Assessment of myocardial regional strain and strain rat echocardiograms

Ultrasound in Medicine and Biology 32, 1181-1192 DOI: 10.1016/j.ultrasmedbio.2006.05.005

Citation Report

#	Article	IF	CITATIONS
4	Ultrasound echocardiographic assessment of transmural inhomogeneity of the left ventricular contraction during the heart cycle. , 2007, , .		0
5	Assessment of the Regional Myocardial Displacement by a New Method Using Spectral Tissue Doppler in Compare with the Tissue Tracking. Proc Int Symp Image Signal Process Anal, 2007, , .	0.0	Ο
6	Detection of the Cardiac Activation Sequence by Novel Echocardiographic Tissue Tracking Method. Ultrasound in Medicine and Biology, 2007, 33, 880-893.	0.7	7
7	In vivo validation of a novel method for regional myocardial wall motion analysis based on echocardiographic tissue tracking. Medical and Biological Engineering and Computing, 2008, 46, 131-137.	1.6	14
8	A two-dimensional CVIB imaging system with a speckle tracking algorithm. Ultrasonics, 2008, 48, 394-402.	2.1	5
9	Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 2008, 7, 1003-1010.	13.3	760
10	Three-Dimensional Cardiac Strain Estimation Using Spatio–Temporal Elastic Registration of Ultrasound Images: A Feasibility Study. IEEE Transactions on Medical Imaging, 2008, 27, 1580-1591.	5.4	148
12	Comparison of geometric regularization methods for 2D myocardial strain estimation in the mouse. , 2008, , .		1
13	Regional myocardial long-axis strain and strain rate measured by different tissue Doppler and speckle tracking echocardiography methods: a comparison with tagged magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2009, 10, 229-237.	0.5	76
14	Dedicated ultrasound speckle tracking to study tendon displacement. , 2009, , .		4
15	Correlation of Automated Function Imaging (AFI) to Conventional Strain Analyses of Regional and Global Right Ventricular Function. Journal of the American Society of Echocardiography, 2009, 22, 1031-1039.	1.2	14
16	A high performance spatio-temporal displacement smoothing method for myocardial strain imaging. , 2009, , .		0
17	Increase in endocardial rotation during doxorubicin treatment. Annals of the New York Academy of Sciences, 2010, 1188, 128-132.	1.8	3
18	Geometric Regularization for 2-D Myocardial Strain Quantification in Mice: An In-Silico Study. Ultrasound in Medicine and Biology, 2010, 36, 1157-1168.	0.7	11
19	Recentdevelopments in Doppler imaging. , 2010, , 368-396.		0
20	Layer-specific strain analysis by speckle tracking echocardiography reveals differences in left ventricular function between rats and humans. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H664-H672.	1.5	33
21	Two-Dimensional Tracking of Heart Wall for Detailed Analysis of Heart Function at High Temporal and Spatial Resolutions. Japanese Journal of Applied Physics, 2010, 49, 07HF14.	0.8	30
22	Sub-sample displacement estimation from digitized ultrasound RF signals using multi-dimensional polynomial fitting of the cross-correlation function. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2010, 57, 2403-2420.	1.7	43

#	Article	IF	CITATIONS
23	A quantitative and automatic echographic method for real-time localization of endovascular devices. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 2107-2117.	1.7	29
24	The cardioprotective efficacy of TVP1022 in a rat model of ischaemia/reperfusion. British Journal of Pharmacology, 2011, 163, 755-769.	2.7	23
25	Layer-specific assessment of left ventricular function by utilizing wavelet de-noising: a validation study. Medical and Biological Engineering and Computing, 2011, 49, 3-13.	1.6	20
26	Comparison of longitudinal myocardial tissue velocity, strain, and strain rate measured by two-dimensional speckle tracking and by color tissue Doppler imaging in healthy dogs. Journal of Veterinary Cardiology, 2011, 13, 31-43.	0.3	36
27	Layer-specific strain analysis: investigation of regional deformations in a rat model of acute versus chronic myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H549-H558.	1.5	21
28	Comparison of Velocity Vector Imaging Echocardiography With Magnetic Resonance Imaging in Mouse Models of Cardiomyopathy. Circulation: Cardiovascular Imaging, 2012, 5, 776-781.	1.3	21
29	Optimization of Correlation Kernel Size for Accurate Estimation of Myocardial Contraction and Relaxation. Japanese Journal of Applied Physics, 2012, 51, 07GF06.	0.8	5
30	Strainâ€compounding technique with ultrasound Nakagami imaging for distinguishing between benign and malignant breast tumors. Medical Physics, 2012, 39, 2325-2333.	1.6	25
31	Biomaterial strategies for alleviation of myocardial infarction. Journal of the Royal Society Interface, 2012, 9, 1-19.	1.5	186
32	Measurements of transmural strain variations by two dimensional ultrasound speckle tracking. Journal of Biomedical Graphics and Computing, 2012, 2, .	0.2	1
33	Serial Echocardiography Using Tissue Doppler and Speckle Tracking Imaging to Monitor Right Ventricular Failure Before and After Left Ventricular Assist Device Surgery. JACC: Heart Failure, 2013, 1, 216-222.	1.9	90
34	Is strain by Speckle Tracking Echocardiography dependent on user controlled spatial and temporal smoothing? An experimental porcine study. Cardiovascular Ultrasound, 2013, 11, 32.	0.5	9
35	Aging Does Not Affect Radial Viscoelastic Behavior of the Left Ventricle. Cardiology, 2013, 125, 38-49.	0.6	0
36	Planar strain analysis of liver undergoing microwave thermal ablation using xâ€ray CT. Medical Physics, 2015, 42, 372-380.	1.6	12
37	Improvement of myocardial displacement estimation using subkernels for cross correlation between ultrasonic RF echoes. Japanese Journal of Applied Physics, 2014, 53, 07KF21.	0.8	15
38	Experimental and Computational Investigation of Altered Mechanical Properties in Myocardium after Hydrogel Injection. Annals of Biomedical Engineering, 2014, 42, 1546-1556.	1.3	44
39	Feasibility of reproducible vendor independent estimation of cardiac function based on first generation speckle tracking echocardiography. Journal of Biomedical Engineering and Informatics, 2015, 2, 57.	0.2	1
40	Biomaterial based cardiac tissue engineering and its applications. Biomedical Materials (Bristol), 2015, 10, 034004.	1.7	79

