An analysis of urban thermal characteristics and associated Las Vegas using Landsat satellite data

Remote Sensing of Environment 104, 147-156 DOI: 10.1016/j.rse.2005.09.023

Citation Report

#	Article	IF	CITATIONS
1	Geospatial methods provide timely and comprehensive urban forest information. Urban Forestry and Urban Greening, 2007, 6, 15-22.	2.3	48
2	Spectral mixture analysis for mapping abundance of urban surface components from the Terra/ASTER data. Remote Sensing of Environment, 2008, 112, 939-954.	4.6	90
3	Satellite remotely-sensed land surface parameters and their climatic effects for three metropolitan regions. Advances in Space Research, 2008, 41, 1861-1869.	1.2	41
4	Remote sensing of urban expansion and heat island effect in Jinjiang estuary area of Fujian, China. , 2008, , .		0
5	Comparative Analysis of Urban Heat Island and Associated Land Cover Change Based in Suzhou City Using Landsat Data. , 2008, , .		2
6	Subpixel urban area thermal pattern analysis using ASTER and SPOT-5. , 2009, , .		1
7	Urban Expansion and Heat Island Dynamics in the Quanzhou Region, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2, 74-79.	2.3	83
8	Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64, 335-344.	4.9	883
9	Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 2009, 11, 256-264.	1.4	256
10	Temporal and spatial variations of urban heat island effect in Beijing using ASTER and TM data. , 2009, , .		3
11	Effect of urban thermal characteristics on wetlands based on remote sensing and GIS. , 2009, , .		7
12	Relationship between thermal inertia and urban heat sink in Beijing derived from Satellite images. , 2009, , .		2
13	Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature. Journal of Geophysical Research, 2009, 114, .	3.3	108
14	Examination of the Land Surface Temperature Response for Santiago, Chile. Photogrammetric Engineering and Remote Sensing, 2009, 75, 1191-1200.	0.3	21
15	The influence of urban reconstruction in urban heat island effect: Cangxia area of Fuzhou City, China. , 2010, , .		1
16	Spatial and Temporal Dynamics of Urban Heat Island and Their Relationship with Land Cover Changes in Urbanization Process: A Case Study in Suzhou, China. Journal of the Indian Society of Remote Sensing, 2010, 38, 654-663.	1.2	25
17	Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology, 2010, 25, 17-33.	1.9	591
18	Monitoring urban land cover and vegetation change by multi-temporal remote sensing information. Mining Science and Technology, 2010, 20, 922-932.	0.3	33

#	Article	IF	CITATIONS
19	Identificação de ilhas de calor na área urbana de Ilha Solteira - SP através da utilização de geotecnologias. Engenharia Agricola, 2010, 30, 974-985.	0.2	9
20	Analysis of urban heat island seasonal dynamics using landscape metrics. , 2010, , .		0
21	Analysis of characterization for difference vegetation index in relation to land surface temperature in arid oasis. , 2010, , .		0
22	Application of remote sensing technologies to time series analyses of surface temperatures in Daegu city. , 2010, , .		0
23	Spatiotemporal changes of the urban heat island of a coastal city in the context of urbanisation. International Journal of Sustainable Development and World Ecology, 2010, 17, 311-316.	3.2	31
24	High Resolution Impervious Surface Estimation. Photogrammetric Engineering and Remote Sensing, 2010, 76, 1329-1341.	0.3	28
25	The impact of land development regulation on residential tree cover: An empirical evaluation using high-resolution IKONOS imagery. Landscape and Urban Planning, 2010, 94, 94-104.	3.4	65
26	Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban Forestry and Urban Greening, 2010, 9, 323-332.	2.3	248
27	Analysis of Urbanization Effect on Land Surface Temperature, Using Sub-Pixel Technology. , 2010, , .		2
28	Monitoring of urban heat island effect in Beijing combining ASTER and TM data. International Journal of Remote Sensing, 2011, 32, 1213-1232.	1.3	71
29	Modeling Urban Heat Islands and Their Relationship With Impervious Surface and Vegetation Abundance by Using ASTER Images. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 4080-4089.	2.7	113
