Enantioselective Nitroaldol Reaction of α-Ketoesters C

Journal of the American Chemical Society 128, 732-733 DOI: 10.1021/ja057237l

Citation Report

#	Article	IF	CITATIONS
3	Enantioselective Synthesis of Î ³ -Hydroxyenones by Chiral Base-Catalyzed Kornblum DeLaMare Rearrangement. Journal of the American Chemical Society, 2006, 128, 12658-12659.	6.6	112
4	Asymmetric Friedelâ^'Crafts Reaction of Indoles with Imines by an Organic Catalyst. Journal of the American Chemical Society, 2006, 128, 8156-8157.	6.6	311
5	The Mannich Reaction of Malonates with Simple Imines Catalyzed by Bifunctional Cinchona Alkaloids:Â Enantioselective Synthesis of β-Amino Acids. Journal of the American Chemical Society, 2006, 128, 6048-6049.	6.6	320
6	Asymmetric Bioreductions of β-Nitro Acrylates as a Route to Chiral β2-Amino Acids. Organic Letters, 2006, 8, 6131-6133.	2.4	98
7	Mixed Laâ^'Li Heterobimetallic Complexes for Tertiary Nitroaldol Resolution. Journal of the American Chemical Society, 2006, 128, 11776-11777.	6.6	119
8	Enantioselective cyanocarbonation of ketones with chiral base. Tetrahedron, 2006, 62, 11320-11330.	1.0	46
9	Phosphine-catalyzed nitroaldol reactions. Tetrahedron Letters, 2006, 47, 9313-9316.	0.7	32
10	Catalytic asymmetric Henry reaction. Tetrahedron: Asymmetry, 2006, 17, 3315-3326.	1.8	403
12	Cupreines and Cupreidines: An Emerging Class of Bifunctional Cinchona Organocatalysts. Angewandte Chemie - International Edition, 2006, 45, 7496-7504.	7.2	342
13	Diastereoselective and Enantioselective Henry (Nitroaldol) Reaction Utilizing a Guanidine-Thiourea Bifunctional Organocatalyst. European Journal of Organic Chemistry, 2006, 2006, 2894-2897.	1.2	153
15	Asymmetric catalysis for the construction of quaternary carbon centres: nucleophilic addition on ketimines. Organic and Biomolecular Chemistry, 2007, 5, 873.	1.5	421
16	Chiral Tetraaminophosphonium Salt-Mediated Asymmetric Direct Henry Reaction. Journal of the American Chemical Society, 2007, 129, 12392-12393.	6.6	208
17	Chemoselective Nucleophilic Fluorination Induced by Selective Solvation of the SN2 Transition State. Journal of Physical Chemistry B, 2007, 111, 1752-1758.	1.2	38
18	Enantioselective catalysis of the Henry reaction by a chiral macrocyclic ytterbium complex in aqueous media. Organic and Biomolecular Chemistry, 2007, 5, 3842.	1.5	16
19	Ab Initio, Density Functional Theory, and Continuum Solvation Model Prediction of the Product Ratio in the SN2 Reaction of NO2-with CH3CH2Cl and CH3CH2Br in DMSO Solution. Journal of Physical Chemistry A, 2007, 111, 10068-10074.	1.1	21
20	Small-Molecule H-Bond Donors in Asymmetric Catalysis. Chemical Reviews, 2007, 107, 5713-5743.	23.0	2,323
21	Asymmetric Dielsâ^ Alder Reactions of 2-Pyrones with a Bifunctional Organic Catalyst. Journal of the American Chemical Society, 2007, 129, 6364-6365.	6.6	213
22	Rational Design of Sterically and Electronically Easily Tunable Chiral Bisimidazolines and Their Applications in Dual Lewis Acid/BrÃ,nsted Base Catalysis for Highly Enantioselective Nitroaldol (Hanny) Basetions, Chemietry, A European Journal, 2007, 13, 1863, 1871	1.7	150

ARTICLE IF CITATIONS # Twoâ€Dimensional Electronic Conjugation: Statics and Dynamics at Structural Domains Beyond 23 1.7 32 Molecular Wires. Chemistry - A European Journal, 2007, 13, 7040-7049. Pd-Catalyzed Cleavage of Benzylic Nitro Bonds: New Opportunities for Asymmetric Synthesis. 24 7.2 34 Angewandte Chemie - International Edition, 2007, 46, 2078-2081. Hydroxynitrile Lyase-Catalyzed Enzymatic Nitroaldol (Henry) Reaction. Advanced Synthesis and 26 2.1 120 Catalysis, 2007, 349, 1445-1450. Density Functional Theory Study of the <i>Cinchona</i> Thiourea―Catalyzed Henry Reaction: 99 Mechanism and Enantioselectivity. Advanced Synthesis and Catalysis, 2007, 349, 2537-2548. Recent Advances in the Catalytic Asymmetric Nitroaldol (Henry) Reaction. European Journal of 28 1.2 460 Organic Chemistry, 2007, 2007, 2561-2574. Synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts. Tetrahedron, 2007, 63, 1946-1952. 1.0 Organocatalytic direct aldol and nitroaldol reactions between azetidine-2,3-diones and ketones or 30 1.0 14 nitromethane. Tetrahedron, 2007, 63, 3102-3107. Asymmetric organocatalysis. Tetrahedron, 2007, 63, 9267-9331. 1.0 656 Enantioselective Henry reaction catalyzed with copper(II)–iminopyridine complexes. Tetrahedron: 32 1.8 91 Asymmetry, 2007, 18, 1603-1612. Bakers' yeast catalyzed synthesis of polyhydroquinoline derivatives via an unsymmetrical Hantzsch 122 reaction. Tetrahedron Letters, 2007, 48, 3887-3890. Novel thiolated amino-alcohols as chiral ligands for copper-catalyzed asymmetric nitro-aldol 34 0.7 26 reactions. Tetrahedron Letters, 2007, 48, 4235-4238. A highly efficient asymmetric Michael addition of anthrone to nitroalkenes with cinchona organocatalysts. Tetrahedron Letters, 2007, 48, 5743-5746. Organocatalytic direct aldol reaction between acetone and α-substituted Î²-keto esters. Journal of 36 4.8 14 Molecular Cátalysis A, 2007, 267, 98-101. Organocatalytic Asymmetric Nitroaldol Reaction: Cooperative Effects of Guanidine and Thiourea Functional Groups. Chemistry - an Asian Journal, 2007, 2, 1150-1160. 1.7 124 Enantioselective Henry reaction catalyzed by a C2-symmetric bis(oxazoline)–Cu(OAc)2·H2O complex. 38 1.5 79 Organic and Biomolecular Chemistry, 2007, 5, 3932. Dual-reagent organocatalysis with a phosphine and electron-deficient alkene: application to the Henry reaction. Tetrahedron Letters, 2008, 49, 6442-6444. A Green Synthesis of Tetrahydrobenzo[b]pyran Derivatives through Three-Component Condensation 40 0.9 85 Using N-Methylimidazole as Organocatalyst. Monatshefte FÃ1/4r Čhemie, 2008, 139, 129-131. New Highly Asymmetric Henry Reaction Catalyzed by Cu^{II} and a <i>C</i>₁‧ymmetric Aminopyridine Ligand, and Its Application to the Synthesis of Miconazole. Chemistry - A European Journal, 2008, 14, 4725-4730.

