Permafrost creep and rock glacier dynamics

Permafrost and Periglacial Processes 17, 189-214 DOI: 10.1002/ppp.561

Citation Report

#	Article	IF	CITATIONS
1	Unexpected Response of High Alpine Lake Waters to Climate Warming. Environmental Science & Technology, 2007, 41, 7424-7429.	4.6	105
2	Rockglacier activity studies on a regional scale: comparison of geomorphological mapping and photogrammetric monitoring. Earth Surface Processes and Landforms, 2007, 32, 1747-1758.	1.2	53
3	Holocene rockwall retreat and the estimation of rock glacier age, prins karls forland, svalbard. Geografiska Annaler, Series A: Physical Geography, 2007, 89, 83-93.	0.6	19
4	The regional distribution of mountain permafrost in Iceland. Permafrost and Periglacial Processes, 2007, 18, 185-199.	1.5	108
5	Internal structure and ice content of Reichenkar rock glacier (Stubai Alps, Austria) assessed by geophysical investigations. Permafrost and Periglacial Processes, 2007, 18, 351-367.	1.5	100
6	The relationship between rock glacier and contributing area parameters in the Front Range of Colorado. Journal of Quaternary Science, 2008, 23, 153-163.	1.1	28
7	Relict rock glaciers and protalus lobes in the British Isles: implications for Late Pleistocene mountain geomorphology and palaeoclimate. Journal of Quaternary Science, 2008, 23, 287-304.	1.1	55
8	Ground penetrating radar survey and stratigraphic interpretation of the Plan du Lac rock glaciers, Vanoise Massif, northern French Alps. Permafrost and Periglacial Processes, 2008, 19, 19-30.	1.5	18
9	Frost weathering: recent advances and future directions. Permafrost and Periglacial Processes, 2008, 19, 195-210.	1.5	276
10	Monitoring mountain permafrost evolution using electrical resistivity tomography: A 7â€year study of seasonal, annual, and longâ€term variations at Schilthorn, Swiss Alps. Journal of Geophysical Research, 2008, 113, .	3.3	115
11	Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: An effect of liquid water. Journal of Geophysical Research, 2008, 113, .	3.3	102
12	Rock falls in highâ€alpine rock walls quantified by terrestrial lidar measurements: A case study in the Mont Blanc area. Geophysical Research Letters, 2008, 35, .	1.5	93
13	Dynamics and GPR stratigraphy of a polar rock glacier on James Ross Island, Antarctic Peninsula. Journal of Glaciology, 2008, 54, 445-451.	1.1	50
14	Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Science Reviews, 2009, 92, 117-171.	4.0	499
15	Quantifying sediment storage in a high alpine valley (Turtmanntal, Switzerland). Earth Surface Processes and Landforms, 2009, 34, 1726-1742.	1.2	98
16	Exposure dating and reinterpretation of coarse debris accumulations (â€~rock glaciers') in the Cairngorm Mountains, Scotland. Journal of Quaternary Science, 2009, 24, 19-31.	1.1	61
17	Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection. Remote Sensing of Environment, 2009, 113, 239-247.	4.6	128
18	Two decades of responses (1986–2006) to climate by the Laurichard rock glacier, French Alps. Permafrost and Periglacial Processes, 2009, 20, 331-344.	1.5	62

#	Article	IF	CITATIONS
19	Development of tongue-shaped and multilobate rock glaciers in alpine environments – Interpretations from ground penetrating radar surveys. Geomorphology, 2009, 109, 94-107.	1.1	68
20	Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews, 2009, 28, 2137-2149.	1.4	378
21	The significance of rock glaciers in the dry Andes – A discussion of Azócar and Brenning (2010) and Brenning and Azócar (2010). Permafrost and Periglacial Processes, 2010, 21, 282-285.	1.5	31
22	The significance of rock glaciers in the dry Andes – reply to L. Arenson and M. Jakob. Permafrost and Periglacial Processes, 2010, 21, 286-288.	1.5	7
23	Rock glacier dynamics in marginal periglacial environments. Earth Surface Processes and Landforms, 2010, 35, 1302-1314.	1.2	40
24	Concentric crater fill in the northern mid-latitudes of Mars: Formation processes and relationships to similar landforms of glacial origin. Icarus, 2010, 209, 390-404.	1.1	111
25	Mountain permafrost: development and challenges of a young research field. Journal of Glaciology, 2010, 56, 1043-1058.	1.1	147
26	Application of frequency ratio and logistic regression to active rock glacier occurrence in the Andes of San Juan, Argentina. Geomorphology, 2010, 114, 396-405.	1.1	19
27	Status and evolution of the cryosphere in the Andes of Santiago (Chile, 33.5°S.). Geomorphology, 2010, 118, 453-464.	1.1	57
28	Rock-glacier dynamics and magnitude–frequency relations of debris flows in a high-elevation watershed: Ritigraben, Swiss Alps. Global and Planetary Change, 2010, 73, 202-210.	1.6	95
29	Frost-cracking control on catchment denudation rates: Insights from in situ produced 10Be concentrations in stream sediments (Ecrins–Pelvoux massif, French Western Alps). Earth and Planetary Science Letters, 2010, 293, 72-83.	1.8	105
30	The internal structure of rock glaciers and recently deglaciated slopes as revealed by geoelectrical tomography: insights on permafrost and recent glacial evolution in the Central and Western Alps (Italy–France). Quaternary Science Reviews, 2010, 29, 507-521.	1.4	60
31	Application of a combination of dating techniques to reconstruct the Lateglacial and early Holocene landscape history of the Albula region (eastern Switzerland). Geomorphology, 2011, 127, 1-13.	1.1	53
32	Beyond confusion: Rock glaciers as cryo-conditioned landforms. Geomorphology, 2011, 131, 98-106.	1.1	188
33	Internal structure and permafrost distribution in two alpine periglacial talus slopes, Valais, Swiss Alps. Geomorphology, 2011, 132, 208-221.	1.1	66
34	Periglacial Environment and Landscape Dynamics of the Swiss Alps. Journal of Geography (Chigaku) Tj ETQq1 1	0.784314	rgBJT /Overlo
35	A regional inventory of rock glaciers and ice ored moraines in norway. Geografiska Annaler, Series A: Physical Geography, 2011, 93, 175-191.	0.6	75
36	Permafrost. Earth-Science Reviews, 2011, 108, 158-169.	4.0	151

