Tribology of diamond-like carbon films: recent progress

Journal Physics D: Applied Physics 39, R311-R327

DOI: 10.1088/0022-3727/39/18/r01

Citation Report

#	Article	IF	CITATIONS
2	Superlow friction of ta-C lubricated by glycerol: An electron energy loss spectroscopy study. Journal of Applied Physics, 2007, 102 , .	1.1	42
3	Superlubricity in Diamondlike Carbon Films. , 2007, , 253-271.		19
4	Structural order in near-frictionless hydrogenated diamondlike carbon films probed at three length scales via transmission electron microscopy. Physical Review B, 2007, 75, .	1.1	44
5	Evaluation of the tribological properties of DLC for engine applications. Journal Physics D: Applied Physics, 2007, 40, 5427-5437.	1.3	45
6	Argon/tetramethysilane PECVD: From process diagnostic and modeling to a-Si:C:H hard coating composition. Diamond and Related Materials, 2007, 16, 1259-1263.	1.8	19
7	Surface analytical investigation of nearly-frictionless carbon films after tests in dry and humid nitrogen. Surface and Coatings Technology, 2007, 201, 7401-7407.	2.2	50
8	Influence of contact conditions on tribological behaviour of DLC coatings. Surface and Coatings Technology, 2007, 202, 1062-1066.	2.2	24
9	Development of diamond-like carbon-coated electrodes for corrosion sensor applications at high temperatures. Thin Solid Films, 2008, 517, 1120-1124.	0.8	12
10	Low-Friction Mechanisms Active for Carbon Containing Coatings: Ti-C-N as a Model System. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2008, 153, 263-267.	0.4	4
11	New Carbon Materials: Biological Applications of Functionalized Nanodiamond Materials. Chemistry - A European Journal, 2008, 14, 1382-1390.	1.7	399
12	DLC and UHMWPE as hard/soft composite film on Si for improved tribological performance. Surface and Coatings Technology, 2008, 202, 3698-3708.	2.2	40
13	TOF-SIMS and XPS characterization of diamond-like carbon films after tests in inert and oxidizing environments. Wear, 2008, 265, 244-254.	1.5	57
14	Ultra-high performance of DLC-coated Si3N4 rings for mechanical seals. Wear, 2008, 265, 940-944.	1.5	37
15	Investigation of the protective properties of a subnanometer diamond-like carbon film. Journal of Surface Investigation, 2008, 2, 923-927.	0.1	3
16	Formation mechanisms of low-friction tribo-layers on arc-evaporated TiC1â^'xNx hard coatings. Wear, 2008, 265, 525-532.	1.5	32
17	Carboneous coatings by rolling with 10% slip under mixed/boundary lubrication and high initial Hertzian contact pressures. Diamond and Related Materials, 2008, 17, 1751-1754.	1.8	6
18	Ex-vivo investigations on the friction behavior of amorphous carbon coated ureteral stents. Diamond and Related Materials, 2008, 17, 1746-1750.	1.8	13
19	Surface Stability and Electronic Structure of Hydrogen and Fluorine Terminated Diamond Surfaces: a First Principles Investigation. Materials Research Society Symposia Proceedings, 2008, 1130, 63001.	0.1	O

#	ARTICLE	IF	CITATIONS
20	Some Applications of Cathodic Arc Coatings. Springer Series on Atomic, Optical, and Plasma Physics, 2008, , 429-490.	0.1	1
21	Formation of diamondlike nanocrystallites in amorphous carbon films synthesized by radio-frequency sputtering. Journal of Materials Research, 2008, 23, 700-703.	1.2	4
22	Friction and wear performance of diamond-like carbon and Cr-doped diamond-like carbon coatings in contact with steel surfaces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2008, 222, 231-240.	1.0	15
23	Biocompatibility of uncoated and diamond-like carbon coated Ti–20%Hf alloy. Materials Science and Technology, 2008, 24, 575-578.	0.8	4
24	Towards the use of diamond-like carbon solid lubricant coatings in vacuum and space environments. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2008, 222, 1015-1029.	1.0	46
25	Carbon-hydrogen bonding in near-frictionless carbon. Applied Physics Letters, 2008, 93, .	1.5	11
26	A Comparison of the Tribology of Tetrahedral Amorphous Carbon and Hydrogenated Amorphous Carbon. , 2008, , .		1
27	On the possible role of triboplasma in friction and wear of diamond-like carbon films in hydrogen-containing environments. Journal Physics D: Applied Physics, 2009, 42, 075307.	1.3	47
28	<i>Ab initio</i> study on the surface chemistry and nanotribological properties of passivated diamond surfaces. Physical Review B, 2009, 79, .	1.1	91
29	Evaluation of DLC Coatings for High-Temperature Foil Bearing Applications. Journal of Tribology, 2009, 131, .	1.0	9
30	Micro-to-nano triboactivity of hydrogenated DLC films. Journal Physics D: Applied Physics, 2009, 42, 085307.	1.3	14
31	Tribological properties of diamond-like carbon coatings in lubricated automotive applications. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2009, 223, 405-412.	1.0	10
32	Superlow friction behavior of Si-doped hydrogenated amorphous carbon film in water environment. Surface and Coatings Technology, 2009, 203, 981-985.	2.2	57
33	Effect of Tribofilm Formation on the Dry Sliding Friction and Wear Properties of Magnetron Sputtered TiAlCrYN Coatings. Tribology Letters, 2009, 34, 113-124.	1.2	26
34	Tribological Behaviour of Diamondâ€Like Carbon Films used in Automotive Application: A Comparison. Plasma Processes and Polymers, 2009, 6, S478.	1.6	10
35	Effect of the Substrate Geometry on Plasma Synthesis of DLC Coatings. Plasma Processes and Polymers, 2009, 6, S425-S428.	1.6	4
36	The influence of viscosity on the friction in lubricated DLC contacts at various sliding velocities. Tribology International, 2009, 42, 1752-1757.	3.0	21
37	Formation and behavior of unbonded hydrogen in a-C:H of various compositions and densities. Surface and Coatings Technology, 2009, 203, 3770-3776.	2.2	15

3

#	Article	IF	CITATIONS
38	Structural modifications of diamond like carbon films induced by MeV nitrogen ion irradiation. Applied Surface Science, 2009, 255, 4796-4800.	3.1	6
39	Tribological properties and vacuum ion-plasma methods of application of diamond and diamond-like coatings. Journal of Friction and Wear, 2009, 30, 62-75.	0.1	22
40	Spatial structures formed during high-temperature vacuum annealing of diamond-like film deposited on a silicon substrate. Journal of Surface Investigation, 2009, 3, 752-755.	0.1	1
41	Formation of hydrogenated amorphous carbon films containing fullerene-like structures. Journal of Non-Crystalline Solids, 2009, 355, 1742-1746.	1.5	10
42	Structural, mechanical and tribological characterizations of a-C : H : Si films prepared by a hybri and sputtering technique. Journal Physics D: Applied Physics, 2009, 42, 165407.	d PECVD	47
43	Hard Wear-Resistant Coatings: A Review. , 2009, , 774-779.		15
44	Low friction and protective diamond-like carbon coatings deposited by asymmetric bipolar pulsed plasma. Diamond and Related Materials, 2009, 18, 1035-1038.	1.8	11
45	Effects of environmental conditions on fluorinated diamond-like carbon tribology. Diamond and Related Materials, 2009, 18, 923-926.	1.8	28
46	Assessment of Tribological Coatings for Foil Bearing Applications. Tribology Transactions, 2009, 52, 231-242.	1.1	20
47	Depth-dependence of electrical conductivity of diamondlike carbon films. Applied Physics Letters, 2010, 96, .	1.5	5
48	Influence of environment and temperature on tribological behavior of diamond and diamond-like coatings. Journal of Friction and Wear, 2010, 31, 142-158.	0.1	19
49	Local reactivity of diamond-like carbon modified PTFE membranes used in SO2 sensors. Electrochimica Acta, 2010, 55, 7923-7928.	2.6	13
50	Deuterated amorphous carbon films: Film growth and properties. Surface and Coatings Technology, 2010, 204, 1993-1996.	2.2	10
51	Atomistic Insights into the Running-in, Lubrication, and Failure of Hydrogenated Diamond-Like Carbon Coatings. Tribology Letters, 2010, 39, 49-61.	1.2	126
52	Erosion resistant anti-ice surfaces generated by ultra short laser pulses. Physics Procedia, 2010, 5, 231-235.	1.2	25
53	Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding. Optics and Lasers in Engineering, 2010, 48, 119-124.	2.0	105
54	Real contact temperatures as the criteria for the reactivity of diamond-like-carbon coatings with oil additives. Thin Solid Films, 2010, 518, 2029-2036.	0.8	19
55	Metal-doped (Ti, WC) diamond-like-carbon coatings: Reactions with extreme-pressure oil additives under tribological and static conditions. Thin Solid Films, 2010, 518, 4336-4344.	0.8	75

#	ARTICLE	IF	CITATIONS
56	Structural, mechanical and tribological behavior of fullerene-like carbon film. Thin Solid Films, 2010, 518, 5938-5943.	0.8	19
57	Synthesis of ultra-smooth and ultra-low friction DLC based nanocomposite films on rough substrates. Thin Solid Films, 2010, 519, 1618-1622.	0.8	11
58	Investigation of the tribological behavior and its relationship to the microstructure and mechanical properties of a-SiC:H films elaborated by low frequency plasma assisted chemical vapor deposition. Thin Solid Films, 2010, 519, 1266-1271.	0.8	24
59	Structural, mechanical, tribological, and corrosion properties of a-SiC:H coatings prepared by PECVD. Surface and Coatings Technology, 2010, 204, 3358-3365.	2.2	42
60	Influence of hardness and roughness on the tribological performance of TiC/a-C nanocomposite coatings. Surface and Coatings Technology, 2010, 205, 2624-2632.	2.2	48
61	Study on tribological behavior and cutting performance of CVD diamond and DLC films on Co-cemented tungsten carbide substrates. Applied Surface Science, 2010, 256, 2479-2489.	3.1	62
62	In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films. Carbon, 2010, 48, 587-591.	5.4	82
63	Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nature Nanotechnology, 2010, 5, 181-185.	15.6	212
64	Effect of Plasma Treatment on Adhesion of DLC Layers to Steels. Materials Science Forum, 2010, 638-642, 812-817.	0.3	4
65	Temperature dependence of single-asperity friction for a diamond on diamondlike carbon interface. Journal of Applied Physics, 2010, 107, .	1.1	17
66	Tribological properties of nanostripe surface structures—a design concept for improving tribological properties. Journal Physics D: Applied Physics, 2010, 43, 465302.	1.3	15
67	Substrate effects on the mechanical properties and contact damage of diamond-like carbon thin films. Diamond and Related Materials, 2010, 19, 1273-1280.	1.8	23
68	Tribological properties of polymer composites with diamond-like carbon flakes. Diamond and Related Materials, 2010, 19, 894-898.	1.8	5
69	Ti-DLC films with superior friction performance. Diamond and Related Materials, 2010, 19, 342-349.	1.8	118
70	Functional Coatings or Films for Hard-Tissue Applications. Materials, 2010, 3, 3994-4050.	1.3	128
71	Structure and characteristics of amorphous (Ti,Si)–C:H films deposited by reactive magnetron sputtering. Diamond and Related Materials, 2010, 19, 1172-1177.	1.8	31
72	Controlling the work function of a diamond-like carbon surface by fluorination with XeF2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 1250-1254.	0.9	8
73	Tribological study of hydrogenated amorphous carbon films with tailored microstructure and composition produced by bias-enhanced plasma chemical vapour deposition. Diamond and Related Materials, 2010, 19, 1093-1102.	1.8	36

#	Article	IF	Citations
74	Unfiltered and Filtered Cathodic Arc Deposition. , 2010, , 466-531.		14
75	Band structure of diamond-like carbon films assessed from optical measurements in wide spectral range. Diamond and Related Materials, 2010, 19, 114-122.	1.8	12
76	A high voltage pulse power supply for metal plasma immersion ion implantation and deposition. Review of Scientific Instruments, 2010, 81, 124703.	0.6	5
77	Effects of Adhesion and Transfer Film Formation on the Tribology of Self-Mated DLC Contacts. Journal of Physical Chemistry C, 2010, 114, 5321-5330.	1.5	139
78	Plasma Deposition of Diamond-Like Carbon. Japanese Journal of Applied Physics, 2011, 50, 01AF01.	0.8	43
79	Chemical Vapor Deposition-Grown Graphene: The Thinnest Solid Lubricant. ACS Nano, 2011, 5, 5107-5114.	7.3	462
80	Tribochemical Reaction Dynamics Simulation of Hydrogen on a Diamond-like Carbon Surface Based on Tight-Binding Quantum Chemical Molecular Dynamics. Journal of Physical Chemistry C, 2011, 115, 22981-22986.	1.5	95
81	Argon plasma treatment techniques on steel and effects on diamond-like carbon structure and delamination. Diamond and Related Materials, 2011, 20, 1030-1035.	1.8	27
82	Understanding Run-In Behavior of Diamond-Like Carbon Friction and Preventing Diamond-Like Carbon Wear in Humid Air. Langmuir, 2011, 27, 12702-12708.	1.6	82
83	Modifying surface properties of diamond-like carbon films via nanotexturing. Journal Physics D: Applied Physics, 2011, 44, 395301.	1.3	22
84	Nanostructured Titanium/Diamond-Like Carbon Multilayer Films: Deposition, Characterization, and Applications. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4268-4278.	4.0	73
85	Effect of pre-treatment of the substrate surface by energetic C ⁺ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings. Journal Physics D: Applied Physics, 2011, 44, 115502.	1.3	20
87	Carbon and Diamond. , 2011, , 109-126.		4
88	Structure characterization and tribological study of magnetron sputtered nanocomposite nc-TiAlV(N,C)/a-C coatings. Journal of Materials Chemistry, 2011, 21, 9746.	6.7	32
89	Enhancement of electron field emission by carbon coating on vertically aligned Si nanowires. Applied Surface Science, 2011, 257, 9649-9653.	3.1	18
90	Nanoindentation measurements on modified diamond-like carbon thin films. Applied Surface Science, 2011, 257, 9953-9959.	3.1	49
92	Tribological Aspects of Carbon-Based Nanocoatings – Theory and Simulation. Zeitschrift Fur Physikalische Chemie, 2011, 225, 379-387.	1.4	4
93	Tribological properties of diamond-like carbon coatings prepared by anode layer source and magnetron sputtering. Surface and Coatings Technology, 2011, 205, S99-S102.	2.2	13

#	Article	lF	Citations
94	Hydrogen content variation for enhancing the lubricated tribological performance of DLC coatings with ester. Surface and Coatings Technology, 2011, 205, S89-S93.	2.2	11
95	Improvement in load support capability of a-C(Al)-based nanocomposite coatings by multilayer architecture. Surface and Coatings Technology, 2011, 206, 387-394.	2.2	18
96	High temperature tribological behavior of W-DLC against aluminum. Surface and Coatings Technology, 2011, 206, 1905-1912.	2.2	73
97	Influence of bonding environment on nano-mechanical properties of nitrogen containing hydrogenated amorphous carbon thin films. Materials Chemistry and Physics, 2011, 130, 775-785.	2.0	26
98	Role of oxygen and humidity on the tribo-chemical behaviour of non-hydrogenated diamond-like carbon coatings. Wear, 2011, 271, 2157-2163.	1.5	59
99	Shear-induced lamellar ordering and interfacial sliding in amorphous carbon films: A superlow friction regime. Chemical Physics Letters, 2011, 514, 325-329.	1.2	35
100	Space Tribometers: Design for Exposed Experiments on Orbit. Tribology Letters, 2011, 41, 303-311.	1,2	36
101	Influence of Surface Roughness on the Transfer Film Formation and Frictional Behavior of TiC/a-C Nanocomposite Coatings. Tribology Letters, 2011, 41, 97-101.	1.2	32
102	Is Ultra-Low Friction Needed to Prevent Wear of Diamond-Like Carbon (DLC)? An Alcohol Vapor Lubrication Study for Stainless Steel/DLC Interface. Tribology Letters, 2011, 42, 285-291.	1.2	32
103	Deposition and Nanotribological Characterization of Sub-100-nm Thick Protective Ti-Based Coatings for Miniature Applications. Tribology Letters, 2011, 44, 213-221.	1.2	13
104	Investigation of wear resistance and lifetime of diamond-like carbon (DLC) coated glass disk in flying height measurement process. Microsystem Technologies, 2011, 17, 1373-1379.	1,2	5
105	Nano indentation measurements on nitrogen incorporated diamond-like carbon coatings. Applied Physics A: Materials Science and Processing, 2011, 102, 225-230.	1.1	29
106	Role of Metallic NiCr Dots on the Adhesion, Electrical, Optical and Mechanical Properties of Diamondâ€like Carbon Thin Films. Plasma Processes and Polymers, 2011, 8, 100-107.	1.6	26
107	Synthesis and Characterization of Some Carbon Based Nanostructures. Contributions To Plasma Physics, 2011, 51, 546-553.	0.5	2
108	Material transfer mechanisms between aluminum and fluorinated carbon interfaces. Acta Materialia, 2011, 59, 2601-2614.	3.8	49
109	Diamond-like carbon thin films produced by femtosecond pulsed laser deposition of fullerite. Surface and Coatings Technology, 2011, 205, 3747-3753.	2.2	21
110	Experimental study of mechanical properties and scratch resistance of ultra-thin diamond-like-carbon (DLC) coatings deposited on glass. Tribology International, 2011, 44, 55-62.	3.0	29
111	Ultra-low friction of TiC/a-C composite coatings. Tribology International, 2011, 44, 1251-1256.	3.0	10

#	ARTICLE	IF	CITATIONS
112	Effects of duty cycle and water immersion on the composition and friction performance of diamond-like carbon films prepared by the pulsed-DC plasma technique. Thin Solid Films, 2011, 519, 2043-2048.	0.8	5
113	Multilayer DLC coatings via alternating bias during magnetron sputtering. Thin Solid Films, 2011, 519, 4910-4916.	0.8	80
114	Modifying biomaterial surfaces to optimise interactions with bone., 2011,, 365-400.		6
115	Recent studies on the application of microfabrication technologies for improving tribological properties. Lubrication Science, 2011, 23, 99-117.	0.9	6
116	Preparation of superior lubricious amorphous carbon films co-doped by silicon and aluminum. Journal of Applied Physics, 2011, 110, .	1.1	12
117	Molecular simulations of sliding process between Fe and DLC films on various boundary conditions. , $2011,\ ,\ .$		0
118	Improving the tribological properties of DLC (Fullerene-like) films grown by ECR-CVD with metal nanoparticles incorporation. Materials Research Society Symposia Proceedings, 2011, 1339, 1.	0.1	0
119	Influence of radio frequency power on thermal diffusivity of plasma enhanced chemical vapor deposition-grown hydrogenated amorphous carbon thin-films. Journal of Applied Physics, 2011, 109, 113503.	1.1	9
120	Contact Mechanisms of Transfer Layered Surface During Sliding Wear of Amorphous Carbon Film. Journal of Tribology, 2011, 133, .	1.0	11
121	Pulsed DC sputtered DLC based nanocomposite films: controlling growth dynamics, microstructure and frictional properties. Materials Technology, 2011, 26, 15-19.	1.5	6
122	Wear-Resistant Ceramic Films and Coatings. , 2011, , 127-155.		10
123	Protective coatings for enhanced performance in biomedical applications. Surface Engineering, 2012, 28, 473-479.	1.1	3
124	Effect of Substrate Bias Voltage on the Mechanical and Tribological Properties of Low Concentration Ti-Containing Diamond Like Carbon Films. Applied Mechanics and Materials, 0, 182-183, 232-236.	0.2	3
126	Influence of Surface Morphology on the Tribological Behavior of Diamond-Like Carbon Coating. Key Engineering Materials, 0, 527, 83-91.	0.4	2
127	Three-Dimensional Local Yield Maps of Hard Coating Under Sliding Contact. Journal of Tribology, 2012, 134, .	1.0	16
128	On the nature of the coefficient of friction of diamond-like carbon films deposited on rubber. Journal of Applied Physics, 2012, 111, .	1.1	20
129	Optical and elastic properties of diamond-like carbon with metallic inclusions: A theoretical study. Journal of Applied Physics, 2012, 112, .	1.1	31
130	Effective pre-treatments of fullerenes to be sublimated for deposition of amorphous carbon films in electron beam excited plasma. Diamond and Related Materials, 2012, 30, 9-14.	1.8	1

