magnetics, 2018, 54, 1-4.	1.2	1
476	Magnetic field distribution modulation of intrathecal delivered ketorolac iron-oxide nanoparticle conjugates produce excellent analgesia for chronic inflammatory pain. Journal of Nanobiotechnology, 2018, 16, 49.	4.2	18
477	Engineered nanomaterials for their applications in theragnostics. Journal of Industrial and Engineering Chemistry, 2018, 66, 20-28.	2.9	10
478	Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential. Journal of Inorganic Biochemistry, 2019, 199, 110778.	1.5	26
479	Facile and low-cost synthesis of pure hematite (\hat{l}_{\pm} -Fe ₂ O ₃) nanoparticles from naturally occurring laterites and their superior adsorption capability towards acid-dyes. RSC Advances, 2019, 9, 21249-21257.	1.7	29
480	Directed assembly of magnetic and semiconducting nanoparticles with tunable and synergistic functionality. Scientific Reports, 2019, 9, 15784.	1.6	2
481	Dual acting methotrexate conjugated nanocomposite for MR and CT imaging: Perspectives on therapeutic efficacy and in vivo biodistribution. Materials Letters, 2019, 255, 126583.	1.3	2
482	Simple strategy for single-chain fragment antibody-conjugated probe construction. Life Sciences, 2019, 239, 117052.	2.0	2
483	Supermagnetic Fe ₃ O ₄ -PEG nanoparticles combined with NIR laser and alternating magnetic field as potent anti-cancer agent against human ovarian cancer cells. Materials Research Express, 2019, 6, 115412.	0.8	52
484	Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Analytical Chemistry, 2019, 91, 14159-14169.	3.2	87
485	Applications of nanoparticles in biomedical imaging. Nanoscale, 2019, 11, 799-819.	2.8	345
486	Synthesis and characterization of magnetic dextran nanogel doped with iron oxide nanoparticles as magnetic resonance imaging probe. International Journal of Biological Macromolecules, 2019, 128, 768-774.	3.6	47
487	Bio-Based Synthesis of Magnetic Nanoparticles and Their Applications. Nanotechnology in the Life Sciences, 2019, , 13-31.	0.4	8
488	Application of luteinizing hormone-releasing hormone–ferrosoferric oxide nanoparticles in targeted imaging of breast tumors. Journal of International Medical Research, 2019, 47, 1749-1757.	0.4	13
489	Synthesis and characterization of nanocomposites based on rare-earth orthoferrites and iron oxides for magnetic hyperthermia applications. Ceramics International, 2019, 45, 17920-17929.	2.3	14
490	Biologically safe colloidal suspensions of naked iron oxide nanoparticles for in situ antibiotic suppression. Colloids and Surfaces B: Biointerfaces, 2019, 181, 102-111.	2.5	10

#	Article	IF	CITATIONS
491	Functionalized magnetic nanoparticles/biopolymer hybrids: Synthesis methods, properties and biomedical applications. Methods in Microbiology, 2019, 46, 227-254.	0.4	35
493	A Novel Strategy for the Surface Modification of Superparamagnetic (Fe3O4) Iron Oxide Nanoparticle for Lung Cancer Imaging., 2019,, 155-165.		O
494	Hybrid nanocomposites for imaging-guided synergistic theranostics. , 2019, , 117-147.		7
495	Bimodal Fucoidan-Coated Zinc Oxide/Iron Oxide-Based Nanoparticles for the Imaging of Atherothrombosis. Molecules, 2019, 24, 962.	1.7	18
496	Design of organoruthenium complexes for nanoparticle functionalization. Journal of Organometallic Chemistry, 2019, 891, 64-71.	0.8	0
497	Locating the Site of Neuropathic Pain <i>In Vivo</i> Using MMP-12-Targeted Magnetic Nanoparticles. Pain Research and Management, 2019, 2019, 1-11.	0.7	12