30	Changing trajectory of urban heat islands in Shenzhen, China. , 2011, , .		0
31	Flood Simulation in an Urban Catchment of Navi Mumbai City with Detention Pond and Tidal Effects Using FEM, GIS, and Remote Sensing. Journal of Waterway, Port, Coastal and Ocean Engineering, 2011, 137, 286-299.	0.5	15
32	Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 2011, 115, 3249-3263.	4.6	826
33	Urban and Regional Temperature Trends in Las Vegas and Southern Nevada. Journal of the Arizona-Nevada Academy of Science, 2011, 43, 27-39.	0.1	10
34	Maximum Nighttime Urban Heat Island (UHI) Intensity Simulation by Integrating Remotely Sensed Data and Meteorological Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4, 138-146.	2.3	78
35	Remote sensing land surface temperature for meteorology and climatology: a review. Meteorological Applications, 2011, 18, 296-306.	0.9	275
36	Study to process of urban sprawl using spectral mixture analysis. , 2011, , .		0

	Сітатіо	n Report	
#	Article	IF	CITATIONS
37	Relationship between land use/cover and surface temperatures in the urban agglomeration of Cuiabá-Várzea Grande, Central Brazil. Journal of Applied Remote Sensing, 2011, 5, 053569.	0.6	23
38	The temporal dynamics of urban heat islands derived from thermal remote sensing data by local indicator of spatial association in Shenzhen, China. Proceedings of SPIE, 2011, , .	0.8	0
39	Mapping urban impervious surfaces of Nanjing from the dense Landsat imagery. , 2012, , .		0
40	Land cover and Land Surface Temperature interactions in desert areas: A case study of Abu Dhabi (UAE). , 2012, , .		2
41	Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. International Journal of Applied Earth Observation and Geoinformation, 2012, 19, 127-138.	1.4	185
42	Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city. International Journal of Applied Earth Observation and Geoinformation, 2012, 19, 348-358.	1.4	76
43	The influence of socioeconomic and topographic factors on nocturnal urban heat islands: a case study in Shenzhen, China. International Journal of Remote Sensing, 2012, 33, 3834-3849.	1.3	37
44	Emissivity mapping over urban areas using a classification-based approach: Application to the Dual-use European Security IR Experiment (DESIREX). International Journal of Applied Earth Observation and Geoinformation, 2012, 18, 141-147.	1.4	57
45	Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983-2008: a case-series analysis. Environmental Health, 2012, 11, 16.	1.7	125
46	BCI: A biophysical composition index for remote sensing of urban environments. Remote Sensing of Environment, 2012, 127, 247-259.	4.6	245
47	Correlating Vegetation, Water Use, and Surface Temperature in a Semiarid City: A Multiscale Analysis of the Impacts of Irrigation by Singleâ€Family Residences. Geographical Analysis, 2012, 44, 235-257.	1.9	25
48	Assessment of landscape patterns affecting land surface temperature in different biophysical gradients in Shenzhen, China. Urban Ecosystems, 2013, 16, 871-886.	1.1	76
49	Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Applied Geography, 2013, 44, 121-133.	1.7	274
50	Assessment of land surface temperature in relation to landscape metrics and fractional vegetation cover in an urban/peri-urban region using Landsat data. International Journal of Remote Sensing, 2013, 34, 168-189.	1.3	71
51	Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sensing of Environment, 2013, 131, 262-274.	4.6	179
52	Multi-Modal and Multi-Temporal Data Fusion: Outcome of the 2012 GRSS Data Fusion Contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 1324-1340.	2.3	75
53	How has Shenzhen been heated up during the rapid urban build-up process?. Landscape and Urban Planning, 2013, 115, 18-29.	3.4	16
54	Remotely sensed thermal pollution and its relationship with energy consumption and industry in a rapidly urbanizing Chinese city. Energy Policy, 2013, 57, 398-406.	4.2	15

# 55	ARTICLE Evaluation of the spatio-temporal pattern of urban ecological security using remote sensing and GIS. International Journal of Remote Sensing, 2013, 34, 848-863.	IF 1.3	Citations
56	Temperatura de la superficie terrestre en diferentes tipos de cobertura de la Región Andina Colombiana. Sociedade & Natureza, 2014, 26, 95-112.	0.0	2
