CITATION REPORT List of articles citing

Fitting Drought Duration and Severity with Two-Dimensional Copulas

DOI: 10.1007/s11269-005-9008-9 Water Resources Management, 2006, 20, 795-815.

Source: https://exaly.com/paper-pdf/40625322/citation-report.pdf

Version: 2024-04-19

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
471	Pareto-optimal solutions for environmental flow schemes incorporating the intra-annual and interannual variability of the natural flow regime. <i>Water Resources Research</i> , 2007 , 43,	5.4	70
470	Assessment of hydrological droughts for the Yellow River, China, using copulas. 2007 , 21, 2157-2163		185
469	Modeling radar-rainfall estimation uncertainties using parametric and non-parametric approaches. 2008 , 31, 1674-1686		68
468	Copula-based flood frequency (COFF) analysis at the confluences of river systems. 2009 , 23, 1471-1486	;	50
467	Copula-based drought severity-duration-frequency analysis in Iran. <i>Meteorological Applications</i> , 2009 , 16, 481-489	2.1	178
466	Bi-site Analysis of Meteorological Drought Duration: Theoretical Modeling and Application. <i>Water Resources Management</i> , 2009 , 23, 3005-3018	3.7	3
465	Historical trends and variability of meteorological droughts in Taiwan / Tendances historiques et variabilitides süheresses mEbrologiques []Taiwan. 2009 , 54, 430-441		55
464	Probabilistic characterization of drought properties through copulas. 2009 , 34, 596-605		158
463	Bivariate Copulas. 2009 , 33-65		1
462	A bivariate distribution with gamma and beta marginals with application to drought data. 2009 , 36, 277	'-301	18
461	Probabilistic analysis of extreme regional meteorological droughts by L-moments in a semi-arid environment. <i>Theoretical and Applied Climatology</i> , 2010 , 102, 351-366	3	19
460	Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. 2010 , 24, 425-444		156
459	Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. 2010 , 24, 783-805		118
458	Drought Analysis in the Awash River Basin, Ethiopia. Water Resources Management, 2010, 24, 1441-1460	0 3.7	188
457	A copula-based joint deficit index for droughts. 2010 , 380, 121-134		392
456	Drought probabilities and return period for annual streamflows series. 2010 , 391, 77-89		59
455	Study on variation in wet and low water of precipitation prediction based on Markov with weights theory. 2010 ,		

(2012-2010)

454	Regional Bivariate Frequency Analysis of Meteorological Droughts. 2010 , 15, 985-1000	62
453	Drought Analysis Using Trivariate Copulas Conditional on Climatic States. 2010 , 15, 129-141	134
452	Pair-copula decomposition constructions for multivariate hydrological drought frequency analysis. 2011 ,	4
45 ¹	Statistical Hydrology. 2011 , 479-517	19
450	Frequency analysis of droughts using historical information – new approach for probability plotting position: deceedance probability. 2011 , 3, 203	8
449	Drought modeling IA review. 2011 , 403, 157-175	526
448	Copula-based evaluations of drought variations in Guangdong, South China. 2011 , 59, 1533-1546	47
447	Drought hazard assessment and spatial characteristics analysis in China. 2011 , 21, 235-249	111
446	Probabilistic rainfall thresholds for flood forecasting: evaluating different methodologies for modelling rainfall spatial correlation (or dependence). 2011 , 25, 2046-2055	29
445	Copula-based stochastic simulation of hydrological data applied to Nile River flows. 2011 , 42, 318-330	71
444	Temporal and spatial characteristics of precipitation and droughts in the upper reaches of the Yangtze river basin (China) in recent five decades. 2012 , 14, 221-235	6
443	Risk measures for events with a stochastic duration: an application to drought analysis. 2012 , 26, 971-981	6
442	Water-deficit-based drought risk assessments in Taiwan. 2012 , 64, 237-257	23
441	Risk Assessment of Droughts in Gujarat Using Bivariate Copulas. <i>Water Resources Management</i> , 2012 , 26, 3301-3327	73
440	Spatial Pattern Characterization and Multivariate Hydrological Frequency Analysis of Extreme Precipitation in the Pearl River Basin, China. <i>Water Resources Management</i> , 2012 , 26, 3619-3637	15
439	Assessing Multi-site Drought Connections in Iran Using Empirical Copula. 2012 , 17, 469-482	15
438	Copula-based interpretation of continuous rainfallEunoff simulations of a watershed in northern Iran. 2012 , 49, 681-691	12
437	Regionalization and spatial changing properties of droughts across the Pearl River basin, China. 2012 , 472-473, 355-366	75

436	Analysis of Drought Characteristics Using Copula Theory. 2012 ,	5
435	Computation of Drought Index SPI with Alternative Distribution Functions. <i>Water Resources Management</i> , 2012 , 26, 2453-2473	115
434	Bivariate drought frequency analysis using the copula method. <i>Theoretical and Applied Climatology</i> , 2012 , 108, 191-206	132
433	Application of copulas for derivation of drought severity duration frequency curves. 2012 , 26, 1672-1685	96
432	Application of copula modelling to the performance assessment of reconstructed watersheds. 2012 , 26, 189-205	37
431	Multivariate drought characteristics using trivariate Gaussian and Student t copulas. 2013 , 27, 1175-1190	87
430	Data-based analysis of bivariate copula tail dependence for drought duration and severity. 2013 , 27, 1454-1463	87
429	Prediction of the impact of climate change on drought: an evaluation of six UK catchments using two stochastic approaches. 2013 , 27, 1600-1614	20
428	Risk analysis for drought hazard in China: a case study in Huaibei Plain. 2013 , 67, 879-900	21
427	Copula-based risk evaluation of hydrological droughts in the East River basin, China. 2013 , 27, 1397-1406	63
426	Drought Analysis under Climate Change Using Copula. 2013 , 18, 746-759	100
425	Multivariate Probability Distributions. 2013 , 213-269	
424	On the application of copula theory for determination of probabilistic characteristics of springflood. 2013 , 38, 263-271	4
423	Analysis of ENSO-based climate variability in modulating drought risks over western Rajasthan in India. 2013 , 122, 253-269	15
422	Spatio-temporal analysis and derivation of copula-based intensity area frequency curves for droughts in western Rajasthan (India). 2013 , 27, 1975-1989	32
421	Characterisation of Drought Properties with Bivariate Copula Analysis. <i>Water Resources Management</i> , 2013 , 27, 4183-4207	54
420	Large Scale Probabilistic Drought Characterization Over Europe. <i>Water Resources Management</i> , 2013 , 27, 1675-1692	32
419	Water Deficit Duration and Severity Analysis Based on Runoff Derived from Noah Land Surface Model. 2013 , 18, 817-833	15

(2014-2013)

418	Analysis of drought condition and risk in Peninsular Malaysia using Standardised Precipitation Index. <i>Theoretical and Applied Climatology</i> , 2013 , 111, 559-568	3	37
417	Multivariate assessment of droughts: Frequency analysis and dynamic return period. <i>Water Resources Research</i> , 2013 , 49, 6985-6994	5.4	98
416	Characterizing Drought Using the Reliability-Resilience-Vulnerability Concept. 2013, 18, 859-869		33
415	Probabilistic analysis of hydrological drought characteristics using meteorological drought. 2013 , 58, 253-270		69
414	Drought Analysis Using Copulas. 2013 , 18, 797-808		107
413	Testing for multivariate trends in hydrologic frequency analysis. 2013 , 486, 519-530		58
412	Multivariate Standardized Drought Index: A parametric multi-index model. 2013 , 57, 12-18		419
411	Bivariate drought frequency curves and confidence intervals: a case study using monthly rainfall generation. 2013 , 27, 285-295		16
410	Severitydurationdrequency curves in the mitigation of drought impact: an agricultural case study. 2013 , 65, 1863-1881		20
409	Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. 2013 , 492, 35-48		73
408	Measure of Correlation between River Flows Using the Copula-Entropy Method. 2013, 18, 1591-1606		37
407	Entropy-Based Method for Bivariate Drought Analysis. 2013 , 18, 780-786		34
406	A probabilistic framework for assessing drought recovery. 2013 , 40, 3637-3642		51
405	A Bayesian Framework for Probabilistic Seasonal Drought Forecasting. 2013 , 14, 1685-1705		106
404	A comparison between the Gumbel-Hougaard and distorted Frank copulas for drought frequency analysis. 2013 , 3, 77		4
403	An assessment of the ability of Bartlettlewis type of rainfall models to reproduce drought statistics. 2013 , 17, 5167-5183		8
402	A Copula-Based Method for Estimating Shear Strength Parameters of Rock Mass. 2014 , 2014, 1-11		9
401	The Copula Function-Based Probability Characteristics Analysis on Seasonal Drought & Flood Combination Events on the North China Plain. 2014 , 5, 847-869		10

