Accelerated label setting algorithms for the elementary path problem

Operations Research Letters 34, 58-68 DOI: 10.1016/j.orl.2004.11.011

Citation Report

#	Article	IF	CITATIONS
1	Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints. Discrete Optimization, 2006, 3, 255-273.	0.9	248
2	New Refinements for the Solution of Vehicle Routing Problems with Branch and Price. Infor, 2007, 45, 239-256.	0.6	25
3	Three-stage approaches for optimizing some variations of the resource constrained shortest-path sub-problem in a column generation context. European Journal of Operational Research, 2007, 183, 564-577.	5.7	13
4	New dynamic programming algorithms for the resource constrained elementary shortest path problem. Networks, 2008, 51, 155-170.	2.7	203
5	Chvátal-Gomory Rank-1 Cuts Used in a Dantzig-Wolfe Decomposition of the Vehicle Routing Problem with Time Windows. Operations Research/ Computer Science Interfaces Series, 2008, , 397-419.	0.3	16
6	Tabu Search, Partial Elementarity, and Generalized <i>k</i> -Path Inequalities for the Vehicle Routing Problem with Time Windows. Transportation Science, 2008, 42, 387-404.	4.4	167
7	Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows. Operations Research, 2008, 56, 497-511.	1.9	266
8	Optimizing the Cargo Express Service of Swiss Federal Railways. Transportation Science, 2008, 42, 450-465.	4.4	23
9	Online impairments-aware routing within a path computation element. , 2009, , .		0
10	Decremental state space relaxation strategies and initialization heuristics for solving the Orienteering Problem with Time Windows with dynamic programming. Computers and Operations Research, 2009, 36, 1191-1203.	4.0	112
11	Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows. Transportation Science, 2009, 43, 267-286.	4.4	336
13	Clique Inequalities Applied to the Vehicle Routing Problem with Time Windows. Infor, 2010, 48, 53-67.	0.6	7
14	A tutorial on column generation and branch-and-price for vehicle routing problems. 4or, 2010, 8, 407-424.	1.6	103
15	Optimal routing with failureâ€independent path protection. Networks, 2010, 55, 125-137.	2.7	10
16	A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows. European Journal of Operational Research, 2010, 206, 341-349.	5.7	82
17	Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows. Operations Research, 2010, 58, 179-192.	1.9	144
19	A column generation algorithm for the vehicle routing problem with soft time windows. 4or, 2011, 9, 49-82.	1.6	59
20	Stronger column generation bounds for the Minimum Cost Hop-and-root Constrained Forest Problem. Electronic Notes in Discrete Mathematics, 2011, 37, 315-320.	0.4	1

#	Article	IF	CITATIONS
21	A state space augmentation algorithm for the replenishment cycle inventory policy. International Journal of Production Economics, 2011, 133, 377-384.	8.9	12
22	Multi-dimensional labelling approaches to solve the linear fractional elementary shortest path problem with time windows. Optimization Methods and Software, 2011, 26, 295-340.	2.4	6
23	Dynamic Programming-Based Column Generation on Time-Expanded Networks: Application to the Dial-a-Flight Problem. INFORMS Journal on Computing, 2011, 23, 105-119.	1.7	22
24	A branch-price-and-cut algorithm for the workover rig routing problem. Computers and Operations Research, 2012, 39, 3305-3315.	4.0	18
25	A computational study of solution approaches for the resource constrained elementary shortest path problem. Annals of Operations Research, 2012, 201, 131-157.	4.1	6
26	Solving shortest path problems with a weight constraint and replenishment arcs. Computers and Operations Research, 2012, 39, 964-984.	4.0	59
27	Cyclic transfers in school timetabling. OR Spectrum, 2012, 34, 133-154.	3.4	12
28	Fourth party logistics routing problem with fuzzy duration time. International Journal of Production Economics, 2013, 145, 107-116.	8.9	42
29	A survey of resource constrained shortest path problems: Exact solution approaches. Networks, 2013, 62, 183-200.	2.7	100
30	Exploiting Set-Based Structures to Accelerate Dynamic Programming Algorithms for the Elementary Shortest Path Problem with Resource Constraints. SSRN Electronic Journal, 2013, , .	0.4	0
31	Home health care crew scheduling and routing problem with stochastic service times. , 2014, , .		9
32	Chapter 3: New Exact Algorithms for the Capacitated Vehicle Routing Problem. , 2014, , 59-86.		32
33	Chapter 5: The Vehicle Routing Problem with Time Windows. , 2014, , 119-159.		66
34	A branchâ€priceâ€andâ€cut algorithm for the minâ€max <i>k</i> â€vehicle windy rural postman problem. Networks, 2014, 63, 34-45.	2.7	8
35	Branch-and-price-and-cut for the multiple traveling repairman problem with distance constraints. European Journal of Operational Research, 2014, 234, 49-60.	5.7	66
36	Solving elementary shortest-path problems as mixed-integer programs. OR Spectrum, 2014, 36, 281-296.	3.4	15
37	A new exact algorithm for the multi-depot vehicle routing problem under capacity and route length constraints. Discrete Optimization, 2014, 12, 129-146.	0.9	144
38	A branch-and-price algorithm for the multi-depot heterogeneous-fleet pickup and delivery problem with soft time windows. Mathematical Programming Computation, 2014, 6, 171-197.	4.8	42

