Structural studies on 2-oxoglutarate oxygenases and re proteins

Journal of Inorganic Biochemistry 100, 644-669 DOI: 10.1016/j.jinorgbio.2006.01.024

Citation Report

	CITATION		
#	Article	IF	CITATIONS
1	JmjC-domain-containing proteins and histone demethylation. Nature Reviews Genetics, 2006, 7, 715-727.	7.7	1,096
2	Structural studies on 2-oxoglutarate oxygenases and related double-stranded β-helix fold proteins. Journal of Inorganic Biochemistry, 2006, 100, 644-669.	1.5	390
3	Structural basis for the enantiospecificities ofR- andS-specific phenoxypropionate/α-ketoglutarate dioxygenases. Protein Science, 2006, 15, 1356-1368.	3.1	15
4	Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9814-9819.	3.3	310
5	The protein that binds to DNA base J in trypanosomatids has features of a thymidine hydroxylase. Nucleic Acids Research, 2007, 35, 2107-2115.	6.5	84
6	Structural and Mechanistic Studies on the Inhibition of the Hypoxia-inducible Transcription Factor Hydroxylases by Tricarboxylic Acid Cycle Intermediates. Journal of Biological Chemistry, 2007, 282, 3293-3301.	1.6	194
7	The Active Site of an Algal Prolyl 4-Hydroxylase Has a Large Structural Plasticity. Journal of Biological Chemistry, 2007, 282, 37112-37123.	1.6	56
8	Evolution of Flavone Synthase I from Parsley Flavanone 3β-Hydroxylase by Site-Directed Mutagenesis. Plant Physiology, 2007, 144, 1442-1454.	2.3	72
9	JMJD6 Is a Histone Arginine Demethylase. Science, 2007, 318, 444-447.	6.0	604
10	An Endoplasmic Reticulum Transmembrane Prolyl 4-Hydroxylase Is Induced by Hypoxia and Acts on Hypoxia-inducible Factor α. Journal of Biological Chemistry, 2007, 282, 30544-30552.	1.6	124
11	Characterization of Ankyrin Repeat–Containing Proteins as Substrates of the Asparaginyl Hydroxylase Factor Inhibiting Hypoxiaâ€Inducible Transcription Factor. Methods in Enzymology, 2007, 435, 61-85.	0.4	24
12	Crystal Structure of the Non-heme Iron Dioxygenase PtlH in Pentalenolactone Biosynthesis. Journal of Biological Chemistry, 2007, 282, 36552-36560.	1.6	27
13	Structural and mechanistic studies on the peroxisomal oxygenase phytanoyl-CoA 2-hydroxylase (PhyH). Biochemical Society Transactions, 2007, 35, 870-875.	1.6	22
14	Crll Reactivity of Taurine/α-Ketoglutarate Dioxygenase. Inorganic Chemistry, 2007, 46, 10087-10092.	1.9	2
15	The Chemistry of Protein Catalysis. Journal of Molecular Biology, 2007, 372, 1261-1277.	2.0	43
16	The Obesity-Associated <i>FTO</i> Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase. Science, 2007, 318, 1469-1472.	6.0	1,305
17	Hypoxiaâ€Inducible Factor Prolylâ€Hydroxylase: Purification and Assays of PHD2. Methods in Enzymology, 2007, 435, 25-42.	0.4	46
18	Purification and Characterization of the FeII- and α-Ketoglutarate-Dependent Xanthine Hydroxylase from Aspergillus nidulans. Biochemistry, 2007, 46, 5293-5304.	1.2	31

#	Article	IF	CITATIONS
19	Probing the Ironâ^'Substrate Orientation for Taurine/α-Ketoglutarate Dioxygenase Using Deuterium Electron Spin Echo Envelope Modulation Spectroscopy. Biochemistry, 2007, 46, 5951-5959.	1.2	27
20	Mechanistic and Structural Basis of Stereospecific Cβ-Hydroxylation in Calcium-Dependent Antibiotic, a Daptomycin-Type Lipopeptide. ACS Chemical Biology, 2007, 2, 187-196.	1.6	107
21	Metal ligand substitution and evidence for quinone formation in taurine/α-ketoglutarate dioxygenase. Journal of Inorganic Biochemistry, 2007, 101, 797-808.	1.5	39
22	The microtubule-pore gatekeeper. , 2007, 3, 81-82.		12
23	The most versatile of all reactive intermediates?. , 2007, 3, 86-87.		44
24	Success in tubulysin D synthesis. , 2007, 3, 87-89.		18
25	Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one?. Nature Chemical Biology, 2007, 3, 144-153.	3.9	201
26	Regulation of histone methylation by demethylimination and demethylation. Nature Reviews Molecular Cell Biology, 2007, 8, 307-318.	16.1	764
27	Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Nature Structural and Molecular Biology, 2007, 14, 689-695.	3.6	247
28	Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature, 2007, 448, 87-91.	13.7	297
29	Replacement of non-heme Fe(II) with Cu(II) in the α-ketoglutarate dependent DNA repair enzyme AlkB: Spectroscopic characterization of the active site. Journal of Inorganic Biochemistry, 2007, 101, 1043-1048.	1.5	18
30	Elucidation of active site residues of Arabidopsis thaliana flavonol synthase provides a molecular platform for engineering flavonols. Phytochemistry, 2008, 69, 66-75.	1.4	51
31	Expression, purification, crystallization and preliminary X-ray studies of a prolyl-4-hydroxylase protein from <i>Bacillus anthracis</i> . Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 788-791.	0.7	5
32	ESIâ€MS Studies on Prolyl Hydroxylase Domainâ€2 Reveal a New Metal Binding Site. ChemMedChem, 2008, 3, 569-572.	1.6	25
33	Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Annals of Medicine, 2008, 40, 402-417.	1.5	202
34	Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl hydroxylase family member. EMBO Journal, 2008, 27, 1491-501.	3.5	90
35	Dynamic states of the DNA repair enzyme AlkB regulate product release. EMBO Reports, 2008, 9, 872-877.	2.0	55
36	Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nature Chemical Biology, 2008, 4, 186-193.	3.9	551

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
37	Expanding chemical biology of 2-oxoglutarate oxygenases. Nature Chemical Biology, 2008, 4, 152-156.	3.9	438
38	Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins. BMC Genomics, 2008, 9, 293.	1.2	40
39	Identification of a Copper(I) Intermediate in the Conversion of 1-Aminocyclopropane Carboxylic Acid (ACC) into Ethylene by Cu(II)â^'ACC Complexes and Hydrogen Peroxide. Inorganic Chemistry, 2008, 47, 4627-4638.	1.9	22
40	Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies. Chemical Society Reviews, 2008, 37, 2716.	18.7	461
41	Characterization of active site variants of xanthine hydroxylase from Aspergillus nidulans. Archives of Biochemistry and Biophysics, 2008, 470, 44-53.	1.4	10
42	The human oxygen sensing machinery and its manipulation. Chemical Society Reviews, 2008, 37, 1308.	18.7	100
43	Fell/α-ketoglutarate hydroxylases involved in nucleobase, nucleoside, nucleotide, and chromatin metabolism. Dalton Transactions, 2008, , 5132.	1.6	53
44	Kinetic Rationale for Selectivity toward N- and C-terminal Oxygen-dependent Degradation Domain Substrates Mediated by a Loop Region of Hypoxia-Inducible Factor Prolyl Hydroxylases. Journal of Biological Chemistry, 2008, 283, 3808-3815.	1.6	72
46	Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1α. Biochemical Journal, 2008, 416, 387-394.	1.7	278
47	Structural and functional comparison of 2-His- 1-carboxylate and 3-His metallocentres in non-haem iron(II)-dependent enzymes. Biochemical Society Transactions, 2008, 36, 1180-1186.	1.6	32
48	Evidence That Two Enzyme-derived Histidine Ligands Are Sufficient for Iron Binding and Catalysis by Factor Inhibiting HIF (FIH). Journal of Biological Chemistry, 2008, 283, 25971-25978.	1.6	46
49	Characterization of Recombinant Human Prolyl 3-Hydroxylase Isoenzyme 2, an Enzyme Modifying the Basement Membrane Collagen IV. Journal of Biological Chemistry, 2008, 283, 19432-19439.	1.6	78
50	Conformational Studies Suggest That the Double Stranded β Helix Scaffold Provides an Optimal Balance Between Protein Stability and Function. Protein and Peptide Letters, 2008, 15, 244-249.	0.4	5
52	Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14315-14320.	3.3	80
53	Missense Mutations That Cause Bruck Syndrome Affect Enzymatic Activity, Folding, and Oligomerization of Lysyl Hydroxylase 2. Journal of Biological Chemistry, 2009, 284, 30917-30924.	1.6	43
54	A Mouse Model for the Metabolic Effects of the Human Fat Mass and Obesity Associated FTO Gene. PLoS Genetics, 2009, 5, e1000599.	1.5	282
55	The Crystal Structure of an Algal Prolyl 4-Hydroxylase Complexed with a Proline-rich Peptide Reveals a Novel Buried Tripeptide Binding Motif. Journal of Biological Chemistry, 2009, 284, 25290-25301.	1.6	63
56	HIF Prolyl 4-Hydroxylases and their Potential as Drug Targets. Current Pharmaceutical Design, 2009, 15, 3878-3885.	0.9	47