498	Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications. Nanomaterials, 2019, 9, 541.	1.9	41
499	Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology, 2019, 13, 573-596.	1.6	77
500	Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nanoprobe. Acta Biomaterialia, 2019, 90, 324-336.	4.1	22
501	Clinical Trials of Thermosensitive Nanomaterials: An Overview. Nanomaterials, 2019, 9, 191.	1.9	72
502	Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis $\hat{a} \in \text{``a}$ comprehensive review. IET Nanobiotechnology, 2019, 13, 243-249.	1.9	33
503	Iron Oxide Labeling and Tracking of Extracellular Vesicles. Magnetochemistry, 2019, 5, 60.	1.0	13
504	Variability of Excitation Coil Design and Performance in Magnetic Particle Imaging: A Review. , 2019, , .		0
505	Nanoparticle-Based Contrast Agents for ¹²⁹ Xe HyperCEST NMR and MRI Applications. Contrast Media and Molecular Imaging, 2019, 2019, 1-25.	0.4	10
506	Biomedical Applications of Fluorescent and Magnetic Resonance Imaging Dualâ€Modality Probes. ChemBioChem, 2019, 20, 499-510.	1.3	26
507	Stimuliâ€responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1527.	3.3	231
508	MLFT approach with p-d hybridization for ab initio simulations of the pre-edge XANES. Radiation Physics and Chemistry, 2020, 175, 108105.	1.4	5
509	Advanced Controlled Nanopesticide Delivery Systems for Managing Insect Pests. , 2020, , 155-184.		4

#	Article	IF	CITATIONS
510	Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Advanced Materials, 2020, 32, e1901989.	11.1	187
511	Enzyme-instructed self-aggregation of Fe ₃ O ₄ nanoparticles for enhanced MRI <i>T</i> ₂ imaging and photothermal therapy of tumors. Nanoscale, 2020, 12, 1886-1893.	2.8	47
512	Use of Oppositely Polarized External Magnets To Improve the Accumulation and Penetration of Magnetic Nanocarriers into Solid Tumors. ACS Nano, 2020, 14, 142-152.	7.3	59
513	Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metabolism Reviews, 2020, 52, 157-184.	1.5	78
514	Macrophage ablation significantly reduces uptake of imaging probe into organs of the reticuloendothelial system. Acta Radiologica, 2020, 62, 028418512094304.	0.5	0
515	Application of different nanoparticles in the diagnosis of colorectal cancer. Gene Reports, 2020, 21, 100896.	0.4	14
516	Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. Journal of Inorganic Biochemistry, 2020, 213, 111271.	1.5	22
517	Tumorâ€Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. Advanced Materials, 2020, 32, e2002197.	11.1	78
518	Simple New Method for the Preparation of La(IO3)3 Nanoparticles. Nanomaterials, 2020, 10, 2400.	1.9	5
519	Fluorescent Composites Combining Multiple Sensing and Imaging Modalities., 2020,, 483-502.		0
520	Going even smaller: Engineering subâ€5 nm nanoparticles for improved delivery, biocompatibility, and functionality. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1644.	3.3	18
521	A novel î±-Fe2O3@MoS2QDs heterostructure for enhanced visible-light photocatalytic performance using ultrasonication approach. Ceramics International, 2020, 46, 19600-19608.	2.3	21
522	Mechanistic anticarcinogenic efficacy of phytofabricated gold nanoparticles on human lung adenocarcinoma cells. Journal of Experimental Nanoscience, 2020, 15, 160-173.	1.3	10
