Early Herbivore Alert: Insect Eggs Induce Plant Defense

Journal of Chemical Ecology 32, 1379-1397 DOI: 10.1007/s10886-006-9057-4

Citation Report

#	Article	IF	CITATIONS
1	Kairomones Extracted from Rice Yellow Stem Borer and their Influence on Egg Parasitization by Trichogramma japonicum Ashmead. Journal of Chemical Ecology, 2006, 33, 59-73.	1.8	15
2	Different oviposition behaviour in Chrysomelid beetles: Characterisation of the interface between oviposition secretion and the plant surface. Arthropod Structure and Development, 2006, 35, 197-205.	1.4	18
3	Allelochemical Communication in Vertebrates: Kairomones, Allomones and Synomones. Cells Tissues Organs, 2006, 183, 206-219.	2.3	58
4	Oviposition by Pierid Butterflies Triggers Defense Responses in Arabidopsis. Plant Physiology, 2007, 143, 784-800.	4.8	187
5	Oviposition-Induced Changes in Arabidopsis Genome Expression. Plant Signaling and Behavior, 2007, 2, 165-167.	2.4	13
6	Reduction of ethylene emission from Scots pine elicited by insect egg secretion. Journal of Experimental Botany, 2007, 58, 1835-1842.	4.8	31
7	Induced resistance against leafminer eggs by extrusion in young potato plants. International Journal of Pest Management, 2007, 53, 259-262.	1.8	8
8	Host-marking by female pepper weevils, Anthonomus eugenii. Entomologia Experimentalis Et Applicata, 2007, 125, 269-276.	1.4	25
9	Host plant location by Chrysomelidae. Basic and Applied Ecology, 2007, 8, 97-116.	2.7	74
10	Host-associated kairomones used for habitat orientation in the parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). Journal of Stored Products Research, 2007, 43, 587-593.	2.6	31
11	Mother's choice of the oviposition site: balancing risk of egg parasitism and need of food supply for the progeny with an infochemical shelter?. Chemoecology, 2007, 17, 177-186.	1.1	39
12	Jasmonic Acid-Induced Changes in Brassica oleracea Affect Oviposition Preference of Two Specialist Herbivores. Journal of Chemical Ecology, 2007, 33, 655-668.	1.8	74
13	Specificity of Induction Responses in Sinapis alba L. and Their Effects on a Specialist Herbivore. Journal of Chemical Ecology, 2007, 33, 1582-1597.	1.8	34
14	Differential Attractiveness of Potato Tuber Volatiles to Phthorimaea operculella (Gelechiidae) and the Predator Orius insidiosus (Anthocoridae). Journal of Chemical Ecology, 2007, 33, 1845-1855.	1.8	31
15	The Response Specificity of Trichogramma Egg Parasitoids towards Infochemicals during Host Location. Journal of Insect Behavior, 2007, 20, 53-65.	0.7	35
16	EAG-Active Herbivore-Induced Plant Volatiles Modify Behavioral Responses and Host Attack by An Egg Parasitoid. Journal of Chemical Ecology, 2008, 34, 1190-1201.	1.8	60
17	Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine?. Planta, 2008, 228, 427-438.	3.2	62
18	Plant Immunity to Insect Herbivores. Annual Review of Plant Biology, 2008, 59, 41-66.	18.7	1,975

#	Article	IF	CITATIONS
19	Start making scents: the challenge of integrating chemistry into pollination ecology. Entomologia Experimentalis Et Applicata, 2008, 128, 196-207.	1.4	128
20	Indirect defence via tritrophic interactions. New Phytologist, 2008, 178, 41-61.	7.3	615
21	(<i>R</i>)â€(+)â€limonene, kairomone for <i>Dastarcus helophoroides</i> , a natural enemy of longhorned beetles. Agricultural and Forest Entomology, 2008, 10, 323-330.	1.3	30
22	Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant, Cell and Environment, 2008, 31, 575-585.	5.7	131
23	Unusual mechanisms involved in learning of oviposition-induced host plant odours in an egg parasitoid?. Animal Behaviour, 2008, 75, 1423-1430.	1.9	24
24	Plant–insect dialogs: complex interactions at the plant–insect interface. Current Opinion in Plant Biology, 2008, 11, 457-463.	7.1	232
25	Indirect Defence — Recent Developments and Open Questions. Progress in Botany Fortschritte Der Botanik, 2008, , 359-396.	0.3	9
26	Response of the parasitoid <i>Telenomus podisi</i> to induced volatiles from soybean damaged by stink bug herbivory and oviposition. Journal of Plant Interactions, 2008, 3, 111-118.	2.1	46
27	Chemical Ecology of Plant–Insect Interactions. , 0, , 261-291.		3
28	Foraging behavior of egg parasitoids exploiting chemical information. Behavioral Ecology, 2008, 19, 677-689.	2.2	237
29	The Relevance of Background Odor in Resource Location by Insects: A Behavioral Approach. BioScience, 2008, 58, 308-316.	4.9	206
30	Herbivore-Induced Indirect Defense: From Induction Mechanisms to Community Ecology. , 2008, , 31-60.		30
31	Progress in Botany. Progress in Botany Fortschritte Der Botanik, 2008, , .	0.3	2
32	Resistance at the Plant Cuticle. , 2008, , 107-129.		11
33	Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10033-10038.	7.1	109
35	Molecular Aspects of Plant Disease Resistance. , 2008, , .		6
36	Comparing induction at an early and late step in signal transduction mediating indirect defence in Brassica oleracea. Journal of Experimental Botany, 2009, 60, 2589-2599.	4.8	17
37	Chapter 13 Adaptive Defense Responses to Pathogens and Insects. Advances in Botanical Research, 2009, , 551-612.	1.1	68