#	ARTICLE	IF	CITATIONS
131	Modification of characteristics of diamond-like carbon thin films by low chromium content addition. Diamond and Related Materials, 2012, 26, 39-44.	1.8	8
132	Fate of methanol molecule sandwiched between hydrogen-terminated diamond-like carbon films by tribochemical reactions: tight-binding quantum chemical molecular dynamics study. Faraday Discussions, 2012, 156, 137.	1.6	33
133	Performance of low-friction coatings in helium environments. Surface and Coatings Technology, 2012, 206, 4651-4658.	2.2	8
134	Tribological properties of ultra nanocrystalline diamond film-effect of sliding counterbodies. Tribology International, 2012, 53, 167-178.	3.0	34
135	Investigation of radio frequency plasma for the growth of diamond like carbon films. Physics of Plasmas, 2012, 19, 033515.	0.7	22
136	Hydrogen stability in hydrogenated amorphous carbon films with polymer-like and diamond-like structure. Journal of Applied Physics, 2012, 112, .	1.1	24
137	The mechanical and strength properties of diamond. Reports on Progress in Physics, 2012, 75, 126505.	8.1	141
138	Piezoresistive properties and structure of hydrogen-free DLC films deposited by DC and pulsed-DC unbalanced magnetron sputtering. Surface and Coatings Technology, 2012, 211, 172-175.	2.2	13
139	Tribological properties of ultrananocrystalline diamond and diamond nanorod films. Surface and Coatings Technology, 2012, 207, 535-545.	2.2	19
140	Photochemical grafting of fluorinate alkenes on DLC coated Ti6Al4V to improve in vitro cytocompatibility, friction and corrosion resistance. Surface and Coatings Technology, 2012, 208, 51-56.	2.2	6
141	Evolution of coefficient of friction with deposition temperature in diamond like carbon thin films. Journal of Applied Physics, 2012, 112, .	1.1	24
142	Frictional behavior on wrinkle patterns of diamond-like carbon films on soft polymer. Diamond and Related Materials, 2012, 23, 61-65.	1.8	19
143	Synthesis and characterization of titanium-containing graphite-like carbon films with low internal stress and superior tribological properties. Journal Physics D: Applied Physics, 2012, 45, 295301.	1.3	35
144	Tailoring microstructure and phase segregation for low friction carbon-based nanocomposite coatings. Journal of Materials Chemistry, 2012, 22, 15782.	6.7	53
145	Substrate and material transfer effects on the surface chemistry and texture of diamondâ€like carbon deposited by plasmaâ€enhanced chemical vapour deposition. Surface and Interface Analysis, 2012, 44, 1187-1192.	0.8	16
146	Cost Effective Deposition System for Nitrogen Incorporated Diamondâ€like Carbon Coatings. Plasma Processes and Polymers, 2012, 9, 890-903.	1.6	6
147	Effect of pretreatment of Si interlayer by energetic C+ ions on the improved nanotribological properties of magnetic head overcoat. Journal of Applied Physics, 2012, 111, .	1.1	20
148	Superhard behaviour, low residual stress, and unique structure in diamond-like carbon films by simple bilayer approach. Journal of Applied Physics, 2012, 112, .	1.1	46

#	Article	IF	Citations
149	A Nearâ€Frictionless and Extremely Elastic Hydrogenated Amorphous Carbon Film with Selfâ€Assembled Dual Nanostructure. Advanced Materials, 2012, 24, 4614-4617.	11.1	90
150	Tribological Properties of DLC Coatings in Helium. Tribology Letters, 2012, 47, 223-230.	1.2	8
151	Nanoindentation testing on copper/diamond-like carbon bi-layer films. Current Applied Physics, 2012, 12, 247-253.	1.1	24
152	Role of ex-situ oxygen plasma treatments on the mechanical and optical properties of diamond-like carbon thin films. Materials Chemistry and Physics, 2012, 134, 7-12.	2.0	20
153	Oxygen modified diamond-like carbon as window layer for amorphous silicon solar cells. Solar Energy, 2012, 86, 220-230.	2.9	27
154	Friction and wear behavior of plasma assisted chemical vapor deposited nanocomposites made of metal nanoparticles embedded in a hydrogenated amorphous carbon matrix. Surface and Coatings Technology, 2012, 206, 3116-3124.	2.2	18
155	Microstructure and mechanical properties of graphitic a-C:H:Si films. Surface and Coatings Technology, 2012, 206, 3467-3471.	2.2	6
156	Microstructure, mechanical and tribological properties of Si and Al co-doped hydrogenated amorphous carbon films deposited at various bias voltages. Surface and Coatings Technology, 2012, 206, 4119-4125.	2.2	19
157	Global energy consumption due to friction in passenger cars. Tribology International, 2012, 47, 221-234.	3.0	1,156
158	Comparison of the effects of the lubricant-molecule chain length and the viscosity on the friction and wear of diamond-like-carbon coatings and steel. Tribology International, 2012, 50, 57-65.	3.0	35
159	Tribology of fluorinated diamondâ€ike carbon coatings: first principles calculations and sliding experiments. Lubrication Science, 2013, 25, 111-121.	0.9	17
160	Improved surface properties of \hat{l}^2 -SiAlON by diamond-like carbon coatings. Diamond and Related Materials, 2013, 36, 44-50.	1.8	11
161	Global energy consumption due to friction in paper machines. Tribology International, 2013, 62, 58-77.	3.0	83
162	Tribological properties of nanostructured DLC coatings deposited by C60 ion beam. Tribology International, 2013, 60, 127-135.	3.0	49
163	Evolution of Maximum Contact Stresses in Amorphous Carbon Coated Silicon During Sliding Wear Against Si3N4 Ball. Journal of Tribology, 2013, 135, .	1.0	7
164	Frictional behavior of nanostructured carbon films. Friction, 2013, 1, 63-71.	3.4	21
165	Deposition and characterization of reactive magnetron sputtered zirconium carbide films. Surface and Coatings Technology, 2013, 232, 876-883.	2.2	63
166	Friction and Wear Performance of Boundary-lubricated DLC/DLC Contacts in Synthetic base Oil. Procedia Engineering, 2013, 68, 518-524.	1.2	20

#	ARTICLE	IF	CITATIONS
167	Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments. Applied Surface Science, 2013, 283, 460-470.	3.1	58
168	Plasma parameter investigation during plasma-enhanced chemical vapor deposition of silicon-containing diamond-like carbon films. Surface and Coatings Technology, 2013, 237, 126-134.	2.2	14
169	An overview on diamond-like carbon coatings in medical applications. Surface and Coatings Technology, 2013, 233, 119-130.	2.2	175
170	Wear behaviour of tetrahedral amorphous diamond-like carbon (ta-C DLC) in additive containing lubricants. Wear, 2013, 307, 1-9.	1.5	69
171	Tribological behavior of the bronze–steel pair for worm gearing. Wear, 2013, 302, 1520-1527.	1.5	29
172	Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering. Applied Surface Science, 2013, 284, 165-170.	3.1	109
173	Effects of hard water on tribological properties of DLC rubbed against stainless steel and brass. Wear, 2013, 308, 79-85.	1.5	6
174	Microstructure, chemical bonds, and friction properties of nanocrystalline diamond films deposited in two different plasma media. Physics of the Solid State, 2013, 55, 2076-2087.	0.2	8
175	A study on the tribological characteristics of duplex-treated Ti–6Al–4V alloy under oil-lubricated sliding conditions. Tribology International, 2013, 64, 155-163.	3.0	56
176	Interpreting the effects of interfacial chemistry on the tribology of diamond-like carbon coatings against steel in distilled water. Wear, 2013, 302, 918-928.	1.5	19
177	Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nature Nanotechnology, 2013, 8, 912-916.	15.6	305
178	Superlubricity behaviors of Si ₃ N ₄ /DLC Films under PAO oil with nano boron nitride additive lubrication. Surface and Interface Analysis, 2013, 45, 1283-1290.	0.8	74
179	Role of base pressure on the structural and nano-mechanical properties of metal/diamond-like carbon bilayers. Applied Surface Science, 2013, 274, 282-287.	3.1	17
180	Effect of vacuum annealing on tribological behavior of nanosized diamond-like carbon coatings produced by pulse vacuum-arc method. Journal of Friction and Wear, 2013, 34, 481-486.	0.1	7
181	Humidity-dependent friction mechanism in an ultrananocrystalline diamond film. Journal Physics D: Applied Physics, 2013, 46, 275501.	1.3	54
182	The friction of diamond-like carbon coatings in a water environment. Friction, 2013, 1, 210-221.	3.4	45
183	Ultra-low friction of tetrahedral amorphous diamond-like carbon (ta-C DLC) under boundary lubrication in poly alpha-olefin (PAO) with additives. Tribology International, 2013, 65, 286-294.	3.0	91
184	Effects of electrical conductivity of substrate materials on microstructure of diamond-like carbon films prepared by bipolar-type plasma based ion implantation. Journal of Physics: Conference Series, 2013, 417, 012062.	0.3	1

#	Article	IF	CITATIONS
185	From DLC to Si-DLC based layer systems with optimized properties for tribological applications. Surface and Coatings Technology, 2013, 215, 357-363.	2.2	68
186	High-temperature phase transformation and low friction behaviour in highly disordered turbostratic graphite. Journal Physics D: Applied Physics, 2013, 46, 395305.	1.3	21
187	Lubricating a bright future: Lubrication contribution to energy saving and low carbon emission. Science China Technological Sciences, 2013, 56, 2888-2913.	2.0	84
188	Advancements in superlubricity. Science China Technological Sciences, 2013, 56, 2877-2887.	2.0	54
189	Novel ionic lubricants for amorphous carbon surfaces: molecular modeling of the structure and friction. Soft Matter, 2013, 9, 10606.	1.2	19
190	Preparation and properties of MoS ₂ /a-C films for space tribology. Journal Physics D: Applied Physics, 2013, 46, 425301.	1.3	24
191	Hybridized carbon nanocomposite thin films. , 2013, , 405-435.		0
192	Thickness optimized nanocrystalline ZnO-coated silicon nanowires for cold cathode application. Journal of Materials Science, 2013, 48, 750-757.	1.7	12
193	Solid lubricants: a review. Journal of Materials Science, 2013, 48, 511-531.	1.7	549
194	Behavior of DLC coated low-alloy steel under tribological and corrosive load: Effect of top layer and interlayer variation. Surface and Coatings Technology, 2013, 215, 110-118.	2.2	30
195	Strange hardness characteristic of hydrogenated diamond-like carbon thin film by plasma enhanced chemical vapor deposition process. Applied Physics Letters, 2013, 102, .	1.5	32
196	Tribological properties of hard a-C:H:F coatings. Surface and Coatings Technology, 2013, 237, 328-332.	2.2	7
197	Working Temperature Effect of A-C: H/A-C: H and Steel/Steel Contacts on Tribo Properties in Presence of Sunflower Oil as a Bio Lubricant. Procedia Engineering, 2013, 68, 550-557.	1.2	9
198	Sliding wear of a-C:H coatings against alumina in corrosive media. Diamond and Related Materials, 2013, 38, 139-147.	1.8	5
199	Carbon tribo-layer for super-low friction of amorphous carbon nitride coatings in inert gas environments. Surface and Coatings Technology, 2013, 221, 163-172.	2.2	54
200	Comparison of arc evaporated Mo-based coatings versus Cr1N1 and ta–C coatings by reciprocating wear test. Wear, 2013, 298-299, 14-22.	1.5	18
201	Exploring low friction of lubricated DLC coatings in no-wear conditions with a new relaxation tribometer. Tribology International, 2013, 65, 278-285.	3.0	10
202	Improving the performance of a proportional 4/3 water–hydraulic valve by using a diamond-like-carbon coating. Wear, 2013, 297, 1016-1024.	1.5	29

#	ARTICLE	IF	CITATIONS
203	Atomic force microscopy and tribology study of the adsorption of alcohols on diamond-like carbon coatings and steel. Applied Surface Science, 2013, 271, 317-328.	3.1	21
204	Influence of application technology on the erosion resistance of DLC coatings. Surface and Coatings Technology, 2013, 237, 284-291.	2.2	12
205	Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures. Surface and Coatings Technology, 2013, 232, 549-560.	2.2	62
206	Significance of grain and grain boundary characteristics of ultrananocrystalline diamond films and tribological properties. Surface and Coatings Technology, 2013, 232, 75-87.	2.2	14
207	Low friction and environmentally stable diamond-like carbon (DLC) coatings incorporating silicon, oxygen and fluorine sliding against aluminum. Surface and Coatings Technology, 2013, 215, 340-349.	2.2	38
208	Selection and characterization of peptides binding to diamond-like carbon. Colloids and Surfaces B: Biointerfaces, 2013, 110, 66-73.	2.5	6
209	Lubrication of DLC-coated surfaces with MoS2 nanotubes in all lubrication regimes: Surface roughness and running-in effects. Wear, 2013, 303, 361-370.	1.5	44
210	Diamond like carbon coatings for potential application in biological implants—a review. Tribology International, 2013, 63, 141-150.	3.0	214
211	Structure and properties of diamond-like carbon thin films synthesized by biased target ion beam deposition. Surface and Coatings Technology, 2013, 223, 11-16.	2.2	22
212	DC pulsed plasma deposition of nanocomposite coatings for improved tribology of gray cast iron stamping dies. Journal of Materials Processing Technology, 2013, 213, 864-876.	3.1	18
213	Fretting wear and fracture behaviors of Cr-doped and non-doped DLC films deposited on Ti–6al–4V alloy by unbalanced magnetron sputtering. Tribology International, 2013, 62, 49-57.	3.0	48
214	Effect of the metal concentration on the structural, mechanical and tribological properties of self-organized a-C:Cu hard nanocomposite coatings. Applied Surface Science, 2013, 280, 791-798.	3.1	23
215	The correlation between the surface energy, the contact angle and the spreading parameter, and their relevance for the wetting behaviour of DLC with lubricating oils. Tribology International, 2013, 66, 225-233.	3.0	134
216	Effect of structure of carbon films on their tribological properties. Diamond and Related Materials, 2013, 38, 79-86.	1.8	10
217	Structural and nano-mechanical properties of nanostructured diamond-like carbon thin films. Metals and Materials International, 2013, 19, 405-410.	1.8	2
218	Comparative study of friction properties for hydrogen- and fluorine-modified diamond surfaces: A first-principles investigation. Surface Science, 2013, 608, 74-79.	0.8	30
219	Tribological properties of N+ ion implanted ultrananocrystalline diamond films. Tribology International, 2013, 57, 124-136.	3.0	14
220	Influence of Silver Incorporation on the Structural and Electrical Properties of Diamond-Like Carbon Thin Films. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2725-2732.	4.0	43

#	Article	IF	CITATIONS
221	Influence of deposition pressure on hydrogenated amorphous carbon films prepared by d.c.â€pulse plasma chemical vapor deposition. Surface and Interface Analysis, 2013, 45, 800-804.	0.8	6
222	Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films. AIP Advances, 2013, 3, .	0.6	12
223	Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale. Applied Physics Letters, 2013, 103, .	1.5	59
224	Molecular dynamics simulations of the tribological behaviour of a water-lubricated amorphous carbon–fluorine PECVD coating. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 055027.	0.8	6
225	Structural and environmental dependence of superlow friction in ion vapour-deposited a-C : H :  for solid lubrication application. Journal Physics D: Applied Physics, 2013, 46, 255304.	Sj fjlms	43
226	Effect of vacuum annealing on the microstructure and tribological behavior of hydrogenated amorphous carbon films prepared by magnetron sputtering. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227, 729-737.	1.0	8
227	Comparison of chemical vapor deposition diamond-, diamond-like carbon- and TiAlN-coated microdrills in graphite machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, 227, 1299-1309.	1.5	20
228	The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition. Journal of Materials Research, 2013, 28, 2124-2131.	1.2	24
229	Tribological behaviour analysis of hydrogenated and nonhydrogenated DLC lubricated by oils with and without additives. Lubrication Science, 2013, 25, 275-285.	0.9	8
230	Computational investigation of the mechanical and tribological responses of amorphous carbon nanoparticles. Journal of Applied Physics, 2013, 113, .	1.1	4
231	Ultraâ€low friction of fluorineâ€doped hydrogenated carbon film with curved graphitic structure. Surface and Interface Analysis, 2013, 45, 1233-1237.	0.8	13
232	Nanotribological Behavior of Carbon Based Thin Films: Friction and Lubricity Mechanisms at the Nanoscale. Lubricants, 2013, 1, 22-47.	1.2	50
233	Evaluation of DLC, WC/C, and TiN Coatings on Martensitic Stainless Steel and Yttria-Stabilized Tetragonal Zirconia Polycrystal Substrates for Reusable Surgical Scalpels., 2013, 2013, 1-9.		4
234	Reducing Friction and Wear of Tribological Systems through Hybrid Tribofilm Consisting of Coating and Lubricants. Lubricants, 2014, 2, 90-112.	1.2	35
235	Diamond-Like Carbon Coating Applied to Automotive Engine Components. Tribology Online, 2014, 9, 135-142.	0.2	52
236	Methods for preparation of transparent conductive diamond-like carbon films and mechanisms of conductivity formation. Journal of Contemporary Physics, 2014, 49, 286-292.	0.1	1
237	On Interlayer Stability and High-Cycle Simulator Performance of Diamond-Like Carbon Layers for Articulating Joint Replacements. International Journal of Molecular Sciences, 2014, 15, 10527-10540.	1.8	19
238	Advanced Carbon-Based Coatings. , 2014, , 389-412.		2