CITATION REPORT ARTICLE IF CITATIONS Internal structure of the Green Lake 5 rock glacier, Colorado Front Range, USA. Permafrost and 37 1.5 45 Periglacial Processes, 2011, 22, 107-119. Internal structure and hydrological functions of an alpine proglacial moraine. Hydrological 1.1 Processes, 2011, 25, 2967-2982. Permafrost distribution in the European Alps: calculation and evaluation of an index map and 39 203 1.5 summary statistics. Cryosphere, 2012, 6, 807-820. Research Frontier in Periglacial Processes. Journal of Geography (Chigaku Zasshi), 2012, 121, 269-305. 0.1 Air and Shallow Ground Temperatures Associated with the Formation of Gravelly Lobes on a Periglacial Smooth Slope at Mt. Minamidake, Northern Japanese Alps. Journal of Geography (Chigaku) Tj ETQq0 0 00gBT /Overlock 10 Tf 41 Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results. Remote Sensing of Environment, 2012, 124, 832-843. 4.6 Combining optical and thermal remote sensing data for mapping debris-covered glaciers (Alamkouh) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 43 Sediment transfer rates of two active rockglaciers in the Swiss Alps. Geomorphology, 2012, 167-168, 1.1 44 45-50. 10Be ages reveal >12ka of gravitational movement in a major sackung of the Western Alps (France). Geomorphology, 2012, 171-172, 139-153. 45 1.1 38 Thawâ€Consolidation Effects on the Stability of Alpine Talus Slopes in Permafrost. Permafrost and 1.5 Periglacial Processes, 2012, 23, 267-276. The cryosphere and glacial permafrost as its integral component. Open Geosciences, 2012, 4, 623-640. 47 0.6 5 Thermal remote sensing of ice-debris landforms using ASTER: an example from the Chilean Andes. 1.5 24 Cryosphere, 2012, 6, 367-382. Influence of snow cover and grain size on the ground thermal regime in the discontinuous 49 1.1 47 permafrost zone, Swiss Alps. Geomorphology, 2012, 175-176, 176-189. Detecting rock glacier flow structures using Gabor filters and IKONOS imagery. Remote Sensing of Environment, 2012, 125, 227-237. 4.6 Measurement of Surface Displacement and Deformation of Mass Movements Using Least Squares 51 1.8 53 Matching of Repeat High Resolution Satellite and Aerial Images. Remote Sensing, 2012, 4, 43-67.

52	Permafrost mapping using quasiâ€3D resistivity imaging, MurtÃ ⁻ l, Swiss Alps. Near Surface Geophysics, 2012, 10, 117-127.	0.6	24
53	Rapid movement of frozen debris-lobes: implications for permafrost degradation and slope instability in the south-central Brooks Range, Alaska. Natural Hazards and Earth System Sciences, 2012, 12, 1521-1537.	1.5	37

54Inclinable Shear Box Simulations of Deepening Active Layers on Perennially Frozen Scree Slopes.1.591.59

#	Article	IF	CITATIONS
55	A Permafrost Probability Model for the Southern Yukon and Northern British Columbia, Canada. Permafrost and Periglacial Processes, 2012, 23, 52-68.	1.5	52
56	The Todagin Creek landslide of October 3, 2006, Northwest British Columbia, Canada. Landslides, 2012, 9, 107-115.	2.7	10
57	lce structures, patterns, and processes: A view across the icefields. Reviews of Modern Physics, 2012, 84, 885-944.	16.4	277
58	Clacier–permafrost interactions: Processes, products and glaciological implications. Sedimentary Geology, 2012, 255-256, 1-28.	1.0	67
59	Topography Mapping With a Portable Real-Aperture Radar Interferometer. IEEE Geoscience and Remote Sensing Letters, 2012, 9, 277-281.	1.4	58
60	Multidisciplinary investigations on three rock glaciers in the swiss alps: legacies and future perspectives. Geografiska Annaler, Series A: Physical Geography, 2012, 94, 215-243.	0.6	52
61	Geostatistical Assessment of Ice Content Distribution Within the Glacier Bonnard. Mathematical Geosciences, 2013, 45, 591-599.	1.4	2
62	Evidence of rock glacier melt impacts on water chemistry and diatoms in high mountain streams. Cold Regions Science and Technology, 2013, 96, 77-85.	1.6	59
63	8.15 Permafrost: Formation and Distribution, Thermal and Mechanical Properties. , 2013, , 202-222.		4
64	8.17 Rock Glaciers. , 2013, , 238-273.		20
65	8.28 The Glacial and Periglacial Research Frontier: Where from Here?. , 2013, , 479-499.		5
66	7.31 Hillslope Processes in Cold Environments: An Illustration of High-Latitude Mountain and Hillslope Processes and Forms. , 2013, , 320-336.		9
67	Exploring the potential of luminescence methods for dating Alpine rock glaciers. Quaternary Geochronology, 2013, 18, 17-33.	0.6	18
68	Quaternary glacial evolution in the Central Cantabrian Mountains (Northern Spain). Geomorphology, 2013, 196, 65-82.	1.1	86
69	A regional inventory of rock glaciers and protalus ramparts in the central Italian Alps. Geomorphology, 2013, 186, 136-149.	1.1	92
70	Recent Advances in Mountain Permafrost Research. Permafrost and Periglacial Processes, 2013, 24, 99-107.	1.5	59
71	Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR. Cryosphere, 2013, 7, 1109-1119.	1.5	61
72	Evidencing a large body of ice in a rock glacier, vanoise massif, northern french alps. Geografiska Annaler, Series A: Physical Geography, 2013, 95, 109-123.	0.6	17

#	Article	IF	CITATIONS
73	The Distribution, Thermal Characteristics and Dynamics of Permafrost in Tröllaskagi, Northern Iceland, as Inferred from the Distribution of Rock Glaciers and Iceâ€Cored Moraines. Permafrost and Periglacial Processes, 2013, 24, 322-335.	1.5	60
74	Clyde Wahrhaftig and Allan Cox (1959) Rock glaciers in the Alaska Range. <i>Bulletin of the Geological Society of America</i> 70(4): 383–436. Progress in Physical Geography, 2013, 37, 130-139.	1.4	3
75	Internal structure and composition of a rock glacier in the Andes (upper Choapa valley, Chile) using borehole information and ground-penetrating radar. Annals of Glaciology, 2013, 54, 61-72.	2.8	54
76	Impacts of mean annual air temperature change on a regional permafrost probability model for the southern Yukon and northern British Columbia, Canada. Cryosphere, 2013, 7, 935-946.	1.5	17
77	PERMAFROST AND PERIGLACIAL FEATURES Rock Glaciers and Protalus Forms. , 2013, , 535-541.		12
78	Characterization and Monitoring of the Furggwanghorn Rock Glacier, Turtmann Valley, Switzerland: Results from 2010 to 2012. Vadose Zone Journal, 2013, 12, 1-15.	1.3	52
79	Coldâ€based debrisâ€covered glaciers: Evaluating their potential as climate archives through studies of groundâ€penetrating radar and surface morphology. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2505-2540.	1.0	31
80	Glacier meltwater flow paths and storage in a geomorphologically complex glacial foreland: The case of the Tapado glacier, dry Andes of Chile (30°S). Journal of Hydrology, 2014, 519, 1068-1083.	2.3	41
81	Geophysical analysis of transverse ridges and internal structure at Lone Peak Rock Glacier, Big Sky, Montana, USA. Journal of Glaciology, 2014, 60, 453-462.	1.1	15
82	Rock Clacier Inventory of the Valles CalchaquÃes Region (~ 25°S), Salta, Argentina, Derived from ALOS Data. Permafrost and Periglacial Processes, 2014, 25, 69-75.	1.5	34
83	A First Rock Glacier Inventory for the Bolivian Andes. Permafrost and Periglacial Processes, 2014, 25, 333-343.	1.5	51
84	Amazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration. Planetary and Space Science, 2014, 91, 60-76.	0.9	42
85	Sediment storage and transfer on a periglacial mountain slope (Corvatsch, Switzerland). Geomorphology, 2014, 218, 35-44.	1.1	24
86	Long-term high-frequency validation of MODIS LST products in a Mediterranean mountain environment. International Journal of Remote Sensing, 2014, 35, 818-829.	1.3	1
87	Changes in snow and glacier cover in an arid watershed of the western Kunlun Mountains using multisource remote-sensing data. International Journal of Remote Sensing, 2014, 35, 234-252.	1.3	12
88	Geomatics techniques applied to glaciers, rock glaciers, and ice patches in spain (1991–2012). Geografiska Annaler, Series A: Physical Geography, 2014, 96, 307-321.	0.6	15
89	Using Terrestrial Laser Scanning for the Recognition and Promotion of High-Alpine Geomorphosites. Geoheritage, 2014, 6, 129-140.	1.5	29
90	Observations: Cryosphere. , 2014, , 317-382.		114