#	Article	IF	CITATIONS
38	A finely tuned strategy adopted by an egg parasitoid to exploit chemical traces from host adults. Journal of Experimental Biology, 2009, 212, 1825-1831.	1.7	33
39	Parasitism and olfactory responses of Dastarcus helophoroides (Coleoptera: Bothrideridae) to different Cerambycid hosts. BioControl, 2009, 54, 733-742.	2.0	43
40	Anti-aphrodisiac Compounds of Male Butterflies Increase the Risk of Egg Parasitoid Attack by Inducing Plant Synomone Production. Journal of Chemical Ecology, 2009, 35, 1373-1381.	1.8	48
41	Behavioural and community ecology of plants that cry for help. Plant, Cell and Environment, 2009, 32, 654-665.	5.7	274
42	Herbivoryâ€induced signalling in plants: perception and action. Plant, Cell and Environment, 2009, 32, 1161-1174.	5.7	221
43	Plants on early alert: glandular trichomes as sensors for insect herbivores. New Phytologist, 2009, 184, 644-656.	7.3	181
44	Damaged-self recognition in plant herbivore defence. Trends in Plant Science, 2009, 14, 356-363.	8.8	181
45	Host Searching by Egg Parasitoids: Exploitation of Host Chemical Cues. , 2009, , 97-147.		17
46	Nutritional Ecology of Insect Egg Parasitoids. , 2009, , 25-55.		6
47	Species-specific responses of pine sesquiterpene synthases to sawfly oviposition. Phytochemistry, 2010, 71, 909-917.	2.9	31
48	Influence of Feeding and Oviposition by Phytophagous Pentatomids on Photosynthesis of Herbaceous Plants. Journal of Chemical Ecology, 2010, 36, 629-641.	1.8	55
49	Plastic defence expression in plants. Evolutionary Ecology, 2010, 24, 555-569.	1.2	79
50	The use of ovipositionâ€induced plant cues by <i>Trichogramma</i> egg parasitoids. Ecological Entomology, 2010, 35, 748-753.	2.2	30
51	Water loss and gas exchange by eggs of Manduca sexta: Trading off costs and benefits. Journal of Insect Physiology, 2010, 56, 480-487.	2.0	60
52	Sites of synthesis, biochemistry and functional role of plant volatiles. South African Journal of Botany, 2010, 76, 612-631.	2.5	249
52 53	Sites of synthesis, biochemistry and functional role of plant volatiles. South African Journal of Botany, 2010, 76, 612-631. Does risk of egg parasitism affect choice of oviposition sites by a moth? A field and laboratory study. Basic and Applied Ecology, 2010, 11, 135-143.	2.5	249 32
52 53 54	Sites of synthesis, biochemistry and functional role of plant volatiles. South African Journal of Botany, 2010, 76, 612-631. Does risk of egg parasitism affect choice of oviposition sites by a moth? A field and laboratory study. Basic and Applied Ecology, 2010, 11, 135-143. Vegetation complexityâ€"The influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic and Applied Ecology, 2010, 11, 383-395.	2.5 2.7 2.7	249 32 141

ARTICLE IF CITATIONS # Stimuli associated with viburnum leaf beetle (<i>Pyrrhalta viburni</i>) aggregative oviposition 1.4 10 58 behavior. Entomologia Experimentalis Et Applicata, 2010, 135, 245-251. Insect eggs suppress plant defence against chewing herbivores. Plant Journal, 2010, 62, 876-885. Is quality more important than quantity? Insect behavioural responses to changes in a volatile blend 61 2.396 after stemborer oviposition on an African grass. Biology Letters, 2010, 6, 314-317. Egg attachment of the asparagus beetle <i>Crioceris asparagi</i> to the crystalline waxy surface of <i>Asparagus officinalis</i>. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 895-903. Short-range allelochemicals from a plant–herbivore association: a singular case of oviposition-induced synomone for an egg parasitoid. Journal of Experimental Biology, 2010, 213, 63 1.7 44 3911-3919. Chemical espionage on species-specific butterfly anti-aphrodisiacs by hitchhiking Trichogramma wasps. Behavioral Ecology, 2010, 21, 470-478. 2.2 Sweet smells prepare plants for future stress: Airborne induction of plant disease immunity. Plant 65 2.4 13 Signaling and Behavior, 2010, 5, 528-531. Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for 5.3 66 204 integrated pest management. A review. Agronomy for Sustainable Development, 2010, 30, 311-348. 67 Multiple stress factors and the emission of plant VOCs. Trends in Plant Science, 2010, 15, 176-184. 8.8 715 Plant defenses against parasitic plants show similarities to those induced by herbivores and 2.4 pathogens. Plant Signaling and Behavior, 2010, 5, 929-931. Olfactory Attraction of the Larval Parasitoid, <i>Hyposoter horticola</i>, to Plants Infested with 69 1.5 15 Eggs of the Host Butterfly, <i>Melitaea cinxia </i>. Journal of Insect Science, 2010, 10, 1-16. Plant Communication from an Ecological Perspective. Signaling and Communication in Plants, 2010, , . Allelochemicals in Plant–Insect Interactions. , 2010, , 563-594. 71 9 Aggregative oviposition of a phytophagous beetle overcomes egg-crushing plant defences. Ecological Entomology, 2011, 36, 335-343. 2.2 The Biological Activity of Phytochemicals., 2011, , . 73 6 Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for 74 Integrated Pest Management., 2011, , 623-670. Plant volatiles: Production, function and pharmacology. Natural Product Reports, 2011, 28, 1359. 75 10.3 282 Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. 6.4 204 Ecology Letters, 2011, 14, 1075-1083.