523	The Potential Use of Rice Husk for Reducing the Genotoxic Effects of Iron and Aluminum Oxides Nanoparticles in Oreochromis niloticus. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	2
524	Magnetic nanowires in biomedical applications. Nanotechnology, 2020, 31, 433001.	1.3	31
525	Applications of Iron Oxide Nanoparticles in the Magnetic Resonance Imaging for the Cancer Diagnosis. Environmental Chemistry for A Sustainable World, 2021, , 115-158.	0.3	0
526	Stimuliâ€6ensitive Selfâ€Assembled Tubules Based on Lysineâ€Derived Surfactants for Delivery of Antimicrobial Proteins. Chemistry - A European Journal, 2021, 27, 692-704.	1.7	3
527	Iron Oxide-Based Polymeric Magnetic Nanoparticles for Drug and Gene Delivery: In Vitro and In Vivo Applications in Cancer., 2021,, 1271-1292.		2

#	Article	IF	CITATIONS
528	Nanoparticles in medical imaging. , 2021, , 175-210.		3
529	Magnetite nanoparticles as sorbents for dye removal: a review. Environmental Chemistry Letters, 2021, 19, 2487-2525.	8.3	116
530	Functionalized Magnetic Nanoparticles (MNPs): Toxicity, Safety and Legal Aspects of Functionalized MNPs., 2021,, 527-546.		0
531	The Design, Synthesis, Characterization of Iron Oxide-Based Coating-Based Nanoproducts. , 2021, , 1-20.		O
532	Hybrid Magnetic nanoparticles–Carbonaceous nanomaterials (carbon nanotube/graphene). , 2021, , 121-138.		3
533	Tumor Vasculature. , 2021, , 831-867.		1
534	Renal clearable nanoparticles: An expanding horizon for improving biomedical imaging and cancer therapy. Materials Today Communications, 2021, 26, 102064.	0.9	24
535	Nanobodies for Medical Imaging: About Ready for Prime Time?. Biomolecules, 2021, 11, 637.	1.8	21
536	Mild Magnetic Hyperthermia-Activated Innate Immunity for Liver Cancer Therapy. Journal of the American Chemical Society, 2021, 143, 8116-8128.	6.6	87
537	Nanocomposites of ZnO mixed with different Ni-ferrite contents: Structural and magnetic properties. Physica B: Condensed Matter, 2021, 607, 412861.	1.3	5
538	Iron–Palladium magnetic nanoparticles for decolorizing rhodamine B and scavenging reactive oxygen species. Journal of Colloid and Interface Science, 2021, 588, 646-656.	5 . 0	7
539	Concept for using magnetic particle imaging for intraoperative margin analysis in breast-conserving surgery. Scientific Reports, 2021, 11, 13456.	1.6	21
540	Polymer-Based Materials and their Applications in Image-Guided Cancer Therapy. Current Medicinal Chemistry, 2022, 29, 1352-1368.	1.2	3
541	Functional Microâ€/Nanomaterials for Multiplexed Biodetection. Advanced Materials, 2021, 33, e2004734.	11.1	35
542	Nanoparticles Functionalised with Re(I) Tricarbonyl Complexes for Cancer Theranostics. International Journal of Molecular Sciences, 2021, 22, 6546.	1.8	16
543	Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1749.	3 . 3	15
544	Biomaterials for orthopedic diagnostics and theranostics. Current Opinion in Biomedical Engineering, 2021, 19, 100308.	1.8	12
545	Formulation and in-vitro evaluations of doxorubicin loaded polymerized magnetic nanocarriers for liver cancer cells. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 278-287.	2.7	10

#	Article	IF	Citations
546	Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers, 2021, 13, 2998.	2.0	40
547	Magnetic Resonance Imaging Agents. , 2021, , 583-601.		0
549	Overview on magnetically recyclable ferrite nanoparticles: synthesis and their applications in coupling and multicomponent reactions. RSC Advances, 2021, 11, 29333-29353.	1.7	27
