Biotope Associations and the Decline of Bumblebees (Bo

Journal of Insect Conservation 10, 95-103 DOI: 10.1007/s10841-006-6286-3

Citation Report

#	Article	IF	CITATIONS
1	Rarity and decline in bumblebees – A test of causes and correlates in the Irish fauna. Biological Conservation, 2007, 136, 185-194.	1.9	169
2	Can vulnerability among British bumblebee (Bombus) species be explained by niche position and breadth?. Biological Conservation, 2007, 138, 493-505.	1.9	98
3	Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodiversity and Conservation, 2008, 17, 1379-1391.	1.2	247
4	Diet breadth, coexistence and rarity in bumblebees. Biodiversity and Conservation, 2008, 17, 3269-3288.	1.2	95
5	Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conservation Genetics, 2008, 9, 653-666.	0.8	117
6	Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Functional Ecology, 2008, 22, 592-598.	1.7	166
7	A RETROSPECTIVE ANALYSIS OF POLLEN HOST PLANT USE BY STABLE AND DECLINING BUMBLE BEE SPECIES. Ecology, 2008, 89, 1811-1823.	1.5	200
8	Decline and Conservation of Bumble Bees. Annual Review of Entomology, 2008, 53, 191-208.	5.7	874
9	The remarkable diversity of bumblebees (Hymenoptera: Apidae: <i>Bombus</i>) in the Eyne Valley (France,) Tj ETO	Qq0 0 0 rg	BT /Overlock
10	Bumblebee nest density and the scale of available forage in arable landscapes. Insect Conservation and Diversity, 2009, 2, 116-124.	1.4	86
11	Bumblebee Vulnerability: Common Correlates of Winners and Losers across Three Continents. Conservation Biology, 2009, 23, 931-940.	2.4	129
12	Bumblebee vulnerability and conservation world-wide. Apidologie, 2009, 40, 367-387.	0.9	442
13	Status of the invasion and range expansion of an introduced bumblebee, Bombus terrestris (L.), in	0.6	9

13	Japan. Applied Entomology and Zoology, 2010, 45, 21-27.	0.6	9
14	The degree of parasitism of the bumblebee (Bombus terrestris) by cuckoo bumblebees (Bombus) Tj ETQq1 1 0.78	34314 rgB ⁻	T /Overlock

15	Environmental factors and land uses related to the naturalization of Bombus terrestris in Hokkaido, northern Japan. Biological Invasions, 2010, 12, 795-804.	1.2	6
16	Negligible impact of deer-induced habitat degradation on the genetic diversity of extant Bombus diversus populations in comparison with museum specimens. Journal of Insect Conservation, 2010, 14, 191-198.	0.8	6
17	Applying geographic profiling used in the field of criminology for predicting the nest locations of bumble bees. Journal of Theoretical Biology, 2010, 265, 211-217.	0.8	10
18	Cryptic differences in dispersal lead to differential sensitivity to habitat fragmentation in two bumblebee species. Molecular Ecology, 2010, 19, 53-63.	2.0	58

CITATION REPORT

#	Article	IF	CITATIONS
19	Landscape effects on extremely fragmented populations of a rare solitary bee, <i>Colletes floralis</i> . Molecular Ecology, 2010, 19, 4922-4935.	2.0	59
20	Pollinator richness and abundance in Northeast Estonia: bumblebees, butterflies and day-flying moths. Forestry Studies, 2010, 53, 5-14.	0.1	1
21	The Bumble Bees of Ukraine: Species Distribution and Floral Preferences. Psyche: Journal of Entomology, 2010, 2010, 1-10.	0.4	7
22	The conservation and restoration of wild bees. Annals of the New York Academy of Sciences, 2010, 1195, 169-197.	1.8	244
23	Crofting and bumblebee conservation: The impact of land management practices on bumblebee populations in northwest Scotland. Biological Conservation, 2010, 143, 492-500.	1.9	29
24	The role of dietary breadth in national bumblebee (Bombus) declines: Simple correlation?. Biological Conservation, 2010, 143, 2739-2746.	1.9	25
25	A review of New Zealand's deliberately introduced bee fauna: current status and potential impacts. New Zealand Entomologist, 2010, 33, 92-101.	0.3	30
26	Bumblebees (Hymenoptera: Apidae) of Remnant Grasslands in Arkansas. Journal of the Kansas Entomological Society, 2011, 84, 43-50.	0.1	6
27	Landscape elements as potential barriers and corridors for bees, wasps and parasitoids. Biological Conservation, 2011, 144, 1816-1825.	1.9	107
28	Increased bumblebee abundance along the margins of a mass flowering crop: evidence for pollinator spillâ€over. Oikos, 2011, 120, 1618-1624.	1.2	66
29	Niche differentiation of a cryptic bumblebee complex in the Western Isles of Scotland. Insect Conservation and Diversity, 2011, 4, 46-52.	1.4	23
30	The trade-off between agriculture and biodiversity in marginal areas: Can crofting and bumblebee conservation be reconciled?. Ecological Economics, 2011, 70, 1162-1169.	2.9	16
31	Population structure, dispersal and colonization history of the garden bumblebee Bombus hortorum in the Western Isles of Scotland. Conservation Genetics, 2011, 12, 867-879.	0.8	45
32	Changes in the Management of Scottish Machair Communities and Associated Habitats from the 1970s to the Present. Scottish Geographical Journal, 2011, 127, 267-287.	0.4	16
33	Flower Preferences of the WrocÅ,aw Botanical Garden Bumblebees (Bombus spp.). Journal of Apicultural Science, 2012, 56, 27-36.	0.1	10
34	The domestic garden – Its contribution to urban green infrastructure. Urban Forestry and Urban Greening, 2012, 11, 129-137.	2.3	411
35	Bumble Bees (Hymenoptera: Apidae) of Texas: Historical Distributions. Southwestern Naturalist, 2012, 57, 442-445.	0.1	7
36	The use of off-farm habitats by foraging bumblebees in agricultural landscapes: implications for conservation management. Apidologie, 2012, 43, 113-127.	0.9	20