#	Article	IF	CITATIONS
42	A Secondary Amine Amide Organocatalyst for the Asymmetric Nitroaldol Reaction of αâ€Ketophosphonates. Chemistry - A European Journal, 2008, 14, 10896-10899.	1.7	55
43	Simple Lanthanide Amides [(Me ₃ Si) ₂ N] ₃ Ln(<i>µ</i> â€Cl)Li(THF) ₃ as Highly Efficient Catalysts for the Nitroaldol Reaction. Chinese Journal of Chemistry, 2008, 26, 2267-2272.	2.6	6
44	A Heterobimetallic Pd/La/Schiff Base Complex for <i>anti</i> â€Selective Catalytic Asymmetric Nitroaldol Reactions and Applications to Short Syntheses of βâ€Adrenoceptor Agonists. Angewandte Chemie - International Edition, 2008, 47, 3230-3233.	7.2	186
45	Organocatalytic Asymmetric Formal [3+2] Cycloaddition Reaction of Isocyanoesters to Nitroolefins Leading to Highly Optically Active Dihydropyrroles. Angewandte Chemie - International Edition, 2008, 47, 3414-3417.	7.2	180
46	Catalytic Enantioselective Alkylation of Substituted Dioxanone Enol Ethers: Ready Access to C(α)â€Tetrasubstituted Hydroxyketones, Acids, and Esters. Angewandte Chemie - International Edition, 2008, 47, 6873-6876.	7.2	79
47	Modularly Designed Organocatalytic Assemblies for Direct Nitroâ€Michael Addition Reactions. Angewandte Chemie - International Edition, 2008, 47, 7714-7717.	7.2	179
48	Organocatalytic and Enantioselective Direct Vinylogous Michael Addition to Maleimides. Advanced Synthesis and Catalysis, 2008, 350, 1796-1800.	2.1	73
53	A novel and efficient one-pot synthesis of furo[3′,4′:5,6]pyrido[2,3-c]pyrazole derivatives using organocatalysts. Tetrahedron, 2008, 64, 2425-2432.	1.0	82
54	Organocatalysed three-component domino synthesis of 1,4-dihydropyridines under solvent free conditions. Tetrahedron, 2008, 64, 3477-3482.	1.0	66
55	Chiral binuclear copper(II) catalyzed nitroaldol reaction: scope and mechanism. Tetrahedron, 2008, 64, 11724-11731.	1.0	37
56	Asymmetric Henry reaction catalyzed by a copper tridentate chiral schiff-base complex. Tetrahedron: Asymmetry, 2008, 19, 1813-1819.	1.8	70
57	Ozonolysis of Morita–Baylis–Hillman adducts originated from aromatic aldehydes: an expeditious diastereoselective approach for the preparation of α,l²-dihydroxy-esters. Tetrahedron Letters, 2008, 49, 145-148.	0.7	10
58	Organocatalytic enantioselective Friedel–Crafts alkylation of simple phenols with trifluoropyruvate. Tetrahedron Letters, 2008, 49, 1476-1479.	0.7	56
59	Asymmetric organocatalytic nitroaldol reaction of $\hat{I}\pm$ -ketoesters: stereoselective construction of chiral tertiary alcohols at subzero temperature. Tetrahedron Letters, 2008, 49, 1623-1626.	0.7	70
60	Aluminum-Catalyzed Asymmetric Alkylations of Pyridyl-Substituted Alkynyl Ketones with Dialkylzinc Reagents. Journal of the American Chemical Society, 2008, 130, 9942-9951.	6.6	82
61	Enantioselective organocatalyzed Henry reaction with fluoromethyl ketones. Chemical Communications, 2008, , 4360.	2.2	107
62	Asymmetric catalysis with bifunctional cinchona alkaloid-based urea and thiourea organocatalysts. Chemical Communications, 2008, , 2499.	2.2	778
63	Stereodivergent Catalytic Doubly Diastereoselective Nitroaldol Reactions Using Heterobimetallic Complexes. Organic Letters, 2008, 10, 2231-2234.	2.4	71

#	Article	IF	CITATIONS
64	A Highly Diastereo- and Enantioselective Synthesis of Multisubstituted Cyclopentanes with Four Chiral Carbons by the Organocatalytic Domino Michaelâ^'Henry Reaction. Organic Letters, 2008, 10, 3489-3492.	2.4	112
65	Enantioselective addition of nitromethane to α-keto esters catalyzed by copper(<scp>ii</scp>)–iminopyridine complexes. Organic and Biomolecular Chemistry, 2008, 6, 468-476.	1.5	48
66	A Novel and Efficient Synthesis of 3,3′-Benzylidenebis(4-hydroxy-6-methylpyridin-2(1H)-one) Derivatives Through a Multi-Component Reaction Catalyzed by L-Proline. Australian Journal of Chemistry, 2008, 61, 547.	0.5	18
67	Asymmetric nitroaldol reaction with a chiral copper complex derived from <scp>D</scp> -tartaric acid. Canadian Journal of Chemistry, 2008, 86, 261-263.	0.6	14
68	A catalytic highly enantioselective direct synthesis of 2-bromo-2-nitroalkan-1-ols through a Henry reaction. Chemical Communications, 2008, , 4840.	2.2	52
69	Organocatalytic Asymmetric Tandem Michaelâ^'Henry Reactions: A Highly Stereoselective Synthesis of Multifunctionalized Cyclohexanes with Two Quaternary Stereocenters. Organic Letters, 2008, 10, 2437-2440.	2.4	153
70	Stereoselective C9 Arylation and Vinylation of <i>Cinchona</i> Alkaloids. Organic Letters, 2008, 10, 385-388.	2.4	13
71	Catalytic Asymmetric Nitroaldol (Henry) Reaction with a Zinc-Fam Catalyst. Journal of Organic Chemistry, 2008, 73, 7373-7375.	1.7	114
72	Cinchona-Catalyzed Nucleophilic 1,2-Addition to CO and CN Bonds. , 0, , 197-247.		2
73	Versatile Supramolecular Copper(II) Complexes for Henry and Azaâ€Henry Reactions. Advanced Synthesis and Catalysis, 2009, 351, 1255-1262.	2.1	84
74	Organocatalytic Asymmetric Synthesis of Protected α,βâ€Diamino Acids. Advanced Synthesis and Catalysis, 2009, 351, 2797-2800.	2.1	53
75	Asymmetric Henry reaction catalyzed by bifunctional copperâ€based catalysts. Chirality, 2009, 21, 619-627.	1.3	26
76	Asymmetric Synthesis of Fluorinated Flavanone Derivatives by an Organocatalytic Tandem Intramolecular Oxaâ€Michael Addition/Electrophilic Fluorination Reaction by Using Bifunctional Cinchona Alkaloids. Chemistry - A European Journal, 2009, 15, 13299-13303.	1.7	76
77	A General Asymmetric Aldol Reaction of Silyl Ketene Acetals Derived from Simple Esters to Aryl αâ€Keto Esters. European Journal of Organic Chemistry, 2009, 2009, 6109-6111.	1.2	18
78	New chiral thiols and C2-symmetrical disulfides of Cinchona alkaloids: ligands for the asymmetric Henry reaction catalyzed by Cull complexes. Tetrahedron: Asymmetry, 2009, 20, 1992-1998.	1.8	20
79	Highly enantioselective Henry reaction catalyzed by a new chiral C2-symmetric N,N′-bis(isobornyl)ethylenediamine–copper complex. Tetrahedron: Asymmetry, 2009, 20, 1842-1847.	1.8	44
80	Catalytic asymmetric synthesis of cyclic α-alkyl-amino acid derivatives having a tetrasubstituted α-carbon. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3795-3797.	1.0	15
81	Catalytic enantioselective conjugate additions with α,β-unsaturated sulfones. Tetrahedron, 2009, 65, 3139-3148.	1.0	64