400	Analysis of Rainfall Severity and Duration in Victoria, Australia using Non-parametric Copulas and Marginal Distributions. <i>Water Resources Management</i> , 2014 , 28, 4835-4856	3.7	11
399	Determination of Input for Artificial Neural Networks for Flood Forecasting Using the Copula Entropy Method. 2014 , 19, 04014021		43
398	Copulas-based probabilistic characterization of the combination of dry and wet conditions in the Guanzhong Plain, China. 2014 , 519, 3204-3213		49
397	Towards improved post-processing of hydrologic forecast ensembles. 2014 , 28, 104-122		78
396	Probabilistic analysis of extreme droughts in Southern Maharashtra using bivariate copulas. 2014 , 20, 90-101		2
395	Evaluation of trends and multivariate frequency analysis of droughts in three meteorological subdivisions of western India. <i>International Journal of Climatology</i> , 2014 , 34, 911-928	3.5	68
394	Copula based analysis of rainfall severity and duration: a case study. <i>Theoretical and Applied Climatology</i> , 2014 , 115, 153-166	3	42
393	A stochastic framework to assess the performance of flood warning systems based on rainfall-runoff modeling. 2014 , 28, 4718-4731		8
392	Multivariate modeling of droughts using copulas and meta-heuristic methods. 2014 , 28, 475-489		32
391	Copula-Based Pooled Frequency Analysis of Droughts in the Canadian Prairies. 2014 , 19, 277-289		22
390	Drought characterization using a new copula-based trivariate approach. 2014 , 72, 1391-1407		53
389	Hydrological Drought Analysis in Namhan River Basin, Korea. 2014 , 19, 05014001		15
388	Improved Bayesian multimodeling: Integration of copulas and Bayesian model averaging. <i>Water Resources Research</i> , 2014 , 50, 9586-9603	5.4	82
387	Identifying low impact development strategies for flood mitigation using a fuzzy-probabilistic approach. 2014 , 60, 31-44		29
386	Global trends and patterns of drought from space. Theoretical and Applied Climatology, 2014, 117, 441-4	1 <u>4</u> 8	111
385	A Simplified Model for Predicting Drought Magnitudes: a Case of Streamflow Droughts in Canadian Prairies. <i>Water Resources Management</i> , 2014 , 28, 1597-1611	3.7	8
384	Study of Drought in Seven Algerian Plains. 2014 , 39, 339-359		23
383	Multivariate design in the presence of non-stationarity. 2014 , 514, 123-130		58

382	Spatio-temporal drought forecasting within Bayesian networks. 2014 , 512, 134-146	75
381	Flood Double Frequency Analysis: 2D-Archimedean Copulas vs Bivariate Probability Distributions. 2015 , 2, 705-716	8
380	Drought severity duration frequency curves: a foundation for risk assessment and planning tool for ecosystem establishment in post-mining landscapes. 2015 , 19, 1069-1091	44
379	Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China. <i>Water Resources Management</i> , 2015 , 29, 3291-3304	14
378	Drought risk assessment in China with different spatial scales. <i>Arabian Journal of Geosciences</i> , 2015 , 8, 10193-10202	13
377	Multivariate real-time assessment of droughts via copula-based multi-site Hazard Trajectories and Fans. 2015 , 526, 101-115	62
376	Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China. 2015 , 527, 630-640	131
375	Copula-based risk assessment of drought in Yunnan province, China. 2015 , 75, 2199-2220	51
374	Analysis of meteorological droughts for the Saskatchewan River Basin using univariate and bivariate approaches. 2015 , 522, 452-466	50
373	Coastal flooding: A copula based approach for estimating the joint probability of water levels and waves. 2015 , 97, 37-52	71
372	Impact of climate change on hydrological droughts in the upper Namhan River basin, Korea. <i>KSCE Journal of Civil Engineering</i> , 2015 , 19, 376-384	6
371	Exploration of copula function use in crop meteorological drought risk analysis: a case study of winter wheat in Beijing, China. 2015 , 77, 1289-1303	33
370	Distance Based Water Sustainability Assessment Using SPI for the State of Chhattisgarh in India. 2015 ,	3
369	Analysis of hydrological drought frequency for the Xijiang River Basin in South China using observed streamflow data. 2015 , 77, 1655-1677	19
368	Analysis of agricultural drought characteristics through a two-dimensional copula. <i>Water Resources Management</i> , 2015 , 29, 2819-2835	27
367	Alternative Approach for Estimation of Precipitation Using Doppler Weather Radar Data. 2015 , 20, 0401500	6 1
366	The impact of irrigation water supply rate on agricultural drought disaster risk: a case about maize based on EPIC in Baicheng City, China. 2015 , 78, 23-40	13
365	On relative skewness for multivariate distributions. 2015 , 24, 813-834	3

364	On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. 2015 , 6, art129		1187
363	Hydrologic Drought Atlas for Texas. 2015 , 20, 05014023		22
362	Simultaneous Stochastic Simulation of Monthly Mean Daily Global Solar Radiation and Sunshine Duration Hours Using Copulas. 2015 , 20, 04014061		5
361	Spatial and temporal analysis of drought using entropy-based standardized precipitation index: a case study in Poyang Lake basin, China. <i>Theoretical and Applied Climatology</i> , 2015 , 122, 543-556	3	22
360	Predicting return periods of hydrological droughts using the Pearson 3 distribution: a case from rivers in the Canadian prairies. 2015 , 60, 1783-1796		8
359	Identification of abrupt changes of the relationship between rainfall and runoff in the Wei River Basin, China. <i>Theoretical and Applied Climatology</i> , 2015 , 120, 299-310	3	22
358	Bivariate Drought Frequency Analysis in The Medjerda River Basin, Tunisia. 2016, 6,		5
357	Regional Frequency Analysis of Extreme Dry Spells during Rainy Season in the Wei River Basin, China. 2016 , 2016, 1-13		8
356	Assessment of Meteorological Drought in Korea under Climate Change. 2016 , 2016, 1-13		15
355	Bivariate Drought Analysis Using Streamflow Reconstruction with Tree Ring Indices in the Sacramento Basin, California, USA. <i>Water (Switzerland)</i> , 2016 , 8, 122	3	7
354	Failure Analysis of a New Irrigation Water Allocation Mode Based on Copula Approaches in the Zhanghe Irrigation District, China. <i>Water (Switzerland)</i> , 2016 , 8, 251	3	6
353	Conditional Copula-Based Spatial Temporal Drought Characteristics Analysis A Case Study over Turkey. Water (Switzerland), 2016, 8, 426	3	19
352	Hydrological Drought Analysis Based on Copula Theory. 2016 ,		2
351	Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model. 2016 , 540, 469-487		42
350	Spatio-temporal changes in precipitation, temperature and their possibly changing relationship: a case study in the Wei River Basin, China. <i>International Journal of Climatology</i> , 2016 , 36, 1160-1169	3.5	10
349	Use of a nonstationary copula to predict future bivariate low flow frequency in the Connecticut river basin. 2016 , 30, 3518-3532		35
348	A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities. <i>Water Resources Research</i> , 2016 , 52, 3701-3721	5.4	104
347	Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula. <i>Water</i> Resources Research, 2016 , 52, 2327-2349	5.4	71

(2016-2016)