57	Dhaka Megacity. , 2014, , .		37
58	Impact of Land Use and Land Cover Changes on Urban Land Surface Temperature. , 2014, , 219-238.		9
59	Multiscale analysis of urban thermal characteristics: case study of Shijiazhuang, China. Journal of Applied Remote Sensing, 2014, 8, 083649.	0.6	8
60	Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89, 59-66.	4.9	326
61	Remote-sensing evaluation of the relationship between urban heat islands and urban biophysical descriptors in Jinan, China. Journal of Applied Remote Sensing, 2014, 8, 083693.	0.6	3
62	Modeling annual parameters of clear-sky land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data. Remote Sensing of Environment, 2014, 140, 267-278.	4.6	111
63	Relating temperature trends to the normalized difference vegetation index in Las Vegas. GIScience and Remote Sensing, 2014, 51, 468-482.	2.4	21
64	Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. International Journal of Applied Earth Observation and Geoinformation, 2014, 32, 67-78.	1.4	117
65	Application of spatially gridded temperature and land cover data sets for urban heat island analysis. Urban Climate, 2014, 8, 1-10.	2.4	24
66	Monitoring the Relationship Between the Land Surface Temperature Change and Urban Growth in Beijing, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 4010-4019.	2.3	28
67	Spatial and temporal trends of the surface and air heat island over Milan using MODIS data. Remote Sensing of Environment, 2014, 150, 163-171.	4.6	146
68	Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning, 2014, 128, 35-47.	3.4	326
69	Relating Temperature Trends to Urban Change and NDVI in Las Vegas. , 2014, , .		2
70	Extracting Parking Lot Structures from Aerial Photographs. Photogrammetric Engineering and Remote Sensing, 2014, 80, 151-160.	0.3	2
71	Urban climate modifications in hot desert cities: The role of land cover, local climate, and seasonality. Geophysical Research Letters, 2015, 42, 9980-9989.	1.5	61
72	Land Surface Temperature with Land Cover Classes in ASTER and Landsat Data. Journal of Geophysics & Remote Sensing, 2015, 04, .	0.4	5

#	Article	IF	CITATIONS
73	Downscaling 250-m MODIS Growing Season NDVI Based on Multiple-Date Landsat Images and Data Mining Approaches. Remote Sensing, 2015, 7, 3489-3506.	1.8	20
74	The Effect of Urban Expansion on Urban Surface Temperature in Shenyang, China: an Analysis with Landsat Imagery. Environmental Modeling and Assessment, 2015, 20, 197-210.	1.2	35
75	Making full use of the Landsat7 SLC-Off ETM+ data for urban thermal environment monitoring. , 2015, , .		0
76	Dynamics and Temperature Regulation Function of Urban Green Connectivity. Journal of the Urban Planning and Development Division, ASCE, 2015, 141, .	0.8	18
77	Evaluation of the intensity of the daytime surface urban heat island: how can remote sensing help?. International Journal of Image and Data Fusion, 2015, 6, 348-365.	0.8	18
78	Characterizing bi-temporal patterns of land surface temperature using landscape metrics based on sub-pixel classifications from Landsat TM/ETM+. International Journal of Applied Earth Observation and Geoinformation, 2015, 42, 87-96.	1.4	26
79	Spaceborne detection of roof and impervious surface albedo: Potentialities and comparison with airborne thermography measurements. Solar Energy, 2015, 113, 281-294.	2.9	32
80	An alternative method to characterize the surface urban heat island. International Journal of Biometeorology, 2015, 59, 849-861.	1.3	73
81	Detrended fluctuation analysis of spatial patterns on urban impervious surface. Environmental Earth Sciences, 2015, 74, 2531-2538.	1.3	3
82	Monitoring the Nearâ€surface Urban Heat Island in <scp>B</scp> eijing, <scp>C</scp> hina by Satellite Remote Sensing. Geographical Research, 2015, 53, 16-25.	0.9	20
83	On the relationship between the sky view factor and the land surface temperature derived by Landsat-8 images in Bari, Italy. International Journal of Remote Sensing, 2015, 36, 4820-4835.	1.3	61
