Tactile Sensory Substitution Studies

Annals of the New York Academy of Sciences 1013, 83-91 DOI: 10.1196/annals.1305.006

Citation Report

#	Article	IF	CITATIONS
1	Science and Technology Integration for Increased Human Potential and Societal Outcomes. Annals of the New York Academy of Sciences, 2004, 1013, 1-16.	3.8	50
2	COGNITIVE AND BRAIN MECHANISMS IN SENSORY SUBSTITUTION OF VISION: A CONTRIBUTION TO THE STUDY OF HUMAN PERCEPTION. Journal of Integrative Neuroscience, 2005, 04, 489-503.	1.7	20
3	Using spatial vibrotactile cues to direct visual attention in driving scenes. Transportation Research Part F: Traffic Psychology and Behaviour, 2005, 8, 397-412.	3.7	277
4	Beyond sensory substitution—learning the sixth sense. Journal of Neural Engineering, 2005, 2, R13-R26.	3.5	165
5	Optimizing the Use of an Artificial Tongue-Placed Tactile Biofeedback for Improving Ankle Joint Position Sense in Humans. , 2006, 2006, 6029-32.		6
6	Consciousness and the Self-Sensing Brain: Implications for Feeling and Meaning. American Journal of Psychology, 2006, 119, 205-222.	0.3	0
8	A Navigation Aid for the Blind Using Tactile-Visual Sensory Substitution. , 2006, 2006, 6289-92.		103
9	Improving human ankle joint position sense using an artificial tongue-placed tactile biofeedback. Neuroscience Letters, 2006, 405, 19-23.	2.1	24
10	Brain plasticity: From pathophysiological mechanisms to therapeutic applications. Journal of Clinical Neuroscience, 2006, 13, 885-897.	1.5	293
11	Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Physics of Life Reviews, 2006, 3, 93-118.	2.8	173
12	Intraocular retinal prosthesis. IEEE Engineering in Medicine and Biology Magazine, 2006, 25, 60-66.	0.8	42
13	Functional Cerebral Reorganization for Auditory Spatial Processing and Auditory Substitution of Vision in Early Blind Subjects. Cerebral Cortex, 2006, 17, 457-465.	2.9	153
14	Microstimulation of the somatosensory cortex can substitute for vibrissa stimulation during Pavlovian conditioning. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10052-10057.	7.1	46
15	AUTONOMOUS LEARNING OF THE SEMANTICS OF INTERNAL SENSORY STATES BASED ON MOTOR EXPLORATION. International Journal of Humanoid Robotics, 2007, 04, 211-243.	1.1	19
16	Recent developments in the study of tactile attention Canadian Journal of Experimental Psychology, 2007, 61, 196-207.	0.8	69
17	The Body Surface as a Communication System: The State of the Art after 50 Years. Presence: Teleoperators and Virtual Environments, 2007, 16, 655-676.	0.6	96
18	The effects of sensory impairments on product experience and personal well-being. Ergonomics, 2007, 50, 2026-2048.	2.1	66
19	The cognitive and neural correlates of "tactile consciousnessâ€: A multisensory perspective. Consciousness and Cognition, 2008, 17, 370-407.	1.5	145