#	Article	IF	CITATIONS
57	Structural Basis for Binding of Hypoxia-Inducible Factor to the Oxygen-Sensing Prolyl Hydroxylases. Structure, 2009, 17, 981-989.	1.6	205
58	Origin of the Correlation of the Rate Constant of Substrate Hydroxylation by Nonheme Iron(IV)–oxo Complexes with the Bondâ€Dissociation Energy of the CH Bond of the Substrate. Chemistry - A European Journal, 2009, 15, 6651-6662.	1.7	98
59	Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase. Planta, 2009, 229, 427-445.	1.6	116
60	Structural basis for the <i>erythro</i> â€stereospecificity of the <scp>l</scp> â€arginine oxygenase VioC in viomycin biosynthesis. FEBS Journal, 2009, 276, 3669-3682.	2.2	64
61	Functional characterization of an orphan cupin protein from <i>Burkholderia xenovorans</i> reveals a mononuclear nonheme Fe ²⁺ â€dependent oxygenase that cleaves βâ€diketones. FEBS Journal, 2009, 276, 5983-5997.	2.2	10
62	2-Oxoglutarate analogue inhibitors of prolyl hydroxylase domain 2. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6192-6195.	1.0	22
63	Use of mass spectrometry to probe the nucleophilicity of cysteinyl residues of prolyl hydroxylase domain 2. Analytical Biochemistry, 2009, 393, 215-221.	1.1	19
64	Structural Analysis of an Open Active Site Conformation of Nonheme Iron Halogenase CytC3. Journal of the American Chemical Society, 2009, 131, 4872-4879.	6.6	76
65	Stereospecific Synthesis of threo- and erythro-β-Hydroxyglutamic Acid During Kutzneride Biosynthesis. Journal of the American Chemical Society, 2009, 131, 13523-13530.	6.6	68
66	Functional Characterization of <i>ttmM</i> Unveils New Tautomycin Analogs and Insight into Tautomycin Biosynthesis and Activity. Organic Letters, 2009, 11, 1639-1642.	2.4	18
67	Application of a Proteolysis/Mass Spectrometry Method for Investigating the Effects of Inhibitors on Hydroxylase Structure. Journal of Medicinal Chemistry, 2009, 52, 2799-2805.	2.9	43
68	Characterization of novel 2-oxoglutarate dependent dioxygenases converting l-proline to cis-4-hydroxy-l-proline. Biochemical and Biophysical Research Communications, 2009, 379, 882-886.	1.0	71
69	Structural Analysis of Metal Sites in Proteins: Non-heme Iron Sites as a Case Study. Journal of Molecular Biology, 2009, 388, 356-380.	2.0	48
70	Asparaginyl β-Hydroxylation of Proteins Containing Ankyrin Repeat Domains Influences Their Stability and Function. Journal of Molecular Biology, 2009, 392, 994-1006.	2.0	36
71	A DFT Study of Nucleobase Dealkylation by the DNA Repair Enzyme AlkB. Journal of Physical Chemistry B, 2009, 113, 4887-4898.	1.2	64
72	Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 1-39.	2.5	167
73	Inhibition of the histone lysine demethylase JMJD2A by ejection of structural Zn(ii). Chemical Communications, 2009, , 6376.	2.2	77
74	Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics, 2009, 1, 222.	1.0	344

#	Article	IF	Citations
75	Biochemical characterization and mutational analysis of the mononuclear non-haem Fe2+ site in Dke1, a cupin-type dioxygenase from Acinetobacter johnsonii. Biochemical Journal, 2009, 418, 403-411.	1.7	27
76	Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and) Tj ETQq1 1 135-142.	0.784314 1.7	rgBT /Overlo 118
77	Therapeutic Manipulation of the HIF Hydroxylases. Antioxidants and Redox Signaling, 2010, 12, 481-501.	2.5	75
78	Molecular characterization of flavonol synthase from poplar and its application to the synthesis of 3-O-methylkaempferol. Biotechnology Letters, 2010, 32, 579-584.	1.1	30
79	Structural studies on human 2-oxoglutarate dependent oxygenases. Current Opinion in Structural Biology, 2010, 20, 659-672.	2.6	238
80	Crystal structure of the PHF8 Jumonji domain, an <i>N</i> ^ε â€methyl lysine demethylase. FEBS Letters, 2010, 584, 825-830.	1.3	35
81	Multifunctional flavonoid dioxygenases: Flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L Phytochemistry, 2010, 71, 1040-1049.	1.4	206
82	Structural and Mechanistic Studies on Î ³ -Butyrobetaine Hydroxylase. Chemistry and Biology, 2010, 17, 1316-1324.	6.2	78
83	Evidence for the slow reaction of hypoxiaâ€inducible factor prolyl hydroxylase 2 with oxygen. FEBS Journal, 2010, 277, 4089-4099.	2.2	75
84	Placental FTO expression relates to fetal growth. International Journal of Obesity, 2010, 34, 1365-1370.	1.6	29
85	Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nature Chemical Biology, 2010, 6, 273-275.	3.9	196
86	Synthesis of 5-Hydroxyectoine from Ectoine: Crystal Structure of the Non-Heme Iron(II) and 2-Oxoglutarate-Dependent Dioxygenase EctD. PLoS ONE, 2010, 5, e10647.	1.1	55
87	Conformational switch triggered by α-ketoglutarate in a halogenase of curacin A biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14099-14104.	3.3	78
88	Crystal structure of Tpa1 from Saccharomyces cerevisiae, a component of the messenger ribonucleoprotein complex. Nucleic Acids Research, 2010, 38, 2099-2110.	6.5	27
89	Structural and Functional Insights into Saccharomyces cerevisiae Tpa1, a Putative Prolylhydroxylase Influencing Translation Termination and Transcription. Journal of Biological Chemistry, 2010, 285, 30767-30778.	1.6	30
90	Prolyl hydroxylase domain-containing protein inhibitors as stabilizers of hypoxia-inducible factor: small molecule-based therapeutics for anemia. Expert Opinion on Therapeutic Patents, 2010, 20, 1219-1245.	2.4	80
91	2-Oxoglutarate oxygenases are inhibited by a range of transition metals. Metallomics, 2010, 2, 397.	1.0	26

92	Epigenetic control of the immune system: histone demethylation as a target for drug discovery. Drug Discovery Today: Technologies, 2010, 7, e67-e75.	4.0	8
----	---	-----	---