84	Characterizing fractional vegetation cover and land surface temperature based on sub-pixel fractional impervious surfaces from Landsat TM/ETM+. International Journal of Remote Sensing, 2015, 36, 4213-4232.	1.3	14
85	Drivers of land cover and land use changes in St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data. International Journal of Applied Earth Observation and Geoinformation, 2015, 35, 161-174.	1.4	86
86	Fractal and multifractal characteristic of spatial pattern of urban impervious surfaces. Earth Science Informatics, 2015, 8, 381-392.	1.6	19
87	Assessing Urban Landscape Variables' Contributions to Microclimates. Advances in Meteorology, 2016, 2016, 1-14.	0.6	12
88	Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City. Remote Sensing, 2016, 8, 352.	1.8	167
89	A Comprehensive Statistical Study on Daytime Surface Urban Heat Island during Summer in Urban Areas, Case Study: Cairo and Its New Towns. Remote Sensing, 2016, 8, 643.	1.8	26
90	An enhanced singleâ€channel algorithm for retrieving land surface temperature from Landsat series data. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,712.	1.2	13

#	Article	IF	CITATIONS
91	Changes in satellite-derived impervious surface area at US historical climatology network stations. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 120, 77-83.	4.9	5
92	Thermal Neighborhoods, Socioeconomic Characteristics, and Urban Quality of Life: Examining Humanity's Principal Habitat. , 2016, , 55-64.		0
93	Downscaling Landsat Land Surface Temperature over the urban area of Florence. European Journal of Remote Sensing, 2016, 49, 553-569.	1.7	46
94	Potential Role of Landsat Satellite Data for the Evaluation of Land Surface Temperature and Assessment of Urban Environment. Environment and Urbanization ASIA, 2016, 7, 55-75.	0.9	3
95	Relationship between land use variations and spatiotemporal changes in amounts of thermal infrared energy emitted from urban surfaces in downtown Tokyo on hot summer days. Urban Climate, 2016, 17, 67-79.	2.4	22
96	Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sensing of Environment, 2016, 173, 145-155.	4.6	394
97	An energy and mortality impact assessment of the urban heat island in the US. Environmental Impact Assessment Review, 2016, 56, 139-144.	4.4	114
98	Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sensing of Environment, 2016, 174, 233-243.	4.6	185
99	Land surface temperature and emissivity estimation for Urban Heat Island assessment using medium- and low-resolution space-borne sensors: A review. Geocarto International, 2017, 32, 455-470.	1.7	37
100	Assessing the potential of integrated Landsat 8 thermal bands, with the traditional reflective bands and derived vegetation indices in classifying urban landscapes. Geocarto International, 2017, 32, 886-899.	1.7	45
101	Comparison of urban heat island and urban reflection in Nanjing City of China. Sustainable Cities and Society, 2017, 31, 26-36.	5.1	12
102	Monitoring the changes in impervious surface ratio and urban heat island intensity between 1987 and 2011 in Szeged, Hungary. Environmental Monitoring and Assessment, 2017, 189, 86.	1.3	21
103	Estimating urban vegetation fraction across 25 cities in pan-Pacific using Landsat time series data. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126, 11-23.	4.9	44
104	Spatial Modeling and Assessment of Urban Form. , 2017, , .		11
105	Correlation analysis between temperatures from Landsat thermal infrared retrievals and synchronous weather observations in Shenzhen, China. Remote Sensing Applications: Society and Environment, 2017, 7, 40-48.	0.8	8
106	Effect of Urban Expansion on Land Surface Temperature in Putrajaya City, Malaysia. , 2017, , 323-331.		0
107	FEATURE SELECTION OF VARIOUS LAND COVER INDICES FOR MONITORING SURFACE HEAT ISLAND IN TEHRAN CITY USING LANDSAT 8 IMAGERY. Journal of Environmental Engineering and Landscape Management, 2017, 25, 241-250.	0.4	8
108	Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature. Remote Sensing of Environment, 2017, 193, 225-243.	4.6	161

#	Article	IF	CITATIONS
109	Impacts of land use and socioeconomic patterns on urban heat Island. International Journal of Remote Sensing, 2017, 38, 3445-3465.	1.3	43