#	Article	IF	CITATIONS
79	Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agricultural and Forest Entomology, 2011, 13, 45-57.	1.3	70
80	Herbivoreâ€induced volatiles of cabbage (<i>Brassica oleracea</i>) prime defence responses in neighbouring intact plants. Plant Biology, 2011, 13, 276-284.	3.8	46
81	The multiple faces of indirect defences and their agents of natural selection. Functional Ecology, 2011, 25, 348-357.	3.6	233
82	Plants and insect eggs: How do they affect each other?. Phytochemistry, 2011, 72, 1612-1623.	2.9	144
83	The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry, 2011, 72, 1647-1654.	2.9	154
84	Reiterative and interruptive signaling in induced plant resistance to chewing insects. Phytochemistry, 2011, 72, 1624-1634.	2.9	29
85	Host plant direct defence against eggs of its specialist herbivore, Heliothis subflexa. Ecological Entomology, 2011, 36, 700-708.	2.2	49
86	How plants give early herbivore alert: Volatile terpenoids attract parasitoids to egg-infested elms. Basic and Applied Ecology, 2011, 12, 403-412.	2.7	55
87	Effects of Time After Last Herbivory on the Attraction of Corn Plants Infested with Common Arymworms to a Parasitic Wasp Cotesia kariyai. Journal of Chemical Ecology, 2011, 37, 267-272.	1.8	11
88	Volatiles Mediating a Plant-Herbivore-Natural Enemy Interaction in Resistant and Susceptible Soybean Cultivars. Journal of Chemical Ecology, 2011, 37, 273-285.	1.8	92
89	Oviposition Choice of Two Fall Armyworm (Lepidoptera: Noctuidae) Host Strains. Journal of Insect Behavior, 2011, 24, 337-347.	0.7	26
90	Oviposition by a moth suppresses constitutive and herbivore-induced plant volatiles in maize. Planta, 2011, 234, 207-215.	3.2	59
91	The response of resistant kiwifruit (Actinidia chinensis) to armoured scale insect (Diaspididae) feeding. Arthropod-Plant Interactions, 2011, 5, 149-161.	1.1	12
92	Lipase Activity in Insect Oral Secretions Mediates Defense Responses in Arabidopsis Â. Plant Physiology, 2011, 156, 1520-1534.	4.8	112
93	Recent Advances in Plant Early Signaling in Response to Herbivory. International Journal of Molecular Sciences, 2011, 12, 3723-3739.	4.1	151
94	Elucidating the Metabolism of Plant Terpene Volatiles: Alternative Tools for Engineering Plant Defenses?. , 2011, , 159-178.		4
95	Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?. Tree Physiology, 2011, 31, 1356-1377.	3.1	71
96	Can insect egg deposition â€~warn' a plant of future feeding damage by herbivorous larvae?. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 101-108.	2.6	58

#	Article	IF	CITATIONS
97	Damaged-self recognition as a general strategy for injury detection. Plant Signaling and Behavior, 2012, 7, 576-580.	2.4	29
99	Chemical Ecology of Egg Parasitoids Associated with True Bugs. Psyche: Journal of Entomology, 2012, 2012, 1-11.	0.9	48
100	Dynamics of plant secondary metabolites and consequences for food chains and community dynamics. , 2012, , 308-328.		4
101	Insect Egg Deposition Induces Indirect Defense and Epicuticular Wax Changes in Arabidopsis thaliana. Journal of Chemical Ecology, 2012, 38, 882-892.	1.8	52
102	Association mapping of plant resistance to insects. Trends in Plant Science, 2012, 17, 311-319.	8.8	63
103	Employing Chemical Ecology to Understand and Exploit Biodiversity for Pest Management. , 2012, , 185-195.		28
104	Plant Defense Against Herbivores: Chemical Aspects. Annual Review of Plant Biology, 2012, 63, 431-450.	18.7	1,169
105	Interspecific extrinsic and intrinsic competitive interactions in egg parasitoids. BioControl, 2012, 57, 719-734.	2.0	47
106	Natural elicitors, effectors and modulators of plant responses. Natural Product Reports, 2012, 29, 1288.	10.3	111
107	An elm EST database for identifying leaf beetle egg-induced defense genes. BMC Genomics, 2012, 13, 242.	2.8	27
108	Egg adhesion of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to various substrates: I. Leaf surfaces of different apple cultivars. Arthropod-Plant Interactions, 2012, 6, 471-488.	1.1	21
109	Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions. Insects, 2012, 3, 1171-1189.	2.2	30
110	Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels. PLoS ONE, 2012, 7, e43607.	2.5	152
111	Asking the ecosystem if herbivory-inducible plant volatiles (HIPVs) have defensive functions. , 2012, , 287-307.		5
112	Chemical Ecology Providing Novel Strategies Against Vineyard Pests in Australia. , 2012, , 119-138.		1
113	The Impact of Induced Plant Volatiles on Plant-Arthropod Interactions. , 2012, , 15-73.		5
114	Oviposition Induced Volatile Emissions from African Smallholder Farmers' Maize Varieties. Journal of Chemical Ecology, 2012, 38, 231-234.	1.8	52
115	Characterization of the natural variation in Arabidopsis thaliana metabolome by the analysis of metabolic distance. Metabolomics, 2012, 8, 131-145.	3.0	38

#	Article	IF	CITATIONS
116	Prolonged exposure is required for communication in sagebrush. Arthropod-Plant Interactions, 2012, 6, 197-202.	1.1	5
117	Phoresy in the field: natural occurrence of Trichogramma egg parasitoids on butterflies and moths. BioControl, 2012, 57, 493-502.	2.0	31
118	Minor effects of two elicitors of insect and pathogen resistance on volatile emissions and parasitism of Spodoptera frugiperda in Mexican maize fields. Biological Control, 2012, 60, 7-15.	3.0	50
119	Chemical and structural effects of invasive plants on herbivore–parasitoid/predator interactions in native communities. Entomologia Experimentalis Et Applicata, 2012, 144, 14-26.	1.4	51
120	Herbivore egg deposition induces tea leaves to arrest the eggâ€larval parasitoid <i><scp>A</scp>scogaster reticulata</i> . Entomologia Experimentalis Et Applicata, 2012, 144, 172-180.	1.4	13
121	Role of volatile semiochemicals in host location by the egg parasitoid <i><scp>A</scp>nagrus breviphragma</i> . Entomologia Experimentalis Et Applicata, 2012, 144, 311-316.	1.4	26
122	Specificity of systemically released rice stem volatiles on egg parasitoid, <i>Trichogramma japonicum</i> Ashmead behaviour. Journal of Applied Entomology, 2012, 136, 749-760.	1.8	17
123	Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, 2013, , .	2.5	38
124	Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta, 2013, 238, 247-258.	3.2	119
125	Behavioral Ecology of Oviposition-Site Selection in Herbivorous True Bugs. Advances in the Study of Behavior, 2013, 45, 175-207.	1.6	14
126	Influence of volatile compounds from herbivoreâ€damaged soybean plants on searching behavior of the egg parasitoid <i><scp>T</scp>elenomus podisi</i> . Entomologia Experimentalis Et Applicata, 2013, 147, 9-17.	1.4	28
127	Short-range cues mediate parasitoid searching behavior on maize: The role of oviposition-induced plant synomones. Biological Control, 2013, 64, 247-254.	3.0	23
128	Stabilizing Mutualisms Threatened by Exploiters: New Insights from Ant–Plant Research. Biotropica, 2013, 45, 654-665.	1.6	15
129	Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity. Journal of Experimental Botany, 2013, 64, 665-674.	4.8	104
130	Plant volatiles as method of communication. Plant Biotechnology Reports, 2013, 7, 9-26.	1.5	91
133	Plant Defense against Insect Herbivores. International Journal of Molecular Sciences, 2013, 14, 10242-10297.	4.1	626
134	cis-Jasmone indirect action on egg parasitoids (Hymenoptera: Scelionidae) and its application in biological control of soybean stink bugs (Hemiptera: Pentatomidae). Biological Control, 2013, 64, 75-82.	3.0	28
135	<i>Anastrepha</i> egg deposition induces volatiles in fruits that attract the parasitoid <i>Fopius arisanus</i> . Bulletin of Entomological Research, 2013, 103, 318-325.	1.0	10