#	Article	IF	CITATIONS
93	Crystal Structure of Prolyl 4-Hydroxylase from <i>Bacillus anthracis</i> . Biochemistry, 2010, 49, 124-133.	1.2	23
94	Steric Factors Override Thermodynamic Driving Force in Regioselectivity of Proline Hydroxylation by Prolyl-4-hydroxylase Enzymes. Journal of Physical Chemistry A, 2010, 114, 13234-13243.	1.1	41
95	Crystal Structure of the 2-Oxoglutarate- and Fe(II)-Dependent Lysyl Hydroxylase JMJD6. Journal of Molecular Biology, 2010, 401, 211-222.	2.0	85
96	Crystal structure of human gamma-butyrobetaine hydroxylase. Biochemical and Biophysical Research Communications, 2010, 398, 634-639.	1.0	30
97	A miniaturized screen for inhibitors of Jumonji histone demethylases. Molecular BioSystems, 2010, 6, 357-364.	2.9	84
98	Fto immunoreactivity is widespread in the rodent brain and abundant in feeding-related sites, but the number of Fto-positive cells is not affected by changes in energy balance. Physiology and Behavior, 2011, 103, 248-253.	1.0	18
99	Inhibition of 2-oxoglutarate dependent oxygenases. Chemical Society Reviews, 2011, 40, 4364.	18.7	336
100	Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression. Biochemical and Biophysical Research Communications, 2011, 408, 422-426.	1.0	17
101	Crystal structure of PHYHD1A, a 2OG oxygenase related to phytanoyl-CoA hydroxylase. Biochemical and Biophysical Research Communications, 2011, 408, 553-558.	1.0	20
102	Where to go with FTO?. Trends in Endocrinology and Metabolism, 2011, 22, 53-59.	3.1	65
103	The HIF Pathway and Erythrocytosis. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 165-192.	9.6	150
105	Schizosaccharomyces pombe Ofd2 Is a Nuclear 2-Oxoglutarate and Iron Dependent Dioxygenase Interacting with Histones. PLoS ONE, 2011, 6, e25188.	1.1	13
107	Stringency of the 2-His–1-Asp Active-Site Motif in Prolyl 4-Hydroxylase. , 2011, , 242-253.		0
108	Two antioxidants are better than one. Blood, 2011, 117, 5276-5277.	0.6	3
109	Curbing an inhibitor for hemostasis. Blood, 2011, 117, 5277-5278.	0.6	2
110	Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends in Biochemical Sciences, 2011, 36, 7-18.	3.7	260
111	Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of α-Ketoglutarate-Dependent Dioxygenases. Cancer Cell, 2011, 19, 17-30.	7.7	2,340
112	The Last Step of the Biosynthesis of the Cyanotoxins Cylindrospermopsin and 7â€ <i>epi</i> â€Cylindrospermopsin is Catalysed by Cyrl, a 2â€Oxoglutarateâ€Dependent Iron Oxygenase. ChemBioChem, 2011, 12, 858-862.	1.3	33

#	Article	IF	CITATIONS
113	Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification. Nucleic Acids Research, 2011, 39, 1576-1585.	6.5	47
114	Genetics of Type 2 Diabetes. Clinical Chemistry, 2011, 57, 241-254.	1.5	139
115	Ab Initio Structural Modeling of and Experimental Validation for Chlamydia trachomatis Protein CT296 Reveal Structural Similarity to Fe(II) 2-Oxoglutarate-Dependent Enzymes. Journal of Bacteriology, 2011, 193, 6517-6528.	1.0	19
116	Beyond the Antioxidant: The Double Life of Vitamin C. Sub-Cellular Biochemistry, 2012, 56, 49-65.	1.0	55
117	JBP1 and JBP2 Proteins Are Fe2+/2-Oxoglutarate-dependent Dioxygenases Regulating Hydroxylation of Thymidine Residues in Trypanosome DNA. Journal of Biological Chemistry, 2012, 287, 19886-19895.	1.6	40
118	Fat mass and obesity-associated obesity-risk genotype is associated with lower foetal growth: an effect that is reversed in the offspring of smoking mothers. Journal of Developmental Origins of Health and Disease, 2012, 3, 10-20.	0.7	8
119	Expression, purification, crystallization and preliminary X-ray analysis of a novel N-substituted branched-chainL-amino-acid dioxygenase fromBurkholderia ambifariaAMMD. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1067-1069.	0.7	2
120	<i>IDH1</i> and <i>IDH2</i> Mutations in Tumorigenesis: Mechanistic Insights and Clinical Perspectives. Clinical Cancer Research, 2012, 18, 5562-5571.	3.2	341
121	The yeast hypoxic responses, resources for new biotechnological opportunities. Biotechnology Letters, 2012, 34, 2161-2173.	1.1	15
122	A new family of bacterial DNA repair proteins annotated by the integration of nonâ€homology, distant homology and structural bioinformatic methods. FEBS Letters, 2012, 586, 3908-3913.	1.3	3
123	The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radical Biology and Medicine, 2012, 53, 1041-1047.	1.3	138
124	Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics, 2012, 4, 619.	1.0	205
125	Changes in Protein Dynamics of the DNA Repair Dioxygenase AlkB upon Binding of Fe ²⁺ and 2-Oxoglutarate. Biochemistry, 2012, 51, 3334-3341.	1.2	36
126	Crystal Structure and Functional Analysis of JMJD5 Indicate an Alternate Specificity and Function. Molecular and Cellular Biology, 2012, 32, 4044-4052.	1.1	59
127	Functional characterization of recombinant hyoscyamine 6β-hydroxylase from Atropa belladonna. Bioorganic and Medicinal Chemistry, 2012, 20, 4356-4363.	1.4	40
128	Cloning and characterization of chicken fat mass and obesity associated (Fto) gene: fasting affects Fto expression. Domestic Animal Endocrinology, 2012, 42, 1-10.	0.8	20
129	Structural Insight into the Prolyl Hydroxylase PHD2: A Molecular Dynamics and DFT Study. European Journal of Inorganic Chemistry, 2012, 2012, 4973-4985.	1.0	5
130	Distribution and prediction of catalytic domains in 2-oxoglutarate dependent dioxygenases. BMC Research Notes, 2012, 5, 410.	0.6	11

#	Article	IF	CITATIONS
131	Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibition: Robust New Target or Another Big Bust for Stroke Therapeutics?. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1347-1361.	2.4	89
132	Obesity and eating behaviour in children and adolescents: Contribution of common gene polymorphisms. International Review of Psychiatry, 2012, 24, 200-210.	1.4	42
133	Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Natural Product Reports, 2012, 29, 1074.	5.2	255
134	Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Current Opinion in Structural Biology, 2012, 22, 691-700.	2.6	171
135	The role of histone demethylases in cancer therapy. Molecular Oncology, 2012, 6, 683-703.	2.1	98
136	Water Soluble Vitamins. Sub-Cellular Biochemistry, 2012, , .	1.0	9
137	Genetic association of SNPs in the FTO gene and predisposition to obesity in Malaysian Malays. Brazilian Journal of Medical and Biological Research, 2012, 45, 1119-1126.	0.7	14
138	Ring-Cleaving Dioxygenases with a Cupin Fold. Applied and Environmental Microbiology, 2012, 78, 2505-2514.	1.4	160
139	1-Aminocyclopropane-1-carboxylic acid oxidase: insight into cofactor binding from experimental and theoretical studies. Journal of Biological Inorganic Chemistry, 2012, 17, 939-949.	1.1	42
140	Development and Application of a Fluorideâ€Detectionâ€Based Fluorescence Assay for γâ€Butyrobetaine Hydroxylase. ChemBioChem, 2012, 13, 1559-1563.	1.3	27
141	Autocatalysed oxidative modifications to 2â€oxoglutarate dependent oxygenases. FEBS Journal, 2012, 279, 1563-1575.	2.2	55
142	Purification, crystallization and preliminary crystallographic analysis of histone lysine demethylase NO66 from <i>Homo sapiens</i> . Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 764-766.	0.7	3
143	Small Molecule Models for Nonporphyrinic Iron and Manganese Oxygenases. , 2013, , 487-564.		25
144	Oxygen Atom Transfer. , 2013, , 619-634.		6
145	5-Carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation. Chemical Science, 2013, 4, 3110.	3.7	142
146	Bio-inspired amino acid oxidation by a non-heme iron catalyst. Journal of Inorganic Biochemistry, 2013, 123, 46-52.	1.5	16
147	Metabolomic Analysis of Fission Yeast at the Onset of Nitrogen Starvation. Metabolites, 2013, 3, 1118-1129.	1.3	30
148	Association of Genetic polymorphism of PPARÎ ³ -2, ACE, MTHFR, FABP-2 and FTO genes in risk prediction of type 2 diabetes mellitus. Journal of Biomedical Science, 2013, 20, 80.	2.6	41