#	Article	IF	CITATIONS
239	Diamond-Like Carbon Films, Properties and Applications. , 2014, , 101-139.		11
240	Cathodic-Arc and Thermal-Evaporation Deposition. , 2014, , 3-55.		12
241	Friction mechanism in diamond-like carbon film sliding against various counterbodies. Materials Technology, 2014, 29, 366-371.	1.5	2
242	Tribological comparison of different C-based coatings in lubricated and unlubricated conditions. Surface and Coatings Technology, 2014, 257, 278-285.	2.2	8
243	Mechanistic Studies in Friction and Wear of Bulk Materials. Annual Review of Materials Research, 2014, 44, 395-427.	4.3	108
244	Taguchi Approach for Diamond-like Carbon Film Processing. , 2014, 6, 1017-1023.		5
245	Growth mechanism and composition of ultrasmooth a-C:H:Si films grown from energetic ions for superlubricity. Journal of Applied Physics, 2014, 115, .	1.1	19
246	Diamond-like carbon doped with highly π-conjugated molecules by plasma-assisted CVD. Japanese Journal of Applied Physics, 2014, 53, 010203.	0.8	4
247	Effect of Magnetic Field Configuration of Dual Magnetron on Carbon Based Films Properties. Advanced Materials Research, 0, 1040, 721-725.	0.3	3
248	Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid PVD–PECVD deposition process. Bulletin of Materials Science, 2014, 37, 1669-1676.	0.8	12
249	Improving the tribological performance of a-C:H film in a high vacuum by surface texture. Journal Physics D: Applied Physics, 2014, 47, 235301.	1.3	19
250	Tribological properties of boride based thermal diffusion coatings. Advances in Applied Ceramics, 2014, 113, 427-437.	0.6	17
251	The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations. Journal Physics D: Applied Physics, 2014, 47, 245303.	1.3	12
252	Raman Spectroscopy Studies on DLC Films Synthesized by PECVD Method. Applied Mechanics and Materials, 0, 592-594, 842-846.	0.2	1
253	Nanoscale sliding friction phenomena at the interface of diamond-like carbon and tungsten. Acta Materialia, 2014, 67, 395-408.	3.8	44
254	Increasing the carbon deposition rate using sputter yield amplification upon serial magnetron co-sputtering. Surface and Coatings Technology, 2014, 252, 74-78.	2.2	4
255	Wear resistance of nitrided and DLC coated PH stainless steel. Surface and Coatings Technology, 2014, 255, 22-27.	2.2	40
256	Thermal behaviour of chromium nitride/titanium–titanium carbonitride multilayers. Thin Solid Films, 2014, 562, 159-165.	0.8	3

#	Article	IF	CITATIONS
257	Wear, Plasticity, and Rehybridization in Tetrahedral Amorphous Carbon. Tribology Letters, 2014, 53, 119-126.	1.2	89
258	Fatty Acid Adsorption on Several DLC Coatings Studied by Neutron Reflectometry. Tribology Letters, 2014, 53, 199-206.	1.2	21
259	Effect of Multi-Walled Carbon Nanotubes Incorporation on the Structure, Optical and Electrochemical Properties of Diamond-Like Carbon Thin Films. Journal of the Electrochemical Society, 2014, 161, H290-H295.	1.3	22
260	Tribological behavior between micro- and nano-crystalline diamond films under dry sliding and water lubrication. Tribology International, 2014, 69, 118-127.	3.0	49
261	The wetting of steel, DLC coatings, ceramics and polymers with oils and water: The importance and correlations of surface energy, surface tension, contact angle and spreading. Applied Surface Science, 2014, 293, 97-108.	3.1	181
262	Influence of consumed power on structural and nano-mechanical properties of nano-structured diamond-like carbon thin films. Applied Surface Science, 2014, 300, 141-148.	3.1	21
263	Global energy consumption due to friction in trucks and buses. Tribology International, 2014, 78, 94-114.	3.0	340
264	Thermal stability of diamond-like carbon–MoS2 thin films in different environments. Thin Solid Films, 2014, 562, 244-249.	0.8	23
265	A Functional Form for Wear Depth of a Ball and a Flat Surface. Tribology Letters, 2014, 53, 173-179.	1.2	10
266	Tribological properties of laser-textured and ta-C coated surfaces with burnished WS2 at elevated temperatures. Tribology International, 2014, 70, 94-103.	3.0	60
267	Relationship between the structure and electrical characteristics of diamond-like carbon films. Journal of Applied Physics, 2014, 116 , .	1.1	23
268	Sputter deposited NbC x N y films: Effect of nitrogen content on structure and mechanical and tribological properties. Surface and Coatings Technology, 2014, 258, 746-753.	2.2	34
269	Low frictions of self-mated CNx coatings in dry and humid inert gas environments. Surface and Coatings Technology, 2014, 258, 1137-1144.	2.2	16
270	Growth mechanism of hydrogenated amorphous carbon films: Molecular dynamics simulations. Surface and Coatings Technology, 2014, 258, 901-907.	2.2	6
271	Tight-binding quantum chemical molecular dynamics simulations of the low friction mechanism of fluorine-terminated diamond-like carbon films. RSC Advances, 2014, 4, 33739.	1.7	40
272	Tribological properties of sodium dodecyl sulfate aqueous dispersion of graphite-derived carbon materials. RSC Advances, 2014, 4, 9980.	1.7	19
273	Finite Element Simulation of Nano-indentation of DLC Coated HSS Substrate., 2014, 6, 1619-1624.		8
275	60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surface and Coatings Technology, 2014, 257, 213-240.	2.2	381

#	ARTICLE	IF	Citations
276	Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene Layer. Advanced Functional Materials, 2014, 24, 6640-6646.	7.8	251
277	Structure and properties of DLC–MoS2 thin films synthesized by BTIBD method. Journal of Physics and Chemistry of Solids, 2014, 75, 1289-1294.	1.9	22
278	Effect of tribochemistry on lubricity of DLC films in hydrogen. Surface and Coatings Technology, 2014, 257, 241-246.	2.2	52
279	Secondary Electron Intensity Contrast Imaging and Friction Properties of Micromechanically Cleaved Graphene Layers on Insulating Substrates. Journal of Electronic Materials, 2014, 43, 3458-3469.	1.0	18
280	Development of amorphous carbon coating with luminescent silica/CdSe/ZnS quantum dots underlayer for wear monitoring. Precision Engineering, 2014, 38, 673-679.	1.8	4
281	Nanoscopic observations of stress-induced formation of graphitic nanocrystallites at amorphous carbon surfaces. Carbon, 2014, 74, 302-311.	5.4	50
282	Effect of Normal Force on the Triboplasma Generation Under Oil Lubrication. Tribology Letters, 2014, 53, 449-456.	1.2	3
283	Achieving superlubricity in DLC films by controlling bulk, surface, and tribochemistry. Friction, 2014, 2, 140-155.	3.4	142
284	Surface passivation and boundary lubrication of self-mated tetrahedral amorphous carbon asperities under extreme tribological conditions. Friction, 2014, 2, 193-208.	3.4	29
285	Guest editorial: Special issue on superlubricity. Friction, 2014, 2, 93-94.	3.4	4
286	Simulated Adhesion between Realistic Hydrocarbon Materials: Effects of Composition, Roughness, and Contact Point. Langmuir, 2014, 30, 2028-2037.	1.6	37
287	Classification of carbon materials for developing structure-properties relationships based on the aggregate state of the precursors. Chinese Journal of Catalysis, 2014, 35, 778-782.	6.9	3
288	Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication. Thin Solid Films, 2014, 562, 389-397.	0.8	33
289	Effect of hexagonal-BN additions on the sliding-wear resistance of fine-grained α-SiC densified with Y3Al5O12 liquid phase by spark-plasma sintering. Journal of the European Ceramic Society, 2014, 34, 565-574.	2.8	26
290	Novel carbon-based nc-MoC/a-C(Al) nanocomposite coating towards low internal stress and low-friction. Surface and Coatings Technology, 2014, 242, 177-182.	2.2	17
291	Tribological properties of gradient Mo–Se–Ni–C thin films obtained by pulsed laser deposition in standard and shadow mask configurations. Thin Solid Films, 2014, 556, 35-43.	0.8	23
292	Neutron-reflectometry study of alcohol adsorption on various DLC coatings. Applied Surface Science, 2014, 288, 405-410.	3.1	22
293	Evolution of transfer layers on steel balls sliding against hydrogenated amorphous carbon coatings in ambient air. Tribology International, 2014, 70, 42-51.	3.0	15

#	Article	IF	CITATIONS
294	Vacuum tribological properties of a-C:H film in relation to internal stress and applied load. Tribology International, 2014, 71, 82-87.	3.0	30
295	The influence of DLC coating on the mechanical and frictional properties of unpeened and peened Cu-based bimetal under dry sliding conditions. Materials Chemistry and Physics, 2014, 143, 814-824.	2.0	11
296	The influence of microstructural variations on mechanical and tribological properties of low-friction TiC/diamond-like carbon nanocomposite films. Ceramics International, 2014, 40, 13329-13337.	2.3	17
297	The effect of substrate geometry and surface orientation on the film structure of DLC deposited using PECVD. Surface and Coatings Technology, 2014, 254, 73-78.	2.2	33
298	The effect of oil temperature and additive concentration on the wear of non-hydrogenated DLC coating. Tribology International, 2014, 77, 65-71.	3.0	60
299	Probing the low-friction mechanism of diamond-like carbon by varying of sliding velocity and vacuum pressure. Carbon, 2014, 66, 259-266.	5.4	129
300	Structural characterization of ion-vapor deposited hydrogenated amorphous carbon coatings by solid state 13C nuclear magnetic resonance. Journal of Applied Physics, 2014, 115, 014303.	1.1	3
301	Lubricity of carbon nitride coatings in humid nitrogen gas environment. Transactions of the JSME (in) Tj ETQq1	1 0.784314 0.784314	rgBT /Over
302	Graphene coating assisted injection molding of ultraâ€thin thermoplastics. Polymer Engineering and Science, 2015, 55, 1374-1381.	1.5	3
303	Carbon/Silicon Heterojunction Solar Cells: State of the Art and Prospects. Advanced Materials, 2015, 27, 6549-6574.	11.1	159
304	Hochleistungsplasmen zur Synthese diamantÄhnlicher Kohlenstoffschichten. Vakuum in Forschung Und Praxis, 2015, 27, 22-28.	0.0	3
305	High Energy Radial Deposition of Diamond-Like Carbon Coatings. Coatings, 2015, 5, 326-337.	1.2	11
306	Micro-texturing into DLC/diamond coated molds and dies via high density oxygen plasma etching. Manufacturing Review, 2015, 2, 13.	0.9	13
307	Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	4
308	Friction Modification by Shifting of Phonon Energy Dissipation in Solid Atoms. Tribology Online, 2015, 10, 156-161.	0.2	9
309	Effect of coadsorption of water and alcohol vapor on the nanowear of silicon. Wear, 2015, 332-333, 879-884.	1.5	24
310	Tribological behavior of hydrogenated DLC film: Chemical and physical transformations at nano-scale. Wear, 2015, 338-339, 105-113.	1.5	25
311	Probing the intrinsic failure mechanism of fluorinated amorphous carbon film based on the first-principles calculations. Scientific Reports, 2015, 5, 9419.	1.6	15

#	Article	IF	CITATIONS
312	Overview of DLC-Coated Engine Components. , 2015, , 37-62.		13
313	Diamond-Like Carbon Coatings with Special Wettability for Automotive Applications. , 2015, , 191-202.		1
314	Tribological Performance of Boronized, Nitrided, and Normalized AISI 4140 Steel against Hydrogenated Diamond-Like Carbon-Coated AISI D2 Steel. Tribology Transactions, 2015, 58, 500-510.	1.1	19
315	Vapors in the ambientâ€"A complication in tribological studies or an engineering solution of tribological problems?. Friction, 2015, 3, 85-114.	3.4	25
316	Laser surface graphitization to control friction of diamond-like carbon coatings. Applied Physics A: Materials Science and Processing, 2015, 121, 1031-1038.	1.1	12
317	The influence of substrate bias voltages on structure, mechanical properties and anti-corrosion performance of Cr doped diamond-like carbon films deposited by steered cathodic arc evaporation. Thin Solid Films, 2015, 597, 88-96.	0.8	14
318	Ultralow friction regime from the in situ production of a richer fullerene-like nanostructured carbon in sliding contact. RSC Advances, 2015, 5, 106476-106484.	1.7	20
319	Tribological Improvements of Dispersed Nanodiamond Additives in Lubricating Mineral Oil. Journal of Tribology, 2015, 137, .	1.0	34
320	"Metal-Reservoir―Carbon-Based Nanocomposite Coating for Green Tribology. Tribology Letters, 2015, 59, 1.	1.2	5
321	Atomic Degradation and Wear of Thin Carbon Films Under High-Speed Sliding Contact Using Molecular Dynamics Simulation. Tribology Letters, 2015, 60, 1.	1.2	32
322	Friction at single-asperity contacts between hydrogen-free diamond-like carbon thin film surfaces. Diamond and Related Materials, 2015, 52, 38-42.	1.8	10
323	Surface oxidation process of a diamond-like carbon film analyzed by difference X-ray photoelectron spectroscopy. Surface and Interface Analysis, 2015, 47, 345-349.	0.8	8
324	Effects of nanotube size and roof-layer coating on viscoelastic properties of hybrid diamond-like carbon and carbon nanotube composites. Carbon, 2015, 86, 163-173.	5.4	11
325	Evaluation of the surface properties of PEEK substrate after two-step plasma modification: Etching and deposition of DLC coatings. Surface and Coatings Technology, 2015, 265, 92-98.	2.2	21
326	Effects of atomic structure on the frictional properties of amorphous carbon coatings. Surface and Coatings Technology, 2015, 263, 8-14.	2.2	16
327	Contact damage of hard and brittle thin films on ductile metallic substrates: an analysis of diamond-like carbon on titanium substrates. Journal of Materials Science, 2015, 50, 2779-2787.	1.7	13
328	Friction reduction of highly-loaded rolling-sliding contacts by surface modifications under elasto-hydrodynamic lubrication. Wear, 2015, 328-329, 217-228.	1.5	36
329	Gaseous Tribochemical Products of Hydrogenated DLC Film and Stainless Steel Pair in Air Detected by Mass Spectrometry. Tribology Letters, 2015, 57, 1.	1.2	12

#	Article	IF	CITATIONS
330	Direct mechanochemical cleavage of functional groups from graphene. Nature Communications, 2015, 6, 6467.	5.8	111
331	Controlled oxygen-doped diamond-like carbon film synthesized by photoemission-assisted plasma. Diamond and Related Materials, 2015, 53, 11-17.	1.8	10
332	Influence of wetting and thermophysical properties of diamond-like carbon coatings on the frictional behavior in automobile gearboxes under elasto-hydrodynamic lubrication. Surface and Coatings Technology, 2015, 284, 290-301.	2.2	35
333	Comparison of Tribological Properties of Stainless Steel with Hard and Soft DLC Coatings. , 2015, 9, 246-253.		15
334	An atomic scale study of ultralow friction between phosphorus-doped nanocrystalline diamond films. Tribology International, 2015, 86, 85-90.	3.0	9
335	Combined Effects of Structural Transformation and Hydrogen Passivation on the Frictional Behaviors of Hydrogenated Amorphous Carbon Films. Journal of Physical Chemistry C, 2015, 119, 16148-16155.	1.5	44
336	Mechanical Behavior of Nitrided 316L Austenitic Stainless Steel Coated with a:C-H-Si., 2015, 9, 163-170.		9
337	Electrical characterization of metal/diamond-like carbon/inorganic semiconductor MIS Schottky barrier diodes. Microelectronic Engineering, 2015, 140, 18-22.	1.1	32
338	Optimization of the Deposition Parameters of DLC Coatings with the IC-PECVD Method. Particulate Science and Technology, 2015, 33, 119-123.	1.1	12
339	Synthesis and characterization of boron incorporated diamond-like carbon thin films. Thin Solid Films, 2015, 589, 457-464.	0.8	17
340	Tribochemistry of hydrogenated amorphous carbon through analysis of Mechanically Stimulated Gas Emission. Diamond and Related Materials, 2015, 55, 32-40.	1.8	16
341	Deformation of Ultra-Thin Diamond-Like Carbon Coatings Under Combined Loading on a Magnetic Recording Head. Tribology Letters, 2015, 57, 1.	1.2	4
342	Effect of Lubricant Formulations on the Tribological Performance of Self-Mated Doped DLC Contacts: a review. Tribology Letters, 2015, 58, 1.	1.2	43
343	Macroscale superlubricity enabled by graphene nanoscroll formation. Science, 2015, 348, 1118-1122.	6.0	665
344	DLC-Coated Tools for Micro-forming. , 2015, , 487-512.		0
345	Recent advances in the mechanical and tribological properties of fluorine-containing DLC films. RSC Advances, 2015, 5, 9635-9649.	1.7	42
346	Friction and adhesion of fluorine containing hydrophobic hydrogenated diamond-like carbon (F-H-DLC) coating against magnesium alloy AZ91. Surface and Coatings Technology, 2015, 267, 21-31.	2.2	33
347	The Role of Duty Cycle of Substrate Pulse Biasing in Filtered Cathodic Vacuum Arc Deposition of Amorphous Carbon Films. IEEE Transactions on Magnetics, 2015, 51, 1-9.	1.2	8

#	Article	IF	CITATIONS
348	The influence of antiâ€wear additive ZDDP on doped and undoped diamondâ€like carbon coatings. Surface and Interface Analysis, 2015, 47, 755-763.	0.8	7
349	Friction and wear performance of multilayered a-C:H:Al coatings. Surface and Coatings Technology, 2015, 284, 159-165.	2.2	6
350	Characterization of nanocomposite a-C:H/Ag thin films synthesized by a hybrid deposition process. Physics of Metals and Metallography, 2015, 116, 781-790.	0.3	3
351	High temperature tribological behavior of tetrahedral amorphous carbon (ta-C) and fluorinated ta-C coatings against aluminum alloys. Surface and Coatings Technology, 2015, 284, 14-25.	2.2	41
352	Enhancement of adhesion and corrosion resistance of diamond-like carbon thin films on Ti–6Al–4V alloy by nitrogen doping and incorporation of nanodiamond particles. Surface and Coatings Technology, 2015, 284, 153-158.	2.2	21
353	Characterization of thick and soft DLC coatings deposited on plasma nitrided austenitic stainless steel. Diamond and Related Materials, 2015, 59, 73-79.	1.8	33
354	Restructured graphene sheets embedded carbon film by oxygen plasma etching and its tribological properties. Applied Surface Science, 2015, 357, 771-776.	3.1	16
355	Perspectives of friction mechanism of a-C:H film in vacuum concerning the onion-like carbon transformation at the sliding interface. RSC Advances, 2015, 5, 8904-8911.	1.7	30
356	Tribology of Si/SiO ₂ in Humid Air: Transition from Severe Chemical Wear to Wearless Behavior at Nanoscale. Langmuir, 2015, 31, 149-156.	1.6	64
357	Hybridization and tribomechanical properties of ultrathin amorphous carbon films synthesized by radio-frequency low-pressure plasma discharges. Surface and Coatings Technology, 2015, 262, 15-20.	2.2	9
358	Scratch resistance and tribological properties of SiOx incorporated diamond-like carbon films deposited by r.f. plasma assisted chemical vapor deposition. Tribology International, 2015, 84, 124-131.	3.0	29
359	Engineering of the Function of Diamond-like Carbon Binding Peptides through Structural Design. Biomacromolecules, 2015, 16, 476-482.	2.6	4
360	Environmental effect on the load-dependent friction behavior of a diamond-like carbon film. Tribology International, 2015, 82, 195-199.	3.0	44
361	A shear localization mechanism for lubricity of amorphous carbon materials. Scientific Reports, 2014, 4, 3662.	1.6	92
362	An updated overview of diamond-like carbon coating in tribology. Critical Reviews in Solid State and Materials Sciences, 2015, 40, 90-118.	6.8	126
363	Architecture of superthick diamond-like carbon films with excellent high temperature wear resistance. Tribology International, 2015, 81, 129-138.	3.0	56
364	Tribological properties of chemically modified diamond like carbon films in hydrogen plasma. Tribology International, 2015, 81, 283-290.	3.0	24
365	Manufacturing textured surfaces: State of art and recent developments. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229, 3-29.	1.0	111