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
41	Platform technology for scalable assembly of instantaneously functional mosaic tissues. Science Advances, 2015, 1, e1500423.	4.7	42
42	The cardioprotective efficacy of <scp>TVP</scp> 1022 against ischemia/reperfusion injury and cardiac remodeling in rats. Pharmacology Research and Perspectives, 2016, 4, e00272.	1.1	9
43	Highly Elastic and Moldable Polyester Biomaterial for Cardiac Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2016, 2, 780-788.	2.6	79
44	Detection of small subendocardial infarction using speckle tracking echocardiography in a rat model. Echocardiography, 2016, 33, 1571-1578.	0.3	5
45	Strain Analysis in the Detection of Myocardial Infarction at the Acute and Chronic Stages. Echocardiography, 2016, 33, 450-458.	0.3	8
46	Optimization-Based Speckle Tracking Algorithm for Left Ventricle Strain Estimation: A Feasibility Study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 1093-1106.	1.7	3
47	Left Ventricular Mechanical Property Changes During Acute AV Synchronous Right Ventricular Pacing in Children. Pediatric Cardiology, 2016, 37, 106-111.	0.6	7
48	High-Intensity Training Improves Global and Segmental Strains in Severe Congestive Heart Failure. Journal of Cardiac Failure, 2017, 23, 392-402.	0.7	6
49	Ultrasound 2D strain measurement for arm lymphedema using deformable registration: A feasibility study. PLoS ONE, 2017, 12, e0181250.	1.1	7
50	Comparison of speckle-tracking echocardiography with invasive hemodynamics for the detection of characteristic cardiac dysfunction in type-1 and type-2 diabetic rat models. Cardiovascular Diabetology, 2018, 17, 13.	2.7	35
51	Hierarchical Motion Estimation With Bayesian Regularization in Cardiac Elastography: Simulation and \$In~ Vivo\$ Validation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1708-1722.	1.7	17
52	Echocardiographic Assessment of Left Bundle Branch–Related Strain Dyssynchrony: A Comparison With Tagged MRI. Ultrasound in Medicine and Biology, 2019, 45, 2063-2074.	0.7	8
53	Strain Curve Classification Using Supervised Machine Learning Algorithm with Physiologic Constraints. Ultrasound in Medicine and Biology, 2020, 46, 2424-2438.	0.7	5
54	zâ€Wire: A Microscaffold That Supports Guided Tissue Assembly and Intramyocardium Delivery for Cardiac Repair. Advanced Healthcare Materials, 2020, 9, 2000358.	3.9	4
55	Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Advanced Biology, 2021, 5, 2000190.	1.4	4
56	Speckle-Tracking Echocardiography Elucidates the Effect of Pacing Site on Left Ventricular Synchronization in the Normal and Infarcted Rat Myocardium. PLoS ONE, 2014, 9, e99191.	1.1	19
57	Optimization of Correlation Kernel Size for Accurate Estimation of Myocardial Contraction and Relaxation. Japanese Journal of Applied Physics, 2012, 51, 07GF06.	0.8	6
59	Geometric regularization improves 2D myocardial motion estimates in the mouse: an in-silico study. IFMBE Proceedings, 2009, , 555-558.	0.2	О

CITATION REPORT

#	Article	IF	CITATIONS
61	Strain Measurements Relative to Normal State Enhance the Ability to Detect Non-Transmural Myocardial Infarction. , 0, , .		0
62	Assessment of Regional Longitudinal Stain by Using Speckle Tracking Echocardiography – A Validation Study. , 0, , .		0
63	Assessment of the Left Ventricular Deformable Indices (Strain Components) in Different Echocardiography Systems. International Journal of Cardiovascular Practice, 2018, 3, 65-69.	0.2	1
65	New Echocardiographic Protocol for the Assessment of Experimental Myocardial Infarction in Rats. Mædica, 2015, 10, 85-90.	0.4	1
66	Spatiotemporal Bayesian Regularization for Cardiac Strain Imaging: Simulation and <i>In Vivo</i> Results. IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 1, 21-36.	0.9	6
67	Multiscale Contrasts Between the Right and Left Ventricle Biomechanics in Healthy Adult Sheep and Translational Implications. Frontiers in Bioengineering and Biotechnology, 2022, 10, 857638.	2.0	4
68	In Vivo Longitudinal Monitoring of Cardiac Remodeling in Murine Ischemia Models With Adaptive Bayesian Regularized Cardiac Strain Imaging: Validation Against Histology. Ultrasound in Medicine and Biology, 2022, , .	0.7	0
69	Different Mathematical Techniques to Measure Left Ventricular 2D Deformations: Strain Imaging. , 2023, , 113-120.		0