#	Article	IF	CITATIONS
39	An Exact Algorithm Based on Cut-and-Column Generation for the Capacitated Location-Routing Problem. INFORMS Journal on Computing, 2014, 26, 88-102.	1.7	89
40	A branch-and-cut algorithm for the capacitated profitable tour problem. Discrete Optimization, 2014, 14, 78-96.	0.9	23
41	Efficient elementary and restricted non-elementary route pricing. European Journal of Operational Research, 2014, 239, 102-111.	5.7	46
42	The shortest-path problem with resource constraints with -loop elimination and its application to the capacitated arc-routing problem. European Journal of Operational Research, 2014, 238, 415-426.	5.7	21
43	Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach. European Journal of Operational Research, 2014, 236, 789-799.	5.7	95
44	Designing Optimal Routes for Cycle-tourists. Transportation Research Procedia, 2014, 3, 856-865.	1.5	13
45	Robust constrained shortest path problems under budgeted uncertainty. Networks, 2015, 66, 98-111.	2.7	23
46	Using column generation to compute lower bound sets for bi-objective combinatorial optimization problems. RAIRO - Operations Research, 2015, 49, 527-554.	1.8	0
48	Two exact algorithms for the traveling umpire problem. European Journal of Operational Research, 2015, 243, 932-943.	5.7	13
49	Reaching the elementary lower bound in the vehicle routing problem with time windows. Networks, 2015, 65, 88-99.	2.7	14
50	A comparative study of deterministic and ensemble weather forecasts for weather routing. Journal of Marine Science and Technology, 2015, 20, 429-441.	2.9	19
51	A branch-and-price algorithm for the home health care scheduling and routing problem with stochastic service times and skill requirements. International Journal of Production Research, 2015, 53, 7450-7464.	7.5	98
52	A column generation approach for a multi-attribute vehicle routing problem. European Journal of Operational Research, 2015, 241, 888-906.	5.7	40
53	Freight railway operator timetabling and engine scheduling. European Journal of Operational Research, 2015, 241, 309-319.	5.7	8
54	A branch-and-price approach for a multi-period vehicle routing problem. Computers and Operations Research, 2015, 55, 167-184.	4.0	52
55	The Shortest Path Problems in Battery-Electric Vehicle Dispatching with Battery Renewal. Sustainability, 2016, 8, 607.	3.2	7
56	On the shortest path problem with negative cost cycles. Computational Optimization and Applications, 2016, 63, 559-583.	1.6	5
57	Model and algorithm for 4PLRP with uncertain delivery time. Information Sciences, 2016, 330, 211-225.	6.9	33