#	Article	IF	CITATIONS
367	Low-Temperature Production of Genuinely Amorphous Carbon from Highly Reactive Nanoacetylide Precursors. Journal of Chemistry, 2016, 2016, 1-6.	0.9	13
368	Plasma Nitriding and DLC Coatings for Corrosion Protection of Precipitation Hardening Stainless Steel. Advanced Engineering Materials, 2016, 18, 826-832.	1.6	11
369	Interpretation of friction and wear in DLC film: role of surface chemistry and test environment. Journal Physics D: Applied Physics, 2016, 49, 445302.	1.3	26
370	Comparative Analysis of Wear Rates of Microcrystalline Diamond and Diamond-Like Carbon Coatings Deposited on WĐ _i -Co Substrates. Key Engineering Materials, 2016, 721, 436-440.	0.4	2
371	Advanced Carbon-Based Coatings. , 2016, , .		0
372	Structure, mechanical, and frictional properties of hydrogenated fullerene-like amorphous carbon film prepared by direct current plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2016, 120, 045303.	1.1	19
373	Hard DLC coating deposited over nitrided martensitic stainless steel: analysis of adhesion and corrosion resistance. Journal of Materials Research, 2016, 31, 3549-3556.	1.2	8
374	Influence of Third Particle on the Tribological Behaviors of Diamond-like Carbon Films. Scientific Reports, 2016, 6, 38279.	1.6	24
375	Effect of microstructural evolution on mechanical and tribological properties of Ti-doped DLC films: How was an ultralow friction obtained?. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	13
376	Computational study on low friction mechanism of diamond-like carbon induced by oxidation reaction. , $2016, , .$		0
377	Phonon transport in amorphous carbon using Green < b>–Kubo modal analysis. Applied Physics Letters, 2016, 108, .	1.5	28
378	Understanding the atomic-scale friction in graphene: The distinction in behaviors of interlayer interactions during sliding. Journal of Applied Physics, 2016, 120, .	1.1	5
379	Tribological Behavior of Nickel-Doped Diamond-Like Carbon Thin Films Prepared on Silicon Substrates via Magnetron Sputtering Deposition. Tribology Transactions, 2016, 59, 845-855.	1.1	8
381	Tribological properties of cross-linked oleophilic polymer brushes on diamond-like carbon films. Polymer, 2016, 89, 128-134.	1.8	15
382	Investigation on tensile behaviors of diamond-like carbon films. Journal of Non-Crystalline Solids, 2016, 443, 8-16.	1.5	35
383	First-Principle Molecular Dynamics of Sliding Diamond Surfaces: Tribochemical Reactions with Water and Load Effects. Journal of Low Temperature Physics, 2016, 185, 174-182.	0.6	9
384	Mechanical properties and tribological behavior at micro and macro-scale of WC/WCN/W hierarchical multilayer coatings. Tribology International, 2016, 101, 194-203.	3.0	24
385	The effect of vacuum atomic oxygen and ultraviolet radiations on Ag/a-C:H nanocomposite film. Tribology International, 2016, 101, 395-401.	3.0	9

#	Article	IF	CITATIONS
386	Properties of a-C:H:Si thin films deposited by middle-frequency magnetron sputtering. Applied Surface Science, 2016, 379, 516-522.	3.1	21
387	Friction and Delamination Properties of Self-Mating Diamond-Like Carbon Coatings in Water. Tribology Letters, 2016, 62, 1.	1.2	9
388	Vacuum pressure dependence of the tribological behaviors of sintered polycrystalline diamond sliding against silicon nitride. International Journal of Refractory Metals and Hard Materials, 2016, 61, 30-39.	1.7	10
389	Flexible humidity sensors composed of graphite-like carbon micro-pinecone arrays. RSC Advances, 2016, 6, 95342-95348.	1.7	21
391	Influence of tribofilm on superlubricity of highly-hydrogenated amorphous carbon films in inert gaseous environments. Science China Technological Sciences, 2016, 59, 1795-1803.	2.0	20
392	Effect of tribochemistry on friction behavior of fluorinated amorphous carbon films against aluminum. Surface and Coatings Technology, 2016, 304, 150-159.	2.2	15
393	Preparation of Titanium-Doped Diamond-Like Carbon Films With Electrical Conductivity Using High Power Pulsed Magnetron Sputtering System With Bipolar Pulse Voltage Source for Substrate. IEEE Transactions on Plasma Science, 2016, 44, 3083-3090.	0.6	7
394	Interface Engineering and Controlling the Friction and Wear of Ultrathin Carbon Films: High sp ³ Versus High sp ² Carbons. Advanced Functional Materials, 2016, 26, 1526-1542.	7.8	44
395	Carbon-based tribofilms from lubricating oils. Nature, 2016, 536, 67-71.	13.7	370
396	Improved nanostructured diamond adhesion on cemented tungsten carbide with boride interlayers. Diamond and Related Materials, 2016, 69, 114-120.	1.8	12
397	Influences of Space Irradiations on the Structure and Properties of MoS2/DLC Lubricant Film. Tribology Letters, 2016, 64, 1.	1.2	18
398	Graphitic Carbon Films Across Systems. Tribology Letters, 2016, 63, 1.	1.2	19
399	Properties of diamond-like carbon films prepared by high power pulsed sputtering with two facing targets. Surface and Coatings Technology, 2016, 307, 1053-1058.	2.2	12
400	Fatigue crack growth behavior of DLC coated AISI 4140 steel under constant and variable amplitude loading conditions. Surface and Coatings Technology, 2016, 304, 316-324.	2.2	15
401	Investigation of Superlubricity Achieved by Polyalkylene Glycol Aqueous Solutions. Advanced Materials Interfaces, 2016, 3, 1600531.	1.9	37
402	Structural analysis of a-C:H and a-C:H:Si films under high-pressure and high-temperature by synchrotron X-ray diffraction. Diamond and Related Materials, 2016, 70, 83-90.	1.8	3
403	Further improvement of mechanical and tribological properties of Cr-doped diamond-like carbon nanocomposite coatings by N codoping. Japanese Journal of Applied Physics, 2016, 55, 115501.	0.8	5
404	Ultra-high wear resistance of ultra-nanocrystalline diamond film: Correlation with microstructure and morphology. AIP Conference Proceedings, 2016, , .	0.3	0

#	Article	IF	CITATIONS
405	Preparation of hydrogenated diamond-like carbon films using high-density pulsed plasmas of $Ar/C < sub> 2 < / sub> H < sub> 2 < / sub> mixture. Japanese Journal of Applied Physics, 2016, 55, 07LE02.$	0.8	7
406	Preparation and properties of DLC/MoS ₂ multilayer coatings for high humidity tribology. Materials Research Express, 2016, 3, 066401.	0.8	24
407	Atomic Scale Interface Manipulation, Structural Engineering, and Their Impact on Ultrathin Carbon Films in Controlling Wear, Friction, and Corrosion. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17606-17621.	4.0	20
408	Monitoring the nanostructure of a hydrogenated fullerene-like film by pulse bias duty cycle. RSC Advances, 2016, 6, 59039-59044.	1.7	5
409	Tribological behavior of O2 and CF4 plasma post-treated diamond-like carbon films under dry air and in a high relative humidity environment. Surface and Coatings Technology, 2016, 306, 200-204.	2.2	9
410	Carbon doping to improve the high temperature tribological properties of VN coating. Tribology International, 2016, 97, 327-336.	3.0	41
411	Highly wear-resistant and biocompatible carbon nanocomposite coatings for dental implants. Biomaterials, 2016, 102, 130-136.	5.7	41
412	Influence of intrinsic and extrinsic conditions on the tribological characteristics of diamond-like carbon coatings: A review. Journal of Materials Research, 2016, 31, 1814-1836.	1.2	25
413	Understanding the unusual friction behavior of hydrogen-free diamond-like carbon films in oxygen atmosphere by first-principles calculations. Carbon, 2016, 100, 556-563.	5.4	50
414	Investigation of the lubricated wear behavior of ductile cast iron and quenched and tempered alloy steel for possible use in worm gearing. Wear, 2016, 350-351, 68-73.	1.5	24
415	Recent progress and new directions in density functional theory based design of hard coatings. Surface and Coatings Technology, 2016, 286, 178-190.	2.2	56
416	Tribological behavior of diamond like carbon film sliding against CoCrMo or Al2O3 in air and water environment. Tribology International, 2016, 95, 456-461.	3.0	19
417	Fatigue resistant carbon coatings for rolling/sliding contacts. Tribology International, 2016, 98, 172-178.	3.0	29
418	Yield Maps for Single and Bilayer Thin Films Under Scratch. Journal of Tribology, 2016, 138, .	1.0	7
419	External-Field-Induced Growth Effect of an a-C:H Film for Manipulating Its Medium-Range Nanostructures and Properties. ACS Applied Materials & Interfaces, 2016, 8, 6639-6645.	4.0	25
420	Structure and friction properties of laser-patterned amorphous carbon films. Diamond and Related Materials, 2016, 65, 69-74.	1.8	19
421	Adsorption of polar molecules on diamond-like carbon films with different trapped charge densities. Diamond and Related Materials, 2016, 65, 125-130.	1.8	2
422	Amorphous hydrogenated carbon thin films deposited on stainless steel using high energy plasma focus device. Surface and Coatings Technology, 2016, 288, 1-7.	2.2	9

#	Article	IF	CITATIONS
423	Adsorption of alcohols and fatty acids onto hydrogenated (a-C:H) DLC coatings. Applied Surface Science, 2016, 363, 466-476.	3.1	17
424	Sliding contact analysis of functionally graded coating/substrate system. Mechanics of Materials, 2016, 94, 142-155.	1.7	52
425	Numerical and Experimental Tribological Investigations of Diamond Nanoparticles. Journal of Tribology, 2016, 138 , .	1.0	7
426	Fluorine and sulfur co-doped amorphous carbon films to achieve ultra-low friction under high vacuum. Carbon, 2016, 96, 411-420.	5.4	60
427	Minimizing Frictional Losses in Crankshaft Bearings of Automobile Powertrain by Diamond-like Carbon Coatings under Elasto-hydrodynamic Lubrication. Surface and Coatings Technology, 2016, 290, 100-109.	2.2	24
428	Polymer Surface Modifications by Coating. , 2016, , 143-160.		0
429	Towards scalable fabrication of ultrasmooth and porous thin carbon films. Carbon, 2016, 96, 184-195.	5.4	10
430	Tribological behaviors of diamond films and their applications in metal drawing production in water-lubricating condition. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230, 656-666.	1.0	6
431	Advances in atomic-scale tribological mechanisms of solid interfaces. Tribology International, 2016, 94, 1-13.	3.0	25
432	Wear evolution of monolayer graphene at the macroscale. Carbon, 2017, 115, 600-607.	5.4	93
433	Correlation of structural and optical properties of PVD grown amorphous carbon thin films. Diamond and Related Materials, 2017, 75, 69-77.	1.8	13
434	The effect of interface electrostatic interaction based on acid–base theory on friction behavior. Surface and Interface Analysis, 2017, 49, 691-697.	0.8	3
435	Investigation of lubricated rolling sliding behaviour of WC/C, WC/C-CrN, DLC based coatings and plasma nitriding of steel for possible use in worm gearing. Wear, 2017, 378-379, 106-113.	1.5	26
436	Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive. Tribology International, 2017, 110, 35-40.	3.0	53
437	The effect of deposition parameters on structure, mechanical and adhesion properties of a-C:H on Ti6Al4V with gradient Ti-a-C:H:Ti interlayer. Surface and Coatings Technology, 2017, 316, 180-189.	2.2	24
438	Experimentally derived friction model to evaluate the anti-wear and friction-modifier additives in steel and DLC contacts. Tribology International, 2017, 111, 116-137.	3.0	4
439	Effect of running-in for delamination and friction properties of self-mating diamond-like carbon coatings in water. Wear, 2017, 378-379, 27-34.	1.5	9
440	Diamond-like carbon coating under oleic acid lubrication: Evidence for graphene oxide formation in superlow friction. Scientific Reports, 2017, 7, 46394.	1.6	90

#	Article	IF	CITATIONS
441	Carbon nanomaterials in tribology. Carbon, 2017, 119, 150-171.	5.4	329
442	Synthesis and properties of CS _{<i>x</i>} F _{<i>y</i>} thin films deposited by reactive magnetron sputtering in an Ar/SF ₆ discharge. Journal of Physics Condensed Matter, 2017, 29, 195701.	0.7	9
443	A General Engineering Applicable Superlubricity: Hydrogenated Amorphous Carbon Film Containing Nano Diamond Particles. Advanced Materials Interfaces, 2017, 4, 1601224.	1.9	27
444	Microstructure, mechanical properties and friction behavior of magnetron-sputtered V-C coatings. Surface and Coatings Technology, 2017, 321, 366-377.	2.2	13
445	Superlubricity of hydrogenated carbon films in a nitrogen gas environment: adsorption and electronic interactions at the sliding interface. RSC Advances, 2017, 7, 3025-3034.	1.7	24
446	Tribological properties of hydrogenated amorphous carbon films in different atmospheres. Diamond and Related Materials, 2017, 77, 84-91.	1.8	27
447	Global energy consumption due to friction and wear in the mining industry. Tribology International, 2017, 115, 116-139.	3.0	294
448	Fullerene-like nanostructure induced excellent friction behavior in high vacuum environment for hydrogenated carbon film. Vacuum, 2017, 143, 36-39.	1.6	3
449	Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films: Relative humidity dependent character. Applied Surface Science, 2017, 422, 147-154.	3.1	61
450	Effect of substrate bias on the tribological behavior of ta-C coating prepared by filtered cathodic vacuum arc. International Journal of Precision Engineering and Manufacturing, 2017, 18, 779-784.	1.1	9
451	Assessment of a multifuncional tribological coating (nitride+DLC) deposited on grey cast iron in a mixed lubrication regime. Wear, 2017, 376-377, 803-812.	1.5	13
452	Mechanical properties, chemical analysis and evaluation of antimicrobial response of Si-DLC coatings fabricated on AISI 316 LVM substrate by a multi-target DC-RF magnetron sputtering method for potential biomedical applications. Applied Surface Science, 2017, 417, 23-33.	3.1	50
453	The role of substrate bias and nitrogen doping on the structural evolution and local elastic modulus of diamond-like carbon films. Journal Physics D: Applied Physics, 2017, 50, 175601.	1.3	9
454	Effects of nitrogen substitution in amorphous carbon films on electronic structure and surface reactivity studied with x-ray and ultra-violet photoelectron spectroscopies. Journal of Applied Physics, 2017, 121, 095302.	1.1	5
455	The best features of diamond nanothread for nanofibre applications. Nature Communications, 2017, 8, 14863.	5.8	62
456	Wear and friction between smooth or rough diamond-like carbon films and diamond tips. Wear, 2017, 372-373, 12-20.	1.5	86
457	Linking microstructural evolution and macro-scale friction behavior in metals. Journal of Materials Science, 2017, 52, 2780-2799.	1.7	75
458	Low friction of graphene nanocrystallite embedded carbon nitride coatings prepared with MCECR plasma sputtering. Surface and Coatings Technology, 2017, 332, 153-160.	2.2	14

#	Article	IF	CITATIONS
459	Comparative study on effects of load and sliding distance on amorphous hydrogenated carbon (a-C:H) coating and tetrahedral amorphous carbon (ta-C) coating under base-oil lubrication condition. Wear, 2017, 392-393, 84-92.	1.5	17
460	Femtosecond-laser surface modification and micropatterning of diamond-like nanocomposite films to control friction on the micro and macroscale. Journal of Applied Physics, 2017, 122, .	1.1	20
461	Quantifying adhesion of ultra-thin multi-layer DLC coatings to Ni and Si substrates using shear, tension, and nanoscratch molecular dynamics simulations. Acta Materialia, 2017, 141, 317-326.	3.8	20
462	Tight-Binding Quantum Chemical Molecular Dynamics Study on the Friction and Wear Processes of Diamond-Like Carbon Coatings: Effect of Tensile Stress. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34396-34404.	4.0	43
463	Tailoring the mechanical and tribological properties of B 4 C/a-C coatings by controlling the boron carbide content. Surface and Coatings Technology, 2017, 329, 11-18.	2.2	53
464	Superior wear resistance and low friction in hybrid ultrathin silicon nitride/carbon films: synergy of the interfacial chemistry and carbon microstructure. Nanoscale, 2017, 9, 14937-14951.	2.8	17
465	Effect of oil temperature and counterpart material on the wear mechanism of ta-CNx coating under base oil lubrication. Wear, 2017, 390-391, 312-321.	1.5	40
466	High temperature nanotribology of ultra-thin hydrogenated amorphous carbon coatings. Carbon, 2017, 123, 112-121.	5.4	27
467	Effect of load on the friction-wear behavior of magnetron sputtered DLC film at high temperature. Materials Research Express, 2017, 4, 016404.	0.8	4
468	Tribological response and characterization of Mo–W doped DLC coating. Wear, 2017, 376-377, 1622-1629.	1.5	37
469	Achieving low friction and wear under various humidity conditions by co-doping nitrogen and silicon into diamond-like carbon films. Thin Solid Films, 2017, 638, 375-382.	0.8	18
470	Structural analysis of amorphous carbon films by spectroscopic ellipsometry, RBS/ERDA, and NEXAFS. Applied Physics Letters, 2017, 110, .	1.5	19
471	1.7 Carbon and Diamond. , 2017, , 145-164.		1
472	Effect of test atmosphere on the tribological behaviour of the tetrahedral amorphous carbon (ta-C) and fluorinated ta-C (ta-C-F) coatings against steel. Surface and Coatings Technology, 2017, 332, 382-390.	2.2	8
473	Unexpected friction behaviours due to capillary and adhesion effects. Scientific Reports, 2017, 7, 148.	1.6	11
474	Effect of iron oxides on sliding friction of thermally sprayed 1010 steel coated cylinder bores. Wear, 2017, 376-377, 858-868.	1.5	18
475	1.8 Wear-Resistant Ceramic Films and Coatings â~†., 2017, , 165-203.		7
476	Superlubricity of a graphene/MoS ₂ heterostructure: a combined experimental and DFT study. Nanoscale, 2017, 9, 10846-10853.	2.8	133