#	Article	IF	CITATIONS
136	Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development. Ecology, 2013, 94, 702-713.	3.2	66
137	Egg Laying of Cabbage White Butterfly (Pieris brassicae) on Arabidopsis thaliana Affects Subsequent Performance of the Larvae. PLoS ONE, 2013, 8, e59661.	2.5	55
138	Extreme divergence in floral scent among woodland star species (Lithophragma spp.) pollinated by floral parasites. Annals of Botany, 2013, 111, 539-550.	2.9	43
139	Allelochemicals in Plant–Insect Interactions. , 2013, , .		1
140	Priming of antiherbivore defensive responses in plants. Insect Science, 2013, 20, 273-285.	3.0	91
141	Host selection, oviposition behaviour and leaf traits in a specialist willow sawfly on species of <i>Salix</i> (<scp>S</scp> alicaceae). Ecological Entomology, 2013, 38, 617-626.	2.2	13
142	Elicitor(s) in <i>Sogatellafurcifera</i> (Horváth) Causing the Japanese Rice Plant (<i>Oryza) Tj ETQq0 0 0 r Biochemistry, 2013, 77, 1258-1261.</i>	gBT /Over 1.3	ock 10 Tf 50 19
143	Developmental pathway from leaves to galls induced by a sap-feeding insect on Schinus polygamus (Cav.) Cabrera (Anacardiaceae). Anais Da Academia Brasileira De Ciencias, 2013, 85, 187-200.	0.8	36
145	Larval Hitch-Hiking and Adult Flight Are Two Ways of Aphidiinae Parasitoids Long-Range Dispersal. Environmental Entomology, 2014, 43, 1327-1332.	1.4	5
146	Differential response of <i>Trichogramma</i> wasps to extreme sex pheromone types of the noctuid moth <i>Heliothis virescens</i> . Ecological Entomology, 2014, 39, 627-636.	2.2	8
147	Attraction to conspecific eggs may guide oviposition site selection in a solitary insect. Behavioral Ecology, 2014, 25, 110-116.	2.2	38
148	Structural determination of elicitors in <i>Sogatella furcifera</i> (Horváth) that induce Japonica rice plant varieties (<i>Oryza sativa</i> L.) to produce an ovicidal substance against <i>S. furcifera</i> eggs. Bioscience, Biotechnology and Biochemistry, 2014, 78, 937-942.	1.3	21
149	Kairomones for Increasing the Biological Control Efficiency of Insect Natural Enemies. , 2014, , 289-306.		3
150	Plant odour plumes as mediators of plant–insect interactions. Biological Reviews, 2014, 89, 68-81.	10.4	115
152	Assessment of Natural Parasitism of Sugarcane Moth Borers Sesamia spp. by Telenomus busseolae. Sugar Tech, 2014, 16, 325-328.	1.8	12
153	Preference for outbred host plants and positive effects of inbreeding on egg survival in a specialist herbivore. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141421.	2.6	8
154	Basic and Applied Aspects of Biopesticides. , 2014, , .		12
155	Attraction of the egg parasitoid, Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae) to synthetic formulation of a (E)-β-ocimene and (E,E)-α-farnesene mixture. Biological Control, 2014, 77, 23-28.	3.0	16