346	Joint probability analysis of extreme wave heights and storm surges in the Aegean Sea in a changing climate. 2016 , 7, 02002		2
345	Analysing Drought Severity and Areal Extent by 2D Archimedean Copulas. <i>Water Resources Management</i> , 2016 , 30, 5723-5735	3.7	27
344	Proactive Planning Against Droughts. 2016 , 162, 15-24		3
343	Wet and dry spell analysis using copulas. <i>International Journal of Climatology</i> , 2016 , 36, 476-491	3.5	25
342	Joint probability of precipitation and reservoir storage for drought estimation in the headwater basin of the Huaihe River, China. 2016 , 30, 1641-1657		16
341	Multivariate Copula-Based Joint Probability Distribution of Water Supply and Demand in Irrigation District. <i>Water Resources Management</i> , 2016 , 30, 2361-2375	3.7	19
340	A copula-based nonstationary frequency analysis for the 2012 2015 drought in California. <i>Water Resources Research</i> , 2016 , 52, 5662-5675	5.4	80
339	The unusual 2013I/015 drought in South Korea in the context of a multicentury precipitation record: Inferences from a nonstationary, multivariate, Bayesian copula model. 2016 , 43, 8534-8544		38
338	Spatial and temporal patterns of drought in the Continental U.S. during the past century. 2016 , 43, 6294	-6303	3 22
337	A New Time-varying Concept of Risk in a Changing Climate. <i>Scientific Reports</i> , 2016 , 6, 35755	4.9	18
336	Joint modelling of annual maximum drought severity and corresponding duration. 2016 , 543, 406-422		26
335	Preparing stream flow drought severitydurationdrequency curves using threshold level method. <i>Arabian Journal of Geosciences</i> , 2016 , 9, 1	1.8	4
334	Meteorological drought in Bangladesh: assessing, analysing and hazard mapping using SPI, GIS and monthly rainfall data. 2016 , 75, 1		52
333	Streamflow forecast uncertainty evolution and its effect on real-time reservoir operation. 2016 , 540, 712-726		60
332	On conditional skewness with applications to environmental data. 2016 , 23, 491-512		2
331	Drought frequency change: An assessment in northern India plains. 2016 , 176, 111-121		14
330	Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China. 2016 , 540, 824-834		102
329	Application of copula functions to construct confidence intervals of bivariate drought frequency curve. 2016 , 11, 113-122		12

328	Hydrologic risk analysis in the Yangtze River basin through coupling Gaussian mixtures into copulas. 2016 , 88, 170-185		49
327	Choice of Hydrologic Variables for Probabilistic Drought Classification. 2016 , 142, 05015013		4
326	Clustering Quantile Regression-Based Drought Trends in Taiwan. <i>Water Resources Management</i> , 2016 , 30, 1053-1069	3.7	15
325	Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey. 2016 , 82, 1457-1477		53
324	Uncertainty and variability in bivariate modeling of hydrological droughts. 2016 , 30, 1317-1334		19
323	Can we tell more than we can know? The limits of bivariate drought analyses in the United States. 2016 , 30, 1691-1704		46
322	Probabilistic forecasting of seasonal droughts in the Pearl River basin, China. 2016 , 30, 2031-2040		24
321	Influence of evapotranspiration on future drought risk using bivariate drought frequency curves. <i>KSCE Journal of Civil Engineering</i> , 2016 , 20, 2059-2069	1.9	8
320	Spatial analysis of meteorological drought return periods in China using Copulas. 2016 , 80, 367-388		33
319	Parameter estimation of copula functions using an optimization-based method. <i>Theoretical and Applied Climatology</i> , 2017 , 129, 21-32	3	18
318	Regional bivariate modeling of droughts using L-comoments and copulas. 2017 , 31, 1199-1210		22
317	Probabilistic forecasting of seasonal drought behaviors in the Huai River basin, China. <i>Theoretical and Applied Climatology</i> , 2017 , 128, 667-677	3	14
316	Transition probability behaviors of drought events in the Pearl River basin, China. 2017 , 31, 159-170		6
315	Multivariate flood risk analysis for Wei River. 2017 , 31, 225-242		25
314	Variations in precipitation and runoff from a multivariate perspective in the Wei River Basin, China. 2017 , 440, 30-39		8
313	An integrated package for drought monitoring, prediction and analysis to aid drought modeling and assessment. 2017 , 91, 199-209		48
312	Drought Risk Assessment and Management. Water Resources Management, 2017, 31, 3083-3095	3.7	36
311	Evaluating the Characteristics of Multiyear Extreme Droughts in Semi-Arid Regions. 2017 , 4, 683-696		1

310	Copula-based identification of the non-stationarity of the relation between runoff and sediment load. 2017 , 32, 221-230		12	
309	Bivariate Seasonal Design Flood Estimation Based on Copulas. 2017 , 22, 05017028		12	
308	Spatial hydrological drought characteristics in Karkheh River basin, southwest Iran using copulas. 2017 , 126, 1		18	
307	Copula-based probability of concurrent hydrological drought in the Poyang lake-catchment-river system (China) from 1960 to 2013. 2017 , 553, 773-784		47	
306	Development of a statistical bivariate wind speed-wind shear model (WSWS) to quantify the height-dependent wind resource. 2017 , 149, 303-317		25	
305	Capability of meteorological drought indices for detecting soil moisture droughts. 2017 , 12, 396-412		29	
304	Characterization of future drought conditions in the Lower Mekong River Basin. <i>Weather and Climate Extremes</i> , 2017 , 17, 47-58	6	90	
303	Key issues in drought preparedness: Reflections on experiences and strategies in the United States and selected countries. <i>Water Security</i> , 2017 , 2, 32-42	3.8	4	
302	Joint modelling of drought characteristics derived from historical and synthetic rainfalls: Application of Generalized Linear Models and Copulas. 2017 , 14, 167-181		19	
301	The risks assessment via a regional approach using multivariate regional frequency clustering method. 2017 , 20, 3441-3457		1	
300	Multivariate regional frequency analysis: Two new methods to increase the accuracy of measures. 2017 , 107, 290-300		7	
299	Integrated meteorological and hydrological drought model: A management tool for proactive water resources planning of semi-arid regions. 2017 , 107, 336-353		36	
298	The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran. 2017 , 86, 89-106		22	
297	Probabilistic estimates of drought impacts on agricultural production. 2017 , 44, 7799-7807		82	
296	Uncertainty of Hydrological Drought Characteristics with Copula Functions and Probability Distributions: A Case Study of Weihe River, China. <i>Water (Switzerland)</i> , 2017 , 9, 334	3	19	
295	An Entropy-Based Investigation into Bivariate Drought Analysis in China. <i>Water (Switzerland)</i> , 2017 , 9, 632	3	3	
294	Ensemble-Based Multivariate Sensitivity Analysis of Satellite Rainfall Estimates Using Copula Model. 2017 , 273-294		0	
293	Exploration of Use of Copulas in Analysing the Relationship between Precipitation and Meteorological Drought in Beijing, China. 2017 , 2017, 1-11		10	

292	Analysis of Changes in Spatio-Temporal Patterns of Drought across South Korea. <i>Water</i> (Switzerland), 2017 , 9, 679	3	12
291	Probabilistic modelling of drought events in China via 2-dimensional joint copula. 2018 , 559, 373-391		48
290	New approach in bivariate drought duration and severity analysis. 2018, 559, 166-181		30
289	Copula-based composite likelihood approach for frequency analysis of short annual precipitation records. 2018 , 49, 1498-1512		2
288	Multivariate Frequency Analysis of Meteorological Drought Using Copula. <i>Water Resources Management</i> , 2018 , 32, 1741-1758	3.7	16
287	Assessing Flood Risk Under Sea Level Rise and Extreme Sea Levels Scenarios: Application to the Ebro Delta (Spain). 2018 , 123, 794-811		23
286	Developing Short Term Drought Severity-Duration-Frequency Curves for Kerala Meteorological Subdivision, India Using Bivariate Copulas. <i>KSCE Journal of Civil Engineering</i> , 2018 , 22, 962-973	1.9	7
285	Past and future drought in Mongolia. 2018 , 4, e1701832		53
284	Estimation of return period and its uncertainty for the recent 2013\(\textit{\textit{0}} 015 \) drought in the Han River watershed in South Korea. 2018 , 49, 1313-1329		2
283	Multivariate frequency analysis of urban rainfall characteristics using three-dimensional copulas. 2017 , 2017, 206-218		5
282	Regional analysis and derivation of copula-based drought Severity-Area-Frequency curve in Lake Urmia basin, Iran. 2018 , 206, 134-144		41
281	Modelling bivariate extreme precipitation distribution for data-scarce regions using Gumbel Hougaard copula with maximum entropy estimation. 2018 , 32, 212-227		23
280	Analysis of hydrological drought characteristics using copula function approach. 2018, 16, 153-161		6
279	A comparative frequency analysis of three standardized drought indices in the Poyang Lake basin, China. 2018 , 91, 353-374		4
278	Characterizing Indian meteorological moisture anomaly condition using long-term (1901\(\mathbb{D}\)013) gridded data: a multivariate moisture anomaly index approach. <i>International Journal of Climatology</i> , 2018 , 38, e144-e159	3.5	4
277	Water Sustainability Assessment Under Climatic Uncertainty A Case Study of Chhattisgarh (India). 2018 , 231-261		
276	Evaluation of Various Probability Distributions for Deriving Design Flood Featuring Right-Tail Events in Pakistan. <i>Water (Switzerland)</i> , 2018 , 10, 1603	3	9
275	Application of Archimedean Copulas to the Analysis of Drought Decadal Variation in China. 2018 , 54, 125-143		10