110	Analyzing the Impacts of Urbanization and Seasonal Variation on Land Surface Temperature Based on Subpixel Fractional Covers Using Landsat Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 1344-1356.	2.3	27
111	Wetland cover change detection using multi-temporal remotely sensed data. Arabian Journal of Geosciences, 2017, 10, 1.	0.6	4
112	Remote sensing applications in monitoring urban growth impacts on in-and-out door thermal conditions: A review. Remote Sensing Applications: Society and Environment, 2017, 8, 83-93.	0.8	19
113	Effects of Two Urban Development Strategies on Changes in the Land Surface Temperature: Infill versus Suburban New Town Development. Journal of the Urban Planning and Development Division, ASCE, 2017, 143, .	0.8	14
114	Comparasion of NDBI and NDVI as Indicators of Surface Urban Heat Island Effect in Landsat 8 Imagery: A Case Study of Iasi. Present Environment and Sustainable Development, 2017, 11, 141-150.	0.1	52
115	Understanding the Impact of Urbanization on Surface Urban Heat Islands—A Longitudinal Analysis of the Oasis Effect in Subtropical Desert Cities. Remote Sensing, 2017, 9, 672.	1.8	56
116	Impervious Surface Information Extraction Based on Hyperspectral Remote Sensing Imagery. Remote Sensing, 2017, 9, 550.	1.8	19
117	Predicting Top-of-Atmosphere Thermal Radiance Using MERRA-2 Atmospheric Data with Deep Learning. Remote Sensing, 2017, 9, 1133.	1.8	18
118	Land-Air Interactions over Urban-Rural Transects Using Satellite Observations: Analysis over Delhi, India from 1991–2016. Remote Sensing, 2017, 9, 1283.	1.8	19
119	Remote Sensing Techniques for Urban Heating Analysis: A Case Study of Sustainable Construction at District Level. Sustainability, 2017, 9, 1308.	1.6	10
120	Surface Urban Heat Island Analysis of Shanghai (China) Based on the Change of Land Use and Land Cover. Sustainability, 2017, 9, 1538.	1.6	67
121	Analysis and Sustainable Management of Urban Growth's Impact on Land Surface Temperature in Lagos, Nigeria. Journal of Remote Sensing & GIS, 2017, 06, .	0.3	6
122	An evaluation of the cooling effect efficiency of the oasis structure in a Saharan town through remotely sensed data. International Journal of Environmental Studies, 2018, 75, 309-320.	0.7	10
123	The study of thermal pattern changes using Landsat-derived land surface temperature in the central part of Isfahan province. Sustainable Cities and Society, 2018, 39, 650-661.	5.1	34
124	Responses of urban heat island in Atlanta to different land-use scenarios. Theoretical and Applied Climatology, 2018, 133, 123-135.	1.3	51
125	Evaluating environmental equities of urban forest in terms of cooling services using ETM+ and Google data. Journal of the Indian Society of Remote Sensing, 2018, 46, 287-296.	1.2	2
126	Monitoring and assessment of urban heat islands over the Southern region of Cairo Governorate, Egypt. Egyptian Journal of Remote Sensing and Space Science, 2018, 21, 311-323.	1.1	43

		CITATION REPORT		
#	Article		IF	Citations
127	Trend Analysis of Las Vegas Land Cover and Temperature Using Remote Sensing. Land	, 2018, 7, 135.	1.2	10
128	A Novel Index for Impervious Surface Area Mapping: Development and Validation. Rem 10, 1521.	ote Sensing, 2018,	1.8	38
129	A Geographically Weighted Regression Analysis of the Underlying Factors Related to th Urban Heat Island Phenomenon. Remote Sensing, 2018, 10, 1428.	1e Surface	1.8	83
130	Seasonal Variation and Land-Use/Land-Cover Type Impacts on the Correlation of Urban Intensity and Difference Vegetation Index with Satellite Data in Xi'an, China. Wuha of Natural Sciences, 2018, 23, 387-395.		0.2	3
131	Spatio-temporal variations of surface temperatures of Ahmedabad city and its relations vegetation and urbanization parameters as indicators of surface temperatures. Remote Applications: Society and Environment, 2018, 11, 119-139.		0.8	18
132	Interannual variations in surface urban heat island intensity and associated drivers in C of Environmental Management, 2018, 222, 86-94.	hina. Journal	3.8	107
133	Quantifying the Trends in Land Surface Temperature and Surface Urban Heat Island Int Mediterranean Cities in View of Smart Urbanization. Urban Science, 2018, 2, 16.	ensity in	1.1	33