#	Article	IF	CITATIONS
91	Shallow methane hydrate system controls ongoing, downslope sediment transport in a lowâ€velocity active submarine landslide complex, <scp>H</scp> ikurangi <scp>M</scp> argin, <scp>N</scp> ew <scp>Z</scp> ealand. Geochemistry, Geophysics, Geosystems, 2014, 15, 4137-4156.	1.0	67
92	Characteristics and Origin of Rock Glaciers in Northern Tien Shan (Kazakhstan/Kyrgyzstan). Permafrost and Periglacial Processes, 2014, 25, 320-332.	1.5	40
93	Assessing the rock glacier kinematics on three different timescales: a case study from the southern Swiss Alps. Earth Surface Processes and Landforms, 2014, 39, 2056-2069.	1.2	47
94	Deformation of debris-ice mixtures. Reviews of Geophysics, 2014, 52, 435-467.	9.0	82
95	The influence of ground ice distribution on geomorphic dynamics since the Little Ice Age in proglacial areas of two cirque glacier systems. Earth Surface Processes and Landforms, 2015, 40, 666-680.	1.2	45
96	A Rock Glacier Activity Index Based on Rock Glacier Thickness Changes and Displacement Rates Derived From Airborne Laser Scanning. Permafrost and Periglacial Processes, 2015, 26, 347-359.	1.5	16
97	Borehole Logging in Alpine Periglacial Talus Slopes (Valais, Swiss Alps). Permafrost and Periglacial Processes, 2015, 26, 67-83.	1.5	28
98	A new 3â€D thinâ€skinned rock glacier model based on helicopter GPR results from the Swiss Alps. Geophysical Research Letters, 2015, 42, 4464-4472.	1.5	16
99	Influence of glacier advance on the development of the multipart Riffeltal rock glacier, Central Austrian Alps. Earth Surface Processes and Landforms, 2015, 40, 965-980.	1.2	35
100	Internal Structure and Composition of a Rock Glacier in the Dry Andes, Inferred from Groundâ€penetrating Radar Data and its Artefacts. Permafrost and Periglacial Processes, 2015, 26, 335-346.	1.5	18
101	Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth. Cryosphere, 2015, 9, 2089-2099.	1.5	96
102	Rock Glaciers as Water Stores in the Bolivian Andes: An Assessment of Their Hydrological Importance. Arctic, Antarctic, and Alpine Research, 2015, 47, 89-98.	0.4	57
103	Contrasting responses of Central Asian rock glaciers to global warming. Scientific Reports, 2015, 5, 8228.	1.6	57
104	Quantifying geological processes on Mars—Results of the high resolution stereo camera (HRSC) on Mars express. Planetary and Space Science, 2015, 112, 53-97.	0.9	63
105	Limits to lichenometry. Quaternary Science Reviews, 2015, 129, 229-238.	1.4	23
106	Analysis of Thermal Behaviour in the Active Layer of Degrading Mountain Permafrost. Permafrost and Periglacial Processes, 2015, 26, 39-56.	1.5	12
107	Physical, Thermal, and Mechanical Properties of Snow, Ice, and Permafrost. , 2015, , 35-75.		16
108	Furrow-and-Ridge Morphology on Rockglaciers Explained by Gravity-Driven Buckle Folding: A Case Study From the MurtĀʿl Rockglacier (Switzerland). Permafrost and Periglacial Processes, 2015, 26, 57-66.	1.5	33

ARTICLE

IF CITATIONS

109 A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South) Tj ETQq0 0 0 1gBT /Overlock 10 Tf

110	Reconsidering the glacier to rock glacier transformation problem: New insights from the central Andes of Chile. Geomorphology, 2015, 238, 47-55.	1.1	64
111	A new approach for preparing the geomorphological map based on the active rock glaciers in southwestern Iran. Arabian Journal of Geosciences, 2015, 8, 9693-9698.	0.6	1
112	Ice and Snow as Land-Forming Agents. , 2015, , 167-199.		7
113	Experimental study of the drilling process in debris-rich ice. Cold Regions Science and Technology, 2015, 120, 138-144.	1.6	13
114	Permafrost Degradation. , 2015, , 303-344.		44
115	Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions. Earth Surface Dynamics, 2016, 4, 103-123.	1.0	67
116	Rock glaciers on the run – understanding rock glacier landform evolution and recent changes from numerical flow modeling. Cryosphere, 2016, 10, 2865-2886.	1.5	38
117	Frozen debris lobe morphology and movement: an overview of eight dynamic features, southern Brooks Range, Alaska. Cryosphere, 2016, 10, 977-993.	1.5	20
118	Estimating Permafrost Distribution in the Maritime Southern Alps, New Zealand, Based on Climatic Conditions at Rock Glacier Sites. Frontiers in Earth Science, 2016, 4, .	0.8	51
119	Internal Structure and Current Evolution of Very Small Debris-Covered Glacier Systems Located in Alpine Permafrost Environments. Frontiers in Earth Science, 2016, 4, .	0.8	41
120	Taking Advantage of the ESA G-POD Service to Study Ground Deformation Processes in High Mountain Areas: A Valle d'Aosta Case Study, Northern Italy. Remote Sensing, 2016, 8, 852.	1.8	33
121	Million year old ice found under meter thick debris layer in Antarctica. Geophysical Research Letters, 2016, 43, 6995-7001.	1.5	20
122	Drilling Challenges and Perspectives for Future Development. , 2016, , 259-279.		0
123	Revised palaeoclimatic significance of Mueller Glacier moraines, Southern Alps, New Zealand. Earth Surface Processes and Landforms, 2016, 41, 196-207.	1.2	24
124	Recent speedâ€up of an alpine rock glacier: an updated chronology of the kinematics of outer hochebenkar rock glacier based on geodetic measurements. Geografiska Annaler, Series A: Physical Geography, 2016, 98, 129-141.	0.6	38
125	Detection and Analysis of Ground Deformation in Permafrost Environments. Permafrost and Periglacial Processes, 2016, 27, 339-351.	1.5	25
126	Investigating Movement and Characteristics of a Frozen Debris Lobe, South-Central Brooks Range, Alaska. Environmental and Engineering Geoscience, 2016, 22, 259-277.	0.3	33