#	Article	IF	Citations
20	Spatial organisation in passive tactile perception: Is there a tactile field?. Acta Psychologica, 2008, 128, 355-360.	1.5	9
21	MULTISENSORY PRODUCT EXPERIENCE. , 2008, , 133-161.		95
22	Dissipation and spontaneous symmetry breaking in brain dynamics. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 304042.	2.1	63
23	A Sensorimotor Approach to Sound Localization. Neural Computation, 2008, 20, 603-635.	2.2	50
24	Assessing the effect of vibrotactile feedback during continuous multidirectional platform motion: A frequency domain approach. , 2009, 2009, 6910-3.		7
25	Electrotactile Feedback of Sway Position Improves Postural Performance during Galvanic Vestibular Stimulation. Annals of the New York Academy of Sciences, 2009, 1164, 492-498.	3.8	22
26	Tactile sensory substitution: Models for enaction in HCl. Interacting With Computers, 2009, 21, 38-53.	1.5	99
27	Enhanced Perception for Visually Impaired People. , 2009, , .		5
28	Proton magnetic resonance spectroscopy (1H-MRS) reveals the presence of elevated myo-inositol in the occipital cortex of blind subjects. NeuroImage, 2009, 47, 1172-1176.	4.2	29
29	Assessment of Vibrotactile Feedback on Postural Stability During Pseudorandom Multidirectional Platform Motion. IEEE Transactions on Biomedical Engineering, 2010, 57, 944-952.	4.2	39
30	Touch for socioemotional and physical well-being: A review. Developmental Review, 2010, 30, 367-383.	4.7	413
31	Effects of electrotactile vestibular substitution on rehabilitation of patients with bilateral vestibular loss. Neuroscience Letters, 2010, 476, 123-126.	2.1	41
32	On the Design of Miniature Haptic Devices for Upper Extremity Prosthetics. IEEE/ASME Transactions on Mechatronics, 2010, 15, 27-39.	5.8	81
33	A tensor algebraic framework for the intuitive exploration of sensory substitution spaces. , 2010, , .		1
34	Cognitive infocommunications: CogInfoCom. , 2010, , .		105
35	An interaction-based model for auditory substitution of tactile percepts. , 2010, , .		13
36	Spatially distributed tactile feedback for kinesthetic motion guidance. , 2010, , .		54
37	Towards a numerically tractable model for the auditory substitution of tactile percepts. , 2010, , .		0

#	ARTICLE	IF	CITATIONS
38	Visual feedback techniques for telemanipulation and system status sensualization. , 2010, , .		1
39	An adaptive tuning model for cognitive info-communication channels. , 2011, , .		2
40	Tactile aesthetics: towards a definition of its characteristics and neural correlates. Social Semiotics, 2011, 21, 569-589.	1.1	28
41	Tongue-Based Biofeedback for Balance in Stroke: Results of an 8-Week Pilot Study. Archives of Physical Medicine and Rehabilitation, 2011, 92, 1364-1370.	0.9	33
42	Vestibular rehabilitation with biofeedback in patients with central imbalance. Brazilian Journal of Otorhinolaryngology, 2011, 77, 356-361.	1.0	16
43	Navigation with a sensory substitution device in congenitally blind individuals. NeuroReport, 2011, 22, 342-347.	1.2	119
44	To what extent do Gestalt grouping principles influence tactile perception?. Psychological Bulletin, 2011, 137, 538-561.	6.1	80
45	What is the most effective rehabilitation approach for patients with bilateral vestibular hypofunction?. Audiological Medicine, 2011, 9, 52-58.	0.4	0
46	Balance rehabilitation therapy by tongue electrotactile biofeedback in patients with degenerative cerebellar disease. NeuroRehabilitation, 2012, 31, 429-434.	1.3	37
47	The Body-Machine Interface: A New Perspective on an Old Theme. Journal of Motor Behavior, 2012, 44, 419-433.	0.9	73
48	Haptic Feedback Enhances Grip Force Control of sEMG-Controlled Prosthetic Hands in Targeted Reinnervation Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 798-805.	4.9	118
49	Cell phone based balance trainer. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 10.	4.6	111
50	†Visual' Acuity of the Congenitally Blind Using Visual-to-Auditory Sensory Substitution. PLoS ONE, 2012, 7, e33136.	2.5	99
51	Sensory Augmentation for the Blind. Frontiers in Human Neuroscience, 2012, 6, 37.	2.0	61
52	Minimalist Approach to Perceptual Interactions. Frontiers in Human Neuroscience, 2012, 6, 98.	2.0	40
53	Stressing the Flesh: In Defense of Strong Embodied Cognition. Philosophy and Phenomenological Research, 2013, 86, 590-617.	0.8	10
54	Distributed Cognition: An Ectoderm-Centric Perspective. Biosemiotics, 2013, 6, 337-350.	1.4	11
55	The effect of vibrotactile feedback on postural sway during locomotor activities. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 93.	4.6	54