#	Article	IF	CITATIONS
82	Vinylogous nitroaldol (Henry) reaction using 3,5-diethyl-4-nitroisoxazole and carbonyl compounds. Tetrahedron, 2009, 65, 990-997.	1.0	16
83	An efficient organocatalyzed multicomponent synthesis of diarylmethanes via Mannich type Friedel–Crafts reaction. Tetrahedron Letters, 2009, 50, 7024-7027.	0.7	40
84	Solvent-free synthesis of some ethyl arylglyoxylates. Chinese Chemical Letters, 2009, 20, 55-57.	4.8	9
85	Enantioselective Henry (nitroaldol) reaction catalyzed by axially chiral guanidines. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3895-3898.	1.0	69
86	Mixed La–Li heterobimetallic complexes for tertiary nitroaldol resolution. Tetrahedron, 2009, 65, 5030-5036.	1.0	34
87	Enantioselective Henry reaction catalyzed by C2-symmetric chiral diamine–copper(II) complex. Organic and Biomolecular Chemistry, 2009, 7, 3156.	1.5	78
88	Transfer Hydrogenation in Water: Enantioselective, Catalytic Reduction of (<i>E</i>)-β,β-Disubstituted Nitroalkenes. Organic Letters, 2009, 11, 4196-4198.	2.4	87
89	Enantioselective Organocatalytic <i>anti</i> -Mannich-Type Reaction of <i>N</i> -Unprotected 3-Substituted 2-Oxindoles with Aromatic <i>N</i> -Ts-aldimines. Journal of Organic Chemistry, 2009, 74, 4650-4653.	1.7	111
90	Photophysical Properties of Cinchona Organocatalysts in Organic Solvents. Journal of Physical Chemistry C, 2009, 113, 11790-11795.	1.5	27
91	Asymmetric organocatalysis by chiral BrÃ,nsted bases: implications and applications. Chemical Society Reviews, 2009, 38, 632-653.	18.7	378
92	Highly enantioselective synthesis of tertiary alcohols: C2-symmetric N,Nâ€2-dioxide-Sc(iii) complex promoted direct aldol reaction of α-ketoesters and diazoacetate esters. Chemical Communications, 2009, , 7297.	2.2	44
93	<i>anti</i> -Selective Catalytic Asymmetric Nitroaldol Reaction via a Heterobimetallic Heterogeneous Catalyst. Journal of the American Chemical Society, 2009, 131, 13860-13869.	6.6	141
94	α,α-Diarylprolinols: bifunctional organocatalysts for asymmetric synthesis. Chemical Communications, 2009, , 1452.	2.2	145
95	Diastereo- and Enantioselective Direct Henry Reaction of Pyruvates Mediated by Chiral P-Spiro Tetraaminophosphonium Salts. Chemistry Letters, 2009, 38, 1052-1053.	0.7	28
96	Organocatalytic asymmetric Mannich-type reaction of N-sulfonylimines with isocyanoacetate leading to optically active 2-imidazoline-4-carboxylates. Tetrahedron: Asymmetry, 2010, 21, 1715-1721.	1.8	65
97	Oneâ€Pot Synthesis of 1,4â€Ðihydropyridine and Polyhydroâ€quinoline Derivatives via <i>L</i> â€Proline Catalyzed Hantzsch Multicomponent Reaction under Ultrasound Irradiation. Chinese Journal of Chemistry, 2010, 28, 811-817.	2.6	17
98	Organocatalyzed Highly Enantioselective and <i>anti</i> elective Construction of γâ€Butenolides through Vinylogous Mukaiyama Aldol Reaction. Advanced Synthesis and Catalysis, 2010, 352, 1291-1295.	2.1	32
101	A Highly <i>syn</i> â€Selective Nitroaldol Reaction Catalyzed by Cu ^{II} –Bisimidazoline. Chemistry - A European Journal, 2010, 16, 6761-6765.	1.7	71

#	Article	IF	CITATIONS
102	Asymmetric Addition of Indoles to Isatins Catalysed by Bifunctional Modified Cinchona Alkaloid Catalysts. Chemistry - A European Journal, 2010, 16, 7709-7713.	1.7	86
103	A Highly Effective Bis(sulfonamide)–Diamine Ligand: A Unique Chiral Skeleton for the Enantioselective Cuâ€Catalyzed Henry Reaction. Chemistry - A European Journal, 2010, 16, 8259-8261.	1.7	71
104	Hydrolase-catalyzed fast Henry reaction of nitroalkanes and aldehydes in organic media. Journal of Biotechnology, 2010, 145, 240-243.	1.9	55
105	Catalytic asymmetric synthesis of cyclic α-alkyl-amino acid derivatives by C,N-double alkylation. Tetrahedron, 2010, 66, 4900-4904.	1.0	22
106	Novel chiral C1-1′,2′,3′,4′-tetrahydro-1,1′-bisisoquinolines: synthesis, resolution, and applications in catalytic enantioselective reactions. Tetrahedron, 2010, 66, 4195-4205.	¹ 1.0	20
107	An oxidative coupling for the synthesis of arylated quaternary stereocentres and its application in the total synthesis of powelline and buphanidrine. Tetrahedron, 2010, 66, 6399-6410.	1.0	20
108	Nitrolaldol reaction of (R)-2,3-cyclohexylideneglyceraldehyde: a simple and stereoselective synthesis of the cytotoxic Pachastrissamine (Jaspine B). Tetrahedron: Asymmetry, 2010, 21, 1983-1987.	1.8	22
109	Development of P-Spiro Chiral Aminophosphonium Salts as a New Class of Versatile Organic Molecular Catalyst. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 1185-1194.	0.0	42
110	Synthesis of Chiral Nonracemic Tertiary α-Thio and α-Sulfonyl Acetic Esters via SN2 Reactions of Tertiary Mesylates. Synlett, 2010, 2010, 470-474.	1.0	6
111	Asymmetric Aza-Mannich Addition of Oxazolones to N-Tosyl Aldimines: Synthesis of Chiral α-Disubstituted α,β-Diamino Acids. Organic Letters, 2010, 12, 876-879.	2.4	88
112	Regioselective Synthesis and in Vitro Anticancer Activity of 4-Aza-podophyllotoxin Derivatives Catalyzed by <scp>l</scp> -Proline. ACS Combinatorial Science, 2010, 12, 430-434.	3.3	62
113	Facile Domino Access to Chiral Bicyclo[3.2.1]octanes and Discovery of a New Catalytic Activation Mode. Organic Letters, 2010, 12, 2682-2685.	2.4	123
114	Efficient in situ three-component formation of chiral oxazoline-Schiff base copper(ii) complexes: towards combinatorial library of chiral catalysts for asymmetric Henry reaction. Organic and Biomolecular Chemistry, 2010, 8, 2956.	1.5	45
115	Enantioselective Synthesis of SSR 241586 by Using an Organo-Catalyzed Henry Reaction. Organic Letters, 2010, 12, 3693-3695.	2.4	31
116	Highly Diastereo- and Enantioselective Organocatalytic Michael Addition of α-Ketoamides to Nitroalkenes. Organic Letters, 2010, 12, 5246-5249.	2.4	102
117	Efficient One-Pot Synthesis of Spirooxindole Derivatives Catalyzed by <scp>l</scp> -Proline in Aqueous Medium. ACS Combinatorial Science, 2010, 12, 231-237.	3.3	259
118	Diastereoselective and enantioselective Mukaiyama aldol reactions of α-ketoesters using hydrogen bond catalysis. Chemical Communications, 2010, 46, 904.	2.2	47
119	Glycine-Catalyzed Efficient Synthesis of Pyranopyrazoles via One-Pot Multicomponent Reaction. Synthetic Communications, 2010, 40, 2930-2934.	1.1	71