# 127	ARTICLE Interrogating the time and processes of development of the Las Liebres rock glacier, central Chilean Andes, using a numerical flow model. Earth Surface Processes and Landforms, 2016, 41, 1884-1893.	lF 1.2	CITATIONS
128	Conventional Machine-Driven Rotary Drill Rigs. , 2016, , 59-99.		0
129	Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeology Journal, 2016, 24, 937-953.	0.9	57
130	Can a simple Numerical Model Help to Fine-Tune the Analysis of Ground-Penetrating Radar Data? Hochebenkar Rock Glacier as a Case Study. Arctic, Antarctic, and Alpine Research, 2016, 48, 377-393.	0.4	6
131	Rock glaciers, protalus ramparts and pronival ramparts in the south-eastern Alps. Geomorphology, 2016, 269, 112-121.	1.1	56
132	Analysis of Damage Assessment of Large Hailstone Ingestion into Advanced High Bypass Propulsion system. , 2016, , .		1
133	Rock glacier dynamics in Southern Carpathian Mountains from high-resolution optical and multi-temporal SAR satellite imagery. Remote Sensing of Environment, 2016, 177, 21-36.	4.6	50
134	Application of refraction seismics in alpine permafrost studies: A review. Earth-Science Reviews, 2016, 155, 136-152.	4.0	27
135	Southern Carpathian rock glaciers: Inventory, distribution and environmental controlling factors. Geomorphology, 2017, 293, 391-404.	1.1	34
136	The 2006 Collapse of the Bérard Rock Glacier (Southern French Alps). Permafrost and Periglacial Processes, 2017, 28, 209-223.	1.5	56
137	Geomorphological evidence for ground ice on dwarf planet Ceres. Nature Geoscience, 2017, 10, 338-343.	5.4	83
138	New insights on permafrost genesis and conservation in talus slopes based on observations at Flüelapass, Eastern Switzerland. Geomorphology, 2017, 290, 101-113.	1.1	33
139	Landform transitions from pronival ramparts to moraines and rock glaciers: a case study from the SmÃ,rbotn cirque, Romsdalsalpane, southern Norway. Geografiska Annaler, Series A: Physical Geography, 2017, 99, 15-37.	0.6	27
140	Permafrost distribution map of San Juan Dry Andes (Argentina) based on rock glacier sites. Journal of South American Earth Sciences, 2017, 73, 42-49.	0.6	19
141	Ecology of active rock glaciers and surrounding landforms: climate, soil, plants and arthropods. Boreas, 2017, 46, 185-198.	1.2	20
142	Cold–temperate transition surface and permafrost base (CTS-PB) as an environmental axis in glacier–permafrost relationship, based on research carried out on the Storglaciäen and its forefield, northern Sweden. Quaternary Research, 2017, 88, 551-569.	1.0	13
143	Chronological and geomorphological investigation of fossil debris-covered glaciers in relation to deglaciation processes: A case study in the Sierra de La Demanda, northern Spain. Quaternary Science Reviews, 2017, 170, 232-249.	1.4	35
144	Misleading old age on a young landform? The dilemma of cosmogenic inheritance in surface exposure dating: Moraines vs. rock glaciers. Quaternary Geochronology, 2017, 42, 76-88.	0.6	45

#	Article	IF	CITATIONS
145	Recent climate warming and the Varas rock glacier activity, Cordillera Oriental, Central Andes of Argentina. GeoResJ, 2017, 14, 67-79.	1.4	6
146	Time constraints for post-LGM landscape response to deglaciation in Val Viola, Central Italian Alps. Quaternary Science Reviews, 2017, 177, 10-33.	1.4	18
147	Chapter 3 Geomorphological framework: glacial and periglacial sediments, structures and landforms. Geological Society Engineering Geology Special Publication, 2017, 28, 59-368.	0.2	13
148	Thaw Penetration in Frozen Ground Subjected to Hydronic Heating. Journal of Cold Regions Engineering - ASCE, 2017, 31, .	0.5	2
149	Investigating groundwater flow components in an Alpine relict rock glacier (Austria) using a numerical model. Hydrogeology Journal, 2017, 25, 371-383.	0.9	18
150	Spatial Distribution and Main Characteristics of Alpine Permafrost from Southern Carpathians, Romania. Springer Geography, 2017, , 117-146.	0.3	4
151	Estimating the Effect of Different Influencing Factors on Rock Glacier Development in Two Regions in the Swiss Alps. Permafrost and Periglacial Processes, 2017, 28, 195-208.	1.5	24
152	Surface dynamic of a protalus lobe in the temperate high mountain. Western Maladeta, Pyrenees. Catena, 2017, 149, 689-700.	2.2	9
153	The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa. Geomorphology, 2017, 278, 184-194.	1.1	9
154	Destabilisation of Creeping Permafrost: The Plator Rock Glacier Case Study (Central Italian Alps). Permafrost and Periglacial Processes, 2017, 28, 224-236.	1.5	42
155	Rock glaciers in the Western and High Tatra Mountains, Western Carpathians. Journal of Maps, 2017, 13, 844-857.	1.0	19
156	Pluri-decadal (1955–2014) evolution of glacier–rock glacier transitional landforms in the central Andes of Chile (30–33° S). Earth Surface Dynamics, 2017, 5, 493-509.	1.0	40
157	Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes. Cryosphere, 2017, 11, 2957-2974.	1.5	28
158	Internal structure of two alpine rock glaciers investigated by quasi-3-D electrical resistivity imaging. Cryosphere, 2017, 11, 841-855.	1.5	34
159	Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry. Cryosphere, 2017, 11, 997-1014.	1.5	58
160	Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. Cryosphere, 2017, 11, 81-99.	1.5	98
161	Mountain rock glaciers contain globally significant water stores. Scientific Reports, 2018, 8, 2834.	1.6	110
162	Age constraints of rock glaciers in the Southern Alps/New Zealand – Exploring their palaeoclimatic potential. Holocene, 2018, 28, 778-790.	0.9	32

#	Article	IF	CITATIONS
163	Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland. Permafrost and Periglacial Processes, 2018, 29, 3-20.	1.5	47
164	The origins of Antarctic rock glaciers: periglacial or glacial features?. Earth Surface Processes and Landforms, 2018, 43, 1390-1402.	1.2	18
165	Interpretation of recent alpine landscape system evolution using geomorphic mapping and L-band InSAR analyses. Geomorphology, 2018, 310, 125-137.	1.1	10
166	Mapping and quantifying sediment transfer between the front of rapidly moving rock glaciers and torrential gullies. Geomorphology, 2018, 309, 60-76.	1.1	33
167	Glaciation of alpine valleys: The glacier – debris-covered glacier – rock glacier continuum. Geomorphology, 2018, 311, 127-142.	1.1	105
168	Deglaciation and its impact on permafrost and rock glacier evolution: New insight from two adjacent cirques in Austria. Science of the Total Environment, 2018, 621, 1397-1414.	3.9	28
169	The Ac-5 (Fejokoo) quadrangle of Ceres: Geologic map and geomorphological evidence for ground ice mediated surface processes. Icarus, 2018, 316, 63-83.	1.1	21
170	Spatial distribution and morphometry of permafrost-related landforms in the Central Pyrenees and associated paleoclimatic implications. Quaternary International, 2018, 470, 96-108.	0.7	20
171	Mechanisms linking active rock glaciers and impounded surface water formation in highâ€mountain areas. Earth Surface Processes and Landforms, 2018, 43, 417-431.	1.2	23
172	Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water. Global and Planetary Change, 2018, 162, 69-83.	1.6	91
173	The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya. Global and Planetary Change, 2018, 160, 123-142.	1.6	73
174	Glaciares rocosos en la zona semiárida de Chile: relevancia de un recurso hÃdrico sin protección normativa. Cuadernos De Geografia: Revista Colombiana De Geografia, 2018, 27, .	0.1	2
175	Multi-Annual Kinematics of an Active Rock Glacier Quantified from Very High-Resolution DEMs: An Application-Case in the French Alps. Remote Sensing, 2018, 10, 547.	1.8	30
176	Threeâ€Dimensional Electrical Conductivity and Induced Polarization Tomography of a Rock Glacier. Journal of Geophysical Research: Solid Earth, 2018, 123, 9528-9554.	1.4	53
177	Free gas distribution and basal shear zone development in a subaqueous landslide – Insight from 3D seismic imaging of the Tuaheni Landslide Complex, New Zealand. Earth and Planetary Science Letters, 2018, 502, 231-243.	1.8	28
178	Rainfall as primary driver of discharge and solute export from rock glaciers: The Col d'Olen Rock Glacier in the NW Italian Alps. Science of the Total Environment, 2018, 639, 316-330.	3.9	29
179	Rock glaciers in Daxue Shan, south-eastern Tibetan Plateau: an inventory, their distribution, and their environmental controls. Cryosphere, 2018, 12, 2327-2340.	1.5	22
180	An inventory of rock glaciers in the central British Columbia Coast Mountains, Canada, from high resolution Google Earth imagery. Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	23