	Сіт	ation Report	
#	Article	IF	CITATIONS
149	The enzymes of \hat{I}^2 -lactam biosynthesis. Natural Product Reports, 2013, 30, 21-107.	5.2	208
150	Dual-action inhibitors of HIF prolyl hydroxylases that induce binding of a second iron ion. Organic and Biomolecular Chemistry, 2013, 11, 732-745.	1.5	21
151	Reporter Ligand NMR Screening Method for 2-Oxoglutarate Oxygenase Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 547-555.	2.9	59
152	Breathingâ€in epigenetic change with vitamin C. EMBO Reports, 2013, 14, 337-346.	2.0	118
153	Deregulation of the histone demethylase JMJD2A is involved in human carcinogenesis through regulation of the G1/S transition. Cancer Letters, 2013, 336, 76-84.	3.2	59
154	Substrate Selectivity Analyses of Factor Inhibiting Hypoxiaâ€Inducible Factor. Angewandte Chemie - International Edition, 2013, 52, 1700-1704.	7.2	30
155	Intramolecular G-Quadruplex Structure. , 2013, , 984-984.		0
156	ITC, Isothermal Titration Calorimetry. , 2013, , 1057-1057.		1
157	Regulatory Roles of Metabolites in Cell Signaling Networks. Journal of Genetics and Genomics, 2013, 40, 367-374.	1.7	21
158	A mechanistic overview of TET-mediated 5-methylcytosine oxidation. Biochemical and Biophysical Research Communications, 2013, 436, 115-120.	1.0	50
159	Investigations on the oxygen dependence of a 2-oxoglutarate histone demethylase. Biochemical Journal, 2013, 449, 491-496.	1.7	53
160	The polyserine domain of the lysyl-5 hydroxylase Jmjd6 mediates subnuclear localization. Biochemical Journal, 2013, 453, 357-370.	1.7	36
161	Biocatalytic Production of Chemical Building Blocks in Technical Scale with αâ€Ketoglutarateâ€Depen Dioxygenases. Chemie-Ingenieur-Technik, 2013, 85, 809-817.	dent 0.4	21
163	Crystal Structure of a Novel N-Substituted L-Amino Acid Dioxygenase from Burkholderia ambifaria AMMD. PLoS ONE, 2013, 8, e63996.	1.1	19
164	Structure of human RNA <i>N</i> 6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Research, 2014, 42, 4741-47	⁷ 54. ^{6.5}	162
165	Protein Dynamics Control the Progression and Efficiency of the Catalytic Reaction Cycle of the Escherichia coli DNA-Repair Enzyme AlkB. Journal of Biological Chemistry, 2014, 289, 29584-29601.	1.6	33
166	Human UTY(KDM6C) Is a Male-specific Nϵ-Methyl Lysyl Demethylase. Journal of Biological Chemistry, 2014, 289, 18302-18313.	1.6	166
167	Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism. Frontiers in Plant Science, 2014, 5, 524.	1.7	178

#	Article	IF	CITATIONS
168	Ascorbate as a Co-Factor for Fe- and 2-Oxoglutarate Dependent Dioxygenases: Physiological Activity in Tumor Growth and Progression. Frontiers in Oncology, 2014, 4, 359.	1.3	132
169	The Function and Catalysis of 2-Oxoglutarate-Dependent Oxygenases Involved in Plant Flavonoid Biosynthesis. International Journal of Molecular Sciences, 2014, 15, 1080-1095.	1.8	100
170	Increased Tumor Ascorbate is Associated with Extended Disease-Free Survival and Decreased Hypoxia-Inducible Factor-1 Activation in Human Colorectal Cancer. Frontiers in Oncology, 2014, 4, 10.	1.3	52
171	The roles of Jumonji-type oxygenases in human disease. Epigenomics, 2014, 6, 89-120.	1.0	141
172	Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18237-18242.	3.3	174
173	Structural optimization of SadA, an Fe(II)- and α-ketoglutarate-dependent dioxygenase targeting biocatalytic synthesis of N-succinyl-I-threo-3,4-dimethoxyphenylserine. Biochemical and Biophysical Research Communications, 2014, 450, 1458-1461.	1.0	15
174	Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochemical Journal, 2014, 462, 385-395.	1.7	85
175	Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13331-13336.	3.3	60
176	Investigating the contribution of the active site environment to the slow reaction of hypoxia-inducible factor prolyl hydroxylase domain 2 with oxygen. Biochemical Journal, 2014, 463,	1.7	41
	363-372.		
177	363-372. The Genetics of Obesity. , 2014, , .		0
177 178	 363-372. The Genetics of Obesity. , 2014, , . Ejection of structural zinc leads to inhibition of Î³-butyrobetaine hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4954-4957. 	1.0	0
177 178 179	 363-372. The Genetics of Obesity. , 2014, , . Ejection of structural zinc leads to inhibition of Î³-butyrobetaine hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4954-4957. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nature Communications, 2014, 5, 3423. 	1.0	0 11 69
1777 1778 1779 1800	363-372. The Cenetics of Obesity., 2014, , . Ejection of structural zinc leads to inhibition of γ-butyrobetaine hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4954-4957. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nature Communications, 2014, 5, 3423. Modulating carnitine levels by targeting its biosynthesis – selective inhibition of γ-butyrobetaine hydroxylase. Chemical Science, 2014, 5, 1765-1771.	1.0 5.8 3.7	0 11 69 23
1777 1778 1779 1800 1811	363-372. The Genetics of Obesity. , 2014, , . Ejection of structural zinc leads to inhibition of γ-butyrobetaine hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4954-4957. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nature Communications, 2014, 5, 3423. Modulating carnitine levels by targeting its biosynthesis – selective inhibition of γ-butyrobetaine hydroxylase. Chemical Science, 2014, 5, 1765-1771. Studies on Deacetoxycephalosporin C Synthase Support a Consensus Mechanism for 2-Oxoglutarate Dependent Oxygenases. Biochemistry, 2014, 53, 2483-2493.	1.0 5.8 3.7 1.2	0 11 69 23
1777 1778 1779 1800 1811	363-372. The Genetics of Obesity. , 2014, , . Ejection of structural zinc leads to inhibition of γ-butyrobetaine hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4954-4957. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nature Communications, 2014, 5, 3423. Modulating carnitine levels by targeting its biosynthesis – selective inhibition of γ-butyrobetaine hydroxylase. Chemical Science, 2014, 5, 1765-1771. Studies on Deacetoxycephalosporin C Synthase Support a Consensus Mechanism for 2-Oxoglutarate Dependent Oxygenases. Biochemistry, 2014, 53, 2483-2493. Structures of Human ALKBH5 Demethylase Reveal a Unique Binding Mode for Specific Single-stranded N6-Methyladenosine RNA Demethylation. Journal of Biological Chemistry, 2014, 289, 17299-17311.	1.0 5.8 3.7 1.2 1.6	0 11 69 23 43 138
1777 1778 1779 1800 1811 1822 1833	 363-372. The Cenetics of Obesity. , 2014, , . Ejection of structural zinc leads to inhibition of ^î3-butyrobetaine hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4954-4957. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nature Communications, 2014, 5, 3423. Modulating carnitine levels by targeting its biosynthesis – selective inhibition of ^î3-butyrobetaine hydroxylase. Chemical Science, 2014, 5, 1765-1771. Studies on Deacetoxycephalosporin C Synthase Support a Consensus Mechanism for 2-Oxoglutarate Dependent Oxygenases. Biochemistry, 2014, 53, 2483-2493. Structures of Human ALKBH5 Demethylase Reveal a Unique Binding Mode for Specific Single-stranded N6-Methyladenosine RNA Demethylation. Journal of Biological Chemistry, 2014, 289, 17299-17311. Oxidative Degradation of Amino Acids and Aminophosphonic Acids by 2,2â€2-Bipyridine Complexes of Copper(II). European Journal of Inorganic Chemistry, 2014, 2014, 2829-2838. 	1.0 5.8 3.7 1.2 1.6 1.0	0 11 69 23 43 138
 177 178 179 180 181 182 183 184 	 363-372. The Genetics of Obesity. , 2014, , . Ejection of structural zinc leads to inhibition of ¹3-butyrobetaine hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4954-4957. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nature Communications, 2014, 5, 3423. Modulating carnitine levels by targeting its biosynthesis – selective inhibition of ¹3-butyrobetaine hydroxylase. Chemical Science, 2014, 5, 1765-1771. Studies on Deacetoxycephalosporin C Synthase Support a Consensus Mechanism for 2-Oxoglutarate Dependent Oxygenases. Biochemistry, 2014, 53, 2483-2493. Structures of Human ALKBH5 Demethylase Reveal a Unique Binding Mode for Specific Single-stranded N6-Methyladenosine RNA Demethylation. Journal of Biological Chemistry, 2014, 289, 17299-17311. Oxidative Degradation of Amino Acids and Aminophosphonic Acids by 2,2862-Bipyridine Complexes of Copper (II). European Journal of Inorganic Chemistry, 2014, 2829-2838. Highly Selective but Multifunctional Oxygenases in Secondary Metabolism. Accounts of Chemical Research, 2014, 47, 3148-3161. 	1.0 5.8 3.7 1.2 1.6 1.0 7.6	0 11 69 23 43 138 138