#	Article	IF	CITATIONS
58	Native Advertisement Selection and Allocation in Social Media Post Feeds. Lecture Notes in Computer Science, 2016, , 588-603.	1.3	2
59	The constrained shortest path problem with stochastic correlated link travel times. European Journal of Operational Research, 2016, 255, 43-57.	5.7	33
60	An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints. Transportation Science, 2016, 50, 348-357.	4.4	68
61	Exact methods for solving the elementary shortest and longest path problems. Annals of Operations Research, 2016, 244, 313-348.	4.1	5
62	Integer programming formulations for the elementary shortest path problem. European Journal of Operational Research, 2016, 252, 122-130.	5.7	64
63	A priori optimization with recourse for the vehicle routing problem with hard time windows and stochastic service times. European Journal of Operational Research, 2016, 249, 55-66.	5.7	87
64	Improved branch-cut-and-price for capacitated vehicle routing. Mathematical Programming Computation, 2017, 9, 61-100.	4.8	138
65	A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations. Transportation Research Part B: Methodological, 2017, 100, 115-137.	5.9	64
66	The multi-criteria constrained shortest path problem. Transportation Research, Part E: Logistics and Transportation Review, 2017, 101, 13-29.	7.4	22
67	Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster. European Journal of Operational Research, 2017, 261, 530-539.	5.7	46
68	A Combined column generation and heuristics for railway short-term rolling stock planning with regular inspection constraints. Computers and Operations Research, 2017, 81, 14-25.	4.0	21
69	A Polyhedral Study of the Elementary Shortest Path Problem with Resource Constraints. Lecture Notes in Computer Science, 2017, , 79-93.	1.3	1
70	A complementarity equilibrium model for electric vehicles with charging. International Journal of Transportation Science and Technology, 2017, 6, 255-271.	3.6	8
72	Optimal functional split selection and scheduling policies in 5G Radio Access Networks. , 2017, , .		18
73	An Exact Method for Vehicle Routing and Truck Driver Scheduling Problems. Transportation Science, 2017, 51, 737-754.	4.4	43
74	Mathematical model and exact algorithm for the home care worker scheduling and routing problem with lunch break requirements. International Journal of Production Research, 2017, 55, 558-575.	7.5	81
75	Branch and Price and Cut for the Split-Delivery Vehicle Routing Problem with Time Windows and Linear Weight-Related Cost. Transportation Science, 2017, 51, 668-687.	4.4	43
76	Simple paths with exact and forbidden lengths. Naval Research Logistics, 2018, 65, 78-85.	2.2	1

#	Article	IF	Citations
77	Column generation algorithms for bi-objective combinatorial optimization problems with a min–max objective. EURO Journal on Computational Optimization, 2018, 6, 117-142.	2.4	3
78	A Parallel Algorithm for the Constrained Shortest Path Problem on Lattice Graphs. Emergence, Complexity and Computation, 2018, , 1-26.	0.3	2
79	Daily scheduling of caregivers with stochastic times. International Journal of Production Research, 2018, 56, 3245-3261.	7.5	18
80	The vehicle routing problem with hard time windows and stochastic service times. EURO Journal on Transportation and Logistics, 2018, 7, 223-251.	2.2	38
81	Indexing Discrete Sets in a Label Setting Algorithm for Solving the Elementary Shortest Path Problem with Resource Constraints. , 2018, , .		0
82	A branch-and-price algorithm for scheduling of deteriorating jobs and flexible periodic maintenance on a single machine. European Journal of Operational Research, 2018, 271, 826-838.	5.7	44
83	Reformulations and branch-and-price algorithm for the Minimum Cost Hop-and-root Constrained Forest Problem. Computers and Operations Research, 2018, 98, 38-55.	4.0	1
84	A Two-Phase Branch-and-Price-and-Cut for a Dial-a-Ride Problem in Patient Transportation. Transportation Science, 2019, 53, 113-130.	4.4	31
85	A branch-and-price algorithm for a vehicle routing with demand allocation problem. European Journal of Operational Research, 2019, 272, 523-538.	5.7	24
86	Exact Branch-Price-and-Cut Algorithms for Vehicle Routing. Transportation Science, 2019, 53, 946-985.	4.4	126
87	ADMM-based problem decomposition scheme for vehicle routing problem with time windows. Transportation Research Part B: Methodological, 2019, 129, 156-174.	5.9	68
88	Revised Pulse Algorithm for Elementary Shortest Path Problem with Resource Constraints. , 2019, , .		1
89	Bi-criteria path problem with minimum length and maximum survival probability. OR Spectrum, 2019, 41, 469-489.	3.4	7
90	An exact bidirectional <i>A</i> ^{â<t< sup=""> approach for solving resourceâ€constrained shortest path problems. Networks, 2019, 73, 187-205.</t<>}	2.7	31
91	A rollout algorithm for the resource constrained elementary shortest path problem. Optimization Methods and Software, 2019, 34, 1056-1074.	2.4	5
92	A branch-and-price algorithm for the home-caregiver scheduling and routing problem with stochastic travel and service times. Flexible Services and Manufacturing Journal, 2019, 31, 989-1011.	3.4	29
93	A Branch-and-Price algorithm for two multi-compartment vehicle routing problems. EURO Journal on Transportation and Logistics, 2019, 8, 1-33.	2.2	5
94	The price of discretizing time: a study in service network design. EURO Journal on Transportation and Logistics, 2019, 8, 195-216.	2.2	21