#	Article	IF	CITATIONS
181	Recent evolution of an iceâ€cored moraine at the <scp>G</scp> entianes <scp>P</scp> ass, <scp>V</scp> alais <scp>A</scp> lps, <scp>S</scp> witzerland. Land Degradation and Development, 2018, 29, 3693-3708.	1.8	18
182	Recent Acceleration of a Rock Glacier Complex, Ãdjet, Norway, Documented by 62ÂYears of Remote Sensing Observations. Geophysical Research Letters, 2018, 45, 8314-8323.	1.5	49
183	Unchanged surface morphology in debris-covered glaciers and rock glaciers in Tröllaskagi peninsula (northern Iceland). Science of the Total Environment, 2019, 648, 218-235.	3.9	26
184	Occurrence, evolution and ice content of iceâ€debris complexes in the Akâ€Shiirak, Central Tien Shan revealed by geophysical and remotelyâ€sensed investigations. Earth Surface Processes and Landforms, 2019, 44, 129-143.	1.2	27
185	Triaxial stress path tests on artificially prepared analogue alpine permafrost soil. Canadian Geotechnical Journal, 2019, 56, 1448-1460.	1.4	13
186	Geometry and paleo-ice content of rock glaciers in the southeastern Alps (NE Italy – NW Slovenia). Journal of Maps, 2019, 15, 346-355.	1.0	5
187	Geographic, hydrological, and climatic significance of rock glaciers in the Great Basin, USA. Arctic, Antarctic, and Alpine Research, 2019, 51, 232-249.	0.4	14
188	Multiâ€temporal 3D point cloudâ€based quantification and analysis of geomorphological activity at an alpine rock glacier using airborne and terrestrial LiDAR. Permafrost and Periglacial Processes, 2019, 30, 222-238.	1.5	14
189	An Unsupervised Method to Detect Rock Glacier Activity by Using Sentinel-1 SAR Interferometric Coherence: A Regional-Scale Study in the Eastern European Alps. Remote Sensing, 2019, 11, 1711.	1.8	10
190	Mountain glacier-to-rock glacier transition. Global and Planetary Change, 2019, 181, 102999.	1.6	30
191	Accounting for permafrost creep in high-resolution snow depth mapping by modelling sub-snow ground deformation. Remote Sensing of Environment, 2019, 231, 111275.	4.6	5
192	Decoupled kinematics of two neighbouring permafrost creeping landforms in the Eastern Italian Alps. Earth Surface Processes and Landforms, 2019, 44, 2703-2719.	1.2	17
193	Water controls the seasonal rhythm of rock glacier flow. Earth and Planetary Science Letters, 2019, 528, 115844.	1.8	61
194	Longâ€ŧerm monitoring of sporadic permafrost at the eastern margin of the European Alps (Hochreichart, Seckauer Tauern range, Austria). Permafrost and Periglacial Processes, 2019, 30, 260-277.	1.5	14
195	Surface macroâ€fabric analysis of relict rock glaciers in the Cantabrian Mountains (NW Spain). Permafrost and Periglacial Processes, 2019, 30, 348-363.	1.5	4
196	Periglacial deposits as indicators of paleotemperatures. A case study in the Iberian Peninsula: The mountains of Galicia. Permafrost and Periglacial Processes, 2019, 30, 374-388.	1.5	10
197	Rock Glacier Kinematics in the Kaunertal, Ötztal Alps, Austria. Geosciences (Switzerland), 2019, 9, 373.	1.0	14
198	Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes. Regional Environmental Change, 2019, 19, 1263-1279.	1.4	49

#	Article	IF	CITATIONS
199	Is that a relict rock glacier?. Geomorphology, 2019, 330, 177-189.	1.1	24
200	Evaluating sources of uncertainty and variability in rock glacier inventories. Earth Surface Processes and Landforms, 2019, 44, 2450-2466.	1.2	33
201	Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR. Remote Sensing of Environment, 2019, 231, 111236.	4.6	83
202	Inventory of rock glaciers in Himachal Himalaya, India using high-resolution Google Earth imagery. Geomorphology, 2019, 340, 103-115.	1.1	30
203	A Sentinel-1 based hot-spot analysis: landslide mapping in north-western Italy. International Journal of Remote Sensing, 2019, 40, 7898-7921.	1.3	54
204	A new model of rock glacier dynamics. Geomorphology, 2019, 340, 153-159.	1.1	9
205	Resolving the influence of temperature forcing through heat conduction on rock glacier dynamics: a numerical modelling approach. Cryosphere, 2019, 13, 927-942.	1.5	35
206	Rock glaciers and mountain hydrology: A review. Earth-Science Reviews, 2019, 193, 66-90.	4.0	141
207	Modeling Conductive Heat Flow Between Steep Rock Walls and Talus Slopes – Thermal Processes and Geomorphological Implications. Frontiers in Earth Science, 2019, 7, .	0.8	6
208	The Effect of Initial Creep Damage on Unloading Failure Properties of Sandstone from Macro-mesoscopic Perspective. Periodica Polytechnica: Civil Engineering, 0, , .	0.6	1
209	Rock glaciers in central Patagonia. Geografiska Annaler, Series A: Physical Geography, 2019, 101, 1-15.	0.6	6
210	Prokaryotic Diversity and Distribution in Different Habitats of an Alpine Rock Glacier-Pond System. Microbial Ecology, 2019, 78, 70-84.	1.4	12
211	Area and volume of mid-latitude glacier-like forms on Mars. Earth and Planetary Science Letters, 2019, 507, 10-20.	1.8	16
212	Geomorphological analysis on the interaction of Alpine glaciers and rock glaciers since the Little Ice Age. Land Degradation and Development, 2019, 30, 580-591.	1.8	18
213	Debris-Covered Glaciers. Geography of the Physical Environment, 2019, , 59-71.	0.2	5
214	Periglacial Morphodynamics in the Upper Kaunertal. Geography of the Physical Environment, 2019, , 99-116.	0.2	2
215	Probing supraglacial debris on Mars 1: Sources, thickness, and stratigraphy. Icarus, 2019, 319, 745-769.	1.1	24
216	Rock glaciers and the geomorphological evolution of deglacierizing mountains. Geomorphology, 2019, 324, 14-24.	1.1	79