#	Article	IF	CITATIONS
477	Effect of Oxygen on the Self-formation of Carbonaceous Tribo-layer with Carbon Nitride Coatings under a Nitrogen Atmosphere. Tribology Letters, 2017, 65, 1.	1.2	5
478	Effects of ZnO and MoS2 Solid Lubricants on Mechanical and Tribological Properties of M50-Steel-Based Composites at High Temperatures: Experimental and Simulation Study. Tribology Letters, 2017, 65, 1.	1.2	54
479	Simultaneous Voltammetric Determination of Paracetamol, Codeine and Caffeine on Diamondâ€like Carbon Porous Electrodes. Electroanalysis, 2017, 29, 907-916.	1.5	21
480	The effect of hydrogen on the tribological behavior of diamond like carbon (DLC) coatings sliding against Al 2 O 3 in water environment. Surface and Coatings Technology, 2017, 320, 619-623.	2.2	24
481	Comparison of the scuffing behaviour and wear resistance of candidate engineered coatings for automotive piston rings. Tribology International, 2017, 106, 10-22.	3.0	50
482	<i>In situ</i> single asperity wear at the nanometre scale. International Materials Reviews, 2017, 62, 99-115.	9.4	17
483	A Review on Effects of Lubricant Formulations on Tribological Performance and Boundary Lubrication Mechanisms of Non-Doped DLC/DLC Contacts. Critical Reviews in Solid State and Materials Sciences, 2017, 42, 267-294.	6.8	27
484	Mechanical and corrosion behavior of thick and soft DLC coatings. Surface and Coatings Technology, 2017, 312, 101-109.	2.2	74
485	Clarification of high wear resistance mechanism of ta-CNx coating under poly alpha-olefin (PAO) lubrication. Tribology International, 2017, 105, 193-200.	3.0	41
486	Evolution of tribo-induced interfacial nanostructures governing superlubricity in a-C:H and a-C:H:Si films. Nature Communications, 2017, 8, 1675.	5.8	179
487	Microwave plasma induced surface modification of diamond-like carbon films. Surface Topography: Metrology and Properties, 2017, 5, 045005.	0.9	6
488	Scaling Effects on Materials Tribology: From Macro to Micro Scale. Materials, 2017, 10, 550.	1.3	44
490	Surface engineering., 2017,, 237-281.		9
491	Effects of Environmental Gas and Trace Water on the Friction of DLC Sliding with Metals. Micromachines, 2017, 8, 217.	1.4	14
492	Eliminating delamination of graphite sliding on diamond-like carbon. Carbon, 2018, 132, 444-450.	5.4	22
493	Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	482
494	Highly durable and biocompatible periodical Si/DLC nanocomposite coatings. Nanoscale, 2018, 10, 4852-4860.	2.8	23
495	Tip-enhanced Raman spectroscopy studies of nanodiamonds and carbon onions. Carbon, 2018, 132, 495-502.	5.4	37

#	Article	IF	Citations
496	Synthesis and characterization of Ti and N binaryâ€doped ɑ films deposited by pulse cathode arc with ionic source assistant. Surface and Interface Analysis, 2018, 50, 506-515.	0.8	3
497	Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric Acid Additive. Langmuir, 2018, 34, 3578-3587.	1.6	59
498	Local transformation of amorphous hydrogenated carbon coating induced by high contact pressure. Tribology International, 2018, 124, 200-208.	3.0	18
499	Investigation of Cr(N)/DLC multilayer coatings elaborated by PVD for high wear resistance and low friction applications. Surface and Coatings Technology, 2018, 337, 396-403.	2.2	68
500	Tribological behavior of DLC films and duplex ceramic coatings under different sliding conditions. Ceramics International, 2018, 44, 7151-7158.	2.3	43
501	Tribochemistry dependent tribological behavior of superhard TaC/SiC multilayer films. Surface and Coatings Technology, 2018, 337, 492-500.	2.2	29
502	A study for anticorrosion and tribological behaviors of thin/thick diamond-like carbon films in seawater. Surface Topography: Metrology and Properties, 2018, 6, 014004.	0.9	11
503	Investigation of optical properties of an overdense magnetized plasma lens in the interaction with high-intensity Gaussian laser pulses. Applied Physics B: Lasers and Optics, 2018, 124, 1.	1.1	1
504	Si doping enhances the thermal stability of diamond-like carbon through reductions in carbon-carbon bond length disorder. Carbon, 2018, 131, 72-78.	5 . 4	59
505	Electrodeposition of Si–DLC nanocomposite film and its electronic application. Microsystem Technologies, 2018, 24, 2287-2294.	1.2	13
506	Tribological properties of thin films made by atomic layer deposition sliding against silicon. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	7
507	Tribological Properties of Ultrananocrystalline Diamond Films: Mechanochemical Transformation of Sliding Interfaces. Scientific Reports, 2018, 8, 283.	1.6	31
508	Triboenvironment Dependent Chemical Modification of Sliding Interfaces in Ultrananocrystalline Diamond Nanowall Film: Correlation with Friction and Wear. Journal of Physical Chemistry C, 2018, 122, 945-956.	1.5	22
509	Influence of modulation periods on the tribological behavior of Si/a-C: H multilayer film. Journal Physics D: Applied Physics, 2018, 51, 035302.	1.3	5
510	Roles of sliding-induced defects and dissociated water molecules on low friction of graphene. Scientific Reports, 2018, 8, 121.	1.6	26
511	Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance. Applied Surface Science, 2018, 439, 24-32.	3.1	126
512	Tribological Properties of Ultrananocrystalline Diamond Films in Inert and Reactive Tribo-Atmospheres: XPS Depth-Resolved Chemical Analysis. Journal of Physical Chemistry C, 2018, 122, 8602-8613.	1.5	18
513	Substrate-independent stress–strain behavior of diamond-like carbon thin films by nanoindentation with a spherical tip. Journal of Materials Research, 2018, 33, 699-708.	1.2	5

#	Article	IF	CITATIONS
514	Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity. Nature Communications, 2018, 9, 1164.	5.8	199
515	Tribochemical reactions and graphitization of diamond-like carbon against alumina give volcano-type temperature dependence of friction coefficients: A tight-binding quantum chemical molecular dynamics simulation. Carbon, 2018, 133, 350-357.	5.4	52
516	Discharge runaway in high power impulse magnetron sputtering of carbon: the effect of gas pressure, composition and target peak voltage. Journal Physics D: Applied Physics, 2018, 51, 165201.	1.3	12
517	Hard and dense diamond like carbon coatings deposited by deep oscillations magnetron sputtering. Surface and Coatings Technology, 2018, 336, 92-98.	2.2	29
518	Microstructure, mechanical, and tribological properties of hydrogenated amorphous carbon film deposited on Ti6Al4V alloy under different substrate bias voltage. International Journal of Advanced Manufacturing Technology, 2018, 94, 2491-2497.	1.5	1
519	Structure and tribological behavior of diamond-like carbon coatings deposited on the martensitic stainless steel: The influence of gas composition and temperature. Diamond and Related Materials, 2018, 81, 77-88.	1.8	24
520	Effect of unbonded hydrogen on amorphous carbon film deposited by PECVD with annealing treatment. Diamond and Related Materials, 2018, 81, 146-153.	1.8	20
521	Evolution of the mechanical and tribological properties of DLC thin films doped with low-concentration hafnium on 316L steel. Journal Physics D: Applied Physics, 2018, 51, 025301.	1.3	6
522	Influence of chemical bonding on the variability of diamond-like carbon nanoscale adhesion. Carbon, 2018, 128, 267-276.	5.4	42
523	Adhesive transfer at copper/diamond interface and adhesion reduction mechanism with fluorine passivation: A first-principles study. Carbon, 2018, 127, 548-556.	5.4	58
524	A comprehensive study on different silicon-containing interlayers for a-C:H adhesion on ferrous alloys. Thin Solid Films, 2018, 645, 351-357.	0.8	14
525	Toward low friction in high vacuum by designing textured a-C/IL duplex lubricating film. Vacuum, 2018, 148, 11-17.	1.6	11
526	Water adsorption on diamond (111) surfaces: an ab initio study. Carbon, 2018, 127, 533-540.	5.4	30
527	Effect of ZnDTP triboflim's morphology on friction behaviors of DLC coatings: Tribofilm characterization by 3D scanning electron microscope observation. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2018, 12, JAMDSM0129-JAMDSM0129.	0.3	25
528	Surface Characterization of DLC Layers PVD Coated on AISI 52100 Steel Substrate. IOP Conference Series: Materials Science and Engineering, 2018, 416, 012014.	0.3	0
529	Mechanical Properties of Hydrogen Free Diamond-Like Carbon Thin Films Deposited by High Power Impulse Magnetron Sputtering with Ne. Coatings, 2018, 8, 385.	1.2	31
530	Super-Lubricious, Fullerene-like, Hydrogenated Carbon Films. , 2018, , .		1
531	Structural superlubricity and ultralow friction across the length scales. Nature, 2018, 563, 485-492.	13.7	382

#	Article	IF	CITATIONS
532	Tribochemistry and Morphology of P-Based Antiwear Films. Microtechnology and MEMS, 2018, , 159-214.	0.2	2
533	Electron Microscopy and Spectroscopy in the Analysis of Friction and Wear Mechanisms. Lubricants, 2018, 6, 58.	1.2	16
534	Tailoring the Tribocorrosion and Antifouling Performance of (Cr, Cu)-GLC Coatings for Marine Application. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36531-36539.	4.0	55
535	Friction reduction through biologically inspired scale-like laser surface textures. Beilstein Journal of Nanotechnology, 2018, 9, 2561-2572.	1.5	43
536	Tribology of Wire Arc Spray Coatings under the Influence of Regenerative Fuels. Lubricants, 2018, 6, 60.	1.2	1
537	Ion excitation and etching effects on top-surface properties of sp2 nanocrystallited carbon films. Applied Surface Science, 2018, 462, 669-677.	3.1	13
538	Structure and Electrochemical Properties of Nitrogen Doped Diamond-like Carbon Film Synthesized by Low Temperature Neutral Beam Enhanced Chemical Vapor Deposition. International Journal of Electrochemical Science, 2018, 13, 1803-1812.	0.5	2
539	Carbonaceous Materials in the Fault Zone of the Longmenshan Fault Belt: 2. Characterization of Fault Gouge from Deep Drilling and Implications for Fault Maturity. Minerals (Basel, Switzerland), 2018, 8, 393.	0.8	14
540	Structure, Mechanical and Tribological Properties of Me-Doped Diamond-Like Carbon (DLC) (Me = Al,) Tj ETQq0	0 0 ngBT /0	Overlock 10 T
541	Low Wear and Low Friction DLC Coating With Good Adhesion to CoCrMo Metal Substrates. Physica Status Solidi (B): Basic Research, 2018, 255, 1800225.	0.7	4
542	Effect of Si incorporation on corrosion resistance of hydrogenated amorphous carbon film. Diamond and Related Materials, 2018, 90, 207-213.	1.8	12
543	Tribological Behaviour of Ti:Ta-DLC Films Under Different Tribo-Test Conditions. IOP Conference Series: Materials Science and Engineering, 2018, 295, 012005.	0.3	2
544	Residual stress gradient and relaxation upon fatigue deformation of diamond-like carbon coated aluminum alloy in air and methanol environments. Materials and Design, 2018, 160, 303-312.	3.3	26
545	Effects of AFM tip wear on frictional images of laser-patterned diamond-like nanocomposite films. Wear, 2018, 416-417, 1-5.	1.5	14
546	Acid Treatment of Diamond-Like Carbon Surfaces for Enhanced Adsorption of Friction Modifiers and Friction Performance. Tribology Letters, 2018, 66, 1.	1.2	8
547	Influence of the Synthesis Conditions and Tin Nanoparticles on the Structure and Properties of a-C:H〈Sn〉 Composite Thin Films. Semiconductors, 2018, 52, 1327-1333.	0.2	0
548	Real-time observation of slipping and rolling events in DLC wear nanoparticles. Nanotechnology, 2018, 29, 325707.	1.3	9
549	Radio-frequency plasma-enhanced chemical vapour deposition of carbon films on AISI 316LVM steel: Formation of a transition layer and metal whiskers, and their influence on coating properties. Thin Solid Films, 2018, 659, 16-23.	0.8	4

#	Article	IF	CITATIONS
550	Thermally Induced Superlow Friction of DLC Films in Ambient Air. High Temperature Materials and Processes, 2018, 37, 725-731.	0.6	11
551	Achieving Ultralow Wear with Stable Nanocrystalline Metals. Advanced Materials, 2018, 30, e1802026.	11.1	56
553	Reactive Molecular Dynamics Simulations of Self-Assembly of Polytwistane and Its Application for Nanofibers. Journal of Physical Chemistry C, 2018, 122, 19204-19211.	1.5	11
554	Tribological behaviors of fluid-lubricated DLC films under sliding and fretting conditions. Applied Surface Science, 2018, 459, 411-421.	3.1	6
555	Improving the Tribological Properties of Spark-Anodized Titanium by Magnetron Sputtered Diamond-Like Carbon. Coatings, 2018, 8, 83.	1.2	15
556	Superlubricity of 1,3-diketone based on autonomous viscosity control at various velocities. Tribology International, 2018, 126, 127-132. Understanding shear-induced < mml:math	3.0	27
557	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>s</mml:mi><mml:msup><mml:mi>-to-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>s</mml:mi><mml:msup><mml:mi> phase transitions in glassy carbon at low pressure using first-principles calculations. Physical Review</mml:mi></mml:msup></mml:mrow></mml:math></mml:mi></mml:msup></mml:mrow>		_
558	B, 2018, 98, . A DLC-Punch Array to Fabricate the Micro-Textured Aluminum Sheet for Boiling Heat Transfer Control. Micromachines, 2018, 9, 147.	1.4	15
559	Adhesion enhancement of DLC hard coatings by HiPIMS metal ion etching pretreatment. Surface and Coatings Technology, 2018, 349, 787-796.	2.2	48
560	Influence of oxygen on growth of carbon thin films. AIP Conference Proceedings, 2018, , .	0.3	0
561	Mild Solvothermal Growth of Robust Carbon Phosphonitride Films. Chemistry of Materials, 2018, 30, 6082-6090.	3.2	2
562	A contribution to the thermal effects of DLC coatings on fluid friction in EHL contacts. Lubrication Science, 2018, 30, 285-299.	0.9	18
563	Plasma based nitrogen ion implantation to hydrogenated diamond-like carbon films. Nuclear Instruments & Methods in Physics Research B, 2018, 433, 87-92.	0.6	3
564	Plasma Printing of Micro-Punch Assembly for Micro-Embossing of Aluminum Sheets. Materials Science Forum, 0, 920, 161-166.	0.3	0
565	In-situ tribochemical formation of self-lubricating diamond-like carbon films. Carbon, 2018, 138, 61-68.	5.4	65
566	Wear behaviour of boronized and duplex-treated AISI 4140 steel against DLC-coated boronized AISI 4140 disc. Surface Engineering, 2019, 35, 370-377.	1.1	10
567	Effect of sputtering pressure on the surface topography, structure, wettability and tribological performance of DLC films coated on rubber by magnetron sputtering. Surface and Coatings Technology, 2019, 365, 33-40.	2.2	29
568	Dynamic friction behavior of ultrananocrystalline diamond films: A depth-resolved chemical phase analysis. Ceramics International, 2019, 45, 23418-23422.	2.3	4

#	Article	IF	CITATIONS
569	Characterisation of a High-Power Impulse Magnetron Sputtered C/Mo/W wear resistant coating by transmission electron microscopy. Surface and Coatings Technology, 2019, 377, 124853.	2.2	4
570	Ultra-low friction of a-C:H films enabled by lubrication of nanodiamond and graphene in ambient air. Carbon, 2019, 154, 203-210.	5.4	44
571	Origin of higher graphitization under higher humidity on the frictional surface of self-mated hydrogenated carbon films. Applied Surface Science, 2019, 494, 452-457.	3.1	13
572	Investigation on mechanical properties of tribofilm formed on Ti–6Al–4V surface sliding against a DLC coating by nano-indentation and micro-pillar compression techniques. Wear, 2019, 432-433, 202954.	1.5	10
573	Simultaneous production and functionalization of hexagonal boron nitride nanosheets by solvent-free mechanical exfoliation for superlubricant water-based lubricant additives. Npj 2D Materials and Applications, 2019, 3, .	3.9	68
574	Microstructure and properties of DLC/CN films with different CN sublayer thicknesses. Surface and Coatings Technology, 2019, 374, 418-423.	2.2	14
575	Origin of low friction for amorphous carbon films with different hydrogen content in nitrogen atmosphere. Tribology International, 2019, 140, 105853.	3.0	18
576	Diamond-like carbon coatings deposited by deep oscillation magnetron sputtering in Ar-Ne discharges. Diamond and Related Materials, 2019, 98, 107521.	1.8	22
577	Modification of optical and mechanical properties of nitrogen doped diamond-like carbon layers. Journal of Materials Science: Materials in Electronics, 2019, 30, 19770-19781.	1.1	14
578	Increased elasticity and damping capacity of diamond-like carbon coatings by immobilized C ₆₀ fullerene clusters. Nanoscale, 2019, 11, 2863-2870.	2.8	12
579	High Temperature Characterization of a MIS Schottky Diode Based on Diamond-Like Carbon Nanocomposite Film. Journal of Electronic Materials, 2019, 48, 7874-7881.	1.0	6
580	A boron-doped diamond like carbon coating with high hardness and low friction coefficient. Wear, 2019, 436-437, 203031.	1.5	16
581	Prediction of Macroscopic Properties of Diamond-like Carbon from Atomic-Scale Structure. Journal of Physical Chemistry C, 2019, 123, 24609-24614.	1.5	6
582	Probing fretting performance of DLC and MoS2 films under fluid lubrication. Applied Surface Science, 2019, 478, 661-679.	3.1	15
583	Effect of SiN interlayer thickness on adhesion and friction properties of diamond-like carbon films. Diamond and Related Materials, 2019, 94, 186-193.	1.8	9
584	Surface nanopatterning by colloidal lithography. , 2019, , 63-95.		1
585	The Role of Substrate Temperature and Magnetic Filtering for DLC by Cathodic Arc Evaporation. Coatings, 2019, 9, 345.	1.2	8
586	Controlled atmosphere dependent tribological properties of thermally annealed ultrananocrystalline diamond films. Diamond and Related Materials, 2019, 97, 107437.	1.8	10