#	Article	IF	CITATIONS
120	Synthesis of chiral tertiary trifluoromethyl alcohols by asymmetric nitroaldol reaction with a Cu(ii)-bisoxazolidine catalyst. Chemical Communications, 2010, 46, 8026.	2.2	48
121	Enantioselective Conjugate Addition of Oximes to Trisubstituted β-Nitroacrylates: An Organocatalytic Approach to β2,2-Amino Acid Derivatives. Organic Letters, 2010, 12, 5636-5639.	2.4	54
123	Enantioselective formal [2+2] cycloaddition of ketenes with nitroso compounds catalyzed by N-heterocyclic carbenes. Organic and Biomolecular Chemistry, 2010, 8, 5007.	1.5	62
124	Enzymatic synthesis of optical pure β-nitroalcohols by combining d-aminoacylase-catalyzed nitroaldol reaction and immobilized lipase PS-catalyzed kinetic resolution. Green Chemistry, 2011, 13, 2359.	4.6	39
125	Organocatalytic asymmetric Michael-type reaction between β,γ-unsaturated α-keto ester and α-nitro ketone. Organic and Biomolecular Chemistry, 2011, 9, 7997.	1.5	49
126	Organocatalytic Asymmetric Conjugate Addition and Cascade Acyl Transfer Reaction of α-Nitroketones. Journal of Organic Chemistry, 2011, 76, 6230-6239.	1.7	58
127	Organocatalytic Asymmetric Aldol Reaction of Hydroxyacetone with β,γ-Unsaturated α-Keto Esters: Facile Access to Chiral Tertiary Alcohols. Organic Letters, 2011, 13, 5248-5251.	2.4	51
128	Organocatalytic asymmetric Henry reaction of isatins: Highly enantioselective synthesis of 3-hydroxy-2-oxindoles. RSC Advances, 2011, 1, 389.	1.7	50
129	Organocatalytic Asymmetric Biomimetic Transamination: From α-Keto Esters to Optically Active α-Amino Acid Derivatives. Journal of the American Chemical Society, 2011, 133, 12914-12917.	6.6	123
130	Asymmetric Synthesis of an Antagonist of Neurokinin Receptors: SSR 241586. Journal of Organic Chemistry, 2011, 76, 2594-2602.	1.7	31
131	Hydroxyl Group Rich C ₆₀ Fullerenol: An Excellent Hydrogen Bond Catalyst with Superb Activity, Selectivity, and Stability. ACS Catalysis, 2011, 1, 1158-1161.	5.5	32
133	Highly enantioselective asymmetric Darzens reactions with a phase transfer catalyst. Chemical Science, 2011, 2, 1301.	3.7	77
134	Organocatalytic Sequential Michael Reactions: Stereoselective Synthesis of Multifunctionalized Tetrahydroindan Derivatives. Organic Letters, 2011, 13, 936-939.	2.4	45
135	A New Class of Urea-Substituted Cinchona Alkaloids Promote Highly Enantioselective Nitroaldol reactions of Trifluoromethylketones. Organic Letters, 2011, 13, 1298-1301.	2.4	59
137	The Application of Chiral Schiff Base in Asymmetric Catalysis. Mini-Reviews in Organic Chemistry, 2011, 8, 66-90.	0.6	12
138	Biscinchona alkaloids as highly efficient bifunctional organocatalysts for the asymmetric conjugate addition of malonates to nitroalkenes at ambient temperature. Tetrahedron, 2011, 67, 10186-10194.	1.0	27
139	Novel Schiff base ligands derived from Cinchona alkaloids for Cu(II)-catalyzed asymmetric Henry reaction. Tetrahedron, 2011, 67, 8552-8558.	1.0	45
140	Isoquinoline-based diimine ligands for Cu(II)-catalyzed enantioselective nitroaldol (Henry) reactions. Tetrahedron: Asymmetry, 2011, 22, 1097-1102.	1.8	13

#	Article	IF	CITATIONS
141	Enantioselective Henry reaction catalyzed by a copper(II) glucoBOX complex. Tetrahedron: Asymmetry, 2011, 22, 1169-1175.	1.8	30
142	Biscinchona alkaloid catalysed Henry reaction of isatins: Enantioselective synthesis of 3-hydroxy-3-(nitromethyl)indolin-2-ones. Tetrahedron: Asymmetry, 2011, 22, 2099-2103.	1.8	22
143	Catalytic anti-selective asymmetric Henry (nitroaldol) reaction catalyzed by Cu(I)–amine–imine complexes. Tetrahedron: Asymmetry, 2011, 22, 2065-2070.	1.8	18
144	A Highly Diastereo- and Enantioselective Copper(I)-Catalyzed Henry Reaction Using a Bis(sulfonamide)â^'Diamine Ligand. Journal of Organic Chemistry, 2011, 76, 484-491.	1.7	124
145	Recent applications of Cinchona alkaloids and their derivatives as catalysts inÂmetal-free asymmetric synthesis. Tetrahedron, 2011, 67, 1725-1762.	1.0	185
146	Synthesis of helical poly(phenylacetylene)s bearing cinchona alkaloid pendants and their application to asymmetric organocatalysis. Journal of Polymer Science Part A, 2011, 49, 5192-5198.	2.5	49
147	An efficient oneâ€pot synthesis of pyrazolo[3,4â€ <i>b</i>]pyridinone derivatives catalyzed by <scp>L</scp> â€proline. Journal of Heterocyclic Chemistry, 2011, 48, 351-354.	1.4	17
148	Diastereoselective and Highly Enantioselective Henry Reactions using <i>C</i> ₁ ‧ymmetrical Copper(II) Complexes. Advanced Synthesis and Catalysis, 2011, 353, 1797-1806.	2.1	37
149	Highly Enantioselective Henry Reaction Catalyzed by <i>C</i> ₂ â€Symmetric Modular BINOLâ€Oxazoline Schiff Base Copper(II) Complexes Generated in Situ. European Journal of Organic Chemistry, 2011, 2011, 1552-1556.	1.2	29
150	Novel Quinidineâ€Derived Organocatalysts for the Asymmetric Substitutions of <i>O</i> â€Bocâ€Protected Morita–Baylis–Hillman Adducts. European Journal of Organic Chemistry, 2011, 2011, 4479-4484.	1.2	28
151	Asymmetric Nitroaldol Reactions of Nitroalkanes with Isatins Catalyzed by Bifunctional Cinchona Alkaloid Derivatives. European Journal of Organic Chemistry, 2011, 2011, 5237-5241.	1.2	21
152	Morpholine Catalyzed One-pot Multicomponent Synthesis of Compounds Containing Chromene Core in Water. Chinese Journal of Chemistry, 2011, 29, 1163-1166.	2.6	39
153	Organic Reaction in Water: A Highly Efficient and Environmentally Friendly Synthesis of Spiro Compounds Catalyzed by <scp>L</scp> â€Proline. Helvetica Chimica Acta, 2011, 94, 824-830.	1.0	26
156	The Direct Asymmetric Vinylogous Aldol Reaction of Furanones with αâ€Ketoesters: Access to Chiral γâ€Butenolides and Clycerol Derivatives. Angewandte Chemie - International Edition, 2011, 50, 1861-1864.	7.2	113
157	Asymmetric Synthesis of Chiral 1,3â€Diaminopropanols: Bisoxazolidine atalyzed CC Bond Formation with αâ€Keto Amides. Angewandte Chemie - International Edition, 2011, 50, 12249-12252.	7.2	48
158	The Construction of Quaternary Stereocenters by the Henry Reaction: Circumventing the Usual Reactivity of Substituted Glyoxals. Chemistry - A European Journal, 2011, 17, 3768-3773.	1.7	30
159	Highly Enantioselective Henry Reactions in Water Catalyzed by a Copper Tertiary Amine Complex and Applied in the Synthesis of (<i>S</i>)â€ <i>N</i> â€ <i>trans</i> â€Feruloyl Octopamine. Chemistry - A European Journal, 2011, 17, 1114-1117.	1.7	89
160	Catalytic Enantioselective Henry Reactions of Isatins: Application in the Concise Synthesis of (<i>S</i>)â€(â~)â€Spirobrassinin. Chemistry - A European Journal, 2011, 17, 7791-7795.	1.7	99