	Article	IF	CITATIONS
156	Chemical Ecology of Phytohormones: How Plants Integrate Responses to Complex and Dynamic Environments. Journal of Chemical Ecology, 2014, 40, 653-656.	1.8	15
157	Impact of reassociation with a coevolved herbivore on oviposition deterrence in a hostplant. Oecologia, 2014, 176, 117-127.	2.0	2
158	Little peaks with big effects: establishing the role of minor plant volatiles in plant–insect interactions. Plant, Cell and Environment, 2014, 37, 1836-1844.	5.7	112
159	Efficiency of plant induced volatiles in attracting <i>Encarsia formosa</i> and <i>Serangium japonicum</i> , two dominant natural enemies of whitefly <i>Bemisia tabaci</i> in China. Pest Management Science, 2014, 70, 1604-1610.	3.4	21
160	Ecological management of cereal stemborers in <scp>A</scp> frican smallholder agriculture through behavioural manipulation. Ecological Entomology, 2015, 40, 70-81.	2.2	38
161	Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, 2015, , .	1.1	30
162	Responses of Parasitoids to Volatiles Induced by Chilo partellus Oviposition on Teosinte, a Wild Ancestor of Maize. Journal of Chemical Ecology, 2015, 41, 323-329.	1.8	41
163	Oviposition by <i>Spodoptera exigua</i> on <i>Nicotiana attenuata</i> primes induced plant defence against larval herbivory. Plant Journal, 2015, 83, 661-672.	5.7	63
164	Biosynthesis and Biological Functions of Terpenoids in Plants. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 63-106.	1.1	446
165	Plant Volatile Chemicals and Insect Responses. , 2015, , 671-695.		0
166	Oviposition induced volatiles in tomato plants. Phytochemistry Letters, 2015, 13, 262-266.	1.2	29
166 167	Oviposition induced volatiles in tomato plants. Phytochemistry Letters, 2015, 13, 262-266. Maize Plants Recognize Herbivore-Associated Cues from Caterpillar Frass. Journal of Chemical Ecology, 2015, 41, 781-792.	1.2 1.8	29 61
166 167 168	Oviposition induced volatiles in tomato plants. Phytochemistry Letters, 2015, 13, 262-266. Maize Plants Recognize Herbivore-Associated Cues from Caterpillar Frass. Journal of Chemical Ecology, 2015, 41, 781-792. A re-examination of corn (Zea mays L.) ear volatiles. Phytochemistry Letters, 2015, 14, 280-286.	1.2 1.8 1.2	29 61 5
166 167 168 169	Oviposition induced volatiles in tomato plants. Phytochemistry Letters, 2015, 13, 262-266. Maize Plants Recognize Herbivore-Associated Cues from Caterpillar Frass. Journal of Chemical Ecology, 2015, 41, 781-792. A re-examination of corn (Zea mays L.) ear volatiles. Phytochemistry Letters, 2015, 14, 280-286. Plant Responses to Insect Egg Deposition. Annual Review of Entomology, 2015, 60, 493-515.	1.2 1.8 1.2 11.8	29 61 5 265
166 167 168 169 170	Oviposition induced volatiles in tomato plants. Phytochemistry Letters, 2015, 13, 262-266.Maize Plants Recognize Herbivore-Associated Cues from Caterpillar Frass. Journal of Chemical Ecology, 2015, 41, 781-792.A re-examination of corn (Zea mays L.) ear volatiles. Phytochemistry Letters, 2015, 14, 280-286.Plant Responses to Insect Egg Deposition. Annual Review of Entomology, 2015, 60, 493-515.Role of plant sensory perception in plant-animal interactions. Journal of Experimental Botany, 2015, 66, 425-433.	1.2 1.8 1.2 11.8 4.8	29 61 5 265 58
166 167 168 169 170	Oviposition induced volatiles in tomato plants. Phytochemistry Letters, 2015, 13, 262-266.Maize Plants Recognize Herbivore-Associated Cues from Caterpillar Frass. Journal of Chemical Ecology, 2015, 41, 781-792.A re-examination of corn (Zea mays L.) ear volatiles. Phytochemistry Letters, 2015, 14, 280-286.Plant Responses to Insect Egg Deposition. Annual Review of Entomology, 2015, 60, 493-515.Role of plant sensory perception in plant-animal interactions. Journal of Experimental Botany, 2015, 66, 425-433.Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. Journal of Experimental Botany, 2015, 66, 455-465.	1.2 1.8 1.2 11.8 4.8 4.8	29 61 5 265 58 117
166 167 168 169 170 171	Oviposition induced volatiles in tomato plants. Phytochemistry Letters, 2015, 13, 262-266. Maize Plants Recognize Herbivore-Associated Cues from Caterpillar Frass. Journal of Chemical Ecology, 2015, 41, 781-792. A re-examination of corn (Zea mays L.) ear volatiles. Phytochemistry Letters, 2015, 14, 280-286. Plant Responses to Insect Egg Deposition. Annual Review of Entomology, 2015, 60, 493-515. Role of plant sensory perception in plant-animal interactions. Journal of Experimental Botany, 2015, 66, 425-433. Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. Journal of Experimental Botany, 2015, 66, 455-465. Semiochemicals from plants and insects on the foraging behavior of Platygastridae egg parasitoids. Pesquisa Agropecuaria Brasileira, 2016, 51, 454-464.	1.2 1.8 1.2 11.8 4.8 4.8 0.9	29 61 5 265 58 117 18