134	Impacts of Large-Area Impervious Surfaces on Regional Land Surface Temperature in th River Delta, China. Journal of the Indian Society of Remote Sensing, 2019, 47, 1831-18	ne Great Pearl 145.	1.2	6
135	Change detection on land use/land cover and land surface temperature using spatioter Landsat: a case study of Gaza Strip. Arabian Journal of Geosciences, 2019, 12, 1.	mporal data of	0.6	11
136	Analysis of Changes in Surface Energy Fluxes Due to Urbanization in Las Vegas. , 2019	,,.		8
137	Spatio–Temporal Variations in Impervious Surface Patterns during Urban Expansion Xiamen, China. Sustainability, 2019, 11, 2404.	in a Coastal City:	1.6	6
138	Using fractals and multifractals to characterize the spatiotemporal pattern of impervio a coastal city: Xiamen, China. Physica A: Statistical Mechanics and Its Applications, 201	us surfaces in 19, 520, 44-53.	1.2	14
139	The Impact of Land Use/Land Cover (LULC) Changes on Land Surface Temperature in S and Its Surroundings and Assessment of Urban Heat Island. Asia-Pacific Journal of Atmo Sciences, 2019, 55, 669-684.	ivas City Center ospheric	1.3	90
140	Evaluation of the Effect of Urban Redevelopment on Surface Urban Heat Islands. Remo 11, 299.	ote Sensing, 2019,	1.8	67
141	A Temporal Data Analysis to Identify Land Cover Change Trends in NCT Delhi. , 2019, ,			0
142	Urban Heat Island Intensity Mapping of Las Vegas Using Landsat Thermal Infrared Data	a., 2019, , .		0
143	Quantifying the seasonal contribution of coupling urban land use types on Urban Heat Land Contribution Index: A case study in Wuhan, China. Sustainable Cities and Society	: Island using 9, 2019, 44, 666-675.	5.1	80
144	Dominant landscape indicators and their dominant areas influencing urban thermal en based on structural equation model. Ecological Indicators, 2020, 111, 105992.	vironment	2.6	28

#	Article	IF	CITATIONS
145	Correlation Analysis between Air Temperature and MODIS Land Surface Temperature and Prediction of Air Temperature Using TensorFlow Long Short-Term Memory for the Period of Occurrence of Cold and Heat Waves. Remote Sensing, 2020, 12, 3231.	1.8	13
146	Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sensing, 2020, 12, 1471.	1.8	263
147	Variation of vegetation fractional coverage and its relationship with climate in a desert steppe: optimization of farmland layout in a farming–pastoral ecotone using the ecological suitability index. Ecological Engineering, 2020, 150, 105834.	1.6	16
148	Impacts of Urban Form on Thermal Environment Near the Surface Region at Pedestrian Height: A Case Study Based on High-Density Built-Up Areas of Nanjing City in China. Sustainability, 2020, 12, 1737.	1.6	26
149	Effect of Land Use/Cover Changes on Urban Cool Island Phenomenon in Seville, Spain. Energies, 2020, 13, 3040.	1.6	6
150	Examining the nexus between land surface temperature and urban growth in Chattogram Metropolitan Area of Bangladesh using long term Landsat series data. Urban Climate, 2020, 32, 100593.	2.4	83
151	The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China. Sustainability, 2020, 12, 475.	1.6	46
152	Understanding the changes in spatial fairness of urban greenery using time-series remote sensing images: A case study of Guangdong-Hong Kong-Macao Greater Bay. Science of the Total Environment, 2020, 715, 136763.	3.9	39
153	Estimating heat storage in urban areas using multispectral satellite data and machine learning. Remote Sensing of Environment, 2021, 252, 112125.	4.6	22
154	Urban Landscape Heterogeneity Influences the Relationship between Tree Canopy and Land Surface Temperature. Urban Forestry and Urban Greening, 2021, 57, 126930.	2.3	31
155	Influence of the proportion, height and proximity of vegetation and buildings on urban land surface temperature. International Journal of Applied Earth Observation and Geoinformation, 2021, 95, 102265.	1.4	26
156	Influence of spatiotemporal pattern changes of impervious surface of urban megaregion on thermal environment: A case study of the Guangdong – Hong Kong – Macao Greater Bay Area of China. Ecological Indicators, 2021, 121, 107106.	2.6	38