#	Article	IF	CITATIONS
161	Direct Enantioselective Amination of αâ€Ketoesters Catalyzed by an Axially Chiral Guanidine Base. Chemistry - A European Journal, 2011, 17, 9037-9041.	1.7	37
162	Multicomponent synthesis of dihydropyridines catalyzed by l-proline. Chinese Chemical Letters, 2011, 22, 531-534.	4.8	26
163	Chiral enhancement in the confined space of zeolites for the asymmetric synthesis of \hat{l}^2 -hydroxy nitroalkanes. Tetrahedron: Asymmetry, 2011, 22, 117-123.	1.8	12
164	Enantioselective Henry reaction catalyzed by copper(II)—Cinchona alkaloid complexes. Tetrahedron: Asymmetry, 2011, 22, 351-355.	1.8	15
165	Asymmetric Henry reaction catalyzed by a chiral Cu(II) complex: a facile enantioselective synthesis of (S)-2-nitro-1-arylethanols. Tetrahedron: Asymmetry, 2011, 22, 530-535.	1.8	32
166	Asymmetric Mannich reactions catalyzed by cinchona alkaloid thiourea: enantioselective one-pot synthesis of novel Î ² -amino ester derivatives. Tetrahedron: Asymmetry, 2011, 22, 518-523.	1.8	37
167	Asymmetric Henry reaction of aldehydes catalyzed by recyclable an MCM-41 supported copper(II) salen complex. Tetrahedron: Asymmetry, 2011, 22, 857-865.	1.8	32
168	Organocatalytic Enantioselective Henry Reactions. Symmetry, 2011, 3, 220-245.	1.1	116
169	6.6 Henry and aza-Henry Reactions. , 2012, , 157-193.		3
170	An Efficient Asymmetric Biomimetic Transamination of α-Keto Esters to Chiral α-Amino Esters. Organic Letters, 2012, 14, 5270-5273.	2.4	48
171	4.12 Direct C–C Bond Formation (Henry, aza-Henry). , 2012, , 214-242.		0
172	3.9 Alkaloid Derived Auxiliaries: Cinchona Alkaloids and Derivatives. , 2012, , 223-247.		7
173	Asymmetric Synthesis of Diverse Glycolic Acid Scaffolds via Dynamic Kinetic Resolution of α-Keto Esters. Journal of the American Chemical Society, 2012, 134, 20197-20206.	6.6	72
174	A New Catalyst for the Asymmetric Henry Reaction: Synthesis of Î ² -Nitroethanols in High Enantiomeric Excess. Organic Letters, 2012, 14, 6270-6273.	2.4	110
175	Highly diastereoselective and enantioselective Michael addition of 5H-oxazol-4-ones to α,β-unsaturated ketones catalyzed by a new bifunctional organocatalyst with broad substrate scope and applicability. Chemical Communications, 2012, 48, 461-463.	2.2	65
176	Investigating the reaction mechanism and organocatalytic synthesis of α,α′-dihydroxy ketones. Organic and Biomolecular Chemistry, 2012, 10, 2621.	1.5	7
177	Asymmetric substitutions of O-Boc-protected Morita–Baylis–Hillman adducts with pyrrole and indole derivatives. Organic and Biomolecular Chemistry, 2012, 10, 1396-1405.	1.5	33
178	Three-Component Glycolate Michael Reactions of Enolates, Silyl Glyoxylates, and α,β-Enones. Journal of Organic Chemistry, 2012, 77, 3246-3251.	1.7	18

#	Article	IF	CITATIONS
179	An Efficient Synthesis of Pyrrolo[2,3,4- <i>kl</i>]acridin-1-one Derivatives Catalyzed by <scp>l</scp> -Proline. Organic Letters, 2012, 14, 4598-4601.	2.4	90
180	Asymmetric Synthesis of Trifluoromethylated Amines via Catalytic Enantioselective Isomerization of Imines. Journal of the American Chemical Society, 2012, 134, 14334-14337.	6.6	123
181	Copper Complex of Aminoisoborneol Schiff Base Cu 2 (SBAIBâ€d) 2 : An Efficient Catalyst for Direct Catalytic Asymmetric Nitroaldol (Henry) Reaction. Advanced Synthesis and Catalysis, 2012, 354, 2511-2520.	2.1	65
182	A Highly <i>anti</i> â€Selective Asymmetric Henry Reaction Catalyzed by a Chiral Copper Complex: Applications to the Syntheses of (+)â€Spisulosine and a Pyrroloisoquinoline Derivative. Chemistry - A European Journal, 2012, 18, 12357-12362.	1.7	94
183	Organocatalytic conjugate addition of α-nitroacetates to β,γ-unsaturated α-keto esters and subsequent decarboxylation: synthesis of optically active δ-nitro-α-keto esters. Tetrahedron, 2012, 68, 9397-9404.	1.0	21
184	Catalytic asymmetric nitroaldol (Henry) reactions with copper(II)/cyclopropane-based bisoxazoline complexes. Tetrahedron: Asymmetry, 2012, 23, 965-971.	1.8	14
186	Rapid access of 2,3,4-trisubstituted-2,3,4,9-tetrahydrothiopyrano[2,3-b]indole derivatives via one-pot three component reaction using organocatalysis. Tetrahedron Letters, 2012, 53, 6087-6090.	0.7	34
187	New approach to the preparation of bicyclo octane derivatives via the enantioselective cascade reaction catalyzed by chiral diamine-Ni(OAc)2 complex. Organic and Biomolecular Chemistry, 2012, 10, 4767.	1.5	26
188	l-Proline catalysed multicomponent synthesis of 3-amino alkylated indolesvia a Mannich-type reaction under solvent-free conditions. Green Chemistry, 2012, 14, 290-295.	4.6	140
189	Activation of 1,2â€Keto Esters with Takemoto's Catalyst toward Michael Addition to Nitroalkenes. Advanced Synthesis and Catalysis, 2012, 354, 563-568.	2.1	37
191	Highly Enantioselective Henry Reactions of Aromatic Aldehydes Catalyzed by an Amino Alcohol–Copper(II) Complex. Chemistry - A European Journal, 2012, 18, 10515-10518.	1.7	40
192	Aromatic hydroxyl group—a hydrogen bonding activator in bifunctional asymmetric organocatalysis. RSC Advances, 2012, 2, 737-758.	1.7	72
193	Lewis acid-promoted reaction of β,γ-unsaturated α,α-dimethoxy esters with silyl nucleophiles. Tetrahedron Letters, 2012, 53, 4584-4587.	0.7	4
194	Glycine catalyzed convenient synthesis of 2-amino-4H-chromenes in aqueous medium under sonic condition. Ultrasonics Sonochemistry, 2012, 19, 725-728.	3.8	77
195	Core Structureâ€Based Design of Organocatalytic [3+2] ycloaddition Reactions: Highly Efficient and Stereocontrolled Syntheses of 3,3′â€Pyrrolidonyl Spirooxindoles. Chemistry - A European Journal, 2012, 18, 63-67.	1.7	104
196	An efficient oneâ€pot threeâ€component synthesis of tetrahydrofuro[3,4â€ <i>b</i>]quinolineâ€1,8(3 <i>H</i> ,4 <i>H</i>)â€dione derivatives catalyzed by <scp>L</scp> â€proline. Journal of Heterocyclic Chemistry, 2012, 49, 125-129.	1.4	27
198	1,2â€Dicarbonyl Compounds as Pronucleophiles in Organocatalytic Asymmetric Transformations. Angewandte Chemie - International Edition, 2012, 51, 40-42.	7.2	47
199	Rhodiumâ€Catalyzed, Highly Enantioselective 1,2â€Addition of Aryl Boronic Acids to αâ€Ketoesters and αâ€Diketones Using Simple, Chiral Sulfur–Olefin Ligands. Angewandte Chemie - International Edition, 2012, 51, 780-783.	7.2	120