#	Article	IF	Citations
587	Physical chemistry insights into surface charge phenomena during frictional coupling in triboelectric X-ray sources. Journal of Materials Chemistry C, 2019, 7, 7708-7724.	2.7	13
588	Microhardness and wear behaviour of polycrystalline diamond after warm laser shock processing with and without coating. International Journal of Refractory Metals and Hard Materials, 2019, 82, 215-226.	1.7	17
589	Adhesion of hydrogenated amorphous carbon films on ferrous alloy by intermediate nitrogen plasma treatment in silicon-containing interlayers. Vacuum, 2019, 167, 21-27.	1.6	7
590	Low-Temperature Plasma Nitriding of Mini-/Micro-Tools and Parts by Table-Top System. Applied Sciences (Switzerland), 2019, 9, 1667.	1.3	9
591	On the fatigue strength of uncoated and DLC coated 7075-T6 aluminum alloy. Engineering Failure Analysis, 2019, 102, 219-225.	1.8	37
592	Microstructure, mechanical and tribological properties of DLC/Cu-DLC/W-DLC composite films on SUS304 stainless steel substrates. Materials Research Express, 2019, 6, 086406.	0.8	9
593	Nanomaterials in Superlubricity. Advanced Functional Materials, 2019, 29, 1806395.	7.8	170
594	Alternative Friction Mechanism for Amorphous Carbon Films Sliding against Alumina. Industrial & Engineering Chemistry Research, 2019, 58, 4810-4817.	1.8	16
595	A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Advanced Engineering Materials, 2019, 21, 1801215.	1.6	659
596	Effect of Graphene Nanoplates Dispersed in Ethanol on Frictional Behaviour of Tool Steel Running Against Uncoated and DLC-Coated Tool Steel. Tribology Letters, 2019, 67, 1.	1.2	11
597	Friction of Tungsten-Based Coatings of Steel under Sliding Contact. Lubricants, 2019, 7, 14.	1.2	2
598	Controllable fabrication of self-organized nano-multilayers in copper–carbon films. Chinese Physics B, 2019, 28, 036802.	0.7	2
599	Substrate Bias Voltage Tailoring the Interfacial Chemistry of a-SiC <i>_{<}</i> :H: A Surprising Improvement in Adhesion of a-C:H Thin Films Deposited on Ferrous Alloys Controlled by Oxygen. ACS Applied Materials & Diterfaces, 2019, 11, 18024-18033.	4.0	19
600	Ab initiothermodynamics study of ambient gases reacting with amorphous carbon. Physical Review B, 2019, 99, .	1.1	3
601	Graphene - MoS2 ensembles to reduce friction and wear in DLC-Steel contacts. Carbon, 2019, 146, 524-527.	5.4	108
602	A self-lubricated Si incorporated hydrogenated amorphous carbon (a-C:H) film in simulated acid rain. Diamond and Related Materials, 2019, 94, 43-51.	1.8	9
603	Heating induced nanostructure and superlubricity evolution of fullerene-like hydrogenated carbon films. Solid State Sciences, 2019, 90, 29-33.	1.5	17
604	Additive Adsorption on DLC Coatings in Static and Tribological Conditions Using Neutron Reflectometry. Frontiers in Mechanical Engineering, 2019, 5, .	0.8	6

#	Article	IF	CITATIONS
605	Green Tribology: Orientation Properties of Diamond-Like Carbon Coatings of Friction Units in Lubricating Media. Russian Journal of Applied Chemistry, 2019, 92, 1603-1615.	0.1	4
606	Tribological properties of amorphous carbon in hydrochloric acid with ta-C counterpart. Surface and Coatings Technology, 2019, 380, 125004.	2.2	14
607	Triboemission of hydrocarbon molecules from diamond-like carbon friction interface induces atomic-scale wear. Science Advances, 2019, 5, eaax9301.	4.7	70
608	The Flexible Lubrication Performance of Graphene Used in Diamond Interface as a Solid Lubricant: First-Principles Calculations. Nanomaterials, 2019, 9, 1784.	1.9	4
609	The influence of self-assembled monolayers on tribological properties of Si-DLC coatings. Surface Topography: Metrology and Properties, 2019, 7, 045006.	0.9	5
610	Non-corrosive Green Lubricant With Dissolved Lignin in Ionic Liquids Behave as Ideal Lubricants for Steel-DLC Applications. Frontiers in Chemistry, 2019, 7, 857.	1.8	7
611	On Friction Reduction by Surface Modifications in the TEHL Cam/Tappet-Contact-Experimental and Numerical Studies. Coatings, 2019, 9, 843.	1.2	26
612	Structure, Deformation, and Fracture of Hard Coatings During Sliding Friction. Russian Physics Journal, 2019, 62, 1363-1397.	0.2	8
613	Structural and elastic properties of amorphous carbon from simulated quenching at low rates. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 085009.	0.8	30
614	Evolution of tribologically induced chemical and structural degradation in hydrogenated a-C coatings. Tribology International, 2019, 129, 177-190.	3.0	13
615	Nanotechnologies for Medical Devices: Potentialities and Risks. ACS Applied Bio Materials, 2019, 2, 1-13.	2.3	22
616	Multivariable study on growth of diamond on diamond substrates by microwave plasma chemical vapour deposition. Materials Research Express, 2019, 6, 046407.	0.8	3
617	Gas phase lubrication on diamond-like carbon film: Tribochemical reactions under isobutane condition. Tribology International, 2019, 133, 152-159.	3.0	21
618	Structural evolution and tribological behavior of nitrogen-doped DLC coatings deposited by pulsed DC PACVD method. Diamond and Related Materials, 2019, 91, 74-83.	1.8	22
619	Experimental and model studies about the lubrication of physisorbed isobutane molecules on hydrogenated diamond-like carbon films. Surface and Coatings Technology, 2019, 357, 759-767.	2.2	18
620	Nanocrystalline Diamond. , 2019, , 123-181.		6
621	Ion-beam irradiation of DLC-based nanocomposite: Creation of a highly biocompatible surface. Applied Surface Science, 2019, 469, 896-903.	3.1	19
622	Formation of diamond-like carbon film using high-power impulse magnetron sputtering. Thin Solid Films, 2019, 672, 104-108.	0.8	12

#	Article	IF	CITATIONS
623	Boosting contact sliding and wear protection via atomic intermixing and tailoring of nanoscale interfaces. Science Advances, 2019, 5, eaau7886.	4.7	22
624	Tribological properties of ta-CNx coating sliding against steel and sapphire in unlubricated condition. Tribology International, 2019, 131, 102-111.	3.0	29
625	The influence of positive pulses on HiPIMS deposition of hard DLC coatings. Surface and Coatings Technology, 2019, 358, 43-49.	2.2	52
626	Gradual degeneration of liquid superlubricity: Transition from superlubricity to ordinary lubrication, and lubrication failure. Tribology International, 2019, 130, 352-358.	3.0	11
627	Fretting wear resistance of DLC hard coatings deposited on nitrided martensitic stainless steel. Journal of Materials Research and Technology, 2019, 8, 259-266.	2.6	18
628	Multiscale boundary frictional performance of diamond like carbon coatings. Tribology International, 2020, 149, 105539.	3.0	13
629	Effect of mesh structure of tetrahedral amorphous carbon (ta-C) coating on friction and wear properties under base-oil lubrication condition. Tribology International, 2020, 147, 105557.	3.0	40
630	Micro-scale impact testing - A new approach to studying fatigue resistance in hard carbon coatings. Tribology International, 2020, 149, 105732.	3.0	22
631	Temperature and velocity dependent friction of a microscale graphite-DLC heterostructure. Friction, 2020, 8, 462-470.	3.4	27
632	Structural Superlubricity Based on Crystalline Materials. Small, 2020, 16, e1903018.	5.2	29
633	Integration of MoST and Graphit-iC coatings for the enhancement of tribological and corrosive properties. Applied Surface Science, 2020, 506, 144961.	3.1	8
634	Preparation of silicon-doped diamond-like carbon films with electrical conductivity by reactive high-power impulse magnetron sputtering combined with a plasma-based ion implantation system. Diamond and Related Materials, 2020, 101, 107635.	1.8	6
635	Friction properties of carbon nanoparticles (nanodiamond and nanoscroll) confined between DLC and a-SiO2 surfaces. Tribology International, 2020, 145, 106153.	3.0	22
636	Current density effect on current-carrying friction of amorphous carbon film. Carbon, 2020, 157, 113-119.	5.4	49
637	New generation carbon particles embedded diamond-like carbon coatings for transportation industry., 2020,, 307-332.		1
638	Comparison of the properties of a-C:H films deposited from methane and heptane precursors: study of the mechanical, chemical and structural properties. Thin Solid Films, 2020, 695, 137733.	0.8	4
639	Structure and properties of a-C films modified with Ir nanoparticles. Materials Today: Proceedings, 2020, 25, 13-16.	0.9	0
640	Structural lubricity in soft and hard matter systems. Nature Communications, 2020, 11, 4657.	5.8	62

#	Article	IF	Citations
641	Structural and Mechanical Analysis of APCVD Deposited Diamond-Like Carbon Thin Films. Silicon, 2021, 13, 4453-4462.	1.8	11
642	The role of methane in the formation of fullerene-like nanostructure in amorphous carbon film deposited by reactive magnetron sputtering. Diamond and Related Materials, 2020, 109, 108018.	1.8	3
643	Corrosion performance of DLC coatings with laser-induced graphitized periodic surface structure. Diamond and Related Materials, 2020, 109, 108046.	1.8	2
644	Study on low velocity cyclic impact wear of amorphous carbon films with different mechanical properties. Surface and Coatings Technology, 2020, 402, 126339.	2.2	10
645	Tribological challenges and advancements in wind turbine bearings: A review. Engineering Failure Analysis, 2020, 118, 104885.	1.8	55
646	Enhanced anticorrosion and antiwear properties of Ti–6Al–4V alloys with laser texture and graphene oxide coatings. Tribology International, 2020, 152, 106475.	3.0	40
647	An Innovative VCN Coating for High-Temperature Tribological Applications via Orthogonal Research. Tribology Transactions, 2020, 63, 956-969.	1.1	1
648	Self-lubricating and high wear resistance mechanism of silver matrix self-lubricating nanocomposite in high vacuum. Vacuum, 2020, 182, 109768.	1.6	12
649	Selected Physicochemical Properties of Diamond Like Carbon (DLC) Coating on Ti-13Nb-13Zr Alloy Used for Blood Contacting Implants. Materials, 2020, 13, 5077.	1.3	6
650	Effect of friction on the contact stress of a coated polymer gear. Friction, 2020, 8, 1169-1177.	3.4	21
651	GA based optimization of tri-bological behaviour of diamond coated tungsten carbide. World Journal of Engineering, 2020, 17, 335-346.	1.0	8
652	Tribochemical Conversion of Methane to Graphene and Other Carbon Nanostructures: Implications for Friction and Wear. ACS Applied Nano Materials, 2020, 3, 8060-8067.	2.4	32
653	Effective Application of Solid Lubricants in Spacecraft Mechanisms. Lubricants, 2020, 8, 74.	1.2	45
654	Effect of chromium doping on high temperature tribological properties of silicon-doped diamond-like carbon films. Tribology International, 2020, 152, 106546.	3.0	13
655	Anti-sand erosion and tribological performance of thick DLC coatings deposited by the filtered cathodic vacuum arc. Applied Surface Science, 2020, 533, 147371.	3.1	23
656	Low resistivity amorphous carbon-based thin films employed as anti-reflective coatings on copper. Thin Solid Films, 2020, 712, 138319.	0.8	6
657	Machine learning driven simulated deposition of carbon films: From low-density to diamondlike amorphous carbon. Physical Review B, 2020, 102, .	1.1	44
658	A new-structured nanocarbon cushion with highly impact-resistant properties. Carbon, 2020, 170, 146-153.	5.4	8

#	Article	IF	CITATIONS
659	Tribochemistry as an Alternative Synthesis Pathway. Lubricants, 2020, 8, 87.	1.2	19
660	A Comprehensive Study about the Role of Crosslink Density on the Tribological Behavior of DLC Coated Rubber. Materials, 2020, 13, 5460.	1.3	6
661	Effect of Thickness on Tribological Behavior of Hydrogen Free Diamond-like Carbon Coating. Coatings, 2020, 10, 243.	1.2	10
662	Laser-induced graphitized periodic surface structure formed on tetrahedral amorphous carbon films. Diamond and Related Materials, 2020, 107, 107909.	1.8	6
664	Tribological behaviors of in-situ textured DLC films under dry and lubricated conditions. Applied Surface Science, 2020, 525, 146581.	3.1	49
665	¹³ C NMR Parameters of Disordered Carbons: Atomistic Simulations, DFT Calculations, and Experimental Results. Journal of Physical Chemistry C, 2020, 124, 12784-12793.	1.5	6
666	Individual and combined effects of introducing DLC coating and textured surfaces in lubricated contacts. Tribology International, 2020, 151, 106440.	3.0	10
667	Constitutive relations for plasticity of amorphous carbon. JPhys Materials, 2020, 3, 035005.	1.8	4
668	Effects of adding hydrocarbon gas to a high-power impulse magnetron sputtering system on the properties of diamond-like carbon films. Thin Solid Films, 2020, 701, 137924.	0.8	8
669	The Critical Raw Materials in Cutting Tools for Machining Applications: A Review. Materials, 2020, 13, 1377.	1.3	89
670	A Strategy for Alleviating Micro Arcing during HiPIMS Deposition of DLC Coatings. Materials, 2020, 13, 1038.	1.3	6
672	Reactive Molecular Dynamics Simulations of Wear and Tribochemical Reactions of Diamond like Carbon Interfaces with Nanoscale Asperities under H2 Gas: Implications for Solid Lubricant Coatings. ACS Applied Nano Materials, 2020, 3, 7297-7304.	2.4	21
673	Synthesis of hard diamond-like carbon films by double-pulse high-power impulse magnetron sputtering. Diamond and Related Materials, 2020, 108, 107996.	1.8	12
674	Effect of surface contamination on XANES analysis of DLC films. Radiation Physics and Chemistry, 2020, 171, 108752.	1.4	3
675	Ultralow-Friction and Ultralow-Wear TiN-Ag Solid Solution Coating in Base Oil. Journal of Physical Chemistry Letters, 2020, 11, 1614-1621.	2.1	19
676	Effect of coatings on rolling contact fatigue and tribological parameters of rolling/sliding contacts under dry/lubricated conditions: a review. Sadhana - Academy Proceedings in Engineering Sciences, 2020, 45, 1.	0.8	12
677	Effects of carbide forming elements Me on residual stress and mechanical properties of DLC films by molecular dynamics simulation. Materials Today Communications, 2020, 23, 100946.	0.9	7
678	How to get noWear? – A new take on the design of in-situ formed high performing low-friction tribofilms. Materials and Design, 2020, 190, 108519.	3.3	25

#	Article	IF	Citations
679	A Comparative Study in the Tribological Behavior of DLC Coatings Deposited by HiPIMS Technology with Positive Pulses. Metals, 2020, 10, 174.	1.0	12
680	Room and High Temperature Tribological Behaviour of W-DLC Coatings Produced by DCMS and Hybrid DCMS-HiPIMS Configuration. Coatings, 2020, 10, 319.	1.2	38
681	Superlubricity of carbon nanostructural films enhanced by graphene nanoscrolls. Materials Letters, 2020, 271, 127748.	1.3	9
682	Microstructural and tribological characterization of DLC coatings deposited by plasma enhanced techniques on steel substrates. Surface and Coatings Technology, 2020, 389, 125615.	2.2	35
683	Structure original of temperature depended superlow friction behavior of diamond like carbon. Diamond and Related Materials, 2020, 107, 107880.	1.8	16
684	Micro and Macro-Tribology Behavior of a Hierarchical Architecture of a Multilayer TaN/Ta Hard Coating. Coatings, 2020, 10, 263.	1.2	10
685	Stress and fracture surface analysis of uncoated and coated 7075-T6 specimens under the rotating bending fatigue loading. Engineering Failure Analysis, 2020, 112, 104512.	1.8	37
686	Development of a Transferable ReaxFF Parameter Set for Carbon- and Silicon-Based Solid Systems. Journal of Physical Chemistry C, 2020, 124, 10007-10015.	1.5	22
687	Superlubricity of carbon nitride coatings in inert gas environments., 2021,, 189-214.		2
688	Diamond-like carbon films and their superlubricity. , 2021, , 215-230.		4
689	Friction of diamond-like carbon: Run-in behavior and environment effects on superlubricity., 2021,, 275-288.		2
690	Tribo-induced interfacial nanostructures stimulating superlubricity in amorphous carbon films. , 2021, , 289-307.		0
691	Superlubricity in carbon nanostructural films: from mechanisms to modulating strategies. , 2021, , 309-332.		2
692	Designing multilayer diamond like carbon coatings for improved mechanical properties. Journal of Materials Science and Technology, 2021, 65, 108-117.	5.6	25
693	Ab initio insights into the interaction mechanisms between boron, nitrogen and oxygen doped diamond surfaces and water molecules. Carbon, 2021, 171, 575-584.	5 . 4	9
694	Determination of sp2 and sp3 phase fractions on the surface of diamond films from C1s, valence band X-ray photoelectron spectra and CKVV X-ray-excited Auger spectra. Applied Surface Science, 2021, 536, 147807.	3.1	25
695	High temperature nanomechanical and nanotribological behavior of sub-5â€nm nitrogen-doped carbon overcoat films. Applied Surface Science, 2021, 535, 147662.	3.1	6
696	Effect of nitrogen (N2) flow rate over the tribological, structural and mechanical properties diamond-like carbon (DLC) thin film. Materials Chemistry and Physics, 2021, 260, 124082.	2.0	12

#	ARTICLE	IF	CITATIONS
697	Synergetic effects of surface texturing and solid lubricants to tailor friction and wear – A review. Tribology International, 2021, 155, 106792.	3.0	268
698	Nanoindentation of Amorphous Carbon: a combined experimental and simulation approach. Acta Materialia, 2021, 203, 116485.	3.8	23
699	Effects of substrate bias voltage on structure and internal stress of amorphous carbon films on \hat{l}^3 -Fe substrate: Molecular dynamics simulation. Computational Materials Science, 2021, 188, 110206.	1.4	6
700	Nonâ€Empirical Law for Nanoscale Atomâ€byâ€Atom Wear. Advanced Science, 2021, 8, 2002827.	5.6	21
701	Improvement of mechanical and tribological performances of carbon nanostructure films by cryogenic treatment. Tribology International, 2021, 156, 106819.	3.0	0
702	Progress towards 3D-printing diamond for medical implants: A review. Annals of 3D Printed Medicine, 2021, 1, 100002.	1.6	10
703	Synthesis and Ex-Situ characterizations of diamond-like carbon coatings for metallic bipolar plates in PEM fuel cells. International Journal of Hydrogen Energy, 2021, 46, 11059-11070.	3.8	25
704	Nanofriction behaviors between silicon-doped diamond-like carbon films under different testing conditions. Computational Materials Science, 2021, 188, 110182.	1.4	9
705	Study on the tribological properties of PVD polymer-like carbon films in air/vacuum/N2 and cycling environments. Surface and Coatings Technology, 2021, 406, 126677.	2.2	9
706	Synergistic effect of surface texturing and coating on the friction between piston ring and cylinder liner contact. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 1298-1311.	1.0	10
707	Tribocorrosion of hard coatings and thin films. , 2021, , 127-171.		0
708	Properties and Classification of Diamond-Like Carbon Films. Materials, 2021, 14, 315.	1.3	85
709	The rise of carbon materials for field emission. Journal of Materials Chemistry C, 2021, 9, 2620-2659.	2.7	28
710	Advancements in emerging superlubricity: A review of the atomistic models, simulation techniques and their applications to explore the state of ultra-low friction. Materials Today: Proceedings, 2021, 42, 884-892.	0.9	5
711	Investigation of Multiparameter Laser Stripping of AlTiN and DLC C Coatings. Materials, 2021, 14, 951.	1.3	4
712	Effect of Titanium Nitride, Diamond-Like Carbon and Chromium Carbonitride Coatings on the Life Time of an AISI M2 Steel Punch Forming Tool. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	1.2	2
714	Effect of Soft X-ray Irradiation on Film Properties of a Hydrogenated Si-Containing DLC Film. Materials, 2021, 14, 924.	1.3	5
715	Diverse Phases of Carbonaceous Materials from Stochastic Simulations. ACS Nano, 2021, 15, 6369-6385.	7.3	10