274	Environmental Flow Assessment Considering Inter- and Intra-Annual Streamflow Variability under the Context of Non-Stationarity. <i>Water (Switzerland)</i> , 2018 , 10, 1737	3	5
273	Hydrological Drought Instantaneous Propagation Speed Based on the Variable Motion Relationship of Speed-Time Process. <i>Water Resources Research</i> , 2018 , 54, 9549-9565	5.4	36
272	Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. 2018 , 4, eaat8785		126
271	Multivariate design of socioeconomic drought and impact of water reservoirs. 2018 , 566, 192-204		45
270	Copula-Based Stochastic Simulation for Regional Drought Risk Assessment in South Korea. <i>Water</i> (Switzerland), 2018 , 10, 359	3	20
269	Characteristics of meteorological droughts in northwestern India. 2018 , 94, 561-582		18
268	Characterizing drought in terms of changes in the precipitationEunoff relationship: a case study of the Loess Plateau, China. 2018 , 22, 1749-1766		13
267	Assessment of regional drought risk under climate change using bivariate frequency analysis. 2018 , 32, 3439-3453		5
266	Estimation of the compound hazard severity of tropical cyclones over coastal China during 1949 I 0011 with copula function. 2018 , 93, 887-903		11
265	Introduction. 2019 , 1-11		
265 264	Introduction. 2019, 1-11 Drought Analysis Using Copulas. 2019, 97-116		
			20
264	Drought Analysis Using Copulas. 2019 , 97-116		20
264	Drought Analysis Using Copulas. 2019 , 97-116 Dry-hot magnitude index: a joint indicator for compound event analysis. 2019 , 14, 064017 An Upper Limit to Youth Psychotherapy Benefit? A Meta-Analytic Copula Approach to		
264 263 262	Drought Analysis Using Copulas. 2019, 97-116 Dry-hot magnitude index: a joint indicator for compound event analysis. 2019, 14, 064017 An Upper Limit to Youth Psychotherapy Benefit? A Meta-Analytic Copula Approach to Psychotherapy Outcomes. 2019, 7, 1434-1449 Temporal Spatial distribution characteristics and combinatorial risk probabilities of water		10
264 263 262 261	Drought Analysis Using Copulas. 2019, 97-116 Dry-hot magnitude index: a joint indicator for compound event analysis. 2019, 14, 064017 An Upper Limit to Youth Psychotherapy Benefit? A Meta-Analytic Copula Approach to Psychotherapy Outcomes. 2019, 7, 1434-1449 Temporal patial distribution characteristics and combinatorial risk probabilities of water pollutants in the Guo River Basin, China. 2019, 78, 1 Joint Modeling of Precipitation and Temperature Using Copula Theory for Current and Future Prediction under Climate Change Scenarios in Arid Lands (Case Study, Kerman Province, Iran). 2019,		10
264 263 262 261 260	Drought Analysis Using Copulas. 2019, 97-116 Dry-hot magnitude index: a joint indicator for compound event analysis. 2019, 14, 064017 An Upper Limit to Youth Psychotherapy Benefit? A Meta-Analytic Copula Approach to Psychotherapy Outcomes. 2019, 7, 1434-1449 Temporal Epatial distribution characteristics and combinatorial risk probabilities of water pollutants in the Guo River Basin, China. 2019, 78, 1 Joint Modeling of Precipitation and Temperature Using Copula Theory for Current and Future Prediction under Climate Change Scenarios in Arid Lands (Case Study, Kerman Province, Iran). 2019, 2019, 1-15		10 3 6

256	Copula-Based Approach to Construct a Joint Probabilistic Model of Earthquakes and Strong Winds. 2019 , 19, 1950046		7
255	A joint probabilistic index for objective drought identification: the case study of Haiti. 2019 ,		O
254	Data-based bivariate uncertainty assessment of extreme rainfall-runoff using copulas: comparison between annual maximum series (AMS) and peaks over threshold (POT). 2019 , 191, 67		10
253	Using Standardized Groundwater Index and Standardized Precipitation Index to Assess Drought Characteristics of the Kaoping River Basin, Taiwan. 2019 , 46, 670-678		4
252	A Continuous Drought Probability Monitoring System, CDPMS, Based on Copulas. <i>Water</i> (Switzerland), 2019 , 11, 1925	3	14
251	An analysis of droughts in Iran during 1988\(\mathbb{Q}\)017. 2019 , 1, 1		9
250	Heat wave Intensity Duration Frequency Curve: A Multivariate Approach for Hazard and Attribution Analysis. <i>Scientific Reports</i> , 2019 , 9, 14117	4.9	21
249	Copula-based frequency analysis of drought with identified characteristics in space and time: a case study in Huai River basin, China. <i>Theoretical and Applied Climatology</i> , 2019 , 137, 2865-2875	3	6
248	Precondition cloud algorithm and Copula coupling model-based approach for drought hazard comprehensive assessment. 2019 , 38, 101220		7
247	Nonstationary joint probability analysis of extreme marine variables to assess design water levels at the shoreline in a changing climate. 2019 , 98, 1051-1089		12
246	Copula based assessment of meteorological drought characteristics: Regional investigation of Iran. 2019 , 276-277, 107611		50
245	Copulas-based bivariate socioeconomic drought dynamic risk assessment in a changing environment. 2019 , 575, 1052-1064		46
244	Copula-Based Research on the Multi-Objective Competition Mechanism in Cascade Reservoirs Optimal Operation. <i>Water (Switzerland)</i> , 2019 , 11, 995	3	3
243	Bias Correction of Climate Model\(\text{Nodel}\) Precipitation Using the Copula Method and Its Application in River Basin Simulation. Water (Switzerland), 2019, 11, 600	3	16
242	Socio-economic drought assessment in Lake Mead, USA, based on a multivariate standardized water-scarcity index. 2019 , 64, 555-569		5
241	Bivariate Design of Hydrological Droughts and Their Alterations under a Changing Environment. 2019 , 24, 04019015		7
240	Bivariate Risk Analysis of Droughts Using a Nonparametric Multivariate Standardized Drought Index and Copulas. 2019 , 24, 05019006		14
239	Joint probability risk modelling of storm surge and cyclone wind along the coast of Bay of Bengal using a statistical copula. <i>International Journal of Climatology</i> , 2019 , 39, 4206-4217	3.5	11

238	Probabilistic evaluation of vegetation drought likelihood and its implications to resilience across India. 2019 , 176, 23-35		47
237	Characterization of meteorological droughts across South Australia. <i>Meteorological Applications</i> , 2019 , 26, 556-568	2.1	11
236	Three-dimensional identification of hydrological drought and multivariate drought risk probability assessment in the Luanhe River basin, China. <i>Theoretical and Applied Climatology</i> , 2019 , 137, 3055-3076	3	12
235	Non-stationary frequency analysis of annual extreme rainfall volume and intensity using Archimedean copulas: A case study in eastern China. 2019 , 571, 114-131		25
234	A drought index: The standardized precipitation evapotranspiration runoff index. 2019 , 571, 651-668		24
233	Copula Bias Correction for Extreme Precipitation in Reanalysis Data over a Greek Catchment. 2019 , 7, 4		
232	Comparison of Meteorological- and Agriculture-Related Drought Indicators across Ethiopia. <i>Water</i> (Switzerland), 2019 , 11, 2218	3	10
231	Probabilistic characterization of hydrological droughts in the Blue Nile River, Ethiopia. 2019 , 297-310		
230	Stochastic model for crop water stress during agricultural droughts. 2019 , 1, e12081		1
229	Assessment of Risk and Resilience of Terrestrial Ecosystem Productivity under the Influence of Extreme Climatic Conditions over India. <i>Scientific Reports</i> , 2019 , 9, 18923	4.9	16
228	Utilization of the Copula-Based Composite Likelihood Approach to Improve Design Precipitation Estimates Accuracy. <i>Water Resources Management</i> , 2019 , 33, 5089-5106	3.7	1
227	Jointly Modeling Drought Characteristics with Smoothed Regionalized SPI Series for a Small Island. <i>Water (Switzerland)</i> , 2019 , 11, 2489	3	7
226	Copula-based trivariate drought frequency analysis approach in seven climatic sub-regions of mainland China over 1961\(\textbf{Q} 013\). <i>Theoretical and Applied Climatology</i> , 2019 , 137, 2217-2237	3	10
225	Introduction. 2019 , 3-19		
224	Copula-based joint probability distribution of water supply and demand in Luhun irrigation district. 2019 , 19, 932-943		2
223	Drought hotspot analysis and risk assessment using probabilistic drought monitoring and severityduration f requency analysis. 2019 , 33, 432-449		16
222	Is Standardized Precipitation Index (SPI) a Useful Indicator to Forecast Groundwater Droughts? Insights from a Karst Aquifer. 2019 , 55, 70-88		20
221	Multivariate Drought Frequency Analysis using Four-Variate Symmetric and Asymmetric Archimedean Copula Functions. <i>Water Resources Management</i> , 2019 , 33, 103-127	3.7	33