#	ARTICLE Structure and Functional Analysis of YcfD, a Novel 2-Oxoglutarate/Fe2+-Dependent Oxygenase	IF	Citations
186	Involved in Translational Regulation in Escherichia coli. Journal of Molecular Biology, 2014, 426, 1898-1910.	2.0	13
187	Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Nature, 2014, 510, 422-426.	13.7	87
188	Targeting histone lysine demethylases — Progress, challenges, and the future. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1416-1432.	0.9	170
189	Krebs cycle intermediates regulate DNA and histone methylation: Epigenetic impact on the aging process. Ageing Research Reviews, 2014, 16, 45-65.	5.0	95
190	<scp>DOWNY MILDEW RESISTANT</scp> 6 and <scp>DMR</scp> 6â€ <scp>LIKE OXYGENASE</scp> 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant Journal, 2015, 81, 210-222.	2.8	168
191	Structure prediction of Fe(II) 2-oxoglutarate dioxygenase from a psychrophilic yeast Glaciozyma antarctica PI12. AIP Conference Proceedings, 2015, , .	0.3	1
192	Molecular basis for the substrate specificity and catalytic mechanism of thymine-7-hydroxylase in fungi. Nucleic Acids Research, 2015, 43, gkv979.	6.5	9
193	Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment. Chemistry - A European Journal, 2015, 21, 18983-18992.	1.7	17
194	Co-operative intermolecular kinetics of 2-oxoglutarate dependent dioxygenases may be essential for system-level regulation of plant cell physiology. Frontiers in Plant Science, 2015, 6, 489.	1.7	5
195	Emerging Roles of JmjC Domain-Containing Proteins. International Review of Cell and Molecular Biology, 2015, 319, 165-220.	1.6	70
196	The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-10.	1.9	11
197	Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Progress in Neurobiology, 2015, 131, 1-20.	2.8	74
198	The oxygenase Jmjd6–a case study in conflicting assignments. Biochemical Journal, 2015, 468, 191-202.	1.7	76
199	Emulsion PCR Significantly Improves Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures-Based Aptamer Selection: Allowing for Efficient and Rapid Selection of Aptamer to Unmodified ABH2 Protein. Analytical Chemistry, 2015, 87, 1411-1419.	3.2	64
200	Structure of the Ribosomal Oxygenase OGFOD1 Provides Insights into the Regio- and Stereoselectivity of Prolyl Hydroxylases. Structure, 2015, 23, 639-652.	1.6	32
201	Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases. Frontiers in Plant Science, 2015, 6, 98.	1.7	10
202	2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. Cellular and Molecular Life Sciences, 2015, 72, 3897-3914.	2.4	78
203	Post-translational hydroxylation by 2OC/Fe(II)-dependent oxygenases as a novel regulatory mechanism in bacteria. Frontiers in Microbiology, 2015, 5, 798.	1.5	14

#	Article	IF	CITATIONS
204	Biochemical Diversity of 2-Oxoglutarate-Dependent Oxygenases. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 1-58.	0.8	31
206	Characterization of the interaction of FTO protein with thioglycolic acid capped CdTe quantum dots and its analytical application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 149, 667-673.	2.0	8
207	Epigenetic regulation by histone demethylases in hypoxia. Epigenomics, 2015, 7, 791-811.	1.0	124
208	Fat mass- and obesity-associated gene Fto affects the dietary response in mouse white adipose tissue. Scientific Reports, 2015, 5, 9233.	1.6	46
209	Kinetic Investigations of the Role of Factor Inhibiting Hypoxia-inducible Factor (FIH) as an Oxygen Sensor. Journal of Biological Chemistry, 2015, 290, 19726-19742.	1.6	69
211	Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases. Journal of Biological Chemistry, 2015, 290, 20702-20711.	1.6	327
212	Structure of the JmjC domain-containing protein NO66 complexed with ribosomal protein Rpl8. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1955-1964.	2.5	11
213	Betti reaction enables efficient synthesis of 8-hydroxyquinoline inhibitors of 2-oxoglutarate oxygenases. Chemical Communications, 2015, 51, 15458-15461.	2.2	35
214	Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase. Biochemistry, 2015, 54, 6093-6105.	1.2	19
215	TET proteins in cancer: Current †state of the art'. Critical Reviews in Oncology/Hematology, 2015, 96, 425-436.	2.0	30
216	Refined Regio- and Stereoselective Hydroxylation of <scp>l</scp> -Pipecolic Acid by Protein Engineering of <scp>l</scp> -Proline <i>cis</i> -4-Hydroxylase Based on the X-ray Crystal Structure. ACS Synthetic Biology, 2015, 4, 383-392.	1.9	30
217	Clinical iron deficiency disturbs normal human responses to hypoxia. Journal of Clinical Investigation, 2016, 126, 2139-2150.	3.9	82
218	Nonsense Mutation Inside Anthocyanidin Synthase Gene Controls Pigmentation in Yellow Raspberry (Rubus idaeus L.). Frontiers in Plant Science, 2016, 7, 1892.	1.7	34
219	Biocatalysis for Organic Chemists: Hydroxylations. , 2016, , 213-241.		8
220	<i>FTO</i> variant associated with malformation syndrome. American Journal of Medical Genetics, Part A, 2016, 170, 1023-1028.	0.7	13
221	Structural analysis of cofactor binding for a prolyl 4-hydroxylase from the pathogenic bacteriumBacillus anthracis. Acta Crystallographica Section D: Structural Biology, 2016, 72, 675-681.	1.1	9
222	Structural analysis of human KDM5B guides histone demethylase inhibitor development. Nature Chemical Biology, 2016, 12, 539-545.	3.9	155
223	Aerobic alcohol oxidation and oxygen atom transfer reactions catalyzed by a nonheme iron(<scp>ii</scp>)–α-keto acid complex. Chemical Science, 2016, 7, 5322-5331.	3.7	46