# 200	ARTICLE Catalyst functional group cooperativity in the amino acid-catalysed nitroaldol condensation reaction. Research on Chemical Intermediates, 2013, 39, 3407-3415.	IF 1.3	CITATIONS
201	Synthesis and application of new iminopyridine ligands to enantioselective copper(II)-catalyzed Henry reaction. Journal of Molecular Catalysis A, 2013, 378, 206-212.	4.8	14
202	Direct asymmetric aldol addition–isomerization of α,β-unsaturated γ-butyrolactam with aryl α-ketoesters: synthesis of MBH-type products. Chemical Communications, 2013, 49, 3300.	2.2	31
203	Organic Solvent Nanofiltration as a Tool for Separation of Quinine-Based Organocatalysts. Organic Process Research and Development, 2013, 17, 1131-1136.	1.3	25
204	An eco-efficient, domino synthesis of highly functionalized spiro-oxindole derivatives catalyzed by an organocatalyst in an aqueous medium. RSC Advances, 2013, 3, 18775.	1.7	13
205	Stereoselective synthesis of highly functionalized tetrahydrocarbazoles through a domino Michael–Henry reaction: an easy access to four contiguous chiral centers. RSC Advances, 2013, 3, 10644.	1.7	26
208	Efficient and recyclable catalysts based on simple chiral N1-alkyl, N2-arylmethyl diamines in the Cu-catalyzed asymmetric Henry reactions. Journal of Molecular Catalysis A, 2013, 379, 163-168.	4.8	15
209	Catalytic Enantioselective Michael Addition of αâ€Arylâ€Î±â€Isocyanoacetates to Vinyl Selenone: Synthesis of α,αâ€Disubstituted αâ€Amino Acids and (+)―and (â~)â€Trigonoliimineâ€A. Angewandte Chemie - Internatio 2013, 52, 12714-12718.	n al£ ditioi	٦, 124
210	Efficient Tertiary Amine/Weak Acid Bifunctional Mesoporous Silica Catalysts for Michael Addition Reactions. ChemCatChem, 2013, 5, 910-919.	1.8	11
211	Mechanism and Selectivity of Bioinspired Cinchona Alkaloid Derivatives Catalyzed Asymmetric Olefin Isomerization: A Computational Study. Journal of the American Chemical Society, 2013, 135, 7462-7473.	6.6	69
212	Water-Assisted Organocatalysis: An Enantioselective Green Protocol for the Henry Reaction. Australian Journal of Chemistry, 2013, 66, 661.	0.5	11
213	Metal-complexes of optically active amino- and imino-based pyridine ligands in asymmetric catalysis. Coordination Chemistry Reviews, 2013, 257, 1887-1932.	9.5	97
214	Organocatalytic diastereo- and enantioselective sulfa-Michael addition to $\hat{1}\pm,\hat{1}^2$ -disubstituted nitroalkenes. Tetrahedron, 2013, 69, 5367-5373.	1.0	18
215	Substituted (<i>E</i>)-2-Oxo-3-butenoates: Reagents for Every Enantioselectively-Catalyzed Reaction. Chemical Reviews, 2013, 113, 5924-5988.	23.0	75
216	"On-water―organic synthesis: l-proline catalyzed synthesis of pyrimidine-2,4-dione-, benzo[g]- and dihydropyrano[2,3-g]chromene derivatives in aqueous media. Journal of the Iranian Chemical Society, 2013, 10, 307-317.	1.2	14
217	Chiral Sulfinamideâ€Olefin Ligands: Switchable Selectivity in Rhodiumâ€Catalyzed Asymmetric 1,2â€Addition of Arylboronic Acids to Aliphatic <i>α</i> â€Ketoesters. Chinese Journal of Chemistry, 2013, 31, 321-328.	2.6	19
219	Cinchona Alkaloid-Catalyzed Stereoselective Carbon-Carbon Bond Forming Reactions. Recent Patents on Catalysis, 2013, 2, 47-67.	0.2	6
220	Asymmetric Michael Addition of 5 <i>H</i> â€Oxazolâ€4â€ones to Vinyl Sulfones: Stereoselective Synthesis Monofluorinated Analogs of 2â€Tertiary Hydroxylâ€3â€Methylâ€Substituted Carboxylic Acidl Derivatives. Advanced Synthesis and Catalysis, 2014, 356, 3777-3783.	of 2.1	27

-		_	
C 1^{-}		Drnc	NDT.
	IAL	REPU	ואכ

#	Article	IF	CITATIONS
221	Asymmetric Henry reaction catalysed by Lâ€proline derivatives in the presence of Cu(OAc) ₂ : isolation and characterization of an <i>in situ</i> formed Cu(II) complex. Applied Organometallic Chemistry, 2014, 28, 290-297.	1.7	20
222	Asymmetric synthesis of chiral β-hydroxy-α-amino acid derivatives by organocatalytic aldol reactions of isocyanoesters with β,γ-unsaturated α-ketoesters. Tetrahedron: Asymmetry, 2014, 25, 650-657.	1.8	7
223	Organocatalytic Asymmetric Friedel–Crafts Reaction of Sesamol with Isatins: Access to Biologically Relevant 3â€Arylâ€3â€hydroxyâ€2â€oxindoles. Chemistry - an Asian Journal, 2014, 9, 1305-1310.	1.7	27
224	Enantioselective Copper(I/II)â€Catalyzed Conjugate Addition of Nitro Esters to β,γâ€Unsaturated αâ€Ketoesters Chemistry - A European Journal, 2014, 20, 979-982.	1.7	43
225	Enantioselective Henry and Azaâ€Henry Reaction in the Synthesis of (<i>R</i>)â€Tembamide Using Efficient, Recyclable Polymeric Cu ^{II} Complexes as Catalyst. ChemPlusChem, 2014, 79, 1138-1146.	1.3	14
226	Reactions of pyruvates: organocatalytic synthesis of functionalized dihydropyrans in one pot and further transformations to functionalized carbocycles and heterocycles. Chemical Communications, 2014, 50, 14881-14884.	2.2	16
227	C2-symmetric N,N′-bis(terpenyl)ethylenediamines—synthesis and application in the enantioselective nitroaldol reaction. RSC Advances, 2014, 4, 14264-14269.	1.7	10
228	A new sustainable protocol for the synthesis of nitroaldol derivatives via Henry reaction under solvent-free conditions. Green Chemistry Letters and Reviews, 2014, 7, 11-17.	2.1	5
229	Synthesis and characterization of chiral recyclable dimeric copper(<scp>ii</scp>)–salen complexes and their catalytic application in asymmetric nitroaldol (Henry) reaction. Catalysis Science and Technology, 2014, 4, 411-418.	2.1	31
230	2.13 The Henry (Nitroaldol) Reaction. , 2014, , 543-570.		11
231	6.03 Synthesis of Nitroso, Nitro, and Related Compounds. , 2014, , 100-130.		2
232	Enantioselective Addition of Nitromethane to 2-Acylpyridine N-Oxides. Expanding the Generation of Quaternary Stereocenters with the Henry Reaction. Organic Letters, 2014, 16, 1204-1207.	2.4	35
233	Dynamic Kinetic Asymmetric Transformations of βâ€Stereogenic αâ€Ketoesters by Direct Aldolization. Angewandte Chemie - International Edition, 2014, 53, 255-259.	7.2	35
235	Preparation of Poly(ionic liquid)sâ€6upported Recyclable Organocatalysts for the Asymmetric Nitroaldol (Henry) Reaction. Chemistry - A European Journal, 2015, 21, 18957-18960.	1.7	26
236	A Highly Efficient Chirality Switchable Synthesis of Dihydropyranâ€Fused Benzofurans by Fineâ€Tuning the Phenolic Proton of βâ€Isocupreidine (βâ€ICD) Catalyst with Methyl. Chemistry - A European Journal, 2015, 21, 10443-10449.	1.7	22
237	Catalytic Asymmetric Michael Reaction of 5 <i>H</i> â€Oxazolâ€4â€Ones with α,βâ€Unsaturated Acyl Imidazoles Chemistry - A European Journal, 2015, 21, 17234-17238.	· 1.7	24
238	Synthesis and applications in Henry reactions of novel chiral thiazoline tridentate ligands. Applied Organometallic Chemistry, 2015, 29, 661-667.	1.7	6
239	Catalytic Asymmetric Henry Reaction of Nitroalkanes and Aldehydes Catalyzed by a Chiral N,N′-Dioxide/Cu(I) Complex. Journal of Organic Chemistry, 2015, 80, 2272-2280.	1.7	35