#	Article	IF	CITATIONS
217	How water, wind, waves and ice shape landscapes and landforms: Historical contributions to geomorphic science. Geomorphology, 2020, 366, 106687.	1.1	6
218	New insights into ice accumulation at Galena Creek Rock Glacier from radar imaging of its internal structure. Journal of Glaciology, 2020, 66, 1-10.	1.1	22
219	Assessment of rock glaciers and permafrost distribution in Uttarakhand, India. Permafrost and Periglacial Processes, 2020, 31, 31-56.	1.5	16
220	An inventory-driven rock glacier status model (intact vs. relict) for South Tyrol, Eastern Italian Alps. Geomorphology, 2020, 350, 106887.	1.1	17
221	Landscape dynamics and human-environment interactions in the northern foothills of Cho Oyu and Mount Everest (southern Tibet) during the Late Pleistocene and Holocene. Quaternary Science Reviews, 2020, 229, 106127.	1.4	4
222	Automated detection of rock glaciers using deep learning and object-based image analysis. Remote Sensing of Environment, 2020, 250, 112033.	4.6	71
223	Upward Expansion of Supra-Glacial Debris Cover in the Hunza Valley, Karakoram, During 1990 â^1⁄4 2019. Frontiers in Earth Science, 2020, 8, .	0.8	27
224	Distribution and characteristics of rock glaciers in the Balkan Peninsula. Geografiska Annaler, Series A: Physical Geography, 2020, 102, 354-375.	0.6	6
225	A Comparison of Frequency Domain Electro-Magnetometry, Electrical Resistivity Tomography and Borehole Temperatures to Assess the Presence of Ice in a Rock Glacier. Frontiers in Earth Science, 2020, 8, .	0.8	9
226	Glacier Changes in the Semi-Arid Huasco Valley, Chile, between 1986 and 2016. Geosciences (Switzerland), 2020, 10, 429.	1.0	6
227	Inventory and Distribution of Rock Glaciers in Northeastern Yakutia. Land, 2020, 9, 384.	1.2	5
228	Constraining the Age and Evolution of the Tuaheni Landslide Complex, Hikurangi Margin, New Zealand, Using Poreâ€Water Geochemistry and Numerical Modeling. Geophysical Research Letters, 2020, 47, e2020GL087243.	1.5	9
229	Analyses of UAV and GNSS based flow velocity variations of the rock glacier Lazaun (Ötztal Alps,) Tj ETQq0 0 0	rgBT_/Over 1.1	lock 10 Tf 50
230	InSAR time series analysis of seasonal surface displacement dynamics on the Tibetan Plateau. Cryosphere, 2020, 14, 1633-1650.	1.5	29
231	Icelandic permafrost dynamics since the Last Glacial Maximum – model results and geomorphological implications. Quaternary Science Reviews, 2020, 233, 106236.	1.4	16
232	Origin and 10Be surface exposure dating of a coarse debris accumulation in the Hrubý JesenÃk Mountains, Central Europe. Geomorphology, 2020, 365, 107292.	1.1	3
233	Gruben glacier and rock glacier, Wallis, Switzerland: glacier ice exposures and their interpretation. Geografiska Annaler, Series A: Physical Geography, 2020, 102, 141-161.	0.6	9
234	A rock-glacier – pond system (NW Italian Alps): Soil and sediment properties, geochemistry, and trace-metal bioavailability. Catena, 2020, 194, 104700.	2.2	9

#	Article	IF	CITATIONS
235	Origin, structure and geochemistry of a rock glacier near Don Juan Pond, Wright Valley, Antarctica. Antarctic Science, 2020, 32, 273-287.	0.5	3
236	Seismic monitoring in the Gugla rock glacier (Switzerland): ambient noise correlation, microseismicity and modelling. Geophysical Journal International, 2020, 221, 1719-1735.	1.0	17
237	Monitoring Rock Glacier Kinematics with Satellite Synthetic Aperture Radar. Remote Sensing, 2020, 12, 559.	1.8	49
238	Deglaciation Rate of Selected Nunataks in Spitsbergen, Svalbard—Potential for Permafrost Expansion above the Glacial Environment. Geosciences (Switzerland), 2020, 10, 202.	1.0	6
239	Tracking rockglacier evolution in the Eastern Alps from the Lateglacial to the early Holocene. Quaternary Science Reviews, 2020, 241, 106424.	1.4	23
240	Ice loss in the Northeastern Tibetan Plateau permafrost as seen by 16 yr of ESA SAR missions. Earth and Planetary Science Letters, 2020, 545, 116404.	1.8	45
241	Alpine headwaters emerging from glaciers and rock glaciers host different bacterial communities: Ecological implications for the future. Science of the Total Environment, 2020, 717, 137101.	3.9	25
242	Constraints on the timing of debris-covered and rock glaciers: An exploratory case study in the Hólar area, northern Iceland. Geomorphology, 2020, 361, 107196.	1.1	23
243	Debris flows originating in the mountain cryosphere under a changing climate: A review. Progress in Physical Geography, 2021, 45, 339-374.	1.4	16
244	A general theory of rock glacier creep based on inâ€situ and remote sensing observations. Permafrost and Periglacial Processes, 2021, 32, 139-153.	1.5	37
245	Surface velocity fields of active rock glaciers and iceâ€debris complexes in the Central Andes of Argentina. Earth Surface Processes and Landforms, 2021, 46, 504-522.	1.2	13
246	A new simple topo-climatic model to predict surface displacement in paraglacial and periglacial mountains of the European Alps: The importance of ground heating index and floristic components as ecological indicators. Ecological Indicators, 2021, 120, 106889.	2.6	12
247	Ice and snow as land-forming agents. , 2021, , 165-198.		2
248	Insights into a remote cryosphere: a multi-method approach to assess permafrost occurrence at the Qugaqie basin, western Nyainqêntanglha Range, Tibetan Plateau. Cryosphere, 2021, 15, 149-168.	1.5	16
249	Modal sensitivity of rock glaciers to elastic changes from spectral seismic noise monitoring and modeling. Cryosphere, 2021, 15, 501-529.	1.5	3
250	Contextualizing lobate debris aprons and glacier-like forms on Mars with debris-covered glaciers on Earth. Progress in Physical Geography, 2021, 45, 130-186.	1.4	4
251	lce content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina. Cryosphere, 2021, 15, 1187-1213.	1.5	34
252	When do rock glacier fronts fail? Insights from two case studies in South Tyrol (Italian Alps). Earth Surface Processes and Landforms, 2021, 46, 1311-1327.	1.2	18