#	Article	IF	CITATIONS
56	Tactile-Sight: A Sensory Substitution Device Based on Distance-Related Vibrotactile Flow. International Journal of Advanced Robotic Systems, 2013, 10, 272.	2.1	25
57	Clinical Tests of Ultra-Low Vision Used to Evaluate Rudimentary Visual Perceptions Enabled by the BrainPort Vision Device. Translational Vision Science and Technology, 2013, 2, 1.	2.2	44
58	A Depth-Based Head-Mounted Visual Display to Aid Navigation in Partially Sighted Individuals. PLoS ONE, 2013, 8, e67695.	2.5	83
59	Case report: post-stroke interventional BCI rehabilitation in an individual with preexisting sensorineural disability. Frontiers in Neuroengineering, 2014, 7, 18.	4.8	40
60	Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions. Frontiers in Systems Neuroscience, 2014, 8, 190.	2.5	24
61	Applications of sensory feedback in motorized upper extremity prosthesis: a review. Expert Review of Medical Devices, 2014, 11, 499-511.	2.8	128
62	See ColOr: an extended sensory substitution device for the visually impaired. Journal of Assistive Technologies, 2014, 8, 77-94.	0.8	9
63	Playing vibrotactile music: A comparison between the Vibrochord and a piano keyboard. International Journal of Human Computer Studies, 2014, 72, 431-439.	5.6	7
64	SELP: A general-purpose framework for learning the norms from saliencies in spatiotemporal data. Neurocomputing, 2014, 138, 41-60.	5.9	8
65	Cortical plasticity and preserved function in early blindness. Neuroscience and Biobehavioral Reviews, 2014, 41, 53-63.	6.1	129
66	Navigating from a Depth Image Converted into Sound. Applied Bionics and Biomechanics, 2015, 2015, 1-9.	1.1	30
67	Sensory Substitution <i>is</i> Substitution. Mind and Language, 2015, 30, 209-233.	2.3	5
69	Cognitive Infocommunications (CogInfoCom). , 2015, , .		338
70	The Functional Performance of the BrainPort V100 Device in Persons who Are Profoundly Blind. Journal of Visual Impairment and Blindness, 2016, 110, 77-88.	0.7	32
71	Are Supramodality and Cross-Modal Plasticity the Yin and Yang of Brain Development? From Blindness to Rehabilitation. Frontiers in Systems Neuroscience, 2016, 10, 89.	2.5	65
72	Extending human proprioception to cyber-physical systems. , 2016, , .		0
73	Non-optic vision: Beyond synesthesia?. Brain and Cognition, 2016, 107, 24-29.	1.8	1
74	Audio–Vision Substitution for Blind Individuals: Addressing Human Information Processing CapacityÂLimitations. IEEE Journal on Selected Topics in Signal Processing, 2016, 10, 924-931.	10.8	21

