The F-analogue of schorl from Grasstein, Trentino Sout and chemistry

European Journal of Mineralogy 18, 583-588 DOI: 10.1127/0935-1221/2006/0018-0583

Citation Report

#	Article	IF	CITATIONS
1	Linking Mossbauer and structural parameters in elbaite-schorl-dravite tourmalines. American Mineralogist, 2008, 93, 658-666.	1.9	54
2	Disordering of Fe2+ over octahedrally coordinated sites of tourmaline. American Mineralogist, 2008, 93, 1647-1653.	1.9	42
3	Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 2011, 96, 895-913.	1.9	456
4	Tourmaline the Indicator Mineral: From Atomic Arrangement to Viking Navigation. Elements, 2011, 7, 307-312.	0.5	69
5	Tourmaline: an ideal indicator of its host environment. Canadian Mineralogist, 2011, 49, 1-16.	1.0	234
6	Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+- and Mn2+-rich tourmaline. American Mineralogist, 2012, 97, 1402-1416.	1.9	35
7	The new oxosilicate NaTbSi ₂ O ₆ : A comparison of its A- and D-type structure. Zeitschrift Fur Kristallographie - Crystalline Materials, 2012, 227, 476-482.	0.8	3
8	lron redox reactions in the tourmaline structure: High-temperature treatment of Fe3+-rich schorl. Geochimica Et Cosmochimica Acta, 2012, 86, 239-256.	3.9	59
9	Tourmaline from quartz lenses of the Urtui granite pluton, Strel'tsovka orefield, Ttansbaikal krai. Moscow University Geology Bulletin, 2012, 67, 18-29.	0.3	3
10	Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities. European Journal of Mineralogy, 2016, 28, 163-177.	1.3	14
11	Chemical composition and evolution of tourmaline-supergroup minerals from the Sb hydrothermal veins in RožÅ^ava area, Western Carpathians, Slovakia. Mineralogy and Petrology, 2017, 111, 609-624.	1.1	2
12	Tourmaline crystal chemistry. American Mineralogist, 2018, 103, 298-306.	1.9	66
13	Tourmalines from the siderite-quartz-sulphide hydrothermal veins, Gemeric unit, western Carpathians, Slovakia: crystal chemistry and evolution. Mineralogy and Petrology, 2018, 112, 45-63.	1.1	5
14	Incorporation of 3d elements in tourmalines: structural adjustments and stability. European Journal of Mineralogy, 2018, 30, 917-928.	1.3	7
15	Myrmekitic intergrowth of tourmaline and quartz in eclogite-hosting gneisses of the Tso Morari ultrahigh-pressure metamorphic terrane (Eastern Ladakh, India): a possible record of high-pressure conditions. Geological Society Special Publication, 2019, 481, 175-194.	1.3	2
16	Compressibility of synthetic Mg-Al tourmalines to 60 GPa. American Mineralogist, 2019, 104, 1005-1015.	1.9	11
17	Considerations About Bi and Pb in the Crystal Structure of Cu-Bearing Tourmaline. Minerals (Basel,) Tj ETQq0 0 0	rgBT /Ove 2.0	rlock 10 Tf 5

18	Minerals from Macedonia. XXX. Complementary use of vibrational spectroscopy and X-ray powder diffraction for spectra-structural study of some cyclo-, phyllo- and tectosilicate minerals. A review. Macedonian Journal of Chemistry and Chemical Engineering, 2016, 35, 125.	0.6	19	
----	--	-----	----	--

#	Article	IF	CITATIONS
19	Tourmaline as a recorder of the magmatic-hydrothermal evolution in the formation of pegmatite: In-situ elemental and boron isotopic compositions of tourmaline from the Qinghe pegmatite, Chinese Altay orogen. Journal of Asian Earth Sciences, 2022, 231, 105224.	2.3	6