551	(Super)paramagnetic Nanoparticles: Applications in Noninvasive MR Imaging of Stem Cell Transfer. , 2008, , 91-140.		3
552	Magnetic Nanosensors for Probing Molecular Interactions. , 2008, , 183-197.		3
553	Applications of Magnetic Nanoparticles in Biomedicine. , 2009, , 591-626.		367
554	PET Imaging of αvβ3 Expression in Cancer Patients. Methods in Molecular Biology, 2011, 680, 183-200.	0.4	23
555	Imaging Cancer Stem Cells. , 2011, , 297-309.		1
556	Iron Oxide Magnetic Nanoparticles (NPs) Tailored for Biomedical Applications. Nanomedicine and Nanotoxicology, 2020, , 57-102.	0.1	6
557	Multifunctional Magnetic Resonance Imaging Probes. Recent Results in Cancer Research, 2020, 216, 189-226.	1.8	3
558	Molecular Imaging of Inflammation Using Echocardiography. Advances with the Use of Microbubbles., 2015,, 465-500.		3
559	Advanced Experimental Magnetic Resonance Imaging. , 2009, , 27-46.		1
560	MR Contrast Agents. , 2009, , 17-39.		2
561	Development of a T1 Contrast Agent for Magnetic Resonance Imaging Using Gd2O3 Nanoparticles. IFMBE Proceedings, 2009, , 537-540.	0.2	1
562	Metal-derived nanoparticles in tumor theranostics: Potential and limitations. Journal of Inorganic Biochemistry, 2020, 209, 111117.	1.5	32
563	Preparation of novel anisotropic gold nanoplatform as NIR absorbing agents for photothermal therapy of liver cancer and enhanced ultrasound contrast imaging. Materials Research Express, 2020, 7, 125006.	0.8	2
564	Molecular imaging of plaques in coronary arteries with PET and SPECT. Journal of Geriatric Cardiology, 2014, 11, 259-73.	0.2	16
566	Non-invasive imaging to monitor lupus nephritis and neuropsychiatric systemic lupus erythematosus. F1000Research, 2015, 4, 153.	0.8	7

#	Article	IF	CITATIONS
567	Comparative In Vitro Study on Magnetic Iron Oxide Nanoparticles for MRI Tracking of Adipose Tissue-Derived Progenitor Cells. PLoS ONE, 2014, 9, e108055.	1.1	34
568	In vivo T2* weighted MRI visualizes cardiac lesions in murine models of acute and chronic viral myocarditis. PLoS ONE, 2017, 12, e0172084.	1.1	9
569	The Use of Iron Oxide Nanoparticles for Pancreatic Cancer Therapy. Journal of Nanomedicine Research, 2014, 1 , .	1.8	14
570	Synthesis of a cell penetrating peptide modified superparamagnetic iron oxide and MRI detection of bladder cancer. Oncotarget, 2017, 8, 4718-4729.	0.8	33
571	Iron Oxide Nanoparticles Versus Ferrous Sulfate In Treatment of Iron Deficiency Anemia In Rats. Egyptian Journal of Veterinary Science, 2018, 49, 103-109.	0.0	8
572	Tumor Homing Peptides as Molecular Probes for Cancer Therapeutics, Diagnostics and Theranostics. Current Medicinal Chemistry, 2014, 21, 2367-2391.	1.2	80
573	Nanotherapeutics for the Treatment of Cancer and Arthritis. Current Drug Metabolism, 2019, 20, 430-445.	0.7	10
574	Nanocarriers for the Simultaneous Co-Delivery of Therapeutic Genes and Anticancer Drugs. Current Pharmaceutical Biotechnology, 2012, 13, 1317-1331.	0.9	9
575	Biomedical Applications of Zinc Oxide Nanomaterials. Current Molecular Medicine, 2013, 13, 1633-1645.	0.6	495
576	Cancer Therapy Based on Smart Drug Delivery with Advanced Nanoparticles. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 720-730.	0.9	8
577	Development and use of iron oxide nanoparticles (Part 2): The application of iron oxide contrast agents in MRI. Biomedical Imaging and Intervention Journal, 2010, 6, .	0.5	17