157	A Spatio-Temporal Assessment and Prediction of Surface Urban Heat Island Intensity Using Multiple Linear Regression Techniques Over Ahmedabad City, Gujarat. Journal of the Indian Society of Remote Sensing, 2021, 49, 1091-1108.	1.2	20
158	Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quaternary International, 2021, 575-576, 259-269.	0.7	84
159	Evaluating the Spatial Distribution of WRF-Simulated Rainfall, 2-m Air Temperature, and 2-m Relative Humidity over the Urban Region of Bangalore, India. Pure and Applied Geophysics, 2021, 178, 1105-1120.	0.8	5
160	Spatial variation of surface urban heat island magnitude along the urban-rural gradient of four rapidly growing Indian cities. Geocarto International, 2022, 37, 4269-4291.	1.7	21
162	Influence of Impervious Surface Area and Fractional Vegetation Cover on Seasonal Urban Surface Heating/Cooling Rates. Remote Sensing, 2021, 13, 1263.	1.8	19
163	Synergetic interaction between spatial land cover dynamics and expanding urban heat islands. Environmental Monitoring and Assessment, 2021, 193, 184.	1.3	16

# 164	ARTICLE Predicting the surface urban heat island intensity of future urban green space development using a multi-scenario simulation. Sustainable Cities and Society, 2021, 66, 102698.	IF 5.1	CITATIONS 24
165	Assessment of urban heat islands for land use based on urban planning: a case study in the main urban area of Xuzhou City, China. Environmental Earth Sciences, 2021, 80, 1.	1.3	13
166	Evaluation of the effect of geographical parameters on the formation of the land surface temperature by applying OLS and GWR, A case study Shiraz City, Iran. Urban Climate, 2021, 37, 100832.	2.4	38
167	Developing an SDSS for optimal sustainable roof covering planning based on UHI variation at neighborhood scale. Environmental Monitoring and Assessment, 2021, 193, 372.	1.3	1
168	Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology. Land, 2021, 10, 867.	1.2	16
169	Implication of urban heat island (UHI) related to human activities: a case study in Mongolia. , 2019, , .		3
170	Change Detection of Land cover and Urban Heat Islands using Multi-Temporal Landsat Images, application in Tanta City, Egypt. Open Journal of Remote Sensing and Positioning, 2014, 1, 1-15.	0.3	10
171	Identification and Area Measurement of the Built-up Area with the Built-up Index (BUI). International Journal of Advanced Remote Sensing and GIS, 2016, 5, 1844-1858.	0.2	30
172	Assessing the Relationship of LST, NDVI and EVI with Land Cover Changes in the Lagos Lagoon Environment. Quaestiones Geographicae, 2020, 39, 87-109.	0.5	18
173	IMPACT OF URBANIZATION ON URBAN HEAT ISLAND EFFECT BASED ON TM IMAGERY IN WUHAN, CHINA. Environmental Engineering and Management Journal, 2015, 14, 647-655.	0.2	19
174	Investigating Urban Heat Island Effects and Relation Between Various Land Cover Indices in Tehran City Using Landsat 8 Imagery. , 0, , .		11
175	Land Surface Temperature Estimation and Urban Heat Island Detection. Advances in Geospatial Technologies Book Series, 2017, , 16-45.	0.1	5
176	Urban Growth Monitoring using Remote Sensing and Geo-Informatics: Case Study of Gandhinagar, Gujarat State (India). International Journal of Geosciences, 2017, 08, 563-576.	0.2	16
177	Temporal and Spatial Characteristics of Urban Heat Island of an Estuary City, China. Journal of Computers, 2012, 7, .	0.4	5
178	Utilization of remote sensing data for thermal comfort estimation in the coastal urban of Jakarta. , 2021, , .		1
179	Thermal Sensing and Anomaly Detection. , 2012, , 193-212.		0
180	The Spatio-temporal Characteristics of Land Surface Temperatures in Shanghai, and Their Responses to Land-use Change. Journal of Environmental Accounting and Management, 2014, 2, 217-228.	0.3	1
181	- Regional and Global Urban Land Cover Characterizations. , 2015, , 66-91.		0

#	Article	IF	CITATIONS
182	- Air Quality in Urban Areasâ \in "Local and Regional Aspects. , 2015, , 144-167.		0
183	THE LAND SURFACE TEMPERATURE IMPACT TO LAND COVER TYPES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B3, 871-876.	0.2	4
184	Land Surface Temperature Estimation and Urban Heat Island Detection. , 2019, , 1538-1560.		0