#	Article	IF	CITATIONS
240	Synthesis of novel Schiff base ligands from gluco- and galactochloraloses for the Cu(II) catalyzed asymmetric Henry reaction. Carbohydrate Research, 2015, 407, 97-103.	1.1	11
241	Organocatalyzed asymmetric synthesis and absolute configuration assignment of enantioenriched α-benzylaminocoumarins. Tetrahedron Letters, 2015, 56, 913-917.	0.7	12
242	Multicomponent Polymerization System Combining Hantzsch Reaction and Reversible Addition–Fragmentation Chain Transfer to Efficiently Synthesize Well-Defined Poly(1,4-dihydropyridine)s. ACS Macro Letters, 2015, 4, 128-132.	2.3	50
243	Asymmetric Henry reaction of trifluoromethyl ketone and aldehyde using Cu(II)-complex: computational study offers the origin of enantioselectivity with varied size of catalysts. Tetrahedron, 2015, 71, 5229-5237.	1.0	28
244	Organocatalytic enantioselective aza-Friedel–Crafts reaction of 2-naphthols with benzoxathiazine 2,2-dioxides. RSC Advances, 2015, 5, 60101-60105.	1.7	37
245	Highly enantioselective construction of tertiary thioethers and alcohols via phosphine-catalyzed asymmetric Î ³ -addition reactions of 5H-thiazol-4-ones and 5H-oxazol-4-ones: scope and mechanistic understandings. Chemical Science, 2015, 6, 4912-4922.	3.7	117
246	Cupreine grafted onto silica as an enantioselective and recyclable catalyst for the 1,4-addition of malonate to trans-Î ² -nitrostyrene. RSC Advances, 2015, 5, 29386-29390.	1.7	5
248	Organocatalytic diastereoselective synthesis of chiral decalines through the domino Claisen–Schmidt/Henry reaction. Organic and Biomolecular Chemistry, 2015, 13, 5110-5114.	1.5	10
249	Copper- and Cobalt-Catalyzed Direct Coupling of sp ³ α-Carbon of Alcohols with Alkenes and Hydroperoxides. Journal of the American Chemical Society, 2015, 137, 42-45.	6.6	173
250	Chemistry of $\hat{I}\pm$ -Oxoesters: A Powerful Tool for the Synthesis of Heterocycles. Chemical Reviews, 2015, 115, 151-264.	23.0	112
251	Diastereoselective Nitroaldol Reaction Catalyzed by Binuclear Copper(II) Complexes in Aqueous Medium. ChemPlusChem, 2015, 80, 209-216.	1.3	12
252	Synthesis of New 1, 10â€Phenanthroline Analogs as Potent Antimicrobial Agents Using Montmorillonite Kâ€10 as Catalyst. Journal of Heterocyclic Chemistry, 2015, 52, 397-402.	1.4	7
253	Cupreines and cupreidines: an established class of bifunctional cinchona organocatalysts. Beilstein Journal of Organic Chemistry, 2016, 12, 429-443.	1.3	23
254	Organocatalytic asymmetric Henry reaction of 1 <i>H</i> -pyrrole-2,3-diones with bifunctional amine-thiourea catalysts bearing multiple hydrogen-bond donors. Beilstein Journal of Organic Chemistry, 2016, 12, 295-300.	1.3	17
255	Synthesis of novel chiral bisoxazoline ligands with a norbornadiene backbone: use in the copper-catalyzed enantioselective Henry reaction. Turkish Journal of Chemistry, 2016, 40, 248-261.	0.5	1
256	Catalyst-controlled switch of regioselectivity in the asymmetric allylic alkylation of oxazolones with MBHCs. Chemical Communications, 2016, 52, 7882-7885.	2.2	27
257	Enantioselective Synthesis of Ring-Fused Spiroannulated 1,2,3-Thiadiazole Derivatives. Journal of Organic Chemistry, 2016, 81, 3553-3559.	1.7	12
258	Copper Complex of Pinene based Schiff base [CuSBADBH] ₂ : Synthesis and its Application in Catalytic Asymmetric Nitroaldol (Henry) Reaction. ChemistrySelect, 2016, 1, 2028-2034.	0.7	5

#	ARTICLE	IF	CITATIONS
259	l -Proline catalyzed four-component one-pot synthesis of coumarin-containing dihydropyrano[2,3- c]pyrazoles under ultrasonic irradiation. Tetrahedron, 2016, 72, 7599-7605.	1.0	22
260	Highly enantioselective asymmetric Henry reaction catalyzed by novel chiral phase transfer catalysts derived from cinchona alkaloids. Organic and Biomolecular Chemistry, 2016, 14, 10101-10109.	1.5	12
261	Asymmetric Construction of 2,3-Dihydroisoxazoles via an Organocatalytic Formal [3 + 2] Cycloaddition of Enynes with <i>N</i> -Hydroxylamines. Organic Letters, 2016, 18, 3972-3975.	2.4	24
262	Enantioselective Organocatalyzed Transformations of β-Ketoesters. Chemical Reviews, 2016, 116, 9375-9437.	23.0	105
263	Asymmetric Henry reaction catalyzed by Cu(II)-based chiral amino alcohol complexes with C2-symmetry. Tetrahedron: Asymmetry, 2016, 27, 732-739.	1.8	18
264	Enantio- and Diastereoselective Synthesis of β-Nitroalcohol via Henry Reaction Catalyzed by Cu(II), Ni(II), Zn(II) Complexes of Chiral BINIM Ligands. ChemistrySelect, 2016, 1, 5331-5338.	0.7	12
265	Enantioselective Synthesis of Quaternary $\hat{l}\pm \hat{a} \in A$ mino Acids Enabled by the Versatility of the Phenylselenonyl Group. Chemistry - A European Journal, 2016, 22, 18368-18372.	1.7	19
266	Organocatalytic enantioselective synthesis of C3 functionalized indole derivatives. Tetrahedron, 2016, 72, 8042-8049.	1.0	10
267	Switchableâ€Hydrophilicity Solvents for Product Isolation and Catalyst Recycling in Organocatalysis. ChemSusChem, 2016, 9, 696-702.	3.6	26
268	Binuclear Cu(II) chiral complexes: synthesis, characterization and application in enantioselective nitroaldol (Henry) reaction. Applied Organometallic Chemistry, 2016, 30, 95-101.	1.7	11
269	In Situ Generated Ag ^{II} -Catalyzed Selective Oxo-Esterification of Alkyne with Alcohol to α-Ketoester: Photophysical Study. Organic Letters, 2016, 18, 144-147.	2.4	16
270	<i>anti</i> -Selective Asymmetric Henry Reaction Catalyzed by a Heterobimetallic Cu–Sm–Aminophenol Sulfonamide Complex. Organic Letters, 2016, 18, 1578-1581.	2.4	31
271	Organocatalytic asymmetric conjugate addition of diaryloxazolidin-2,4-diones to nitroolefins: an efficient approach to chiral α-aryl-I±-hydroxy carboxylic acids. Organic Chemistry Frontiers, 2016, 3, 470-474.	2.3	18
272	Organocatalytic Enantioselective Synthesis of Tetrahydrofluoren-9-ones via Vinylogous Michael Addition/Henry Reaction Cascade of 1,3-Indandione-Derived Pronucleophiles. Organic Letters, 2016, 18, 688-691.	2.4	28
273	Development of a simple system for the oxidation of electron-rich diazo compounds to ketones. Tetrahedron Letters, 2016, 57, 849-851.	0.7	29
274	Equilibrium acidities of cinchona alkaloid organocatalysts bearing 6′-hydrogen bonding donors in DMSO. Organic Chemistry Frontiers, 2016, 3, 170-176.	2.3	10
275	Lighting up the PEGylation agents via the Hantzsch reaction. Polymer Chemistry, 2016, 7, 523-528.	1.9	13
276	Catalyst-Controlled Switch in Diastereoselectivities: Enantioselective Construction of Functionalized 3,4-Dihydro-2 <i>H</i> -thiopyrano[2,3- <i>b</i>]quinolines with Three Contiguous Stereocenters, Journal of Organic Chemistry, 2017, 82, 2205-2210.	1.7	22