#	Article	IF	CITATIONS
75	Vibrotactile sensory substitution on personal navigation: Remotely controlled vibrotactile feedback wearable system to aid visually impaired. , 2016, , .		8
76	The effects of duration and frequency on the perception of vibrotactile stimulation on the neck. , 2016, , .		7
77	Galileo's Dagger. Perception, 2016, 45, 246-247.	1.2	0
78	Using category theory to assess the relationship between consciousness and integrated information theory. Neuroscience Research, 2016, 107, 1-7.	1.9	45
80	Effects of sensory augmentation on postural control and gait symmetry of transfemoral amputees: a case description. Medical and Biological Engineering and Computing, 2016, 54, 1579-1589.	2.8	26
81	Top-down influence on the visual cortex of the blind during sensory substitution. NeuroImage, 2016, 125, 932-940.	4.2	34
82	Interactive spatial sonification for non-visual exploration of virtual maps. International Journal of Human Computer Studies, 2016, 85, 4-15.	5.6	35
83	Felt Reality and the Opacity of Perception. Topoi, 2017, 36, 299-309.	1.3	20
84	Multimodal Perception of Histological Images for Persons Who Are Blind or Visually Impaired. ACM Transactions on Accessible Computing, 2017, 9, 1-27.	2.4	6
85	The role of sensory augmentation for people with vestibular deficits: Real-time balance aid and/or rehabilitation device?. Journal of Vestibular Research: Equilibrium and Orientation, 2017, 27, 63-76.	2.0	34
86	Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals. Frontiers in Human Neuroscience, 2017, 11, 28.	2.0	5
87	Perceived Intensity and Discrimination Ability for Lingual Electrotactile Stimulation Depends on Location and Orientation of Electrodes. Frontiers in Human Neuroscience, 2017, 11, 186.	2.0	11
88	Communicating through Touch: Macro Fiber Composites for Tactile Stimulation on the Abdomen. IEEE Transactions on Haptics, 2018, 11, 174-184.	2.7	12
89	Technologies to Access Space Without Vision. Some Empirical Facts and Guiding Theoretical Principles. , 2018, , 53-75.		3
90	Research on Tactile Substitution Technology Based on Imitation Eagle Vision. , 2018, , .		0
91	Screen navigation system for visually impaired people. Journal of Enabling Technologies, 2018, 12, 114-128.	1.2	2
92	Potential Mechanisms of Sensory Augmentation Systems on Human Balance Control. Frontiers in Neurology, 2018, 9, 944.	2.4	56
93	Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm. PLoS ONE, 2018, 13, e0199389.	2.5	31

#	Article	IF	CITATIONS
94	Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: a randomized preliminary study. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 5.	4.6	66
95	Automatically Evaluating Balance: A Machine Learning Approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 179-186.	4.9	23
96	Neuromodulation to improve gait and balance function using a sensory neuroprosthesis in people who report insensate feet – A randomized control cross-over study. PLoS ONE, 2019, 14, e0216212.	2.5	13
97	Immediate improvement of speech-in-noise perception through multisensory stimulation via an auditory to tactile sensory substitution. Restorative Neurology and Neuroscience, 2019, 37, 155-166.	0.7	20
98	Influence of LED-based assistive lighting solutions on the autonomous mobility of low vision people. Building and Environment, 2019, 157, 172-184.	6.9	4
99	A case of visuo-auditory sensory substitution in rats. Behavioural Processes, 2019, 164, 157-166.	1.1	0
100	The frequency of tactile adaptation systematically biases subsequent frequency identification*. , 2019, , \cdot		0
101	Effect of vibration characteristics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper limb amputees. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 138.	4.6	14
102	Effects of long-term vestibular rehabilitation therapy with vibrotactile sensory augmentation for people with unilateral vestibular disorders – A randomized preliminary study. Journal of Vestibular Research: Equilibrium and Orientation, 2020, 29, 323-334.	2.0	19
103	Are critical periods reversible in the adult brain? Insights on cortical specializations based on sensory deprivation studies. Neuroscience and Biobehavioral Reviews, 2020, 116, 494-507.	6.1	33
104	The Effects of a Wearable Sensory Prosthesis on Gait and Balance Function After 10 Weeks of Use in Persons With Peripheral Neuropathy and High Fall Risk – The walk2Wellness Trial. Frontiers in Aging Neuroscience, 2020, 12, 592751.	3.4	12
105	Enhanced Pitch Discrimination for Cochlear Implant Users with a New Haptic Neuroprosthetic. Scientific Reports, 2020, 10, 10354.	3.3	21
106	Task-selectivity in the sensory deprived brain and sensory substitution approaches for clinical practice. , 2020, , 321-342.		1
107	Exploration of a novel physical therapy protocol that uses a sensory substitution device to improve the standing postural balance of children with balance disorders. Physiotherapy Theory and Practice, 2020, , 1-11.	1.3	2
108	Wearable Assistive Tactile Communication Interface Based on Integrated Touch Sensors and Actuators. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1344-1352.	4.9	68
109	Injecting Information into the Mammalian Cortex: Progress, Challenges, and Promise. Neuroscientist, 2021, 27, 129-142.	3.5	6
110	Brain-Machine Interfaces to Assist the Blind. Frontiers in Human Neuroscience, 2021, 15, 638887.	2.0	19
111	A computer aided drawing system evaluation with early and late blind users. Assistive Technology, 2021, , 1-10.	2.0	3