#	Article	IF	CITATIONS
224	Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation. BMC Plant Biology, 2016, 16, 132.	1.6	53
226	Effects of <i>MC4R</i> , <i>FTO,</i> and <i>NMB</i> gene variants to obesity, physical activity, and eating behavior phenotypes. IUBMB Life, 2016, 68, 806-816.	1.5	14
228	Bacillus anthracis Prolyl 4-Hydroxylase Modifies Collagen-like Substrates in Asymmetric Patterns. Journal of Biological Chemistry, 2016, 291, 13360-13374.	1.6	15
229	Association of rs9939609 Polymorphism with Metabolic Parameters and <i>FTO</i> Risk Haplotype Among Tunisian Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2016, 14, 121-128.	0.5	24
230	Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 453-470.	1.1	93
231	Identification of a pathogenic <i>FTO</i> mutation by next-generation sequencing in a newborn with growth retardation and developmental delay. Journal of Medical Genetics, 2016, 53, 200-207.	1.5	50
232	Alpha-Ketoglutarate as a Molecule with Pleiotropic Activity: Well-Known and Novel Possibilities of Therapeutic Use. Archivum Immunologiae Et Therapiae Experimentalis, 2017, 65, 21-36.	1.0	140
233	Integrative view of 2-oxoglutarate/Fe(II)-dependent oxygenase diversity and functions in bacteria. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 323-334.	1.1	31
234	Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chemical Reviews, 2017, 117, 5619-5674.	23.0	281
235	A 2-Oxoglutarate-Dependent Dioxygenase Mediates the Biosynthesis of Glucoraphasatin in Radish. Plant Physiology, 2017, 173, 1583-1593.	2.3	60
236	Convenient expression, purification and quantitative liquid chromatography-tandem mass spectrometry-based analysis of TET2 5-methylcytosine demethylase. Protein Expression and Purification, 2017, 132, 143-151.	0.6	4
237	Structural and stereoelectronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4667-4672.	3.3	45
238	Characterization of Cu(II)-reconstituted ACC Oxidase using experimental and theoretical approaches. Archives of Biochemistry and Biophysics, 2017, 623-624, 31-41.	1.4	9
239	lsocitrate Dehydrogenase Mutation and (<i>R</i>)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Annual Review of Biochemistry, 2017, 86, 305-331.	5.0	161
240	The Activity of JmjC Histone Lysine Demethylase KDM4A is Highly Sensitive to Oxygen Concentrations. ACS Chemical Biology, 2017, 12, 1011-1019.	1.6	70
241	Discovery of a Highly Selective Cellâ€Active Inhibitor of the Histone Lysine Demethylases KDM2/7. Angewandte Chemie - International Edition, 2017, 56, 15555-15559.	7.2	32
242	<i>Bacillus anthracis</i> Prolyl 4-Hydroxylase Interacts with and Modifies Elongation Factor Tu. Biochemistry, 2017, 56, 5771-5785.	1.2	9
243	Large-scale examination of functional and sequence diversity of 2-oxoglutarate/Fe(II)-dependent	1.1	31

#	Article	IF	CITATIONS
244	NMR studies of the non-haem Fe(II) and 2-oxoglutarate-dependent oxygenases. Journal of Inorganic Biochemistry, 2017, 177, 384-394.	1.5	4
245	Structures and Mechanisms of the Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme: Substrate Binding Creates a Twist. Journal of the American Chemical Society, 2017, 139, 11980-11988.	6.6	55
246	Rigid scaffolds for the design of molecular catalysts and biomimetic active sites: A case study of anthracene-based ligands for modeling mono-iron hydrogenase (Hmd). Coordination Chemistry Reviews, 2017, 353, 295-308.	9.5	4
247	Discovery of a Highly Selective Cellâ€Active Inhibitor of the Histone Lysine Demethylases KDM2/7. Angewandte Chemie, 2017, 129, 15761-15765.	1.6	0
248	Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 2017, 6, 43.	1.0	40
249	Functional Analysis of Two Flavanone-3-Hydroxylase Genes from Camellia sinensis: A Critical Role in Flavonoid Accumulation. Genes, 2017, 8, 300.	1.0	52
250	The Role of Ascorbate in Plant Growth and Development. , 2017, , 25-45.		20
251	2-Oxoglutarate-Dependent Oxygenases. Annual Review of Biochemistry, 2018, 87, 585-620.	5.0	276
252	Mitochondria and Hypoxia: Metabolic Crosstalk in Cell-Fate Decisions. Trends in Endocrinology and Metabolism, 2018, 29, 249-259.	3.1	45
253	Small molecule KDM4s inhibitors as anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 777-793.	2.5	22
254	Fine Tuning of Antibiotic Activity by a Tailoring Hydroxylase in a Transâ€AT Polyketide Synthase Pathway. ChemBioChem, 2018, 19, 836-841.	1.3	3
255	Structure function and engineering of multifunctional non-heme iron dependent oxygenases in fungal meroterpenoid biosynthesis. Nature Communications, 2018, 9, 104.	5.8	58
256	Six domoic acid related compounds from the red alga, Chondria armata, and domoic acid biosynthesis by the diatom, Pseudo-nitzschia multiseries. Scientific Reports, 2018, 8, 356.	1.6	30
257	Mathematical Basis of Predicting Dominant Function in Protein Sequences by a Generic HMM–ANN Algorithm. Acta Biotheoretica, 2018, 66, 135-148.	0.7	1
258	Vitamin C in Stem Cell Reprogramming and Cancer. Trends in Cell Biology, 2018, 28, 698-708.	3.6	139
259	JMJD5 is a human arginyl C-3 hydroxylase. Nature Communications, 2018, 9, 1180.	5.8	37
260	Inhibitors of Protein Methyltransferases and Demethylases. Chemical Reviews, 2018, 118, 989-1068.	23.0	222
261	Identification of the Biosynthetic Pathway for the Antibiotic Bicyclomycin. Biochemistry, 2018, 57, 61-65.	1.2	55

#	Article	IF	CITATIONS
262	Bioluminescent High-Throughput Succinate Detection Method for Monitoring the Activity of JMJC Histone Demethylases and Fe(II)/2-Oxoglutarate-Dependent Dioxygenases. SLAS Discovery, 2018, 23, 242-254.	1.4	14
263	Properties, biosynthesis, and catalytic mechanisms of hydroxy-amino-acids. IOP Conference Series: Earth and Environmental Science, 2018, 188, 012084.	0.2	1
264	Structural Studies based on two Lysine Dioxygenases with Distinct Regioselectivity Brings Insights Into Enzyme Specificity within the Clavaminate Synthase-Like Family. Scientific Reports, 2018, 8, 16587.	1.6	17
265	Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. Chemical Record, 2018, 18, 1760-1781.	2.9	4
266	Roles of 2-oxoglutarate oxygenases and isopenicillin N synthase in β-lactam biosynthesis. Natural Product Reports, 2018, 35, 735-756.	5.2	33
267	Structural and Computational Bases for Dramatic Skeletal Rearrangement in Anditomin Biosynthesis. Journal of the American Chemical Society, 2018, 140, 9743-9750.	6.6	43
268	Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Natural Product Reports, 2018, 35, 792-837.	5.2	122
269	Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes, 2018, 9, 177.	1.0	177
270	The molecular characterization, expression pattern and alternative initiation of Megalobrama amblycephala Hif prolyl hydroxylase Phd1. Gene, 2018, 678, 219-225.	1.0	6
271	Reprogramming the Epigenome With Vitamin C. Frontiers in Cell and Developmental Biology, 2019, 7, 128.	1.8	86
272	Jmjd6a regulates GSK3β RNA splicing in Xenopus laevis eye development. PLoS ONE, 2019, 14, e0219800.	1.1	1
273	Biochemical Characterization of a Multifunctional Mononuclear Nonheme Iron Enzyme (PtlD) in Neopentalenoketolactone Biosynthesis. Organic Letters, 2019, 21, 7592-7596.	2.4	9
274	Promotion of adipogenesis by JMJD6 requires the AT hook-like domain and is independent of its catalytic function. PLoS ONE, 2019, 14, e0216015.	1.1	7
275	Non-heme iron enzyme-catalyzed complex transformations. Advances in Protein Chemistry and Structural Biology, 2019, 117, 1-61.	1.0	3
276	Biosynthesis and Etherâ€Bridge Formation in Nargenicin Macrolides. Angewandte Chemie, 2019, 131, 4036-4041.	1.6	2
277	Biosynthesis and Etherâ€Bridge Formation in Nargenicin Macrolides. Angewandte Chemie - International Edition, 2019, 58, 3996-4001.	7.2	13
278	Conformational flexibility influences structure–function relationships in nucleic acid <i>N</i> -methyl demethylases. Organic and Biomolecular Chemistry, 2019, 17, 2223-2231.	1.5	16
279	Crystal structure and expression patterns of prolyl 4-hydroxylases from Phytophthora capsici. Biochemical and Biophysical Research Communications, 2019, 508, 1011-1017.	1.0	1