220	Bivariate Frequency Analysis of Hydrological Drought Using a Nonstationary Standardized Streamflow Index in the Yangtze River. 2019 , 24, 05018031		9
219	Coincidence Risk Analysis of Floods Using Multivariate Copulas: Case Study of Jinsha River and Min River, China. 2019 , 24, 05018030		8
218	Bivariate copula function-based spatial E emporal characteristics analysis of drought in Anhui Province, China. 2019 , 131, 1341-1355		8
217	Joint distribution of temperature and precipitation in the Mediterranean, using the Copula method. <i>Theoretical and Applied Climatology</i> , 2019 , 135, 1399-1411	3	11
216	Historical and future drought in Bangladesh using copula-based bivariate regional frequency analysis. <i>Theoretical and Applied Climatology</i> , 2019 , 135, 855-871	3	23
215	Bivariate low flow return period analysis in the Mahanadi River basin, India using copula. 2020 , 18, 107-	116	5
214	Development of copula-statistical drought prediction model using the Standardized Precipitation-Evapotranspiration Index. 2020 , 141-178		2
213	Developing a dual entropy-transinformation criterion for hydrometric network optimization based on information theory and copulas. 2020 , 180, 108813		3
212	Regional Frequency Analysis of Droughts Using Copula Functions (Case Study: Part of Semiarid Climate of Fars Province, Iran). 2020 , 44, 1223-1235		5
211	Non-stationary and copula-based approach to assess the drought characteristics encompassing climate indices over the Himalayan states in India. 2020 , 580, 124356		53
210	Propagation thresholds of meteorological drought for triggering hydrological drought at various levels. <i>Science of the Total Environment</i> , 2020 , 712, 136502	10.2	54
209	Meteorological drought analysis using copula theory and drought indicators under climate change scenarios (RCP). <i>Meteorological Applications</i> , 2020 , 27, e1856	2.1	19
208	Modelling long-term joint distribution of significant wave height and mean zero-crossing wave period using a copula mixture. 2020 , 197, 106856		13
207	Integrated Drought Index (IDI) for Drought Monitoring and Assessment in India. <i>Water Resources Research</i> , 2020 , 56, e2019WR026284	5.4	48
206	A New Framework for Exploring Process Controls of Flow Duration Curves. <i>Water Resources Research</i> , 2020 , 56, e2019WR026083	5.4	11
205	Analyzing the contributions of climate change and human activities on runoff in the Northeast Tibet Plateau. 2020 , 27, 100639		11
204	Characterizing the temperature and precipitation covariability over Canada. <i>Theoretical and Applied Climatology</i> , 2020 , 139, 1543-1558	3	15
203	Bivariate analysis of drought duration and severity for irrigation planning. 2020 , 229, 105926		8

(2020-2020)

202	Meteorological Drought Study Through SPI in Three Drought Prone Districts of West Bengal, India. 2020 , 4, 43-55		34
201	Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. 2020 , 129, 1		25
200	Influence of Variations of Hydrothermal Conditions on Normalized Difference Vegetation Index in Typical Temperature Zones Along the East Coast of China. 2020 , 8,		5
199	Multivariate groundwater drought analysis using copulas. 2020 , 51, 666-685		9
198	Quantifying increased fire risk in California in response to different levels of warming and drying. 2020 , 34, 2023-2031		7
197	On the rarity of the 2015 drought in India: A country-wide drought atlas using the multivariate standardized drought index and copula-based severity-duration-frequency curves. 2020 , 31, 100727		8
196	Multivariate drought risk analysis based on copula functions: a case study. 2020 , 20, 2375-2388		3
195	Multivariate Frequency Analysis of Annual Maxima Suspended Sediment Concentrations and Floods in the Jinsha River, China. 2020 , 25, 05020029		2
194	Risk evaluation of agricultural drought disaster using a grey cloud clustering model in Henan province, China. 2020 , 49, 101759		10
193	Drought Risk Analysis in the Eastern Cape Province of South Africa: The Copula Lens. <i>Water</i> (Switzerland), 2020 , 12, 1938	3	7
193		3	7
	(Switzerland), 2020, 12, 1938 Meteorological drought risk in the Daqing River Basin, North China: current observations and	1.8	
192	(Switzerland), 2020, 12, 1938 Meteorological drought risk in the Daqing River Basin, North China: current observations and future projections. 2020, 34, 1795-1811 Analyzing drought characteristics using copula-based genetic algorithm method. Arabian Journal of		1
192 191	(Switzerland), 2020, 12, 1938 Meteorological drought risk in the Daqing River Basin, North China: current observations and future projections. 2020, 34, 1795-1811 Analyzing drought characteristics using copula-based genetic algorithm method. Arabian Journal of Geosciences, 2020, 13, 1 Analyzing the conditional behavior of rainfall deficiency and groundwater level deficiency		3
192 191 190	(Switzerland), 2020, 12, 1938 Meteorological drought risk in the Daqing River Basin, North China: current observations and future projections. 2020, 34, 1795-1811 Analyzing drought characteristics using copula-based genetic algorithm method. Arabian Journal of Geosciences, 2020, 13, 1 Analyzing the conditional behavior of rainfall deficiency and groundwater level deficiency signatures by using copula functions. 2020, 51, 1332-1348 Three-dimensional risk analysis of hydro-meteorological drought using multivariate nonlinear	1.8	1 3 15
192 191 190 189	Meteorological drought risk in the Daqing River Basin, North China: current observations and future projections. 2020, 34, 1795-1811 Analyzing drought characteristics using copula-based genetic algorithm method. Arabian Journal of Geosciences, 2020, 13, 1 Analyzing the conditional behavior of rainfall deficiency and groundwater level deficiency signatures by using copula functions. 2020, 51, 1332-1348 Three-dimensional risk analysis of hydro-meteorological drought using multivariate nonlinear index. Theoretical and Applied Climatology, 2020, 142, 1311-1327	1.8	1 3 15 4
192 191 190 189	Meteorological drought risk in the Daqing River Basin, North China: current observations and future projections. 2020, 34, 1795-1811 Analyzing drought characteristics using copula-based genetic algorithm method. Arabian Journal of Geosciences, 2020, 13, 1 Analyzing the conditional behavior of rainfall deficiency and groundwater level deficiency signatures by using copula functions. 2020, 51, 1332-1348 Three-dimensional risk analysis of hydro-meteorological drought using multivariate nonlinear index. Theoretical and Applied Climatology, 2020, 142, 1311-1327 Drought analysis with different indices for the Asi Basin (Turkey). Scientific Reports, 2020, 10, 20739	1.8	1 3 15 4 20

184	Bivariate flood distribution analysis under parametric copula framework: a case study for Kelantan River basin in Malaysia. 2020 , 68, 821-859		3
183	A multimodel assessment of drought characteristics and risks over the Huang-Huai-Hai River basin, China, under climate change. <i>Theoretical and Applied Climatology</i> , 2020 , 141, 601-613	3	6
182	A joint probabilistic index for objective drought identification: the case study of Haiti. <i>Natural Hazards and Earth System Sciences</i> , 2020 , 20, 471-487	3.9	6
181	Regional risk analysis and derivation of copula-based drought for severity-duration curve in arid and semi-arid regions. <i>Theoretical and Applied Climatology</i> , 2020 , 141, 889-905	3	8
180	Drought analysis framework based on copula and Poisson process with nonstationarity. 2020 , 588, 125	022	4
179	Hydrological drought risk recurrence under climate change in the karst area of Northwestern Algeria. 2020 , 11, 164-188		17
178	Climate change impact assessment on mild and extreme drought events using copulas over Ankara, Turkey. <i>Theoretical and Applied Climatology</i> , 2020 , 141, 1045-1055	3	16
177	Changes in spatiotemporal drought characteristics over northeast China from 1960 to 2018 based on the modified nested Copula model. <i>Science of the Total Environment</i> , 2020 , 739, 140328	10.2	12
176	Characterizing Hydrological Drought and Water Scarcity Changes in the Future: A Case Study in the Jinghe River Basin of China. <i>Water (Switzerland)</i> , 2020 , 12, 1605	3	6
175	Two Ways to Quantify Korean Drought Frequency: Partial Duration Series and Bivariate Exponential Distribution, and Application to Climate Change. 2020 , 11, 476		4
174	Joint Modeling of Severe Dust Storm Events in Arid and Hyper Arid Regions Based on Copula Theory: A Case Study in the Yazd Province, Iran. 2020 , 8, 64		1
173	Joint values determination of wind and temperature actions on long-span bridges: Copula-based analysis using long-term meteorological data. 2020 , 219, 110866		8
172	Projected regional responses of precipitation extremes and their joint probabilistic behaviors to climate change in the upper and middle reaches of Huaihe River Basin, China. 2020 , 240, 104942		4
171	Sustainable effect of coal mining on hydrological drought risk: a case study on Kuye river basin, China. 2020 , 103, 2929-2943		О
170	A Probabilistic Approach for Characterization of Sub-Annual Socioeconomic Drought Intensity-Duration-Frequency (IDF) Relationships in a Changing Environment. <i>Water (Switzerland)</i> , 2020 , 12, 1522	3	10
169	Analysis and Application of Drought Characteristics Based on Theory of Runs and Copulas in Yunnan, Southwest China. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	9
168	An advanced data collection procedure in bivariate drought frequency analysis. 2020 , 34, 4067-4082		0
167	Copula-based Joint Drought Index using SPI and EDDI and its application to climate change. <i>Science of the Total Environment</i> , 2020 , 744, 140701	10.2	25