#	Article	IF	CITATIONS
112	Deciphering Sounds Through Patterns of Vibration on the Skin. Neuroscience, 2021, 458, 77-86.	2.3	25
113	Sensory Vision Substitution using Tactile Stimulation. , 2021, , .		1
114	FeelMusic: Enriching Our Emotive Experience of Music through Audio-Tactile Mappings. Multimodal Technologies and Interaction, 2021, 5, 29.	2.5	9
115	Electro-Haptic Stimulation: A New Approach for Improving Cochlear-Implant Listening. Frontiers in Neuroscience, 2021, 15, 581414.	2.8	8
116	SoundSight: a mobile sensory substitution device that sonifies colour, distance, and temperature. Journal on Multimodal User Interfaces, 2022, 16, 107-123.	2.9	9
117	Cortical Plasticity and Reorganization in Severe Vision Loss. , 2011, , 77-92.		2
118	Large-Scale Brain Plasticity Following Blindness and the Use of Sensory Substitution Devices. , 2010, , 351-380.		16
119	Developing Virtual Environments for Learning and Enhancing Skills for theÂBlind: Incorporating User-Centered and Neuroscience Based Approaches. Virtual Reality Technologies for Health and Clinical Applications, 2019, , 361-385.	0.8	2
120	Kognitive Leistungen. , 2013, , 221-500.		1
121	The Development of Visual Prosthetic Devices to Restore Vision to the Blind. , 2009, , 723-742.		2
122	Building the bionic eye: an emerging reality and opportunity. Progress in Brain Research, 2011, 192, 3-15.	1.4	23
123	Using haptic stimulation to enhance auditory perception in hearing-impaired listeners. Expert Review of Medical Devices, 2021, 18, 63-74.	2.8	17
124	Reading with the Tongue: Individual Differences Affect the Perception of Ambiguous Stimuli with the BrainPort. , 2020, , .		8
125	Neurophysiological Mechanisms Underlying Plastic Changes and Rehabilitation following Sensory Loss in Blindness and Deafness. Frontiers in Neuroscience, 2011, , 395-422.	0.0	6
126	Vibrotactile identification of signal-processed sounds from environmental events. Journal of Rehabilitation Research and Development, 2009, 46, 1021.	1.6	9
127	Architecture of Consciousness. Part Two: Molecular Structure and Biophysics of Memory. Roczniki Filozoficzne, 2015, 63, 237-261.	0.0	4
129	Object Detection Featuring 3D Audio Localization for Microsoft HoloLens - A Deep Learning based Sensor Substitution Approach for the Blind. , 2018, , .		19
130	Bodily Action and Distal Attribution in Sensory Substitution. , 2018, , 174-187.		1