ARTICLE IF CITATIONS Advances in Plant Tolerance to Biotic Stresses., 0,,. 175 25 Insecticide Effect of Zeolites on the Tomato Leafminer Tuta absoluta (Lepidoptera: Gelechiidae). 2.2 Insects, 2016, 7, 72. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and 178 3.6 74 Opportunities. Frontiers in Plant Science, 2016, 7, 1794. Host plant preference and offspring performance of a leafâ€mining moth, <i><scp>C</scp>aloptilia 179 fraxinella</i>, on two <i><scp>F</scp>raxinus</i> species. Entomologia Experimentalis Et Applicata, 1.4 2016, 159, 311-326. Push-Pull: Chemical Ecology-Based Integrated Pest Management Technology. Journal of Chemical 180 1.8 84 Ecology, 2016, 42, 689-697. Elm leaves $\hat{a} \in \hat{w}$ warned $\hat{a} \in \hat{w}$ by insect egg deposition reduce survival of hatching larvae by a shift in their quantitative leaf metabolite pattern. Plant, Cell and Environment, 2016, 39, 366-376. 5.7 PHYSIOLOGICAL EFFECTS OF RESVERATROL AND COUMARIC ACID ON TWO MAIOR GROUNDNUT PESTS AND 182 1.5 18 THEIR EGG PARASITOID BEHAVIOR. Archives of Insect Biochemistry and Physiology, 2016, 91, 230-245. The influence of volatile semiochemicals from stink bug eggs and oviposition-damaged plants on the foraging behaviour of the egg parasitoid <i>Telenomus podisi</i>. Bulletin of Entomological Research, 1.0 28 2016, 106, 663-671. Butterflies and plants: preference/performance studies in relation to plant size and the use of intact 184 1.4 13 plants vs. cuttings. Entomologia Experimentalis Et Applicata, 2016, 160, 201-208. Prospects of herbivore eggâ€killing plant defenses for sustainable crop protection. Ecology and Evolution, 2016, 6, 6906-6918. Plant volatileâ€mediated signalling and its application in agriculture: successes and challenges. New 186 7.3156 Phytologist, 2016, 212, 856-870. Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?. Ecology 39 and Evolution, 2016, 6, 8569-8582. Sex-specific elicitor from Adoxophyes honmai (Lepidoptera: Tortricidae) induces tea leaf to arrest the 188 egg–larval parasitoid Ascogaster reticulata (Hymenoptera: Braconidae). Applied Entomology and 1.2 5 Zoology, 2016, 51, 353-362. Resisting the onset of herbivore attack: plants perceive and respond to insect eggs. Current Opinion 189 7.1 in Plant Biology, 2016, 32, 9-16. Elm defence against herbivores and pathogens: morphological, chemical and molecular regulation 190 6.5 27 aspects. Phytochemistry Reviews, 2016, 15, 961-983. Application of chemical elicitor (Z)-3-hexenol enhances direct and indirect plant defenses against tea geometrid Ectropis obliqua. BioControl, 2016, 61, 1-12. Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 2017, 68, 192 18.7 692 485-512. Chemical Communication., 2017, , 229-256.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
194	General Mechanisms of Plant Defense and Plant Toxins. Toxinology, 2017, , 3-24.		0.2	22
195	Immigrant inviability promotes reproductive isolation among hostâ€associated populat wasp <i><scp>B</scp>elonocnema treatae</i> . Entomologia Experimentalis Et Applicat 379-388.	ions of the gall a, 2017, 162,	1.4	17
196	Qualitative and Quantitative Differences in Herbivore-Induced Plant Volatile Blends fron Plants Infested by Either Tuta absoluta or Bemisia tabaci. Journal of Chemical Ecology, 2	ו Tomato 1017, 43, 53-65.	1.8	63
197	Insect-Plant Interrelationships. , 2017, , 1-44.			0
198	<scp><i>Solanum dulcamara</i></scp> 's response to eggs of an insect herbivore comp hydrogen peroxide production. Plant, Cell and Environment, 2017, 40, 2663-2677.	rises ovicidal	5.7	45
199	Formation of agarwood from Aquilaria malaccensis in response to inoculation of local st Fusarium solani. Trees - Structure and Function, 2017, 31, 189-197.	trains of	1.9	46
200	Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feedi Experimental Botany, 2017, 68, 4709-4723.	ng. Journal of	4.8	98
201	Volatile Semiochemical Mediated Plant Defense in Cereals: A Novel Strategy for Crop Pr Agronomy, 2017, 7, 58.	otection.	3.0	15
202	Bruchid egg induced transcript dynamics in developing seeds of black gram (Vigna mun 2017, 12, e0176337.	go). PLoS ONE,	2.5	6
203	Terpenoids dominate the bouquet of volatile organic compounds produced by Passiflor response to herbivory by Heliconius erato phyllis (Lepidoptera: Nymphalidae). Arthropod Interactions, 2018, 12, 123-131.	a edulis in J-Plant	1.1	10
204	(<i>E,E</i>) <i>-</i> α-Farnesene as a host-induced plant volatile that attracts <i>Apante (Hymenoptera: Braconidae) to host-infested cucumber plants. Biocontrol Science and T 2018, 28, 34-48.</i>	echnology,	1.3	3
205	Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of he through induced plant defences. Oecologia, 2018, 186, 101-113.	rbivores	2.0	41
206	Role of kairomone in biological control of crop pests-A review. Physiological and Molecu Pathology, 2018, 101, 3-15.	ılar Plant	2.5	32
208	Insectivorous Birds Are Attracted by Plant Traits Induced by Insect Egg Deposition. Journ Chemical Ecology, 2018, 44, 1127-1138.	nal of	1.8	12
209	Transcriptomic basis for reinforcement of elm antiherbivore defence mediated by insect deposition. Molecular Ecology, 2018, 27, 4901-4915.	egg	3.9	18
210	Semiochemical Exploitation of Host-Associated Cues by Seven Melittobia Parasitoid Spe and Phylogenetic Implications. Frontiers in Ecology and Evolution, 2018, 5, .	ecies: Behavioral	2.2	7
212	Plant Defense Against Herbivory and Insect Adaptations. AoB PLANTS, 0, , .		2.3	63
213	Oviposition by herbivorous insects induces changes in optical and mechanical propertie avium leaves. Arthropod-Plant Interactions, 2018, 12, 613-622.	s of Prunus	1.1	6

#	Article	IF	CITATIONS
214	Variability in herbivore-induced defence signalling across different maize genotypes impacts significantly on natural enemy foraging behaviour. Journal of Pest Science, 2019, 92, 723-736.	3.7	19
215	An Egg Parasitoid Efficiently Exploits Cues From a Coevolved Host But Not Those From a Novel Host. Frontiers in Physiology, 2019, 10, 746.	2.8	37
216	In vitro consumption patterns of pepper weevil, Anthonomus eugenii (Coleoptera: Curculionidae) on two commercial pepper cultivars in Florida. Applied Entomology and Zoology, 2019, 54, 473-479.	1.2	5
217	Current opinions about herbivore-associated molecular patterns and plant intracellular signaling. Plant Signaling and Behavior, 2019, 14, e1633887.	2.4	11
218	Preference and performance of Drosophila suzukii on Prunus species: A potential eco-friendly pest management tool. Crop Protection, 2019, 122, 35-41.	2.1	10
219	Role of Induced Volatile Emission Modelling Tritrophic Interaction. Differential Equations and Dynamical Systems, 2019, , 1.	1.0	4
220	Exploiting Chemical Ecology for Developing Novel Integrated Pest Management Strategies for Africa. Sustainability in Plant and Crop Protection, 2019, , 165-183.	0.4	0
221	Egg Deposition of Micromelalopha sieversi (Staudinger) on Clones of Populus from Section Aigeiros Induces Resistance in Neighboring Plants. Forests, 2019, 10, 110.	2.1	9
223	Anchoring of greenhouse whitefly eggs on different rose cultivars. Arthropod-Plant Interactions, 2019, 13, 335-348.	1.1	4
224	Rice defense responses are induced upon leaf rolling by an insect herbivore. BMC Plant Biology, 2019, 19, 514.	3.6	14
225	Assessing the Role of Differential Herbivore Performance Among Plant Species in Associational Effects Involving the Invasive Stink BugBagrada hilaris(Hemiptera: Pentatomidae). Environmental Entomology, 2019, 48, 114-121.	1.4	1
226	Insecticidal and antifeeding activity of <scp><i>Perilla frutescens</i></scp> â€derived material against the diamondback moth, <i>Plutella xylostella</i> L. Entomological Research, 2019, 49, 55-62.	1.1	5
227	Insect egg deposition renders plant defence against hatching larvae more effective in a salicylic acidâ€dependent manner. Plant, Cell and Environment, 2019, 42, 1019-1032.	5.7	44
228	Asymmetry in Herbivore Effector Responses: Caterpillar Frass Effectors Reduce Performance of a Subsequent Herbivore. Journal of Chemical Ecology, 2020, 46, 76-83.	1.8	18
229	Previous herbivory alerts conspecific gravid sawflies to avoid unsuitable host plants. Bulletin of Entomological Research, 2020, 110, 438-448.	1.0	7
230	Adhesion Performance in the Eggs of the Philippine Leaf Insect Phyllium philippinicum (Phasmatodea:) Tj ETQq1	1 0,78431 2.2	4 rgBT /Over
231	Spider Mites Cause More Damage to Tomato in the Dark When Induced Defenses Are Lower. Journal of Chemical Ecology, 2020, 46, 631-641.	1.8	5
232	Belowground plant-plant signaling of root infection by nematodes. Pedobiologia, 2020, 83, 150688.	1.2	5