(2021-2020)

166	Bivariate Modeling of Hydroclimatic Variables in Humid Tropical Coastal Region Using Archimedean Copulas. 2020 , 25, 05020026		4
165	Analysis of future changes in meteorological drought patterns in Fulda, Germany. <i>International Journal of Climatology</i> , 2020 , 40, 5515-5526	3.5	
164	Observed and projected trends of extreme precipitation and maximum temperature during 1992 100 in Isfahan province, Iran using REMO model and copula theory. 2020 , 33,		2
163	An Integrated Framework for Extreme Drought Assessments Using the Natural Drought Index, Copula and Gi* Statistic. <i>Water Resources Management</i> , 2020 , 34, 1353-1368	3.7	10
162	Application of a standardized precipitation index for mapping drought severity in an arid climate region, southeastern Iran. <i>Arabian Journal of Geosciences</i> , 2020 , 13, 1	1.8	5
161	Dynamical systems theory sheds new light on compound climate extremes in Europe and Eastern North America. 2020 , 146, 1636-1650		18
160	Assessing agricultural drought risk and its dynamic evolution characteristics. 2020 , 231, 106003		50
159	Multivariate Modeling of Projected Drought Frequency and Hazard over India. 2020 , 25, 04020003		20
158	Risk assessment of rainstorm disasters under different return periods: A case study of Bohai Rim, China. 2020 , 187, 105107		6
157	The risk and consequences of multiple breadbasket failures: an integrated copula and multilayer agent-based modeling approach. 2020 , 42, 727-754		4
156	Copula-Based Multivariate Frequency Analysis of the 2012 2018 Drought in Northeast Brazil. <i>Water (Switzerland)</i> , 2020 , 12, 834	3	17
155	Assessment of impacts of potential climate change on meteorological drought characteristics at regional scales. <i>International Journal of Climatology</i> , 2021 , 41, E319	3.5	2
154	Comparing the performance of drought indicators in Australia from 1900 to 2018. <i>International Journal of Climatology</i> , 2021 , 41, E912	3.5	6
153	A case study: bivariate drought identification on the Andong dam, South Korea. 2021 , 35, 549-560		4
152	Copula based analysis of meteorological drought and catchment resilience across Indian river basins. <i>International Journal of Climatology</i> , 2021 , 41, E1137	3.5	O
151	Vegetation vulnerability and resistance to hydrometeorological stresses in water- and energy-limited watersheds based on a Bayesian framework. 2021 , 196, 104879		12
150	Bivariate joint distribution analysis of the flood characteristics under semiparametric copula distribution framework for the Kelantan River basin in Malaysia. 2021 , 6, 128-145		3
149	Increasing risk of meteorological drought in the Lake Urmia basin under climate change: Introducing the precipitationEemperature deciles index. 2021 , 592, 125586		16

148	Elucidating the effects of mega reservoir on watershed drought tolerance based on a drought propagation analytical method. 2021 , 598, 125738		4
147	Multidimensional Approaches to Calculation of Design Floods at Confluences P ROIL Model and Copulas. 2021 , 26, 565-579		2
146	Development of a PCA-Based Vulnerability and Copula-Based Hazard Analysis for Assessing Regional Drought Risk. <i>KSCE Journal of Civil Engineering</i> , 2021 , 25, 1901-1908	1.9	1
145	The Spatial-Temporal Variation Characteristics of Natural Vegetation Drought in the Yangtze River Source Region, China. <i>International Journal of Environmental Research and Public Health</i> , 2021 , 18,	4.6	1
144	Copula based analysis of meteorological, hydrological and agricultural drought characteristics across Indian river basins. <i>International Journal of Climatology</i> , 2021 , 41, 4637	3.5	28
143	Modeling drought duration and severity using two-dimensional copula. 2021 , 214, 105530		4
142	Bivariate Drought Characterization of Two Contrasting Climatic Regions in India Using Copula. 2021 , 147, 05020005		3
141	Modeling Joint Relationship and Design Scenarios Between Precipitation, Surface Temperature, and Atmospheric Precipitable Water Over Mainland China. 2021 , 8, e2020EA001513		1
140	A C-Vine Copula-Based Quantile Regression Method for Streamflow Forecasting in Xiangxi River Basin, China. 2021 , 13, 4627		2
139	Projection of Future Drought Characteristics under Multiple Drought Indices. <i>Water (Switzerland)</i> , 2021 , 13, 1238	3	2
138	A 3D Copula Method for the Impact and Risk Assessment of Drought Disaster and an Example Application. 2021 , 9,		О
137	Discussion about inaccuracy measure in information theory using co-copula and copula dual functions. 2021 , 183, 104725		1
136	Bivariate Modelling of a Teleconnection Index and Extreme Rainfall in a Small North Atlantic Island. 2021 , 9, 86		О
135	Risk analysis of natural water resources scarcity based on a stochastic simulation model in the hilly area of southwest China. 1		2
134	Regional analysis of drought severity-duration-frequency and severity-area-frequency curves in the Godavari River Basin, India. <i>International Journal of Climatology</i> , 2021 , 41, 5481	3.5	2
133	Meteorological drought hazard analysis of wheat production in the semi-arid basin of Cheliff I ahrez Nord, Algeria. <i>Arabian Journal of Geosciences</i> , 2021 , 14, 1	1.8	3
132	Copula-Based Risk Analysis of Agricultural Water Shortage under Natural Precipitation Conditions in the Guanzhong Plain, a Drought-Prone Region of China. 2021 , 26, 04021016		4
131	Projections of future meteorological droughts in China under CMIP6 from a three-dimensional perspective. 2021 , 252, 106849		13

130	Joint behaviour of climate extremes across India: Past and future. 2021, 597, 126185		10
129	Copula-based risk evaluation of global meteorological drought in the 21st century based on CMIP5 multi-model ensemble projections. 2021 , 598, 126265		7
128	Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions. 2021 , 66, 1475-1487		О
127	Bivariate Frequency of Meteorological Drought in the Upper Minjiang River Based on Copula Function. <i>Water (Switzerland)</i> , 2021 , 13, 2056	3	1
126	Connection between Meteorological and Groundwater Drought with Copula-Based Bivariate Frequency Analysis. 2021 , 26, 05021015		2
125	Spatio-temporal variation and future risk assessment of projected drought events in the Godavari River basin using regional climate models.		5
124	Study on drought events in China based on time-varying nested Archimedean-copula function.		О
123	Meteorological Drought Events and Their Evolution from 1960 to 2015 Using the Daily SWAP Index in Chongqing, China. <i>Water (Switzerland)</i> , 2021 , 13, 1887	3	1
122	The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions. <i>Water Resources Management</i> , 2021 , 35, 3969	3.7	2
121	Multivariate analysis of rainfall and its deficiency signatures using vine copulas. <i>International Journal of Climatology</i> ,	3.5	4
120	Multivariate-drought indicesBase studies with observations and outputs of NCAR CCSM-4 ensemble models. <i>Theoretical and Applied Climatology</i> , 2021 , 146, 257-275	3	О
119	Modeling the Characteristics of Unhealthy Air Pollution Events: A Copula Approach. <i>International Journal of Environmental Research and Public Health</i> , 2021 , 18,	4.6	1
118	Copula-Based Drought Monitoring and Assessment According to Zonal and Meridional Temperature Gradients. 2021 , 12, 1066		1
117	Complex network theoretic assessment of precipitation-driven meteorological drought in India: Past and future. <i>International Journal of Climatology</i> ,	3.5	
116	Analyzing the duration frequency and severity of drought using copula function in the Yazd city.		1
115	Kopula Yfitemi ile Osmaniye Blgesinin lki Dellenli Kurakle Frekans Analizi. 2021 , 9, 388-396		1
114	Dynamic evolution and frequency analysis of hydrological drought from a three-dimensional perspective. 2021 , 600, 126675		2
113	Historical evidence of climate change impact on drought outlook in river basins: analysis of annual maximum drought severities through daily SPI definitions. 1		1