#	Article	IF	CITATIONS
716	Synergistic and Competitive Effects between Zinc Dialkyldithiophosphates and Modern Generation of Additives in Engine Oil. Lubricants, 2021, 9, 35.	1.2	20
717	Recent Progress on Wearâ€Resistant Materials: Designs, Properties, and Applications. Advanced Science, 2021, 8, e2003739.	5.6	199
718	Coupling Molecular Dynamics and Micromechanics for the Assessment of Friction and Damage Accumulation in Diamond-Like Carbon Thin Films under Lubricated Sliding Contacts. Lubricants, 2021, 9, 30.	1.2	4
719	Anomalous characteristics of nanostructured hydrogenated carbon thin films. Materials Chemistry and Physics, 2021, 262, 124316.	2.0	3
720	Tribo-mechanism of amorphous carbon films under corrosion solution and various mechanical loads. Diamond and Related Materials, 2021, 114, 108318.	1.8	3
721	High temperature nanomechanical properties of sub-5 nm nitrogen doped diamond-like carbon using nanoindentation and finite element analysis. Journal of Applied Physics, 2021, 129, .	1.1	4
722	Study of DLC Formation with Ion-Beam Assisted Magnetron Sputtering Deposition. DEStech Transactions on Materials Science and Engineering, 2021, , .	0.0	0
723	Evaluation of Anti-Adhesion Characteristics of Diamond-Like Carbon Film by Combining Friction and Wear Test with Step Loading and Weibull Analysis. Materials, 2021, 14, 2746.	1.3	1
724	Achieving Good Protection on Ultra-High Molecular Weight Polythene by In Situ Growth of Amorphous Carbon Film. Coatings, 2021, 11, 584.	1.2	2
725	Role of OH Termination in Mitigating Friction of Diamond-like Carbon under High Load: A Joint Simulation and Experimental Study. Langmuir, 2021, 37, 6292-6300.	1.6	11
726	Investigation of carbon ionization in HiPIMS discharge with a hollow cathode magnetron. Plasma Sources Science and Technology, 0, , .	1.3	3
727	Amorphous Carbon Coatings for Total Knee Replacementsâ€"Part II: Tribological Behavior. Polymers, 2021, 13, 1880.	2.0	16
728	Structure and Characterization of TiC/GLC Multilayered Films with Various Bilayers Periods. Coatings, 2021, 11, 787.	1.2	0
729	A review of physical vapor deposition coatings for rolling bearings. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of Engineering Tribology, 2022, 236, 786-803.	1.0	2
730	Comparison between Ar+CH4 cathode and anode coupling chemical vapor depositions of hydrogenated amorphous carbon films. Thin Solid Films, 2021, 729, 138701.	0.8	5
731	Achieving Ultra-Low Friction with Diamond/Metal Systems in Extreme Environments. Materials, 2021, 14, 3791.	1.3	2
733	Effects of diffused hydrogen atoms on thermomechanical properties and contact behavior of a diamond-like carbon film. Journal of Applied Physics, 2021, 130, .	1.1	1
734	Tribological performance and scuffing behaviors of several automobile piston rings mating with chrome-plated cylinder liner. Friction, 2022, 10, 1245-1257.	3.4	17

#	Article	IF	CITATIONS
735	Wear penalty for steel rubbing against hard coatings in reactive lubricants due to tribochemical interactions. Tribology International, 2021, 160, 107010.	3.0	8
736	An alternative approach to the tribological analysis of Si-doped DLC coatings deposited with different bias voltages using Raman spectroscopy mapping. Emergent Materials, 2021, 4, 1595-1604.	3.2	7
737	Molecular dynamics study of the frictional behaviors of diamond-like carbon films. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	7
738	Analysis of Mechanical and Tribological Properties of Silicon Incorporated Diamond like Carbon Nanocomposite Coating. Silicon, 0 , 1 .	1.8	2
739	Effect of nitrogen doping on the microstructure and thermal stability of diamond-like carbon coatings containing silicon and oxygen. Surface and Coatings Technology, 2021, 421, 127479.	2.2	8
740	Application of ALD Thin Films on the Surface of the Surgical Scalpel Blade. Coatings, 2021, 11, 1096.	1.2	6
741	Stress- and Time-Dependent Formation of Self-Lubricating In Situ Carbon (SLIC) Films on Catalytically-Active Noble Alloys. Jom, 2021, 73, 3658-3667.	0.9	4
742	Investigation into deep hole drilling of austenitic steel with advanced tool solutions. International Journal of Advanced Manufacturing Technology, 2022, 118, 1087-1100.	1.5	6
743	Direct observations of tribological behavior in cutting with textured cutting tools. International Journal of Machine Tools and Manufacture, 2021, 168, 103726.	6.2	47
744	Durable superlubricity of hydrogenated diamond-like carbon film against different friction pairs depending on their interfacial interaction. Applied Surface Science, 2021, 560, 150023.	3.1	33
745	Tribological Performance of Diamond-like Nanocomposite Coatings: Influence of Environments and Laser Surface Texturing. Coatings, 2021, 11, 1203.	1.2	5
746	Conformable metal oxide platelets – A smart surface armor for green tribology. Tribology International, 2021, 162, 107138.	3.0	3
747	Research on Ti-GLC/TiCN/TiN composite multilayer coating with ultra-low friction coefficient in various environments. Surfaces and Interfaces, 2021, 26, 101426.	1.5	3
748	Influence of the substrate pre-treatment on the mechanical and corrosion response of multilayer DLC coatings. Diamond and Related Materials, 2021, 118, 108507.	1.8	8
749	Design of low-friction and anti-corrosion a-C:H:SiOx films. Diamond and Related Materials, 2021, 118, 108512.	1.8	9
750	Experimental assessment on machinability performance of CNT and DLC coated HSS tools for hard turning. Diamond and Related Materials, 2021, 119, 108568.	1.8	15
751	Characterization of microstructure and surface properties of GLC film deposited in plasma nitriding system. Diamond and Related Materials, 2021, 119, 108570.	1.8	6
752	Structural, mechanical, and tribological properties of GLC film on a nitrided layer prepared in a glow-discharge plasma nitriding system. Vacuum, 2021, 193, 110543.	1.6	12

#	Article	IF	Citations
753	Effect of normal loads and mating pairs on the tribological properties of diamond-like carbon film. Wear, 2021, 486-487, 204083.	1.5	7
7 54	Topography orientation effects on friction and wear in sliding DLC and steel contacts, part 3: Experiments under dry and lubricated conditions. Wear, 2021, 486-487, 204093.	1.5	7
755	Behavior and interaction of boundary lubricating additives on steel and DLC-coated steel surfaces. Tribology International, 2021, 164, 107199.	3.0	17
756	Effect of hydrogen adsorption on the atomic-scale wear of few-layer graphene. Tribology International, 2021, 164, 107208.	3.0	6
757	Nano-scale coating wear measurement by introducing Raman-sensing underlayer. Journal of Materials Science and Technology, 2022, 96, 285-294.	5.6	9
758	Adhesive Wear Failures. , 2021, , 1-20.		1
759	Graphitic Encapsulation and Electronic Shielding of Metal Nanoparticles to Achieve Metal–Carbon Interfacial Superlubricity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3397-3407.	4.0	20
760	Laser Processing of Tribological DLC Films: An Overview. , 2008, , 571-590.		3
761	Tribofilms in Solid Lubricants. , 2013, , 3760-3767.		18
762	Thin films on silicon. , 2020, , 133-213.		4
763	Nonuniform transitions of heavy-ion irradiated a-C:H films: Structure and antiwear property degradation analysis. Carbon, 2019, 146, 200-209.	5.4	10
764	Infinite Approaching Superlubricity by Three-Dimensional Printed Structures. ACS Nano, 2021, 15, 240-257.	7.3	31
765	Effect of nitrogen in the properties of diamond-like carbon (DLC) coating on Ti ₆ Al ₄ V substrate. Materials Research Express, 2020, 7, 065601.	0.8	15
766	Role of oxygen functional groups in the friction of water-lubricated low-index diamond surfaces. Physical Review Materials, 2018, 2, .	0.9	17
767	Adhesive wear mechanisms in the presence of weak interfaces: Insights from an amorphous model system. Physical Review Materials, 2019, 3, .	0.9	15
768	Effects of thin hard film deposition on fatigue strength of AA7075-T6. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622098050.	1.1	11
769	Friction and Wear of Diamond Like Carbon (DLC) Coatings -A Review. Recent Patents on Mechanical Engineering, 2011, 4, 55-78.	0.2	1
770	Role of Water and Oxygen Molecules in the Lubricity of Carbon Nitride Coatings under a Nitrogen Atmosphere. Tribology Online, 2016, 11, 308-319.	0.2	8

#	Article	IF	CITATIONS
771	Demonstration of Wear Monitoring of Amorphous Carbon Films with Epoxy Resin Underlayer Containing Phosphor. Tribology Online, 2013, 8, 265-271.	0.2	2
772	Comparative Study of Tribomechanical Properties of HiPIMS with Positive Pulses DLC Coatings on Different Tools Steels. Coatings, 2021, 11, 28.	1.2	16
773	Improvement of Sliding Performance for Ball on Disc Tribo-Partners Using Graphite Like Carbon Solid Lubricant Coating. Materials Sciences and Applications, 2018, 09, 191-209.	0.3	1
774	Effects of Fluorine and Silicon Incorporation on Tribological Performance of Diamond-Like Carbon Films. Materials Sciences and Applications, 2019, 10, 170-185.	0.3	3
775	Role of Sandwich Cu Layer in and Effect of Self-Bias on Nanomechanical Properties of Copper/Diamond-Like Carbon Bilayer Films. ISRN Nanotechnology, 2011, 2011, 1-7.	1.3	2
776	Tribological Properties of Fluorinated Amorphous Carbon Thin Films. , 0, , .		3
777	Plasma Deposition of Diamond-Like Carbon. Japanese Journal of Applied Physics, 2011, 50, 01AF01.	0.8	38
778	Non-Destructive Evaluation of Material Properties of Nanoscale Thin-Films Using Ultrafast Optical Pump-Probe Methods. Journal of the Korean Society for Nondestructive Testing, 2012, 32, 115-121.	0.2	4
779	Tribochemistry of superlubricating amorphous carbon films. Chemical Communications, 2021, 57, 11776-11786.	2.2	20
780	Effect of Carbon Configuration on Mechanical, Friction and Wear Behavior of Nitrogen-Doped Diamond-Like Carbon Films for Magnetic Storage Applications. Tribology Letters, 2021, 69, 1.	1.2	6
781	Enhanced Vapor Transmission Barrier Properties via Silicon-Incorporated Diamond-Like Carbon Coating. Polymers, 2021, 13, 3543.	2.0	9
782	Achieving ultraâ€low friction of aâ€C:H film grown on 9Cr18Mo steel for industrial application via programmable high power pulse magnetron sputtering. Surface and Interface Analysis, 2022, 54, 81-91.	0.8	4
783	Cathodic Arc Evaporation of Self-Lubricating TiSiVN Coatings. Journal of Materials Engineering and Performance, 0, , 1 .	1.2	3
784	Particleâ€Induced Erosional Behaviors of Diamondâ€Like Carbon Films. Physica Status Solidi - Rapid Research Letters, 0, , 2100412.	1.2	0
785	Enhancing mechanical and biomedical properties of protheses - Surface and material design. Surfaces and Interfaces, 2021, 27, 101498.	1.5	22
786	Friction between Diamond-Like Carbon (DLC) Films—a Molecular Dynamics Study. , 2009, , 554-555.		0
787	Effect of the Prepared Process on Tribological Properties of Multi-Layer Elastomeric DLC Monolayer., 2009,, 602-605.		0
789	Problem-Solving Methods in Tribology with Surface-Specific Techniques. , 2009, , 351-388.		0

#	Article	IF	Citations
790	The Industrial Perspective. , 2010, , 357-425.		0
791	Using Nanomechanicsto Optimize Coatingsfor Cutting Tools. , 2010, , 217-256.		0
792	Propriétés mécaniques de tribofilms formés dans un contact frottant CuDLC / acier. Materiaux Et Techniques, 2013, 101, 304.	0.3	0
794	GRAPHITE EXPANDED AS A FILM-FORMING MATERIAL ON A STEEL SURFACE. Tribologia, 2017, , 81-85.	0.0	0
795	Friction and Wear of Carbon-Containing Composites. , 2017, , 550-558.		0
796	Abrasive Wear., 2017,, 243-251.		0
797	Solid Lubricants., 2017,, 191-206.		1
798	Lubrication Strategies for Extreme Environments. , 2017, , 213-219.		0
800	In-Situ Nanomechanical Testing in Electron Microscopes., 2018,, 1-47.		1
801	Protecci $ ilde{A}^3$ n de acero para instrumentos quir $ ilde{A}^2$ rgicos con recubrimientos duros en base carbono tipo DLC. Revista Materia, 2018, 23, .	0.1	0
802	In-Situ Nanomechanical Testing in Electron Microscopes. , 2019, , 2143-2188.		0
803	Evaluation of selected properties of coatings in respect of risk elimination of surface damage of stamped parts. Koroze A Ochrana Materialu, 2019, 63, 159-166.	0.4	2
804	Effect of focused nanosecond laser pulse irradiation on microtribological properties of diamond-like films. Quantum Electronics, 2020, 50, 750-755.	0.3	0
805	Angstrom-Scale Transparent Overcoats: Interfacial Nitrogen-Driven Atomic Intermingling Promotes Lubricity and Surface Protection of Ultrathin Carbon. Nano Letters, 2021, 21, 8960-8969.	4.5	5
806	Effect of diamond-like carbon coatings alloying with chromium and molybdenum on the lubricating properties of oils during friction in pair with steel. Journal of Physics: Conference Series, 2021, 2059, 012004.	0.3	0
807	Influence of Carbon: Metal Ratio on Tribological Behavior of Mo-W-C Coating. Applied Sciences (Switzerland), 2021, 11, 10189.	1.3	0
808	Catalytic superlubricity via in-situ formation of graphene during sliding friction on Au@a-C:H films. Carbon, 2022, 186, 180-192.	5.4	26
809	Fatigue behavior of thin hard coated specimens made of 7075. AIP Conference Proceedings, 2020, , .	0.3	3

#	Article	IF	Citations
810	The effect of LFG plasma sputtering power on hardness of carbon thin films on SKD11 steel using target material from battery carbon rods. Eastern-European Journal of Enterprise Technologies, 2020, 2, 24-29.	0.3	0
811	Modeling of high power impulse magnetron sputtering discharges with graphite target. Plasma Sources Science and Technology, 2021, 30, 115017.	1.3	6
812	Surface Analysis and Tribochemistry of Automotive Engine Components. , 2012, , 351-378.		0
813	The Tribological Behavior of the DLC-Coated Engine Surfaces Lubricated with Oils with Nanoadditives. , 0, , .		0
814	T-carbon: Experiments, properties, potential applications and derivatives. Nano Today, 2022, 42, 101346.	6.2	23
815	Effects of Ti Doping on Structure and Internal Stress of Amorphous Carbon Films on the Î ³ -Fe Substrate: Molecular Dynamics Simulation. Langmuir, 2021, 37, 14072-14080.	1.6	7
816	A comprehensive review of the pyrolysis process: from carbon nanomaterial synthesis to waste treatment. Oxford Open Materials Science, 2020, 1 , .	0.5	22
817	Friction and Wear Performance Evaluation of Bio-Lubricants and DLC Coatings on Cam/Tappet Interface of Internal Combustion Engines. Materials, 2021, 14, 7206.	1.3	5
818	Stress-Dependent Sliding-Induced Nanoscale Wear of Diamond-Like Carbon Studied Using <i>in Situ</i> TEM Nanoindentation. SSRN Electronic Journal, 0, , .	0.4	0
819	High-temperature tribological behavior of Ti containing diamond-like carbon coatings with emphasis on running-in coefficient of friction. Surface and Coatings Technology, 2022, 431, 127995.	2.2	16
820	Environmental effects on superlubricity of hydrogenated diamond-like carbon: Understanding tribochemical kinetics in O2 and H2O environments. Applied Surface Science, 2022, 580, 152299.	3.1	9
821	Doping Diamond-Like Carbon Coatings on Rubbing Parts as a Method for Improving Antifriction Properties of Lubricants. Journal of Machinery Manufacture and Reliability, 2021, 50, 516-523.	0.1	0
823	lon energy-induced nanoclustering structure in a-C:H film for achieving robust superlubricity in vacuum. Friction, 2022, 10, 1967-1984.	3.4	12
824	Wear Estimation of DLC Films Based on Energy-Dissipation Analysis: A Molecular Dynamics Study. Materials, 2022, 15, 893.	1.3	2
825	The synergistic mechanism between graphitized tribofilm and graphitized surface of diamond-like carbon film under different temperature environments. Diamond and Related Materials, 2022, 123, 108875.	1.8	12
826	Operando Formation of Van der Waals Heterostructures for Achieving Macroscale Superlubricity on Engineering Rough and Worn Surfaces. Advanced Functional Materials, 2022, 32, .	7.8	31
827	Triboelectrochemical friction control of W- and Ag-doped DLC coatings in water–glycol with ionic liquids as lubricant additives. RSC Advances, 2022, 12, 3573-3583.	1.7	10
828	Well-adhered hydrogenated amorphous carbon thin films on ferrous alloy using silicon-containing interlayers at low temperatures. Vacuum, 2022, 199, 110923.	1.6	3