#	Article	IF	CITATIONS
95	A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem. European Journal of Operational Research, 2020, 282, 846-857.	5.7	5
96	A Branch-and-Price-and-Cut Algorithm for the Cable-Routing Problem in Solar Power Plants. INFORMS Journal on Computing, 0, , .	1.7	1
97	An exact algorithm for the multi-period inspector scheduling problem. Computers and Industrial Engineering, 2020, 145, 106515.	6.3	3
98	Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows. Transportation Research, Part E: Logistics and Transportation Review, 2020, 140, 101955.	7.4	41
99	An Exact Algorithm for Agile Earth Observation Satellite Scheduling with Time-Dependent Profits. Computers and Operations Research, 2020, 120, 104946.	4.0	27
100	Active route planning for active diesel particulate filter regeneration. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 1854-1868.	1.9	0
101	On the road to better routes: Five decades of published research on the vehicle routing problem. Networks, 2021, 77, 66-87.	2.7	9
102	Selective arcâ€ng pricing for vehicle routing. International Transactions in Operational Research, 2021, 28, 2633-2690.	2.7	3
103	The conditional p-dispersion problem. Journal of Global Optimization, 2021, 81, 23-83.	1.8	1
104	Electric vehicle routing with flexible time windows: a column generation solution approach. Transportation Letters, 2021, 13, 97-103.	3.1	28
105	A Building Information Model enabled Multiple Traveling Salesman Problem for building interior patrols. Advanced Engineering Informatics, 2021, 47, 101237.	8.0	11
106	The benefits of autonomous vehicles for community-based trip sharing. Transportation Research Part C: Emerging Technologies, 2021, 124, 102929.	7.6	13
107	The multi-commodity network flow problem with soft transit time constraints: Application to liner shipping. Transportation Research, Part E: Logistics and Transportation Review, 2021, 150, 102342.	7.4	13
108	Branch-and-price-and-cut methods for the electric vehicle routing problem with time windows. International Journal of Production Research, 2022, 60, 5332-5353.	7.5	20
109	The multi-trip vehicle routing problem with time windows and unloading queue at depot. Transportation Research, Part E: Logistics and Transportation Review, 2021, 152, 102370.	7.4	14
110	Feeder vessel routing and transshipment coordination at a congested hub port. Transportation Research Part B: Methodological, 2021, 151, 1-21.	5.9	13
111	An exact solution approach for the inventory routing problem with time windows. Computers and Operations Research, 2021, 134, 105371.	4.0	4
112	An Iterated Local Search Algorithm for Solving the Orienteering Problem with Time Windows. Lecture Notes in Computer Science, 2015, , 61-73.	1.3	12