112	Hydro-meteorological drought risk assessment using linear and nonlinear multivariate methods. 2021 , 123, 103046	5
111	Reassessing the frequency and severity of meteorological drought considering non-stationarity and copula-based bivariate probability. 2021 , 603, 126948	8
110	Time-varying copula and average annual reliability-based nonstationary hazard assessment of extreme rainfall events. 2021 , 603, 126792	0
109	A time-varying drought identification and frequency analyzation method: A case study of Jinsha River Basin. 2021 , 603, 126864	1
108	Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin. 2020 , 103, 1711-1726	2
107	Copulas-Based Drought Characteristics Analysis and Risk Assessment across the Loess Plateau of China. <i>Water Resources Management</i> , 2018 , 32, 547-564	30
106	Copula-based multivariate flood probability construction: a review. <i>Arabian Journal of Geosciences</i> , 2020 , 13, 1	4
105	Hydrological Drought Analysis of Karkheh River Basin in Iran Using Variable Threshold Level Method. 2013 , 8, 419-428	2
104	Probability of hydrologic drought duration and intensity of Xijiang River. 2013 , 25, 576-582	1
103	Multivariate flood risk assessment based on the secondary return period. 2015 , 27, 352-360	2
102	Spatio-temporal analysis of maximum drought severity using Copulas in Northern Algeria. 2020 , 11, 68-84	13
101	Monitoring Hydrometeorological Droughts Using a Simplified Precipitation Index. 2020 , 8, 19	8
100	Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China. 2019 , 11, 6032	16
99	Return Period Estimation of Droughts Using Drought Variables from Standardized Precipitation Index. 2013 , 46, 795-805	10
98	Estimation and Assessment of Bivariate Joint Drought Index based on Copula Functions. 2014 , 47, 171-182	7
97	Estimation of drought risk through the bivariate drought frequency analysis using copula functions. 2016 , 49, 217-225	7
96	A copula-based assessment of Bartlettlewis type of rainfall models for preserving drought statistics.	2
95	Design droughts as planning tool for ecosystem establishment in post-mining landscapes.	3

(2021-2015)

94	Sensitivity analysis of sample number on the drought descriptive model built by Copula function in southwest China. 2015 , 64, 100203		3
93	An Application of Copulas-based Joint Drought Index for Determining Comprehensive Drought Conditions. 2012 , 12, 223-230		7
92	Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions Under Climate Change Condition. <i>Water Resources Management</i> , 2021 , 35, 4855	3.7	1
91	Drought Characteristics Analysis Using Copulas. 2012 , 01, 186-194		1
90	Copula Entropy and Its Application in Hydrological Correlation Analysis. 2013, 02, 103-108		2
89	Advance in Inconsistent Water Problems in Changing Environment. 2014 , 03, 556-563		
88	Study of the wetness-dryness encountering of inflow of the three biggest reservoirs in the Dongjiang River basin based on Copula functions. 2015 , 27, 361-370		O
87	Extreme Magnitude Earthquakes and Their Direct Economic Impacts. 219-302		
86	A development of trivariate drought frequency analysis approach using copula function. 2016, 49,		
85	Valuing Water Supply Reliability with Sensitivity Analysis. SSRN Electronic Journal,	1	
8 ₅	Valuing Water Supply Reliability with Sensitivity Analysis. SSRN Electronic Journal, A Assessment of Hydrological Drought using Tree-ring Data. 2018, 18, 363-373	1	
		1	
84	A Assessment of Hydrological Drought using Tree-ring Data. 2018 , 18, 363-373 "Technical Report" Trend Analysis of Meteorological Drought Characteristics in Hamedan Province.	1	
84	A Assessment of Hydrological Drought using Tree-ring Data. 2018, 18, 363-373 "Technical Report" Trend Analysis of Meteorological Drought Characteristics in Hamedan Province. 2018, 9, 295-305	1	O
84 83 82	A Assessment of Hydrological Drought using Tree-ring Data. 2018, 18, 363-373 "Technical Report" Trend Analysis of Meteorological Drought Characteristics in Hamedan Province. 2018, 9, 295-305 Multi-hazard analysis of tropical cyclone return periods. 2019, Research on meteorological drought in the middle and lower reaches of the Yangtze River. 2019,	1	0
84 83 82 81	A Assessment of Hydrological Drought using Tree-ring Data. 2018, 18, 363-373 "Technical Report" Trend Analysis of Meteorological Drought Characteristics in Hamedan Province. 2018, 9, 295-305 Multi-hazard analysis of tropical cyclone return periods. 2019, Research on meteorological drought in the middle and lower reaches of the Yangtze River. 2019, 34, 374	1	0
84 83 82 81 80	A Assessment of Hydrological Drought using Tree-ring Data. 2018, 18, 363-373 "Technical Report" Trend Analysis of Meteorological Drought Characteristics in Hamedan Province. 2018, 9, 295-305 Multi-hazard analysis of tropical cyclone return periods. 2019, Research on meteorological drought in the middle and lower reaches of the Yangtze River. 2019, 34, 374 On Properties of a Class of Bivariate FGM Type Distributions. 2019, 15, 300-275		

76	Drought hotspot maps and regional drought characteristics curves: Development of a novel framework and its application to an Indian River basin undergoing climatic changes. <i>Science of the Total Environment</i> , 2021 , 151083	10.2	0
75	Spatiotemporal characteristics of agricultural droughts based on soil moisture data in Inner Mongolia from 1981 to 2019. 2021 , 603, 127104		1
74	Assessment of frequency and severity of droughts in Maharashtra state of India. <i>Arabian Journal of Geosciences</i> , 2020 , 13, 1	1.8	1
73	A nonparametric copula distribution framework for bivariate joint distribution analysis of flood characteristics for the Kelantan River basin in Malaysia. <i>AIMS Geosciences</i> , 2020 , 6, 171-198	1.6	1
72	Returning Periods of Drought and Climate Change in the Zayandeh Rud River Basin. 2020, 107-139		
71	Trivariate distribution modelling of flood characteristics using copula function acase study for Kelantan River basin in Malaysia. <i>AIMS Geosciences</i> , 2020 , 6, 92-130	1.6	3
70	Vulnerability assessment of agricultural production systems to drought stresses using robustness measures. <i>Scientific Reports</i> , 2021 , 11, 21648	4.9	1
69	Multi-Objective Optimal Allocation of River Basin Water Resources under Full Probability Scenarios Considering Wet-Dry Encounters: A Case Study of Yellow River Basin. <i>International Journal of Environmental Research and Public Health</i> , 2021 , 18,	4.6	2
68	Bivariate homogenous regions and projections based on copula function using RDI and SPI indices for drought risk assessment in Pakistan. <i>Arabian Journal of Geosciences</i> , 2021 , 14, 1	1.8	1
67	Past and future drought in Northwestern Algeria: the Beni Bahdel Dam catchment. <i>Proceedings of the International Association of Hydrological Sciences</i> , 383, 315-318		2
66	Compound climate events increase tree drought mortality across European forests. <i>Science of the Total Environment</i> , 2021 , 151604	10.2	7
65	Multivariate and multi-temporal analysis of meteorological drought in the northeast of Thailand. Weather and Climate Extremes, 2021 , 34, 100399	6	3
64	Multi-type assessment of global droughts and teleconnections. <i>Weather and Climate Extremes</i> , 2021 , 34, 100402	6	3
63	Comprehensive assessment and variation characteristics of the drought intensity in North China based on EID. <i>Journal of Applied Meteorology and Climatology</i> , 2022 ,	2.7	1
62	A Copula-Based Assessment of Renewable Energy Droughts Across Europe. SSRN Electronic Journal	1	
61	Multivariate Frequency Analysis for Streamflow Drought Having Different Time Resolution Using Archimedean Copula Functions. <i>KSCE Journal of Civil Engineering</i> , 1	1.9	O
60	Impact of temperature on agricultural drought occurrence under the effects of climate change. <i>Theoretical and Applied Climatology</i> , 2022 , 148, 191	3	5
59	Modeling concurrent hydroclimatic extremes with parametric multivariate extreme value models. Water Resources Research,	5.4	O