щ		IF	CITATIONS
#	Mutant Isocitrate Dehvdrogenase Inhibitors as Targeted Cancer Therapeutics. Frontiers in Oncology.	IF	CHATIONS
280	2019, 9, 417.	1.3	183
281	Ascorbate modulates the hypoxic pathway by increasing intracellular activity of the HIF hydroxylases in renal cell carcinoma cells. Hypoxia (Auckland, N Z), 2019, Volume 7, 17-31.	1.9	24
282	Chemical Modification of 1-Aminocyclopropane Carboxylic Acid (ACC) Oxidase: Cysteine Mutational Analysis, Characterization, and Bioconjugation with a Nitroxide Spin Label. Molecular Biotechnology, 2019, 61, 650-662.	1.3	4
283	Industrial Application of 2-Oxoglutarate-Dependent Oxygenases. Catalysts, 2019, 9, 221.	1.6	42
284	Chemoenzymatic Total Synthesis of Deoxyâ€; <i>epi</i> â€; and Podophyllotoxin and a Biocatalytic Kinetic Resolution of Dibenzylbutyrolactones. Angewandte Chemie - International Edition, 2019, 58, 8226-8230.	7.2	56
285	Redesign and engineering of a dioxygenase targeting biocatalytic synthesis of 5-hydroxyl leucine. Catalysis Science and Technology, 2019, 9, 1825-1834.	2.1	16
286	Chemoenzymatische Totalsynthese von Deoxyâ€; <i>epi</i> ―und Podophyllotoxin sowie biokatalytische kinetische Racematspaltung von Dibenzylbutyrolactonen. Angewandte Chemie, 2019, 131, 8310-8315.	1.6	14
287	Exploring useful fermentation strategies for the production of hydroxyectoine with a halophilic strain, Halomonas salina BCRC 17875. Journal of Bioscience and Bioengineering, 2019, 128, 332-336.	1.1	11
288	Nickel-induced transcriptional changes persist Âpost exposure through epigenetic reprogramming. Epigenetics and Chromatin, 2019, 12, 75.	1.8	22
289	Targeting Metalloenzymes for Therapeutic Intervention. Chemical Reviews, 2019, 119, 1323-1455.	23.0	181
290	Iron Metabolism in Cancer. International Journal of Molecular Sciences, 2019, 20, 95.	1.8	179
291	Role of the N-terminus in human 4-hydroxyphenylpyruvate dioxygenase activity. Journal of Biochemistry, 2020, 167, 315-322.	0.9	2
292	Roles of vitamins in stem cells. Cellular and Molecular Life Sciences, 2020, 77, 1771-1791.	2.4	20
293	The Nargenicin Family of Oxaâ€Bridged Macrolide Antibiotics. Chemistry - A European Journal, 2020, 26, 2780-2792.	1.7	10
294	Molecular Basis for Chemical Evolution of Flavones to Flavonols and Anthocyanins in Land Plants. Plant Physiology, 2020, 184, 1731-1743.	2.3	40
295	Targeting histone demethylase KDM5B for cancer treatment. European Journal of Medicinal Chemistry, 2020, 208, 112760.	2.6	21
296	Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology. Genes and Diseases, 2020, 7, 585-597.	1.5	23
297	Reshaping the Binding Pocket of Lysine Hydroxylase for Enhanced Activity. ACS Catalysis, 2020, 10, 13946-13956.	5.5	39

# 298	ARTICLE Identification and Expression Analysis of Hormone Biosynthetic and Metabolism Genes in the 2OGD Family for Identifying Genes That May Be Involved in Tomato Fruit Ripening. International Journal of	IF 1.8	CITATIONS
299	Molecular Sciences, 2020, 21, 5344. Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. Journal of Biological Chemistry, 2020, 295, 16545-16561.	1.6	10
300	Enzymatic hydroxylation of L-pipecolic acid by L-proline cis-4-hydroxylases and isomers separation. Biotechnology Letters, 2020, 42, 2607-2617.	1.1	5
301	Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. International Journal of Molecular Sciences, 2020, 21, 9451.	1.8	19
302	Vitamin C Transporters and Their Implications in Carcinogenesis. Nutrients, 2020, 12, 3869.	1.7	28
303	Role of Structural Dynamics in Selectivity and Mechanism of Non-heme Fe(II) and 2-Oxoglutarate-Dependent Oxygenases Involved in DNA Repair. ACS Central Science, 2020, 6, 795-814.	5.3	40
304	Aspartate/asparagine-β-hydroxylase: a high-throughput mass spectrometric assay for discovery of small molecule inhibitors. Scientific Reports, 2020, 10, 8650.	1.6	18
306	Carbon–fluorine bond cleavage mediated by metalloenzymes. Chemical Society Reviews, 2020, 49, 4906-4925.	18.7	61
307	Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catalysis, 2020, 10, 8611-8631.	5.5	115
308	Jumonji domain ontaining protein 6 protein and its role in cancer. Cell Proliferation, 2020, 53, e12747.	2.4	31
309	Exploring the Biocatalytic Potential of Fe/αâ€Ketoglutarateâ€Đependent Halogenases. Chemistry - A European Journal, 2020, 26, 7336-7345.	1.7	35
310	Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB Journal, 2020, 34, 3461-3484.	0.2	81
311	Chlorination <i>versus</i> hydroxylation selectivity mediated by the non-heme iron halogenase WelO5. Physical Chemistry Chemical Physics, 2020, 22, 8699-8712.	1.3	16
312	Advances and Opportunities in Epigenetic Chemical Biology. ChemBioChem, 2021, 22, 17-42.	1.3	8
313	<i>FTO</i> gene–lifestyle interactions on serum adiponectin concentrations and central obesity in a Turkish population. International Journal of Food Sciences and Nutrition, 2021, 72, 375-385.	1.3	13
314	Genome-wide identification of the maize 20GD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum. Gene, 2021, 764, 145078.	1.0	14
315	Advances in Fe(II)/2-ketoglutarate-dependent dioxygenase-mediated C–H bond oxidation for regioselective and stereoselective hydroxyl amino acid synthesis: from structural insights into practical applications. Systems Microbiology and Biomanufacturing, 2021, 1, 275-290.	1.5	5
316	An Iron(IV)–Oxo Intermediate Initiating <scp>l</scp> -Arginine Oxidation but Not Ethylene Production by the 2-Oxoglutarate-Dependent Oxygenase, Ethylene-Forming Enzyme. Journal of the American Chemical Society, 2021, 143, 2293-2303.	6.6	18

\sim		<u> </u>	
			ЪΤ
	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
317	An Arabidopsis Prolyl 4 Hydroxylase Is Involved in the Low Oxygen Response. Frontiers in Plant Science, 2021, 12, 637352.	1.7	5
318	Gene atlas of iron ontaining proteins in <i>Arabidopsis thaliana</i> . Plant Journal, 2021, 106, 258-274.	2.8	25
319	Isopenicillinâ€N Synthase: Crystallographic Studies. ChemBioChem, 2021, 22, 1687-1705.	1.3	8
320	Effect of Posttranslational Modifications on the Structure and Activity of FTO Demethylase. International Journal of Molecular Sciences, 2021, 22, 4512.	1.8	3
322	Functional role of residues involved in substrate binding of human 4-hydroxyphenylpyruvate dioxygenase. Biochemical Journal, 2021, 478, 2201-2215.	1.7	2
323	Molecular insights into the endoperoxide formation by Fe(II)/Î \pm -KG-dependent oxygenase Nvfl. Nature Communications, 2021, 12, 4417.	5.8	31
324	Emerging roles for thiol dioxygenases as oxygen sensors. FEBS Journal, 2022, 289, 5426-5439.	2.2	10
325	Functional Models for Oxygen Activating Nonheme Monoiron Enzymes. , 2021, , 378-411.		2
326	Obesity and Glucose Metabolism. , 2015, , 107-119.		1
327	Introduction to Structural Studies on 2-Oxoglutarate-Dependent Oxygenases and Related Enzymes. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 59-94.	0.8	30
328	2-Oxoglutarate-Dependent Oxygenases of Cephalosporin Synthesis. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 385-400.	0.8	1
329	Recent Advances in the Structural and Mechanistic Biology of Non-Haem Fe(<scp>ii</scp>), 2-Oxoglutarate and O2-Dependent Halogenases. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 401-413.	0.8	3
330	1-Aminocyclopropane-1-Carboxylic Acid Oxidase. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 425-437.	0.8	13
331	Prediction of the molecular boundary and functionality of novel viral AlkB domains using homology modelling and principal component analysis. Journal of General Virology, 2019, 100, 691-703.	1.3	5
333	Structure and function of dioxygenases in histone demethylation and DNA/RNA demethylation. IUCrJ, 2014, 1, 540-549.	1.0	26
334	Stringency of the 2-His–1-Asp Active-Site Motif in Prolyl 4-Hydroxylase. PLoS ONE, 2009, 4, e7635.	1.1	22
335	Human AlkB Homologue 5 Is a Nuclear 2-Oxoglutarate Dependent Oxygenase and a Direct Target of Hypoxia-Inducible Factor 11± (HIF-11±). PLoS ONE, 2011, 6, e16210.	1.1	120
336	The Interactions in the Carboxyl Terminus of Human 4-Hydroxyphenylpyruvate Dioxygenase Are Critical to Mediate the Conformation of the Final Helix and the Tail to Shield the Active Site for Catalysis. PLoS ONE, 2013, 8, e69733.	1.1	21