578	Approaches to Multimodality Imaging of Angiogenesis. Journal of Nuclear Medicine, 2010, 51, 66S-79S.	2.8	18
579	Antiâ€'CD206 antibodyâ€'conjugated Fe3O4â€'based PLGA nanoparticles selectively promote tumorâ€'associated macrophages to polarize to the proâ€'inflammatory subtype. Oncology Letters, 2020, 20, 1-1.	0.8	21
580	Bundlet Model for Single-Wall Carbon Nanotubes, Nanocones and Nanohorns. , 0, , 228-284.		3
581	Nanotechnology: A boon in oral cancer diagnosis and therapeutics. SRM Journal of Research in Dental Sciences, 2013, 4, 154.	0.1	14
582	Probing Real-Time Response to Multitargeted Tyrosine Kinase Inhibitor 4-N-(3′-Bromo-Phenyl) Amino-6, 7-Dimethoxyquinazoline in Single Living Cells Using Biofuntionalized Quantum Dots. Journal of Nanomedicine & Nanotechnology, 2011, 02, .	1.1	12
583	Tumor Necrosis Factor Related Apoptosis Inducing Ligand-conjugated Near IR Fluorescent Iron Oxide/Human Serum Albumin Core-shell Nanoparticles of Narrow Size Distribution for Cancer Targeting and Therapy. Journal of Nanomedicine & Nanotechnology, 2015, 06, .	1.1	2
584	Superparamagnetic nanoparticles - a tool for early diagnostics. Swiss Medical Weekly, 2010, 140, w13081.	0.8	36

#	Article	IF	CITATIONS
585	Enrichment of Peptides using Novel C8-functionalized Magnetic Nanoparticles for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis. Mass Spectrometry Letters, 2011, 2, 53-56.	0.5	2
586	Superparamagnetic iron oxide-enhanced magnetic resonance for imaging cardiac inflammation. A minireview. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2015, 159, 378-381.	0.2	4
588	Molecular Imaging of Angiogenesis. , 2010, , 105-115.		0
589	Magnetomotive Molecular Nanoprobes for Optical Biomedical Imaging and Diagnostics. , 2011, , .		O
591	Bundlet Model for Single-Wall Carbon Nanotubes, Nanocones and Nanohorns. International Journal of Chemoinformatics and Chemical Engineering, 2012, 2, 48-98.	0.1	3
592	In vivo MR Imaging of Nanolabeled Diabetogenic T cells. , 2012, , 287-303.		0
593	Iron Oxide Nanoparticles Imaging Tracking by MR Advanced Techniques: Dual-Contrast Approaches. , 0,		0
594	Magnetic Nanoparticles: Its Effect on Cellular Behaviour and Potential Applications. , 0, , .		2
595	Functionalized Nanomaterials., 2013,, 581-609.		0
596	fMRI and Nanotechnology. , 2013, , 387-438.		O
598	Evaluation of thermally cross-linked superparamagnetic iron oxide nanoparticles for the changes of concentration and toxicity on tissues of Sprague-Dawley rats. Korean Journal of Veterinary Research, 2014, 54, 245-252.	0.2	0
599	Applications of Nanotechnology in Cancer. Advances in Environmental Engineering and Green Technologies Book Series, 2015, , 184-217.	0.3	0
600	Contrast Agents for Molecular-Level fMRI. Biological Magnetic Resonance, 2015, , 865-894.	0.4	0
601	Non-invasive imaging to monitor lupus nephritis and neuropsychiatric systemic lupus erythematosus. F1000Research, 2015, 4, 153.	0.8	3
602	Trends in Nanoscopy in Materials Research. Advances in Civil and Industrial Engineering Book Series, 2016, , 80-110.	0.2	0
603	Functionalized Nanomaterials., 2016, , 123-150.		0
604	Cluster Origin of Solvation Features of C-Nanostructures in Organic Solvents. Advances in Medical Technologies and Clinical Practice Book Series, 2016, , 189-293.	0.3	0
605	Organic–Inorganic Nanocomposites for Biomedical Applications. , 2016, , 375-395.		0