#	ARTICLE	IF	Citations
829	On the growth of functionally graded self-lubricating layer during a plasma-assisted thermochemical treatment of M50NiL steel. Applied Surface Science, 2022, 584, 152517.	3.1	3
831	Influence of bias patterns on the tribological properties of highly hydrogenated PVD a-C:H films. Surface and Coatings Technology, 2022, 442, 128234.	2.2	4
832	Layered 2D Nanomaterials to Tailor Friction and Wear in Machine Elementsâ€"A Review. Advanced Materials Interfaces, 2022, 9, .	1.9	80
833	Adhesive Wear Failures. Journal of Failure Analysis and Prevention, 2022, 22, 113-138.	0.5	9
834	Antimicrobial and Aging Properties of Ag-, Ag/Cu-, and Ag Cluster-Doped Amorphous Carbon Coatings Produced by Magnetron Sputtering for Space Applications. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10154-10166.	4.0	5
835	Synthesis of diamond crystal growth on tungsten carbide inserts by HFCVD using various seeding powders. Applied Physics A: Materials Science and Processing, 2022, 128, 287.	1.1	2
836	Tribological Characteristics of a-C:H:Si and a-C:H:SiOx Coatings Tested in Simulated Body Fluid and Protein Environment. Materials, 2022, 15, 2082.	1.3	4
837	Wear Study of a Magnetron-Sputtered TiC/a-C Nanocomposite Coating under Media-Lubricated Oscillating Sliding Conditions. Coatings, 2022, 12, 446.	1.2	5
838	AÂComparative Study on Impact Wear of Diamond-Like Carbon Films on H62 and GCr15 Steel. Journal of Materials Engineering and Performance, 0 , 1 .	1.2	2
839	The tribological performance in vacuum of DLC coating treated with graphene spraying top layer. Diamond and Related Materials, 2022, 125, 108998.	1.8	7
840	Evaluation of DLC, MoS2, and Ti3C2T thin films for triboelectric nanogenerators. Nano Energy, 2022, 97, 107185.	8.2	20
841	Stress-dependent adhesion and sliding-induced nanoscale wear of diamond-like carbon studied using in situ TEM nanoindentation. Carbon, 2022, 193, 230-241.	5.4	14
842	Interface bonding and failure mechanism of Ti(001)/Si(001) and TiO2(001)/Si(001) interfaces: A first–principles study. Surfaces and Interfaces, 2022, 30, 101833.	1.5	3
843	Wear properties of a bulk nanocrystalline Fe-1at% Zr alloy. Materials Today Communications, 2022, 31, 103427.	0.9	0
844	Parametric optimisation of friction and wear of a multi-layered a-C:H coating on AISI 52100 steel. Materials Letters, 2022, 318, 132166.	1.3	3
845	Achieving Ultralow Friction and Wear by Tribocatalysis: Enabled by <i>In-Operando</i> I> Formation of Nanocarbon Films. ACS Nano, 2021, 15, 18865-18879.	7.3	42
846	Test of Diamond-Like Coatings with Monocrystalline Carbon for Tribological Purposes. Journal of Friction and Wear, 2021, 42, 478-483.	0.1	0
847	Recent Advancements in Wear-Resistant Coatings Prepared by PVD Methods. Advances in Chemical and Materials Engineering Book Series, 2022, , 174-195.	0.2	0

#	Article	IF	CITATIONS
848	High-Temperature Oxidation Resistance and Tribological Properties of Al2O3/ta-C Coating. Coatings, 2022, 12, 547.	1.2	2
849	Investigation of the structure, composition and tribological characteristics of nanostructured monocrystalline coatings obtained by ion plasma technology. Science Intensive Technologies in Mechanical Engineering, 2022, 2022, 41-48.	0.1	1
850	Tribology of SiC ceramics under lubrication: Features, developments, and perspectives. Current Opinion in Solid State and Materials Science, 2022, 26, 101000.	5.6	23
851	Unusual High Hardness and Load-Dependent Mechanical Characteristics of Hydrogenated Carbon–Nitrogen Hybrid Films. ACS Applied Materials & Samp; Interfaces, 2022, 14, 20220-20229.	4.0	3
852	Evaluation of Wear Measurement with Radioactive Isotopes for DLC Coatings Affected by Abrasive Particles. Tribology Letters, 2022, 70, .	1.2	1
853	Studies on Wear of a Milling Chuck for a Production Line of Specialized Elements Used in Lockstitch Machines. Materials, 2022, 15, 3402.	1.3	О
854	Effect of a-C:H:Si interlayers on the mechanical and superlubricious properties of hydrogenated amorphous carbon films. Thin Solid Films, 2022, 753, 139275.	0.8	4
855	Design architecture of colorful Si-DLC/PLC nanostructured multilayer films for robust superlubricity at high contact stress in dry N2 atmosphere. Applied Surface Science, 2022, 595, 153535.	3.1	10
856	Influencing mechanisms of deposition bias voltage on superlubricious a-C:H films: Key role of nanoclustering structures in controlling structural evolution of transfer film. Carbon, 2022, 196, 499-509.	5.4	9
857	Time evolution of neutral and charged species in Ar/C ₂ H ₂ capacitively-coupled RF discharges. Plasma Sources Science and Technology, 2022, 31, 065003.	1.3	9
858	A review on diamond-like carbon-based films for space tribology. Materials Science and Technology, 2022, 38, 1151-1167.	0.8	12
859	Effect of Ti/Si and Ti/TiN/Si interlayers on the structure, properties, and tribological behavior of an a-C film deposited onto a C17200 copper-beryllium alloy. Surface and Coatings Technology, 2022, 441, 128561.	2.2	5
860	Challenges and coating solutions for wear and corrosion inside Lead Bismuth Eutectic: A review. Surface and Coatings Technology, 2022, 441, 128542.	2.2	33
861	Tribological and Mechanical Performance of Ti ₂ AlC and Ti ₃ AlC ₂ Thin Films. Advanced Engineering Materials, 2022, 24, .	1.6	10
862	Friction characteristics of amorphous carbon coating against various 3d-transition metals. Tribology International, 2022, 174, 107690.	3.0	13
863	Advantages of Using Triboscopic Imaging: Case Studies on Carbon Coatings in Non-Lubricated Friction Conditions. Materials, 2022, 15, 4317.	1.3	0
864	Nano- and Micro-Scale Impact Testing of Hard Coatings: A Review. Coatings, 2022, 12, 793.	1.2	12
865	Super-Hard DLC Coatings as an Alternative to Polycrystalline Diamond for Cutting Tools: Predictive Analysis of Aluminium Alloy Surface Quality. Lubricants, 2022, 10, 135.	1.2	3

#	Article	IF	CITATIONS
866	Simultaneous deposition of DLC film on the internal surface of multiple pipes. Diamond and Related Materials, 2022, 127, 109187.	1.8	7
867	Surface Mo or Ni-Enrichment Applied to Granulated Self-Lubricating Composites: Microstructural and Tribological Evaluation. Frontiers in Mechanical Engineering, 0, 8, .	0.8	1
868	Preparation and Performance Study of Si-DLC Based on Ion Deposition of Different Multiple Gradient Transition Layers. Coatings, 2022, 12, 882.	1.2	2
869	Scratch-induced deformation and damage behavior of doped diamond-like carbon films under progressive normal load of Vickers indenter. Thin Solid Films, 2022, 756, 139351.	0.8	6
870	Micro Forming and its Applications: An Overview. Key Engineering Materials, 0, 924, 73-91.	0.4	18
871	Probing the ultra-low friction mechanism of hydrogenated carbon films with controllable fullerene-like nano-structures grown with different bias voltage. Tribology International, 2022, 175, 107796.	3.0	2
872	Tribological Behavior of Diamond-like Carbon Coatings under Boundary Friction: Part I. Structure, Testing Methods, Lubrication by Adsorption Layers. Inorganic Materials: Applied Research, 2022, 13, 893-906.	0.1	7
873	Graphene Nanoplatelet Nanocomposites for Lubricated Environments. SSRN Electronic Journal, 0, , .	0.4	O
874	Taguchi method and Box-Behnken design approach for process parameter optimization of magnetite (Fe ₃ O ₄) coating developed on stainless steel 410 grade by hot alkaline treatment. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237, 1583-1594.	1.4	2
875	Progress in Superlubricity Across Different Media and Material Systems—A Review. Frontiers in Mechanical Engineering, 0, 8, .	0.8	16
876	Progression of galling during punching of AA5754 Al sheets with DLC-coated and uncoated steel tools. Journal of Manufacturing Processes, 2022, 82, 245-252.	2.8	2
877	Ab initio insights into the interaction mechanisms between H2, H2O, and O2 molecules with diamond surfaces. Carbon, 2022, 199, 497-507.	5.4	8
878	Effect of tribologically-induced changes in surface termination of silicon-containing diamond-like carbon coatings on the resistance to biomolecule adsorption. Carbon, 2022, 199, 132-140.	5. 4	2
879	Friction and wear of a-C:H films deposited at different bias in air and NaCl solution. Tribology International, 2022, 175, 107863.	3.0	1
880	Tuning super-lubricity via molecular adsorption. Applied Materials Today, 2022, 29, 101615.	2.3	1
881	Structure-property relationships in carbon electrochemistry. Carbon, 2022, 200, 375-389.	5.4	7
882	Spatial variation in nanoscale wear behavior of chemical vapor deposited monolayer WS2. Applied Surface Science, 2022, 605, 154783.	3.1	4
883	Probing the Low Friction Mechanism of Hydrogen-Free Dlc Film in Oxygen and Nitrogen Environments by First-Principles Calculations and Molecular Dynamics Simulation. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
884	Diamond-like carbon films for tribological modification of rubber. Nanotechnology Reviews, 2022, 11, 2839-2856.	2.6	5
885	Correlative trends between tribological and electronic properties of dry lubricants: Influence of humidity and dopants. Tribology International, 2023, 177, 107951.	3.0	0
886	Tribo-chemical wear of various 3d-transition metals against DLC: Influence of tribo-oxidation and low-shear transferred layer. Tribology International, 2023, 177, 107938.	3.0	5
887	Structural lubricity of physisorbed gold clusters on graphite and its breakdown: Role of boundary conditions and contact lines. Frontiers in Chemistry, 0, 10 , .	1.8	2
888	The role of cermet interlayer on tribological behaviors of DLC/Cr3C2–NiCr duplex coating from the perspective of carbonaceous transfer film formation. Ceramics International, 2022, 48, 36945-36952.	2.3	4
889	First-Principles Study on the Nanofriction Properties of Diamane: The Thinnest Diamond Film. Nanomaterials, 2022, 12, 2939.	1.9	5
890	Definition of Atomic-Scale Contact: What Dominates the Atomic-Scale Friction Behaviors?. Langmuir, 2022, 38, 11699-11706.	1.6	11
891	Low Friction and Wear of a-C:H Films by Lubrication of 3D Graphene/Hexagonal Boron Nitride Composite in Atmospheric Environment. Journal of Materials Engineering and Performance, 0, , .	1.2	0
893	Adhesion, tensile and shear properties of a-C/TiC interface: A first-principles study. Diamond and Related Materials, 2022, 130, 109416.	1.8	5
894	Effects of Dopants on Scratch Responses of Diamond-Like Carbon Films by Rockwell C Diamond Indenter. Journal of Materials Engineering and Performance, 0, , .	1.2	0
895	The effect of diamond like carbon coating on the wear resistance at dry sliding conditions. Materials Research Express, 2022, 9, 116504.	0.8	0
896	Genesis of Superlow Friction in Strengthening Si-DLC/PLC Nanostructured Multilayer Films for Robust Superlubricity at Ultrahigh Contact Stress. ACS Applied Materials & Samp; Interfaces, 2022, 14, 51564-51578.	4.0	2
898	Distinct effects of endogenous hydrogen content and exogenous hydrogen supply on superlubricity of diamond-like carbon. Carbon, 2023, 202, 61-69.	5.4	4
899	Influence of mechanical properties of coating and substrate on wear performance of HDLC and TiN-coated AISI 5140 alloy steel. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892211324.	1.4	1
900	Fretting behaviors of self-mated diamond-like carbon films: The evolution of fretting regime and transfer film. Carbon, 2023, 203, 695-705.	5.4	7
901	Adhesion, friction and tribochemical reactions at the diamond–silica interface. Carbon, 2023, 203, 601-610.	5.4	10
902	Friction and wear performance of hydrogenated diamond-like coatings with non-metal element complex dopants against alumina in ambient air. Wear, 2023, 514-515, 204571.	1.5	3
903	A review on multifunctional bioceramic coatings in hip implants for osteointegration enhancement. Applied Surface Science Advances, 2023, 13, 100353.	2.9	5

#	Article	IF	CITATIONS
904	Effect of C2H2 flow rate and a Ti/TiN/TiCN interlayer on the structure, mechanical and tribological properties of a-C:H films deposited using a hybrid PVD/PECVD process with an anode-layer ion source. Vacuum, 2023, 209, 111753.	1.6	6
905	Machinability Performance Investigation of TiAlN-, DLC-, and CNT-Coated Tools during Turning of Difficult-to-Cut Materials. Journal of Nanomaterials, 2022, 2022, 1-15.	1.5	3
906	Comparison of mechanical and tribological properties of diamond-like carbon coatings doped with Europium and Gadolinium produced by HiPIMS. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 0, , 095440542211365.	1.5	4
907	Atomic Cross-Talk at the Interface: Enhanced Lubricity and Wear and Corrosion Resistance in Sub 2 nm Hybrid Overcoats via Strengthened Interface Chemistry. Nano Letters, 2022, 22, 9795-9804.	4.5	2
908	Long-term low-friction of Ti-overcoated and-doped DLCs: Robustly developed carbonous transfer layer with titanium. Carbon, 2023, 204, 268-283.	5.4	10
909	Elasto-hydrodynamic lubrication analysis of a porous misaligned crankshaft bearing operating with nanolubricants. Mechanics and Industry, 2023, 24, 2.	0.5	1
910	A review of plasma-assisted deposition methods for amorphous carbon thin and ultrathin films with a focus on the cathodic vacuum arc technique. Journal of Materials Research, 2023, 38, 586-616.	1.2	1
911	Surface modification technologies for enhancing the tribological properties of cemented carbides: A review. Tribology International, 2023, 180, 108257.	3.0	14
912	Hydrogenâ€Enhanced Catalytic Conversion of Amorphous Carbon to Graphene for Achieving Superlubricity. Small, 2023, 19, .	5,2	7
914	X-ray photoemission electron microscopy observation of wear tracks on hydrogenated amorphous carbon films after ball-on-disk tests. Diamond and Related Materials, 2023, 132, 109682.	1.8	0
915	Probing the low friction mechanism of hydrogen-free DLC film in oxygen and nitrogen environments by first-principles calculations and molecular dynamics simulation. Surface and Coatings Technology, 2023, 455, 129219.	2.2	11
916	Contact size in fretting., 2023, , 201-227.		0
917	Effect of Load on Tribological Characteristics of H-AlSi24Cu3.8Mg0.8 Alloy Under Dry, Lubricated, and Coated (a–c: H) Sliding Conditions. Advances in Materials Science and Engineering, 2023, 2023, 1-15.	1.0	0
918	Understanding friction mechanisms of Si-DLC/steel interfaces under aqueous lubrication. RSC Advances, 2023, 13, 10322-10337.	1.7	1
919	Tribological Properties of Diamond-Like Carbon, TiAlN, and Diamond-Like Carbon/TiAlN Coatings Deposited on Carburized 18CrNi4A Steel for Heavy-Duty Aerospace Transmission Components. Journal of Materials Engineering and Performance, 2024, 33, 601-617.	1.2	0
920	The improvement of diamond-like carbon coatings for tribological and tribo-corrosion applications in automobile engines: an updated review study. International Journal of Advanced Manufacturing Technology, 2023, 126, 2295-2322.	1.5	7
921	In situ Growth and Characterization of Lubricious Carbon-Based Films Using Colloidal Probe Microscopy. Tribology Letters, 2023, 71, .	1.2	1
922	Possible Origin of D- and G-band Features in Raman Spectra of Tribofilms. Tribology Letters, 2023, 71, .	1.2	6

#	Article	IF	CITATIONS
923	Effect of atomic oxygen erosion on mechanical and tribological properties of Cr and B doped hydrogen-containing diamond-like carbon films. Diamond and Related Materials, 2023, 135, 109813.	1.8	5
924	Ultra-low friction of ascorbic acid as polyethylene glycol additive in graphite-like carbon film/bearing steel interface. Diamond and Related Materials, 2023, 135, 109882.	1.8	2
925	Effect of a DLC film on the sliding-wear behaviour of Ti6Al4V: Implications for dental implants. Surface and Coatings Technology, 2023, 460, 129409.	2.2	1
926	Effect of tail time of discharge current on film properties in diamond-like carbon deposition by high-frequency inclusion high-power impulse magnetron sputtering. Diamond and Related Materials, 2023, 135, 109868.	1.8	3
927	Revealing the structure-property relationships of amorphous carbon tribofilms on platinum-gold surfaces. Wear, 2023, 522, 204690.	1.5	4
928	Tribological behavior of H-DLC and H-free DLC coatings on bearing materials under the influence of DC electric current discharges. Wear, 2023, 522, 204709.	1.5	6
929	Evaluation of the wear-resistance of DLC-coated hard-on-soft pairings for biomedical applications. Wear, 2023, 523, 204728.	1.5	5
930	Utilising H/E to predict fretting wear performance of DLC coating systems. Tribology International, 2023, 185, 108524.	3.0	4
931	Fatigue of Light Alloys. , 2023, , 91-115.		0
932	Friction-induced reconstruction of sliding interface and low friction mechanism of WC/a-C films. Materials and Design, 2023, 226, 111640.	3.3	1
933	Operando formation of multiphase heterostructure for achieving macroscale superlubricity with ultra-long lifetime under high contact stress. Materials Today Chemistry, 2023, 28, 101363.	1.7	2
934	Diamond-like carbon graphene nanoplatelet nanocomposites for lubricated environments. Carbon, 2023, 205, 485-498.	5.4	6
935	Superlubricity transition from ball bearing to nanocoating in the third-body lubrication. Tribology International, 2023, 181, 108320.	3.0	1
937	The Effects of Hemisphere Dome Orientation on the Structure of Diamond-like Carbon Film Prepared Using Ion Beam Assisted Deposition. Materials, 2023, 16, 1773.	1.3	1
938	Lubricity of chelated orthoborate-phosphonium ionic liquids on tetrahedral amorphous carbon and steel surfaces. Journal of Molecular Liquids, 2023, 378, 121571.	2.3	4
939	Tuning of solid-to-solid structural transitions in amorphous carbon films by optical pumping and chemical modification. APL Materials, 2023, 11, 031106.	2.2	0
940	On the wide range frequency and voltage dependence of electrical features and density of surface states of the Al/(Cu:DLC)/p-Si/Au Schottky diodes (SDs). Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	5
941	Impact of DLC Coating Deposition on the Fatigue Strength of Al-7075-T6 Aluminum Alloy. Journal of Material Science and Technology Research, 0, 10, 12-18.	0.2	O

#	ARTICLE	IF	CITATIONS
942	Superlubricity with Graphitization in Ti-Doped DLC/Steel Tribopair: Response on Humidity and Temperature. ACS Applied Materials & Samp; Interfaces, 2023, 15, 19715-19729.	4.0	7
943	OPTIMIZATION OF DIAMOND-LIKE CARBON COATINGS FOR MECHANICAL AND TRIBOLOGICAL APPLICATIONS. REVIEW., 2023,, 74-93.		0
944	Mechanism on heterogeneous transfer film formed by diamond-like carbon film under molybdenum disulfide hybrid polyethylene glycol lubrication. Carbon, 2023, 210, 118030.	5.4	4
945	Effects of Element Doping on the Structure and Properties of Diamond-like Carbon Films: A Review. Lubricants, 2023, 11, 186.	1.2	5