#	Article	IF	CITATIONS
277	β ^{2, 2} â€Amino Acid <i>N</i> â€Carboxyanhydrides Relying on Sequential Enantioselective C(4)â€Functionalization of Pyrrolidinâ€2,3â€diones and Regioselective Baeyer–Villiger Oxidation. Chemistry - A European Journal, 2017, 23, 8185-8195.	1.7	25
278	Asymmetric organocatalytic synthesis of tertiary azomethyl alcohols: key intermediates towards azoxy compounds and α-hydroxy-β-amino esters. Organic and Biomolecular Chemistry, 2017, 15, 2993-3005.	1.5	12
279	Installation of α-ketocarboxylate groups to C7-position of indolines via Câ^'H addition and oxidation approach under ruthenium catalysis. Tetrahedron, 2017, 73, 1725-1732.	1.0	16
280	Simple and Effective Catalyst Separation by New CO ₂ â€Induced Switchable Organocatalysts. ChemSusChem, 2017, 10, 2685-2691.	3.6	7
281	Copper-catalyzed Pummerer type reaction of $\hat{I}\pm$ -thio aryl/heteroarylacetates: Synthesis of aryl/heteroaryl $\hat{I}\pm$ -keto esters. Tetrahedron Letters, 2017, 58, 1765-1769.	0.7	12
282	Dynamic control over catalytic function using responsive bisthiourea catalysts. Organic and Biomolecular Chemistry, 2017, 15, 8285-8294.	1.5	21
283	Copper-Catalyzed Enantioselective Henry Reaction of β,γ-Unsaturated α-Ketoesters with Nitromethane in Water. Organic Letters, 2017, 19, 6416-6419.	2.4	28
284	Synthesis of Quaternaryâ€Carbonâ€Containing β ^{2,2} â€Amino Acids by the Rh ^I â€Cataly: Enantioselective Arylation of αâ€Substituted I²â€Nitroacrylates. Chemistry - A European Journal, 2017, 23, 1830-1838.	zed 1.7	27
285	Catalytic enantioselective Henry reaction of $\hat{l}\pm$ -keto esters, 2-acylpyridines and 2-acylpyridine <i>N</i> -oxides. RSC Advances, 2018, 8, 9414-9422.	1.7	8
286	Spectroscopic Study of a <i>Cinchona</i> Alkaloid-Catalyzed Henry Reaction. ACS Omega, 2018, 3, 1871-1880.	1.6	9
287	C6′ steric bulk of cinchona alkaloid enables an enantioselective Michael addition/annulation sequence toward pyranopyrazoles. Chemical Communications, 2018, 54, 2028-2031.	2.2	27
288	Construction of 2â€Thiabicyclo[3.3.1]nonanes by Organocatalytic Asymmetric Formal [3+3] Cycloaddition. European Journal of Organic Chemistry, 2018, 2018, 1852-1857.	1.2	4
289	Green and Sustainable Solvents in Chemical Processes. Chemical Reviews, 2018, 118, 747-800.	23.0	1,253
290	Asymmetric Henry reaction catalyzed by chiral Cu(II) salalen and salan complexes derived from (S) Tj ETQq1 1 0.7	84314 rg[1.2	3T1Overloc
291	Organocatalytic Nitroaldol Reaction Associated with Deuterium‣abeling. Advanced Synthesis and Catalysis, 2018, 360, 637-641.	2.1	15
292	Enantiopure <i>cis</i> ―and <i>trans</i> â€2â€(2â€Aminocyclohexyl)phenols: Effective Preparation, Solidâ€State Characterization, and Application in Asymmetric Organocatalysis. European Journal of Organic Chemistry, 2018, 2018, 7017-7032.	2 1.2	3
293	Synthesis of chiral salalen ligands and their inâ€situ generated Cuâ€complexes for asymmetric Henry reaction. Chirality, 2018, 30, 1257-1268.	1.3	3
294	Highly stereoselective construction of tetrahydroquinolines via cascade aza-Michael-Michael reaction: Formal [4+2] cycloaddition of β,γ-unsaturated α-ketoesters with 2-aminochalcones. Tetrahedron, 2018, 74, 7179-7185.	1.0	9

#	Article	IF	CITATIONS
295	Bimetallic Oriented (Au/Cu ₂ O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu ₂ O Graphene‣upported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry, 2018, 2018, 6185-6190.	1.2	3
296	<i>anti</i> -Selective Catalytic Asymmetric Nitroaldol Reaction of α-Keto Esters: Intriguing Solvent Effect, Flow Reaction, and Synthesis of Active Pharmaceutical Ingredients. Journal of the American Chemical Society, 2018, 140, 12290-12295.	6.6	52
297	Lewisâ€Baseâ€Catalyzed Domino Reaction of Morita–Baylis–Hillman Carbonates of Isatins with Enolizable Cyclic Carbonyl Compounds: Stereoselective Access to Spirooxindoleâ€Pyrans. Asian Journal of Organic Chemistry, 2018, 7, 1595-1599.	1.3	19
298	A metalloligand appended with benzimidazole rings: tetranuclear [CoZn ₃] and [CoCd ₃] complexes and their catalytic applications. New Journal of Chemistry, 2018, 42, 9847-9856.	1.4	18
299	Recent Advances in Organocatalyzed Domino C–C Bond-Forming Reactions. Molecules, 2018, 23, 33.	1.7	30
300	Henry Reaction Revisited. Crucial Role of Water in an Asymmetric Henry Reaction Catalyzed by Chiral NNO-Type Copper(II) Complexes. Inorganic Chemistry, 2019, 58, 11051-11065.	1.9	13
301	Enantioselective γâ€Alkylation of α,βâ€Unsaturated Aldehydes Using New Cinchonaâ€Based Primary Amine Catalyst. European Journal of Organic Chemistry, 2019, 2019, 6838-6841.	1.2	4
302	Chiral 1,4-aminoalkylphenols for enantioselective diethylzinc addition toaldehydes. Turkish Journal of Chemistry, 2019, 43, 612-623.	0.5	1
303	Chiral iminophosphorane catalyzed asymmetric Henry reaction of α,β-alkynyl ketoesters. Chinese Chemical Letters, 2019, 30, 1519-1522.	4.8	8
304	Asymmetric Henry Reaction of 2-Acylpyridine N-Oxides Catalyzed by a Ni-Aminophenol Sulfonamide Complex: An Unexpected Mononuclear Catalyst. Molecules, 2019, 24, 1471.	1.7	1
305	Palladium-catalyzed formal insertion of carbenoids into <i>N</i> , <i>O</i> -aminals: direct access to α-alkoxy-β-amino acid esters. Chemical Communications, 2019, 55, 3947-3950.	2.2	24
306	Cinchona Alkaloids—Derivatives and Applications. The Alkaloids Chemistry and Biology, 2019, 82, 29-145.	0.8	28
307	Umpolung Strategy for the Synthesis of Chiral Dispiro[2-amino-4,5-dihydrofuran-3-carbonitrile]bisoxindoles. Journal of Organic Chemistry, 2020, 85, 7793-7802.	1.7	17
308	Catalytic Enantioselective Direct Aldol Addition of Aryl Ketones to αâ€Fluorinated Ketones. Angewandte Chemie, 2020, 132, 5397-5402.	1.6	12
309	Catalytic Enantioselective Direct Aldol Addition of Aryl Ketones to αâ€Fluorinated Ketones. Angewandte Chemie - International Edition, 2020, 59, 5359-5364.	7.2	41
312	Baseâ€mediated Benzannulation Reactions for the Synthesis of Densely Functionalized Aryl αâ€Keto Esters. Asian Journal of Organic Chemistry, 2021, 10, 2161-2164.	1.3	1
313	BrÃ,nsted Base Catalysts. Topics in Current Chemistry, 2010, 291, 201-232.	4.0	12
314	Advances in Henry Reaction: A Versatile Method in Organic Synthesis. Mini-Reviews in Organic Chemistry, 2020, 17, 297-308.	0.6	18

		CITATION REPORT		
#	Article		IF	Citations
315	Asymmetric Henry Reaction of Nitromethane with Substituted Aldehydes Catalyzed by	Novel In Situ		