ARTICLE IF CITATIONS # Effect of tomato fruit cultivar and ripening stage on Bactrocera tryoni (Froggatt) egg and larval 233 1.8 4 survival. Journal of Applied Entomology, 2020, 144, 797-805. Palaearctic Egg Parasitoids Interaction to Three Grapevine Exotic Pests in Northwestern Italy: A New 234 2.2 Association Involving Metcalfa pruinosa. Insects, 2020, 11, 610. 235 Practical Approaches to Pest Control: The Use of Natural Compounds., 0, , . 10 Experience may outweigh cue similarity in maintaining a persistent hostâ€plantâ€based evolutionary trap. Ecological Monographs, 2020, 90, e01412. Friend or foe? A parasitic wasp shifts the cost/benefit ratio in a nursery pollination system impacting 237 1.9 2 plant fitness. Ecology and Evolution, 2020, 10, 4220-4232. Proportional fitness loss and the timing of defensive investment: a cohesive framework across animals and plants. Oecologia, 2020, 193, 273-283. Genome wide association analysis of a stemborer egg induced "call-for-help―defence trait in maize. 239 3.3 20 Scientific Reports, 2020, 10, 11205. Impact of insect herbivory on plant stress volatile emissions from trees: A synthesis of quantitative measurements and recommendations for future research. Atmospheric Environment: X, 2020, 5, 240 1.4 34 100060 Kairomones effect on parasitic activity of $\langle i \rangle$ Trichogramma japonicum $\langle i \rangle$ against rice yellow stem 241 9 1.8 borer, <i>Scirpophaga incertulas</i>. Journal of Applied Entomology, 2020, 144, 373-381. Chemical Cues Induced from Fly-Oviposition Mediate the Host-Seeking Behaviour of Fopius arisanus (Hymenoptera: Braconidae), an Effective Egg Parasitoid of Bactrocera dorsalis (Diptera: Tephritidae), within a Tritrophic Context. Insects, 2020, 11, 231. 242 2.2 Bruchid beetle ovipositioning mediated defense responses in black gram pods. BMC Plant Biology, 2021, 243 4 3.6 21, 38. Ecology and Evolution of Insect-Plant Interactions., 2021, , 437-453. 244 Response of Trichogramma pretiosum females (Hymenoptera: Trichogrammatidae) to 245 1.1 5 herbivore-induced Bt maize volatiles. Arthropod-Plant Interactions, 2021, 15, 107-125. ALTERATION OF VOLATILE CHEMICAL COMPOSITION IN TOBACCO PLANTS DUE TO GREEN PEACH APHID (MYZUS PERSICAE SULZER) (HEMIPTERA: APHIDIDAE) FEEDING. Applied Ecology and Environmental 246 Research, 2021, 19, 159-169. 247 The Genetic Basis of Plant-Herbivore Interactions., 2021, , 59-91. 1 Exposure to (Z)-11-hexadecenal [(Z)-11-16:Ald] increases Brassica nigra susceptibility to subsequent 248 herbivory. Scientific Reports, 2021, 11, 13532. Risk-Induced Trait Responses and Non-consumptive Effects in Plants and Animals in Response to Their 249 2.24 Invertebrate Herbivore and Parasite Natural Enemies. Frontiers in Ecology and Evolution, 2021, 9, . Olfactory response of <i>Trichogramma pretiosum</i> (Hymenoptera: Trichogrammatidae) to volatiles induced by transgenic maize. Bulletin of Entomological Research, 2021, 111, 674-687.

#	Article	IF	CITATIONS
251	Recent advances in chemical ecology: complex interactions mediated by molecules. Bioscience, Biotechnology and Biochemistry, 2021, 85, 33-41.	1.3	5
253	The Use of Genetic Transformation Procedures to Study the Defence and Disease Resistance Traits of Trees. , 2006, , 201-234.		5
254	Plant Defense and Insect Adaptation with Reference to Secondary Metabolites. Reference Series in Phytochemistry, 2019, , 1-28.	0.4	9
255	Plant Defense and Insect Adaptation with Reference to Secondary Metabolites. Reference Series in Phytochemistry, 2020, , 795-822.	0.4	23
256	Within-Plant Signalling by Volatiles Triggers Systemic Defences. Signaling and Communication in Plants, 2010, , 99-112.	0.7	13
257	Signal Transduction in Plant–Insect Interactions: From Membrane Potential Variations to Metabolomics. , 2012, , 143-172.		8
258	BVOC-Mediated Plant-Herbivore Interactions. Tree Physiology, 2013, , 21-46.	2.5	21
259	General Mechanisms of Plant Defense and Plant Toxins. , 2016, , 1-22.		13
260	The potential for modifying plant volatile composition to enhance resistance to arthropod pests CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-10.	1.0	6
261	Arabidopsis natural variation in insect egg-induced cell death reveals a role for LECTIN RECEPTOR KINASE-I.1. Plant Physiology, 2021, 185, 240-255.	4.8	15
264	Chemical Ecology of Plant?????Insect Interactions. , 0, , 261-291.		5
265	Research advances in plant–insect molecular interaction. F1000Research, 2020, 9, 198.	1.6	39
266	Insect Eggs Can Enhance Wound Response in Plants: A Study System of Tomato Solanum lycopersicum L. and Helicoverpa zea Boddie. PLoS ONE, 2012, 7, e37420.	2.5	62
267	An Indirect Defence Trait Mediated through Egg-Induced Maize Volatiles from Neighbouring Plants. PLoS ONE, 2016, 11, e0158744.	2.5	17
268	Changes in the volatile profile of Brassica oleracea due to feeding and oviposition by Murgantia histrionica (Heteroptera: Pentatomidae). European Journal of Entomology, 2008, 105, 839-847.	1.2	40
269	Attraction of Bucephalogonia xanthophis (Hemiptera: Cicadellidae) to volatiles of its natural host Vernonia condensata (Asteraceae). Scientia Agricola, 2008, 65, 634-638.	1.2	5
270	Differential oxidative and biochemical responses of tomato and maize leaves to Spodoptera exigua herbivory. Pakistan Journal of Botany, 2020, 52, .	0.5	1
271	Foraging behaviour of an egg parasitoid exploiting plant volatiles induced by pentatomids: the role of adaxial and abaxial leaf surfaces. PeerJ, 2017, 5, e3326.	2.0	12