#	Article	IF	CITATIONS
606	Molecular Contrast Agents. , 2018, , 131-184.		0
607	CHAPTER 3. Applications of Magnetic Nanoparticles in Multi-modal Imaging. RSC Drug Discovery Series, 2018, , 53-85.	0.2	2
608	Iron Oxide-Based Polymeric Magnetic Nanoparticles for Drug and Gene Delivery: In Vitro and In Vivo Applications in Cancer. , 2019 , , 1 - 22 .		1
609	Nanotechnology-Based Stem Cell Tissue Engineering with a Focus on Regeneration of Cardiovascular Systems. , 2019, , 1-67.		1
610	Magneto-Responsive Nanomaterials for Medical Therapy in Preclinical and Clinical Settings. , 2019, , 241-297.		0
611	Reversible rearrangement of magnetic nanoparticles in solution studied using time-resolved SAXS method. Journal of Synchrotron Radiation, 2019, 26, 1294-1301.	1.0	2
612	Therapeutic Role of Curcumin Loaded Magnetic Nanoparticles Against Gamma-Irradiation Hazards in Rats. Arab Journal of Nuclear Sciences and Applications, 2019, 52, 64-73.	0.1	0
613	Computed Tomography and Magnetic Resonance Imaging. Recent Results in Cancer Research, 2020, 216, 31-110.	1.8	1
614	Cluster Origin of Solvent Features of Fullerenes, Single-Wall Carbon Nanotubes, Nanocones, and Nanohorns., 0, , 1-57.		0
615	Cluster Origin of Solvent Features of Fullerenes, Single-Wall Carbon Nanotubes, Nanocones, and Nanohorns., 0,, 262-318.		0
616	Multifunctional Nanoparticles in Precise Cancer Treatment: Considerations in Design and Functionalization of Nanocarriers. Current Topics in Medicinal Chemistry, 2020, 20, 2427-2441.	1.0	4
618	Multimodality molecular imaging of CD105 (Endoglin) expression. International Journal of Clinical and Experimental Medicine, 2011, 4, 32-42.	1.3	42
621	Intrinsically radiolabelled [(59)Fe]-SPIONs for dual MRI/radionuclide detection. American Journal of Nuclear Medicine and Molecular Imaging, 2014, 4, 548-60.	1.0	18
623	Synthesis and Application of FeO@Au Composite Nanoparticles as Magnetic Resonance/Computed Tomography Dual-Modality Contrast Agent. Journal of Medical Signals and Sensors, 2020, 10, 201-207.	0.5	4
624	Fast antibody responses by immuno-targeting and nanotechnology strategies versus HBsAg vaccine. Iranian Journal of Basic Medical Sciences, 2021, 24, 545-550.	1.0	0
625	Superparamagnetic iron oxide nanoparticles (SPIONs) as therapeutic and diagnostic agents. , 2022, , 455-497.		7
626	MRI monitoring of transplanted neonatal porcine islets labeled with polyvinylpyrrolidoneâ€coated superparamagnetic iron oxide nanoparticles in a mouse model. Xenotransplantation, 2021, , .	1.6	1
627	Iron Oxide Nanoparticle-Based Hyperthermia as a Treatment Option in Various Gastrointestinal Malignancies. Nanomaterials, 2021, 11, 3013.	1.9	25

#	ARTICLE	IF	Citations
628	Sentinel lymph node localization and staging with a low-dose of superparamagnetic iron oxide (SPIO) enhanced MRI and magnetometer in patients with cutaneous melanoma of the extremity - The MAGMEN feasibility study. European Journal of Surgical Oncology, 2022, 48, 326-332.	0.5	9
629	Iron Oxide Nanoparticles: Tuning to Advanced Nano Drug Delivery. Nanoscience and Nanotechnology - Asia, 2020, 10, 734-747.	0.3	0
631	Biomedical Applications of Gold Nanoparticles. Nanotechnology in the Life Sciences, 2021, , 41-59.	0.4	2
632	Preparation and characterization of glucoseâ€conjugated superâ€paramagnetic iron oxide nanoparticles (Gâ€SPIONs) for removal of <i>Edwardsiella tarda</i> and <i>Aeromonas hydrophila</i> from water. Microscopy Research and Technique, 2022, 85, 1768-1783.	1.2	2