#	Article	IF	Citations
253	Vanishing permanent glaciers: climate change is threatening a European Union habitat (Code 8340) and its poorly known biodiversity. Biodiversity and Conservation, 2021, 30, 2267-2276.	1.2	20
254	Deciphering the evolution of the Bleis Marscha rock glacier (Val d'Err, eastern Switzerland) with cosmogenic nuclide exposure dating, aerial image correlation, and finite element modeling. Cryosphere, 2021, 15, 2057-2081.	1.5	13
255	A preliminary assessment of the 7th February 2021 flashflood in lower Dhauli Ganga valley, Central Himalaya, India. Journal of Earth System Science, 2021, 130, 1.	0.6	26
256	Rock glacier inventory of the western Nyainqêntanglha Range, Tibetan Plateau, supported by InSAR time series and automated classification. Permafrost and Periglacial Processes, 2021, 32, 657-672.	1.5	24
257	Permafrost Biases Climate Signals in δ18Otree-ring Series from a Sub-Alpine Tree Stand in Val Bever/Switzerland. Atmosphere, 2021, 12, 836.	1.0	0
258	A full-stage creep model for rocks based on the variable-order fractional calculus. Applied Mathematical Modelling, 2021, 95, 435-446.	2.2	43
259	Active rock glaciers of the contiguous United States: geographic information system inventory and spatial distribution patterns. Earth System Science Data, 2021, 13, 3979-3994.	3.7	9
260	New evidence for active talus-foot rock glaciers at Ã ⁻ yberget, southern Norway, and their development during the Holocene. Holocene, 2021, 31, 1786-1796.	0.9	7
261	M3C2-EP: Pushing the limits of 3D topographic point cloud change detection by error propagation. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178, 240-258.	4.9	31
262	Interpretation of Volume and Flux Changes of the Laurichard Rock Glacier Between 1952 and 2019, French Alps. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006161.	1.0	13
263	Rock glaciers in the Eastern Cascades, Washington State, USA: Impacts of selected variables on spatial distribution and landform dimensions. Geomorphology, 2021, 389, 107839.	1.1	0
264	Conventional and UAV-Based Aerial Surveys for Long-Term Monitoring (1954–2020) of a Highly Active Rock Glacier in Austria. Frontiers in Remote Sensing, 2021, 2, .	1.3	7
265	Hydrological significance of rock glaciers and other periglacial landforms as sustenance of wet meadows in the Patagonian Andes. Journal of South American Earth Sciences, 2021, 111, 103471.	0.6	7
266	Changes of rock glacier vegetation in 25Âyears of climate warming in the Italian Alps. Catena, 2021, 206, 105562.	2.2	10
267	Rock glaciers represent hidden water stores in the Himalaya. Science of the Total Environment, 2021, 793, 145368.	3.9	22
268	Physical, thermal, and mechanical properties of snow, ice, and permafrost. , 2021, , 35-71.		5
269	Analysis of the Mechanical Behavior of the Laurichard Rock Glacier (French Alps) in the Recent Climatic Changes. Lecture Notes in Civil Engineering, 2021, , 917-924.	0.3	0
270	Mass Movement Processes Related to Permafrost and Glaciation. , 2022, , 283-303.		2

#	Article	IF	CITATIONS
271	Rock Glacier and Debris-Covered Glacier. , 2015, , 1811-1828.		2
272	Rock Glacier and Debris-Covered Glacier. , 2014, , 1-21.		1
273	Velocity Changes of Rock Glaciers and Induced Hazards. , 2015, , 223-227.		19
274	An Estimate of Alpine Permafrost Distribution in the Southern Alps. Springer Theses, 2016, , 77-155.	0.0	1
275	Global Warming and Mountain Permafrost. Soil Biology, 2009, , 205-218.	0.6	23
276	Mountain Permafrost. Soil Biology, 2009, , 33-44.	0.6	42
277	Rock Glacier Degradation and Instabilities in the European Alps: A Characterisation and Monitoring Experiment in the Turtmanntal, CH. , 2013, , 5-13.		18
279	Impact of relict rock glaciers on spring and stream flow of alpine watersheds: Examples of the Niedere Tauern Range, Eastern Alps (Austria). Austrian Journal of Earth Sciences, 2016, 109, .	0.9	14
280	A Combination of Relative-Numerical Dating Methods Indicates Two High Alpine Rock Glacier Activity Phases After the Glacier Advance of the Younger Dryas. Open Geography Journal, 2011, 4, 115-130.	0.2	14
281	Permafrost. The Contemporary Meaning of the Term and its Consequences. Bulletin of Geography, Physical Geography Series, 2012, 5, 29-42.	0.3	7
282	Glaciarismo en la divisoria cantábrica: La evolución del glaciarismo Cuaternario en la Sierra de Cebolleda (León). Estudios Geograficos, 2015, 76, 335-367.	0.4	3
283	Première évaluation de la distribution du pergélisol dans les Carpates roumaines (massif de Retezat) par la méthode BTS. Geomorphologie Relief, Processus, Environnement, 2015, 21, 297-312.	0.7	5
284	Analyse multi-méthodes de la déstabilisation d'un pylÃ′ne de remontée mécanique implanté sur ur glacier rocheux des Alpes françaises. Geomorphologie Relief, Processus, Environnement, 2019, 25, 21-36.	ו 0.7	4
286	Le permafrost de montagne et les processus géomorphologiques associésÂ: évolutions récentes dans les Alpes françaises. Revue De Geographie Alpine, 2015, , .	0.1	6
287	Mountain permafrost and associated geomorphological processes: recent changes in the French Alps. Revue De Geographie Alpine, 2015, , .	0.1	17
289	A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges. Earth System Science Data, 2018, 10, 1807-1827.	3.7	86
291	Overview of rock glacier kinematics research in the Swiss Alps. Geographica Helvetica, 2010, 65, 135-145.	0.4	128
292	Regional-scale inventory of periglacial moving landforms connected to the torrential network system. Geographica Helvetica, 2018, 73, 357-371.	0.4	8

#	Article	IF	CITATIONS
293	Monitoring the crisis of a rock glacier with repeated UAV surveys. Geographica Helvetica, 2019, 74, 59-69.	0.4	38
298	An Estimation of Past and Present Air Temperature Conditions, Water Equivalent, and Surface Velocity of Rock Glaciers in Cordillera Volcanica, Peru. , 2021, , .		0
299	InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA. Cryosphere, 2021, 15, 4823-4844.	1.5	17
300	Rock Glacier Dynamics by a Thermo-Elastic-Viscoplastic Constitutive Relationship. Geosciences (Switzerland), 2021, 11, 417.	1.0	0
301	Consensus-Based Rock Glacier Inventorying in the Torngat Mountains, Northern Labrador. , 2021, , .		2
302	On the significance of periglacial conditions in active mountain belts for chemical weathering processes: Insights from the Chayu area, SE Tibet. Chemical Geology, 2021, 585, 120581.	1.4	3
304	Radiocarbon dates for rock-glaciers around Mt. Mibudake, southern Japanese Alps. The Quaternary Research, 2012, 50, 309-317.	0.2	1
306	Present-Day Periglacial Processes in the Alpine Zone. Springer Geography, 2017, , 147-176.	0.3	3
307	ComparaciÃ ³ n de distintos métodos de instalaciÃ ³ n de mini data loggers en suelo de alta montaña; una contribuciÃ ³ n al estudio del ambiente periglaciar / Comparison of different methods of installing mini data loggers in high mountain ground; a contribution to the study of the periglacial environment. ErÃa, 2019, 2, 165-182.	0.3	0
308	Impacts of Climate Change on Himalayan Glaciers: Processes, Predictions and Uncertainties. , 2020, , 331-349.		1
309	Un exemple de rivière de pierres en montagne alpineÂ: les cortèges de blocs du Roc du Sérac (Vanoise du) Tj	ETQq00	0 rgBT /Overlo
310	Combination of Aerial, Satellite, and UAV Photogrammetry for Quantifying Rock Clacier Kinematics in the Dry Andes of Chile (30°S) Since the 1950s. Frontiers in Remote Sensing, 2021, 2, .	1.3	10
311	Rock Glaciers. , 2022, , 75-118.		5
312	Flow Velocity Variations and Surface Change of the Destabilised Plator Rock Glacier (Central Italian) Tj ETQq1 1 ().784314 1.8	rg&T /Overloc
313	Rock Glacier Characteristics Under Semiarid Climate Conditions in the Western Nyainqêntanglha Range, Tibetan Plateau. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	4
314	Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling. Earth Surface Dynamics, 2022, 10, 97-129.	1.0	11
315	Kinematics of an Alpine rock glacier from multi-temporal UAV surveys and GNSS data. Geomorphology, 2022, 402, 108116.	1.1	12
316	Glacier and rock glacier changes since the 1950s in the La Laguna catchment, Chile. Cryosphere, 2022, 16, 647-665.	1.5	15