#	Article	IF	CITATIONS
272	Genetic and Ecological Basis of Resistance to Herbivorous Insects in Mediterranean Pines. Managing Forest Ecosystems, 2021, , 199-233.	0.9	2
274	Comparative Performance of Helicoverpa armigera (Lepidoptera: Noctuidae) on Chickpea and Faba Bean. International Journal of Biology, 2018, 11, 29.	0.2	0
275	Bioenergy: Plants and Products. , 2019, , 335-418.		0
277	Performance and host finding behavior in relation to host age of Cosmocomoidea annulicornis, egg parasitoid of a sharpshooter vector of the citrus variegated chlorosis. BioControl, 0, , 1.	2.0	1
278	Screening for Sarawak Paddy Landraces with Resistance to Yellow Rice Stem Borer, Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae). Pertanika Journal of Science and Technology, 2020, 43, .	0.3	0
279	Molecules to ecosystems—recent trends in chemical ecology for combating biotic stresses in a changing climate. , 2022, , 361-410.		0
280	Evaluation of Two Phylloxera Genotypes in Argentina on Six Vitis vinifera Cultivars and Three Rootstocks. American Journal of Enology and Viticulture, 2021, 72, 94-100.	1.7	0
281	Great Tits Learn Odors and Colors Equally Well, and Show No Predisposition for Herbivore-Induced Plant Volatiles. Frontiers in Ecology and Evolution, 2022, 9, .	2.2	3
282	Feeding and oviposition by the brown marmorated stink bug, Halyomorpha halys (StåI) induce direct and systemic changes in volatile compound emissions from potted peach and tree of heaven. Arthropod-Plant Interactions, 2022, 16, 227-247.	1.1	5
283	Perspectives for integrated insect pest protection in oilseed rape breeding. Theoretical and Applied Genetics, 2022, 135, 3917-3946.	3.6	11
284	Transcriptomic and Metabolomic Responses in Cotton Plant to Apolygus lucorum Infestation. Insects, 2022, 13, 391.	2.2	0
288	Behavioural Response of the Parasitoid Cotesia flavipes to Herbivore Induced Volatiles in Sweet Sorghum. Indian Journal of Entomology, 0, , 1-5.	0.1	2
289	Mechanical interaction of the egg parasitoid Anastatus bifasciatus (Hymenoptera: Eupelmidae) with artificial substrates and its host egg. Frontiers in Mechanical Engineering, 0, 8, .	1.8	0
290	Cradle for the newborn <i>Monochamus saltuarius</i> : Microbial associates to ward off entomopathogens and disarm plant defense. Insect Science, 2023, 30, 1165-1182.	3.0	2
291	The State of Applications and Impacts of Biotechnology in the Crop Sector. , 2022, , 57-89.		1
292	Tomato plant defense induced by methyl jasmonate impacts on foraging behavior and parasitism of <i>Trichogramma pretiosum</i> . Entomologia Experimentalis Et Applicata, 2023, 171, 162-171.	1.4	2
293	Assessment of the Molecular Responses of an Ancient Angiosperm against Atypical Insect Oviposition: The Case of Hass Avocados and the Tephritid Fly Anastrepha ludens. International Journal of Molecular Sciences, 2023, 24, 2060.	4.1	2
294	Biosynthesis and the Transcriptional Regulation of Terpenoids in Tea Plants (Camellia sinensis). International Journal of Molecular Sciences, 2023, 24, 6937.	4.1	10

#	Article	IF	CITATIONS
295	Comparative studies of ovipositional preference, larval feeding selectivity, and nutritional indices of <i>Spodoptera frugiperda</i> (Lepidoptera: Noctuidae) on 6 crops. Journal of Economic Entomology, 2023, 116, 790-797.	1.8	5
296	Defense Strategies of Rice in Response to the Attack of the Herbivorous Insect, Chilo suppressalis. International Journal of Molecular Sciences, 2023, 24, 14361.	4.1	2
297	Mannas, unique products of a dynamic insect-plant interaction: Biodiversity, conservation and ethnopharmacological considerations. Heliyon, 2023, 9, e22976.	3.2	0
298	Female accessory glands of Adoxophyes honmai contain elicitor inducing tea leaves to arrest the egg-larval parasitoid, Ascogaster reticulata. Arthropod-Plant Interactions, 2024, 18, 299-305.	1.1	0
299	The impact of insect egg deposition on <i>Pinus sylvestris</i> transcriptomic and phytohormonal responses to larval herbivory. Tree Physiology, 2024, 44, .	3.1	0
300	Plant defensive responses to insect eggs are inducible by general egg-associated elicitors. Scientific Reports, 2024, 14, .	3.3	0
301	Release patterns and potential utility of herbivore-induced plant volatiles in crops: A review. Environmental and Experimental Botany, 2024, 219, 105659.	4.2	0