#	Article	IF	CITATIONS
37	Quantifying forage specialisation in polyphagic insects: the polylectic and rare solitary bee, <i>Colletes floralis</i> (Hymenoptera: Colletidae). Insect Conservation and Diversity, 2012, 5, 289-297.	1.4	10
38	Restoration and management of machair grassland for the conservation of bumblebees. Journal of Insect Conservation, 2013, 17, 491-502.	0.8	11
39	Global change, biodiversity, and ecosystem services: What can we learn from studies of pollination?. Basic and Applied Ecology, 2013, 14, 453-460.	1.2	41
40	Influence of local and landscape factors on bumblebees in semi-natural meadows: a multiple-scale study in a forested landscape. Journal of Insect Conservation, 2013, 17, 113-125.	0.8	29
41	Using plant functional traits as a link between land use and bee foraging abundance. Acta Oecologica, 2013, 50, 32-39.	0.5	9
42	Historical changes in northeastern US bee pollinators related to shared ecological traits. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4656-4660.	3.3	432
43	Habitat and Forage Associations of a Naturally Colonising Insect Pollinator, the Tree Bumblebee Bombus hypnorum. PLoS ONE, 2014, 9, e107568.	1.1	33
44	Going native? Flower use by bumblebees in English urban gardens. Annals of Botany, 2014, 113, 799-806.	1.4	49
45	Influence of habitat and landscape on butterfly diversity of semi-natural meadows within forest-dominated landscapes. Journal of Insect Conservation, 2014, 18, 1137-1145.	0.8	19
46	Bumblebee-mediated pollination of English populations of the Military Orchid (<i>Orchis) Tj ETQq1 1 0.784314 r Journal of Botany, 2014, 4, 122-133.</i>	gBT /Over 0.2	lock 10 Tf 50 2
47	Bumblebees in the city: abundance, species richness and diversity in two urban habitats. Journal of Insect Conservation, 2014, 18, 1185-1191.	0.8	57
48	Commercial bumblebee hives to assess an anthropogenic environment for pollinator support: a case study in the region of Ghent (Belgium). Environmental Monitoring and Assessment, 2014, 186, 2357-2367.	1.3	23
49	Does communityâ€level floral abundance affect the pollination success of a rewardless orchid, <i>Calanthe reflexa</i> <scp>M</scp> axim.?. Plant Species Biology, 2014, 29, 159-168.	0.6	13
50	Population genetic structure of <i>Bombus terrestris</i> in Europe: Isolation and genetic differentiation of Irish and British populations. Molecular Ecology, 2015, 24, 3257-3268.	2.0	29
51	Extreme Food-Plant Specialisation in Megabombus Bumblebees as a Product of Long Tongues Combined with Short Nesting Seasons. PLoS ONE, 2015, 10, e0132358.	1.1	13
52	Honey bee colony losses and associated viruses. Current Opinion in Insect Science, 2015, 8, 121-129.	2.2	233
53	On the verge? Preferential use of road-facing hedgerow margins by bumblebees in agro-ecosystems. Journal of Insect Conservation, 2015, 19, 67-74.	0.8	34
54	Targeted agriâ€environment schemes significantly improve the population size of common farmland bumblebee species. Molecular Ecology, 2015, 24, 1668-1680.	2.0	105