#	Article	IF	CITATIONS
317	Multi-decadal (1953–2017) rock glacier kinematics analysed by high-resolution topographic data in the upper Kaunertal, Austria. Cryosphere, 2021, 15, 5345-5369.	1.5	12
318	Earth Observation to Investigate Occurrence, Characteristics and Changes of Glaciers, Glacial Lakes and Rock Glaciers in the Poiqu River Basin (Central Himalaya). Remote Sensing, 2022, 14, 1927.	1.8	8
319	Geomatic Techniques Applied to the Dynamic Study (2001–2019) of the Rock Glacier in the Veleta Cirque (Sierra Nevada, Spain). Land, 2022, 11, 613.	1.2	1
320	Schmidt-hammer exposure-age dating: a review of principles and practice. Earth-Science Reviews, 2022, 230, 104038.	4.0	8
321	Towards a sediment transfer capacity index of rock glaciers: Examples from two catchments in South Tyrol, (Eastern Italian Alps). Catena, 2022, 216, 106329.	2.2	3
322	Permafrost: Formation and Distribution, Thermal and Mechanical Properties. , 2013, , 346-366.		0
324	Glacier–permafrost relations in a high-mountain environment: 5 decades of kinematic monitoring at the Gruben site, Swiss Alps. Cryosphere, 2022, 16, 2083-2101.	1.5	6
325	Temperature evolution and runoff contribution of three rock glaciers in Switzerland under future climate forcing. Permafrost and Periglacial Processes, 2022, 33, 310-322.	1.5	4
326	Viscous creep of ice-rich permafrost debris in a recently uncovered proglacial area in the Tianshan Mountains, China. Advances in Climate Change Research, 2022, 13, 540-553.	2.1	3
327	Alpine rock glacier activity over Holocene to modern timescales (western French Alps). Earth Surface Dynamics, 2022, 10, 605-633.	1.0	5
328	Changes in surface velocities over four decades on the Laurichard rock glacier (French Alps). Permafrost and Periglacial Processes, 2022, 33, 323-335.	1.5	8
329	Incorporating InSAR kinematics into rock glacier inventories: insights from 11 regions worldwide. Cryosphere, 2022, 16, 2769-2792.	1.5	12
330	Le Glacier rocheux de Chanrouge, dans un vallon annexe de Gébroulaz, en Vanoise. Dynamiques Environnementales, 2021, , 159-166.	0.0	0
331	Challenges in Understanding the Variability of the Cryosphere in the Himalaya and Its Impact on Regional Water Resources. Frontiers in Water, 0, 4, .	1.0	11
332	Characteristics of Soil Temperature, Humidity, and Salinity on Bird Island within Qinghai Lake Basin, China. Sustainability, 2022, 14, 9449.	1.6	0
333	Rock glaciers in the Gangdise Mountains, southern Tibetan Plateau: Morphology and controlling factors. Catena, 2022, 218, 106561.	2.2	4
334	Area and borders of Antarctic and permafrost—A review and synthesis. Permafrost and Periglacial Processes, 0, , .	1.5	0
335	Long-term response of diatoms in high-elevation streams influenced by rock glaciers. Ecological Indicators, 2022, 144, 109515.	2.6	5

#	Article	IF	CITATIONS
336	The distribution and hydrological significance of intact rock glaciers in the north-west Himalaya. Geografiska Annaler, Series A: Physical Geography, 2022, 104, 226-244.	0.6	2
337	Transitional rock glaciers at sea level in northern Norway. Earth Surface Dynamics, 2022, 10, 975-996.	1.0	3
339	Kinematics and geomorphological changes of a destabilising rock glacier captured from close-range sensing techniques (Tsarmine rock glacier, Western Swiss Alps). Frontiers in Earth Science, 0, 10, .	0.8	6
340	Modeling Permafrost Distribution Using Geoinformatics in the Alaknanda Valley, Uttarakhand, India. Sustainability, 2022, 14, 15731.	1.6	4
341	Combination of historical and modern data to decipher the geomorphic evolution of the Innere Ölgruben rock glacier, Kaunertal, Austria, over almost a century (1922–2021). Permafrost and Periglacial Processes, 2023, 34, 3-21.	1.5	5
342	Rock glaciers. , 2022, , .		0
343	Using a non-invasive multiple-method approach to characterize rock glaciers in the periglacial critical zone: An example from the San Juan Mountains, Colorado. Geomorphology, 2023, 425, 108585.	1.1	1
344	The First Inventory of Rock Glaciers in the Zhetysu Alatau: The Aksu and Lepsy River Basins. Remote Sensing, 2023, 15, 197.	1.8	2
345	Simulating the effect of subsurface drainage on the thermal regime and ground ice in blocky terrain in Norway. Earth Surface Dynamics, 2023, 11, 33-50.	1.0	1
346	Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier. Earth Surface Dynamics, 2023, 11, 117-147.	1.0	9
347	Hydrological, thermal and chemical influence of an intact rock glacier discharge on mountain stream water. Science of the Total Environment, 2023, 876, 162777.	3.9	6
349	Air and Foam Drilling in Frozen Soils. Springer Polar Sciences, 2022, , 219-258.	0.0	0
350	European Alps. , 2022, , 147-224.		1
351	Modeling Potential Glacial Lake Outburst Flood Process Chains and Effects From Artificial Lake‣evel Lowering at Gepang Gath Lake, Indian Himalaya. Journal of Geophysical Research F: Earth Surface, 2023, 128, .	1.0	10
352	Morphology of rock glaciers: A review. Journal of the Japanese Society of Snow and Ice, 2013, 75, 315-324.	0.0	1
353	Origins of rock glaciers: A review. Journal of the Japanese Society of Snow and Ice, 2013, 75, 325-342.	0.0	1
354	A multi-millennial record of rock glacier ice chemistry (Lazaun, Italy). Frontiers in Earth Science, 0, 11,	0.8	2
355	Permafrost Monitoring from Space. Surveys in Geophysics, 2023, 44, 1579-1613.	2.1	5

#	Article	IF	CITATIONS
356	Inventory and kinematics of active and transitional rock glaciers in the Southern Alps of New Zealand from Sentinel-1 InSAR. Arctic, Antarctic, and Alpine Research, 2023, 55, .	0.4	0
357	The First Rock Glacier Inventory for the Greater Caucasus. Geosciences (Switzerland), 2023, 13, 117.	1.0	5
361	Talus slopes. , 2023, , .		1
371	Glacial landscape evolution during the Holocene in the Romanian Carpathians. , 2024, , 331-351.		0