58	Multivariate global agricultural drought frequency analysis using kernel density estimation. <i>Ecological Engineering</i> , 2022 , 177, 106550	3.9	4
57	Drought characteristics encompassing climate indices in the Yangtze River Basin using non-stationary and copula-based methods. <i>Journal of Applied Meteorology and Climatology</i> , 2022 ,	2.7	Ο
56	Spatiotemporal evolution and meteorological triggering conditions of hydrological drought in the Hun River basin, NE China. <i>Natural Hazards and Earth System Sciences</i> , 2022 , 22, 995-1014	3.9	1
55	Probabilistic drought forecasting using copula and satellite rainfall based PERSIANN-CDR and MSWEP datasets. <i>International Journal of Climatology</i> ,	3.5	O
54	Toward coupling of groundwater drawdown and pumping time in a constant discharge. <i>Applied Water Science</i> , 2022 , 12, 1	5	1
53	Drought risk and water resources assessment in the Beijing-Tianjin-Hebei region, China <i>Science of the Total Environment</i> , 2022 , 154915	10.2	2
52	A satellite-based Standardized Antecedent Precipitation Index (SAPI) for mapping extreme rainfall risk in Myanmar. <i>Remote Sensing Applications: Society and Environment</i> , 2022 , 26, 100733	2.8	
51	Modelling of bivariate meteorological drought analysis in Lake Urmia Basin using Archimedean copula functions. <i>Meteorological Applications</i> , 2021 , 28,	2.1	1
50	Quantifying uncertainty in multivariate quantile estimation of hydrometeorological extremes via copula: A comparison between bootstrapping and Markov chain Monte Carlo. <i>International Journal of Climatology</i> ,	3.5	
49	Study on Urban Rainstorms Design Based on Multivariate Secondary Return Period. <i>Water Resources Management</i> , 1	3.7	1
48	Response of Ecohydrological Variables to Meteorological Drought under Climate Change. <i>Remote Sensing</i> , 2022 , 14, 1920	5	1
47	A hybrid drought Index for assessing agricultural drought in arid and semi-arid coastal areas of Southern Iran. <i>International Journal of Environmental Science and Technology</i> , 1	3.3	O
46	Meteorological drought analysis using copula theory for the case of upper Tekeze river basin, Northern Ethiopia. <i>Theoretical and Applied Climatology</i> ,	3	
45	Challenges in drought monitoring and assessment in India. Water Security, 2022, 16, 100120	3.8	2
44	Investigating meteorological/groundwater droughts by copula to study anthropogenic impacts <i>Scientific Reports</i> , 2022 , 12, 8285	4.9	0
43	Trivariate Analysis of Changes in Drought Characteristics in the CMIP6 Multi-Model Ensemble at Global Warming Levels of 1.5, 2 and 3 °C. <i>Journal of Climate</i> , 2022 , 1-32	4.4	1
42	Drought Occurrence Probability Analysis Using Multivariate Standardized Drought Index and Copula Function Under Climate Change. <i>Water Resources Management</i> ,	3.7	2
41	Encounter risk prediction of rich-poor precipitation using a combined copula. <i>Theoretical and Applied Climatology</i> ,	3	

40	Meteorological drought durationBeverity and climate change impact in Iran. <i>Theoretical and Applied Climatology</i> ,	3	Ο
39	An Integrated Multi-Risk Assessment for Floods and Drought in the Marrakech-Safi Region (Morocco). <i>Frontiers in Water</i> , 4,	2.6	Ο
38	Hydrological Retrospective and Historical Drought Analysis in a Brazilian Savanna Basin. <i>Water (Switzerland)</i> , 2022 , 14, 2178	3	
37	Earth I future Multivariate analysis of compound flood hazard across Canada Atlantic, Pacific and Great Lakes coastal areas. <i>Earth S Future</i> ,	7.9	O
36	Spatial based drought assessment: Where are we heading? A review on the current status and future. <i>Science of the Total Environment</i> , 2022 , 844, 157239	10.2	0
35	Multivariate Drought Frequency Analysis and Risk Assessment: A case study for Kahramanmaras Province. 368-381		1
34	Modeling the Interdependence Structure between Rain and Radar Variables Using Copulas: Applications to Heavy Rainfall Estimation by Weather Radar. 2022 , 13, 1298		1
33	The devil is in the tail dependence: An assessment of multivariate copula-based frameworks and dependence concepts for coastal compound flood dynamics.		1
32	Identification and Risk Characteristics of Agricultural Drought Disaster Events Based on the Copula Function in Northeast China. 2022 , 13, 1234		1
31	Meteorological and hydrological drought risks under changing environment on the Wanquan River Basin, Southern China.		
30	Application of Copula Functions for Bivariate Analysis of Rainfall and River Flow Deficiencies in the Siminehrood River Basin, Iran. 2022 , 27,		0
29	Assessment of Hydrological Drought Using the Standardized Streamflow Index (SSFI): A Case Study of the Tien Yen River Basin of Quang Ninh Province, Vietnam. 2022 , 10, 309-326		O
28	Copula based multivariate analysis of hydro-meteorological drought.		0
27	Joint frequency analysis of river flow rate and suspended sediment load using conditional density of copula functions.		O
26	Integrated Drought Index based on Vine Copula Modelling.		0
25	Assessment of hydrological drought return periods with bivariate copulas in the Tigris river basin, Turkey. 2022 , 134,		2
24	Identification and risk assessment of flash drought in the Pearl River basin based on the Standardized Evaporative Stress Ratio.		О
23	The Risk of Extreme Streamflow Drought in the Polish Carpathians Two-Dimensional Approach. 2022 , 19, 14095		O

22	A copula-based assessment of renewable energy droughts across Europe. 2022,	0
21	Mixture bivariate distribution of wind speed and air density for wind energy assessment. 2023 , 276, 116540	O
20	+Dynamic identification and risk analysis of compound dry-hot events considering nonstationarity. 2023 , 616, 128852	0
19	Cloud transformation algorithm and Copulas function coupling model for drought hazard comprehensive evaluation. 2023 , 187, 106870	O
18	Copula-based bivariate drought severity and duration frequency analysis considering spatial memoral variability in the Ceyhan Basin, Turkey.	1
17	Toward analyzing meteorological droughts in western Iran: a multivariate approach based on vine copulas.	O
16	Performance Evaluation of Standardized Copula-based Drought Index with RDI and SPTI using Severity-Duration Frequency Curves over Balochistan, Pakistan.	О
15	Characterizing compound flooding potential and the corresponding driving mechanisms across coastal environments.	O
14	Compounding joint impact of rainfall, storm surge and river discharge on coastal flood risk: an approach based on 3D fully nested Archimedean copulas. 2023 , 82,	О
13	Drought assessment in Kohima, Nagaland, India, using the standardized precipitation index (SPI). 2023 ,	O
12	Water resources system vulnerability in high mountain areas under climate change. 2023 , 403, 136789	O
11	Nonstationary frequency analysis of compound flooding in Canada's coastal zones. 2023 , 182, 104292	O
10	Simultaneous Monitoring of Different Drought Types Using Linear and Nonlinear Combination Approaches. 2023 , 37, 1125-1151	O
9	Influence of dust extreme and mud adhesion on the power networks over southwest Iran: case study Ahvaz metropolitan.	O
8	Bivariate Drought Risk Assessment for Water Planning Using Copula Function in Balochistan.	О
7	Joint Modelling of Drought Severity and Duration using Copula Theory: A Case Study of Ghana. 2023 , 27, 1850-1865	O
6	Trivariate Probabilistic Assessments of the Compound Flooding Events Using the 3-D Fully Nested Archimedean (FNA) Copula in the Semiparametric Distribution Setting. 2023 , 37, 1641-1693	O
5	Copula-Based Assessment and Regionalization of Drought Risk in China. 2023 , 20, 4074	O

Identification and frequency analysis of droughtflood abrupt alternation events using a daily-scale standardized weighted average of the precipitation index. 11,

Evolution and copula modelling of drought duration and severity over Africa using CORDEX-CORE regional climate models.

Multivariate spatial analysis of groundwater quality using copulas.

Modeling the Characteristics of Unhealthy Air Pollution Events Using Bivariate Copulas. 2023, 15, 907