#	Article	IF	CITATIONS
113	Multi-objective search for optimal multi-robot planning with finite LTL specifications and resource constraints. , 2017, , .		11
114	An exact algorithm for two-dimensional vector packing problem with volumetric weight and general costs. European Journal of Operational Research, 2022, 300, 20-34.	5.7	4
117	Application of Column Generation for Train-set Scheduling Problems with Regular Maintenance Constraints. IEEJ Transactions on Electronics, Information and Systems, 2012, 132, 151-159.	0.2	0
118	cspy: A Python package with a collection of algorithms for the (Resource) Constrained Shortest Path problem. Journal of Open Source Software, 2020, 5, 1655.	4.6	5
119	The Multi-Commodity Network Flow Problem With Soft Transit Time Constraints. SSRN Electronic Journal, 0, , .	0.4	0
120	Stabilized Column Generation Via the Dynamic Separation of Aggregated Rows. INFORMS Journal on Computing, 2022, 34, 1141-1156.	1.7	0
121	The Rainbow Steiner Tree Problem. Computers and Operations Research, 2022, 139, 105621.	4.0	1
122	Joint Service Function Chain Embedding and Routing in Cloud-based NFV: A Deep Q-Learning Based Approach. , 2021, , .		1
123	Exact Branch-Price-and-Cut for a Hospital Therapist Scheduling Problem with Flexible Service Locations and Time-Dependent Location Capacity. INFORMS Journal on Computing, 2022, 34, 1157-1175.	1.7	4
124	A Branch-Price-and-Cut Algorithm for the Two-Echelon Vehicle Routing Problem with Time Windows. Transportation Science, 2022, 56, 245-264.	4.4	7
125	Branch-and-price-and-cut for the electric vehicle relocation problem in one-way carsharing systems. Omega, 2022, 109, 102609.	5.9	18
126	Exact algorithms for the multiple depot vehicle scheduling problem with heterogeneous vehicles, split loads and toll-by-weight scheme. Computers and Industrial Engineering, 2022, 168, 108137.	6.3	2
127	A Branch and Price Algorithm for the Heterogeneous Fleet Multi-Depot Multi-Trip Vehicle Routing Problem with Time Windows. Transportation Science, 2022, 56, 1636-1657.	4.4	5
129	Exact Approach for Integrated Delivery Optimization of E-Commerce and Online-to-Offline Parcels. Asia-Pacific Journal of Operational Research, 2023, 40, .	1.3	1
130	Power Management for Noise Aware Path Planning of Hybrid UAVs. , 2022, , .		2
131	Solving open vehicle problem with time window by hybrid column generation algorithm. Journal of Systems Engineering and Electronics, 2022, 33, 997-1009.	2.2	3
132	The Fragility-Constrained Vehicle Routing Problem with Time Windows. Transportation Science, 2023, 57, 552-572.	4.4	1
133	A column generation approach for a dynamic ridesharing problem. Transportation Letters, 0, , 1-12.	3.1	0

#	Article	IF	CITATIONS
134	Exact and heuristic methods for a workload allocation problem with chain precedence constraints. European Journal of Operational Research, 2023, 309, 387-398.	5.7	1
136	A column generation approach for the crane scheduling with sidekick in a perpendicular automated yard block. Transportation Research, Part E: Logistics and Transportation Review, 2023, 176, 103154.	7.4	0
137	Solving the capacitated vehicle routing problem with time windows via graph convolutional network assisted tree search and quantum-inspired computing. Frontiers in Applied Mathematics and Statistics, 0, 9, .	1.3	1
138	A branch-and-price-and-cut algorithm for time-dependent pollution routing problem. Transportation Research Part C: Emerging Technologies, 2023, 156, 104339.	7.6	1
139	A branchâ€andâ€priceâ€based heuristic for the vehicle routing problem with twoâ€dimensional loading constraints and time windows. International Transactions in Operational Research, 2024, 31, 658-691.	2.7	1
140	Decremental State-Space Relaxations for the Basic Traveling Salesman Problem with a Drone. INFORMS Journal on Computing, 0, , .	1.7	0
141	A two-stage method for doubly resource constrained elementary shortest path problems. Knowledge-Based Systems, 2024, 293, 111661.	7.1	0