185	COMPARISON AND ANALYSIS OF THE ACCURACY OF GEE PLATFORM PIXEL-BASED SUPERVISED CLASSIFICATION-TAKING SHANDONG PROVINCE AS AN EXAMPLE. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-4/W20, 41-47.	0.2	1
186	A Novel Urban Composition Index Based on Water-Impervious Surface-Pervious Surface (W-I-P) Model for Urban Compositions Mapping Using Landsat Imagery. Remote Sensing, 2021, 13, 3.	1.8	12
187	Evaluation of the effect of land use / land cover and vegetation cover change on land surface temperature: The case of Aydın province. Turkish Journal of Forestry Tżrkiye Ormancılık Dergisi, 0, , 489-497.	0.1	5
188	Monitoring and characterizing multi-decadal variations of urban thermal condition using time-series thermal remote sensing and dynamic land cover data. Remote Sensing of Environment, 2022, 269, 112803.	4.6	19
189	Quantifying the contribution of diminishing green spaces and urban sprawl to urban heat island effect in a rapidly urbanizing metropolitan city of Pakistan. Land Use Policy, 2022, 113, 105874.	2.5	39
190	Formulating Operational Mitigation Options and Examining Intra-Urban Social Inequality Using Evidence-Based Urban Warming Effects. Frontiers in Environmental Science, 2022, 9, .	1.5	4
191	The mediation effect of land surface temperature in the relationship between land use-cover change and energy consumption under seasonal variations. Journal of Cleaner Production, 2022, 340, 130804.	4.6	57
192	Modeling Land Surface Temperature with a Mono-Window Algorithm to Estimate Urban Heat Island Intensity in an Expanding Urban Area. Environmental Processes, 2022, 9, 1.	1.7	4
193	Influences of impervious surfaces on ecological risks and controlling strategies in rapidly urbanizing regions. Science of the Total Environment, 2022, 825, 153823.	3.9	18
194	Long Time-Series Urban Heat Island Monitoring and Driving Factors Analysis Using Remote Sensing and Geodetector. Frontiers in Environmental Science, 2022, 9, .	1.5	8
195	Utilização do Ãndice de Ãrea ConstruÃda (IBI) para análise da evolução espaço-temporal da Temperatura da SuperfÃcie Continental (TSC) na Região Metropolitana do Rio de Janeiro (RMRJ). , 2021, 12, 269-300.		1
196	Identification of SUHI in Urban Areas by Remote Sensing Data and Mitigation Hypothesis through Solar Reflective Materials. Atmosphere, 2022, 13, 70.	1.0	3
197	Assessment of spatio-temporal direction of impervious surface area surface temperature in Pretoria, South Africa. Geocarto International, 0, , 1-24.	1.7	0
198	NDBSI: A normalized difference bare soil index for remote sensing to improve bare soil mapping accuracy in urban and rural areas. Catena, 2022, 214, 106265.	2.2	20
200	Synchronization, Decoupling, and Regime Shift of Urban Thermal Conditions in Xi'an, an Ancient City in China under Rapid Expansion. Remote Sensing, 2022, 14, 2586.	1.8	2

#	Article	IF	CITATIONS
201	Use of landscape metrics for the mitigation of the surface urban heat island effect in Mediterranean cities. , 2022, , 95-108.		0
202	Effects of land use composition and pattern on land surface temperature. , 2022, , 109-129.		0
203	Analysis of surface temperature in an urban area using supervised spatial autocorrelation and Moran's I. Earth Science Informatics, 2022, 15, 2545-2552.	1.6	2
204	Design of Urban Garden Landscape Visualization System Based on GIS and Remote Sensing Technology. Computational Intelligence and Neuroscience, 2022, 2022, 1-9.	1.1	0
205	Space-time estimation of the urban heat island in Rome (Italy): Overall assessment and effects on the energy performance of buildings. Building and Environment, 2023, 228, 109878.	3.0	12
206	Effects of Increasing Impervious Surface on Water Quality in Ile-Ife Urban Watershed, Southwestern Nigeria. Journal of Geoscience and Environment Protection, 2022, 10, 126-160.	0.2	0
207	Two decades of nighttime surface urban heat island intensity analysis over nine major populated cities of India and implications for heat stress. Frontiers in Sustainable Cities, 0, 5, .	1.2	1
212	Effects of Land Use and Land Cover on Surface Urban Heat Island (SUHI) in Durgapur–Asansol Industrial Region: A Linear Regression Approach. , 2023, , 379-392.		0