633	Liquid metal biomaterials for biomedical imaging. Journal of Materials Chemistry B, 2022, 10, 829-842.	2.9	29
635	Bioresponsive Nanomaterials: Recent Advances in Cancer Multimodal Imaging and Imaging-Guided Therapy. Frontiers in Chemistry, 2022, 10, 881812.	1.8	5
636	Metal-based nanoparticles for cardiovascular disease diagnosis and therapy. Particuology, 2023, 72, 94-111.	2.0	7
637	One Step-Synthesis of Monodispersed and Fluorescent Mesoporous mSiO2-Coated Fe3O4 Nanoparticles. Glass Physics and Chemistry, 2021, 47, 590-600.	0.2	2
638	Genotoxicity of aluminium oxide, iron oxide, and copper nanoparticles in mouse bone marrow cells. Arhiv Za Higijenu Rada I Toksikologiju, 2021, 72, 315-325.	0.4	1
643	The Design, Synthesis, and Characterization of Iron Oxide-Based Coating-Based Nanoproducts. , 2022, , 827-845.		0
644	Recent progress of rare earth doped hydroxyapatite nanoparticles: Luminescence properties, synthesis and biomedical applications. Acta Biomaterialia, 2022, 148, 22-43.	4.1	39
645	Engineering and functionalization of nanomaterials for theranostic applications in infectious diseases. , 2022, , 45-71.		O
646	Magnetic Nanoparticles for Diagnostic and Therapeutic Applications. Nanotechnology in the Life Sciences, 2022, , 609-639.	0.4	0
647	Roadmap to Realization of Bionanotechnology. Synthesis Lectures on Biomedical Engineering, 2007, , 121-137.	0.1	0
648	BioNanoimaging. Synthesis Lectures on Biomedical Engineering, 2007, , 47-66.	0.1	0
649	Effect of magnetic nanoparticles on the magnetic field homogeneity. Chinese Physics B, O, , .	0.7	0
650	<i>In situ</i> self-assembly of amphiphilic dextran micelles and superparamagnetic iron oxide nanoparticle-loading as magnetic resonance imaging contrast agents. International Journal of Energy Production and Management, 0, , .	1.9	5
651	Applications of Magnetic Nanoparticles in Cancer Detection and Treatment. Journal of Nanotechnology in Diagnosis and Treatment, 0, 5, 34-43.	0.7	0

#	Article	IF	CITATIONS
652	Green synthesized nanomaterials: structure and functions for biomedical applications. , 2023, , 165-186.		0
653	Chemical vapor deposition by syngas on nanoparticles: Application to drug delivery. , 2023, , 395-410.		0
654	Nanotheranostics in CNS Malignancy. , 2023, , 307-321.		o
655	Nanobots: Self-Regulated Electronics for Health Care. , 2023, , 643-649.		1
656	Nanotechnological advancements in the brain tumor therapy: a novel approach. Therapeutic Delivery, 2022, 13, 531-557.	1.2	2
657	Recent Advances in Imaging Agents Anchored with pH (Low) Insertion Peptides for Cancer Theranostics. Molecules, 2023, 28, 2175.	1.7	2
658	Future of modern society: Sustainability in green nanotechnology. , 2023, , 393-410.		1
659	Imidazole-based fluorophores: Synthesis and applications. Materials Today Chemistry, 2023, 29, 101453.	1.7	3
660	Zinc and zinc oxide nanoparticles for theranostic applications. , 2023, , 167-199.		0
661	Impact of nanotechnology on differentiation and augmentation of stem cells for liver therapy. Critical Reviews in Therapeutic Drug Carrier Systems, 2023, , .	1.2	O
670	Nanomedicine: Insight Analysis of Emerging Biomedical Research and Developments., 2023,, 23-43.		0
671	Nanomachines and their biomedical applications. , 2024, , 131-150.		O