ARTICLE IF CITATIONS Engineering the brain., 2004, , 185-200. 131 3 Towards Word Semantics from Multi-modal Acoustico-Motor Integration: Application of the Bijama Model to the Setting of Action-Dependant Phonetic Representations. Lecture Notes in Computer 1.3 Science, 2005, , 144-161. AERBUS: Enhanced perception of the environment for visually impaired people. IFMBE Proceedings, 133 0.3 2 2009, , 1624-1627. Effects of multi-directional vibrotactile feedback on vestibular-deficient postural performance during continuous multi-directional support surface perturbations. Journal of Vestibular Research: Equilibrium and Orientation, 2009, 18, 273-285. 134 2.0 Visual prostheses and other assistive devices., 2010, , 590-598. 135 2 Neurophysiological Mechanisms Underlying Plastic Changes and Rehabilitation following Sensory Loss in Blindness and Deafness. Frontiers in Neuroscience, 2011, , 395-422. A Conceptual Framework for the Design of Audio Based Cognitive Infocommunication Channels. 138 0.9 5 Studies in Computational Intelligence, 2012, , 261-281. Visual Neuroprosthesis: The Relevance of Plasticity. Biosystems and Biorobotics, 2013, , 397-400. 0.3 La teorÃa del marco de memoria-predicciÃ³n y los cognits en el origen y la organizaciÃ³n cortical del 140 0.1 0 lenguaje. Onomazein, 0, 28, 14-28. 141 Multimodal Feedback for Balance Rehabilitation. Lecture Notes in Computer Science, 2015, , 322-330. 1.3 Active photonic sensing for super-resolved reading performance in simulated prosthetic vision. 143 2.9 1 Biomedical Optics Express, 2019, 10, 1081. Connections Between Studies of Human Learning and Memory Processes in Modern Cognitive Psychology and Integrative Biology., 2020, , 27-42. Effects of training and using an audio-tactile sensory substitution device on speech-in-noise 145 3.3 15 understanding. Scientific Reports, 2022, 12, 3206. BCI-FES With Multimodal Feedback for Motor Recovery Poststroke. Frontiers in Human Neuroscience, 146 0, 16, . Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic 147 2.8 12 hardware. Frontiers in Neuroscience, 0, 16, . What it is to see: Artificial vision as constitutive interaction. Ethos, 0, , . 148 The future of sensory substitution, addition, and expansion via haptic devices. Frontiers in Human 149 2.0 6 Neuroscience, 0, 16, . Shape detection beyond the visual field using a visual-to-auditory sensory augmentation device. Frontiers in Human Neuroscience, 0, 17, .

#	Article	IF	CITATIONS
151	ISEE: A Wearable Image-Sound Translation System for Partially Sighted People. IEEE Sensors Journal, 2023, 23, 13585-13597.	4.7	0
152	Effects of Auditory Feedback on Visually-Guided Movement in Real and Virtual Space. International Journal of Human-Computer Interaction, 0, , 1-10.	4.8	0
153	Trigeminal electrical stimulation with ULFTENS of the dorsal anterior mucosal surface of the tongue: Effects on Heart Rate Variability (HRV). PLoS ONE, 2023, 18, e0285464.	2.5	2
154	Sensory substitution can improve decision-making. Computers in Human Behavior, 2023, 146, 107797.	8.5	0
155	Multimodal exploration in elementary music classroom. Journal on Multimodal User Interfaces, 2024, 18, 55-68.	2.9	0
156	TactTongue: Prototyping ElectroTactile Stimulations on the Tongue. , 2023, , .		0
157	Parametric Haptics: Versatile Geometry-based Tactile Feedback Devices. , 2023, , .		0
158	Vibrotactile Encoding of Object Features and Alert Levels for the Visually Impaired. Lecture Notes in Computer Science, 2023, , 53-67.	1.3	0
159	Central effects of trigeminal electrical stimulation. Cranio - Journal of Craniomandibular Practice, 0, , 1-24.	1.4	0
160	Conversion of a medical implant into a versatile computer-brain interface. Brain Stimulation, 2024, 17, 39-48.	1.6	0

161 Hearing Aiding System for Impaired. , 2023, , .

0