CITATION REPORT

#	Article	IF	CITATIONS
55	Newly discovered colour-pattern polymorphism of Bombus koreanus females (Hymenoptera: Apidae) demonstrated by DNA barcoding. Apidologie, 2015, 46, 250-261.	0.9	19
56	Novel lactic acid bacteria isolated from the bumble bee gut: Convivina intestini gen. nov., sp. nov., Lactobacillus bombicola sp. nov., and Weissella bombi sp. nov Antonie Van Leeuwenhoek, 2015, 107, 1337-1349.	0.7	77
57	Bifidobacterium commune sp. nov. isolated from the bumble bee gut. Antonie Van Leeuwenhoek, 2015, 107, 1307-1313.	0.7	36
58	Revealing the hidden niches of cryptic bumblebees in Great Britain: Implications for conservation. Biological Conservation, 2015, 182, 126-133.	1.9	17
59	Effects of climate change and habitat loss on a forestâ€dependent bee species in a tropical fragmented landscape. Insect Conservation and Diversity, 2016, 9, 149-160.	1.4	27
60	The Persistence of Bumble Bees (Hymenoptera: Apidae) in Northeastern Texas. Proceedings of the Entomological Society of Washington, 2016, 118, 481-497.	0.0	2
61	Biogeography and designatable units of Bombus occidentalis Greene and B. terricola Kirby (Hymenoptera: Apidae) with implications for conservation status assessments. Journal of Insect Conservation, 2016, 20, 189-199.	0.8	18
62	Habitat quality limits gene flow between populations of Bombus ruderatus in the South Island, New Zealand. Conservation Genetics, 2016, 17, 703-713.	0.8	4
63	Different but the same: bumblebee species collect pollen of different plant sources but similar amino acid profiles. Apidologie, 2017, 48, 102-116.	0.9	50
64	An updated understanding of Texas bumble bee (Hymenoptera: Apidae) species presence and potential distributions in Texas, USA. Peerl, 2017, 5, e3612.	0.9	9
65	Recently identified bee viruses and their impact on bee pollinators. Current Opinion in Insect Science, 2018, 26, 120-129.	2.2	86
66	Bee pollinators of faba bean (Vicia faba L.) differ in their foraging behaviour and pollination efficiency. Agriculture, Ecosystems and Environment, 2018, 264, 24-33.	2.5	70
67	Habitat suitability for the invasion of Bombus terrestris in East Asian countries: A case study of spatial overlap with local Chinese bumblebees. Scientific Reports, 2018, 8, 11035.	1.6	23
68	Flagellum Removal by a Nectar Metabolite Inhibits Infectivity of a Bumblebee Parasite. Current Biology, 2019, 29, 3494-3500.e5.	1.8	61
69	Habitat use and floral resource partitioning of native and alien bumblebees in the coastal grassland—rural landscape. Journal of Insect Conservation, 2019, 23, 677-687.	0.8	5
70	A century of local changes in bumblebee communities and landscape composition in Belgium. Journal of Insect Conservation, 2019, 23, 489-501.	0.8	24
71	Tiny fragments of acidophilous steppic grasslands serve as yet unknown habitats of endangered aeolian sand specialists among Aculeata (Hymenoptera). Biodiversity and Conservation, 2019, 28, 183-195.	1.2	4
72	Trialling techniques for rearing long-tongued bumblebees under laboratory conditions. Apidologie, 2020, 51, 254-266.	0.9	5

#	Article	IF	CITATIONS
73	Estimating possible bumblebee range shifts in response to climate and land cover changes. Scientific Reports, 2020, 10, 19622.	1.6	9
74	Oneâ€size does not fit all: atâ€risk bumble bee habitat management requires speciesâ€specific local and landscape considerations. Insect Conservation and Diversity, 2020, 13, 558-570.	1.4	14
75	Investigating the ecology of the Great Yellow Bumblebee (Bombus distinguendus) within the wider bumblebee community in North-West Ireland. Journal of Insect Conservation, 2021, 25, 297-310.	0.8	3
76	Indicators of Pollinator Decline and Pollen Limitation. , 2015, , 103-115.		4
77	Multilevel Spatial Structure Impacts on the Pollination Services of Comarum palustre (Rosaceae). PLoS ONE, 2014, 9, e99295.	1.1	15
78	Bee occurrence data collected in citizen science program " Hanamaruâ€Maruhana national census―in Japan. Ecological Research, 0, , .	0.7	1
79	Bumblebees as potential indicators for the evaluation of habitat quality. WIT Transactions on Ecology and the Environment, 2011, , .	0.0	0
81	Introduction to Grasses and Grasslands. , 2019, , 1-35.		0
82	Memory-guided foraging and landscape design interact to determine ecosystem services. Journal of Theoretical Biology, 2022, 534, 110958.	0.8	2

CITATION REPORT