	Сітатіс	CITATION REPORT	
#	Article	IF	Citations
337	Role of HIF1 <i>α</i> Regulatory Factors in Stem Cells. International Journal of Stem Cells, 2019, 12, 8-20.	0.8	26
338	Mechanisms of Mutagenic DNA Nucleobase Damages and Their Chemical and Enzymatic Repairs Investigated by Quantum Chemical Methods. , 0, , .		1
339	Therapeutic Strategies that Target the HIF System. , 2008, , 359-373.		0
342	Functional Follow-up of Genetic Variants Using FTO as the Prime Example. , 2014, , 113-125.		0
343	Role of 2-Oxoglutarate-Dependent Oxygenases in Flavonoid Metabolism. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 350-366.	0.8	1
346	Abiotic Stress Tolerance in Plants by Priming and Pretreatments with Ascorbic Acid. , 2019, , 459-493.		0
348	Kinetic Studies of the Hydrogen Atom Transfer in a Hypoxia-Sensing Enzyme, FIH-1: KIE and O2 Reactivity. Biochemistry, 2021, 60, 3315-3322.	1.2	2
349	Correlation between polymorphism of FTO gene and type 2 diabetes mellitus in Uygur people from northwest China. International Journal of Clinical and Experimental Medicine, 2015, 8, 9744-50.	1.3	11
350	Structural Insight into the Catalytic Mechanism of the Endoperoxide Synthase FtmOx1. Angewandte Chemie, 2022, 134, .	1.6	7
351	Structural Insight into the Catalytic Mechanism of the Endoperoxide Synthase FtmOx1. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
352	Properties of the Reactants and Their Interactions within and with the Enzyme Binding Cavity Determine Reaction Selectivities. The Case of Fe(II)/2â€Oxoglutarate Dependent Enzymes. Chemistry - A European Journal, 2022, 28, e202104106.	1.7	12
353	Molecular insights into the unusually promiscuous and catalytically versatile Fe(II)/α-ketoglutarate-dependent oxygenase SptF. Nature Communications, 2022, 13, 95.	5.8	17
354	Heterodimeric Non-heme Iron Enzymes in Fungal Meroterpenoid Biosynthesis. Journal of the American Chemical Society, 2021, 143, 21425-21432.	6.6	20
355	Rational Engineering of the Nonheme Iron- and 2-Oxoglutarate-Dependent Oxygenase SptF. Organic Letters, 2022, 24, 1737-1741.	2.4	3
356	Molecular Basis of the Unusual Seven-Membered Methylenedioxy Bridge Formation Catalyzed by Fe(II)/α-KG-Dependent Oxygenase CTB9. ACS Catalysis, 2022, 12, 3689-3699.	5.5	13
357	Current Status of the Use of Multifunctional Enzymes as Anti-Cancer Drug Targets. Pharmaceutics, 2022, 14, 10.	2.0	10
358	Small Molecule Inhibitors of TET Dioxygenases: Bobcat339 Activity Is Mediated by Contaminating Copper(II). ACS Medicinal Chemistry Letters, 2022, 13, 792-798.	1.3	8
359	Charge Maintenance during Catalysis in Nonheme Iron Oxygenases. ACS Catalysis, 2022, 12, 6191-6208.	5.5	12

#	Article	IF	CITATIONS
360	Dissecting the Mechanism of the Nonheme Iron Endoperoxidase FtmOx1 Using Substrate Analogues. Jacs Au, 2022, 2, 1686-1698.	3.6	11
361	Non-heme iron coordination complexes for alkane oxidation using hydrogen peroxide (H ₂ O ₂) as powerful oxidant. Journal of Coordination Chemistry, 2022, 75, 937-971.	0.8	3
362	A Fe2+-dependent self-inhibited state influences the druggability of human collagen lysyl hydroxylase (LH/PLOD) enzymes. Frontiers in Molecular Biosciences, 0, 9, .	1.6	1
363	Modeling ligand-macromolecular interactions as eigenvalue-based transition-state dissociation constants may offer insights into biochemical function of the resulting complexes. Mathematical Biosciences and Engineering, 2022, 19, 13252-13275.	1.0	5
364	Maleidride biosynthesis – construction of dimeric anhydrides – more than just heads or tails. Natural Product Reports, 0, , .	5.2	0
365	Regulatory Role of JMJD6 in Placental Development. Expert Reviews in Molecular Medicine, 0, , 1-12.	1.6	1
366	Hormone biosynthesis and metabolism members of 20GD superfamily are involved in berry development and respond to MeJA and ABA treatment of Vitis vinifera L. BMC Plant Biology, 2022, 22, .	1.6	5
367	Iron(II)-α-Keto Acid Complexes of Tridentate Ligands on Gold Nanoparticles: Effect of Ligand Geometry and Immobilization on Their Dioxygen-Dependent Reactivity. Dalton Transactions, 0, , .	1.6	0
368	Structural analysis of the 2-oxoglutarate binding site of the circadian rhythm linked oxygenase JMJD5. Scientific Reports, 2022, 12, .	1.6	3
369	Dioxygen Binding is Controlled by the Protein Environment in Nonâ€Heme Fe(II) and 2â€Oxoglutarate Oxygenases – A Study on Histone Demethylase PHF8 and an Ethylene Forming Enzyme. Chemistry - A European Journal, 0, , .	1.7	1
370	Development of JmjC-domain-containing histone demethylase (KDM2-7) inhibitors for cancer therapy. Drug Discovery Today, 2023, 28, 103519.	3.2	3
371	Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chemico-Biological Interactions, 2023, 373, 110376.	1.7	2
372	Multifunctional Enzymes in Microbial Secondary Metabolic Processes. Catalysts, 2023, 13, 581.	1.6	2
373	Structures of <scp>L</scp> -proline <i>trans</i> -hydroxylase reveal the catalytic specificity and provide deeper insight into AKG-dependent hydroxylation. Acta Crystallographica Section D: Structural Biology, 2023, 79, 318-325.	1.1	1
374	Kinetic Studies on the 2-Oxoglutarate/Fe(II)-Dependent Nucleic Acid Modifying Enzymes from the AlkB and TET Families. Dna, 2023, 3, 65-84.	0.4	2
375	Gibberellin 2-Oxidases in Potato (Solanum tuberosum L.): Cloning, Characterization, In Silico Analysis and Molecular Docking. Molecular Biotechnology, 0, , .	1.3	1
377	Inhibitors of Jumonji-C domain-containing histone demethylases. , 2023, , 407-457.		0
380	Biological formation of ethylene. RSC Chemical Biology, 0, , .	2.0	0

ARTICLE

IF CITATIONS