Evaluation and identification of electrical and thermal on nanotube/epoxy composites

Polymer 47, 2036-2045 DOI: 10.1016/j.polymer.2006.01.029

Citation Report

#	Article	IF	CITATIONS
1	Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Composites Science and Technology, 2005, 65, 2300-2313.	3.8	1,138
2	Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon, 2006, 44, 3022-3029.	5.4	536
3	Class-fibre-reinforced composites with enhanced mechanical and electrical properties – Benefits and limitations of a nanoparticle modified matrix. Engineering Fracture Mechanics, 2006, 73, 2346-2359.	2.0	334
4	Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules, 2006, 39, 5194-5205.	2.2	3,134
5	Multiwall carbon nanotube/epoxy composites produced by a masterbatch process. Mechanics of Composite Materials, 2006, 42, 395-406.	0.9	69
6	Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer, 2006, 47, 5990-5996.	1.8	221
7	Polymere Nanoverbundwerkstoffe: Chancen, Risiken und Potenzial zur Verbesserung der mechanischen und physikalischen Eigenschaften. Materialwissenschaft Und Werkstofftechnik, 2006, 37, 698-703.	0.5	12
8	Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing. Advanced Materials, 2006, 18, 2837-2841.	11.1	597
9	Electrical and Thermal Conductivities of Carbon Nanotube-Epoxy Composites: Modeling and Characterization. , 2007, , 245.		1
10	The present status and key problems of carbon nanotube based polymer composites. EXPRESS Polymer Letters, 2007, 1, 253-273.	1.1	408
11	Characterization of Thermo-Electric Interface Material with Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	0
12	Synergistic Physical Properties of Multiphase Nanocomposites with Carbon Nanotubes and Inorganic Particles. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	0
13	Analyzing the quality of carbon nanotube dispersions in polymers using scanning electron microscopy. Carbon, 2007, 45, 1279-1288.	5.4	92
14	Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters, 2007, 91, .	1.5	260
15	Nanotubes. Annual Reports on the Progress of Chemistry Section A, 2007, 103, 392.	0.8	3
16	Improving Electrical Conductivity and Thermal Properties of Polymers by the Addition of Carbon Nanotubes as Fillers. MRS Bulletin, 2007, 32, 348-353.	1.7	209
17	Thermosetting polyurethane multiwalled carbon nanotube composites. Journal of Applied Polymer Science, 2007, 105, 1003-1011.	1.3	79
18	Epoxyâ€Based Fibre Reinforced Nanocomposites. Advanced Engineering Materials, 2007, 9, 835-847.	1.6	171

#	Article	IF	CITATIONS
19	Clay Assisted Dispersion of Carbon Nanotubes in Conductive Epoxy Nanocomposites. Advanced Functional Materials, 2007, 17, 2343-2348.	7.8	276
20	Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes. Advanced Functional Materials, 2007, 17, 3207-3215.	7.8	913
21	Water-Based Polyurethane Filled with Multi-Walled Carbon Nanotubes Prepared by a Colloidal-Physics Methodâ—ªAuthor: This manuscript has been thoroughly edited. Please read the proofs carefully to ensure that no unintentional shift in meaning has been introduced.â—ª. Macromolecular Chemistry and Physics, 2007, 208, 1183-1189.	1.1	35
22	Electrically conductive carbon black (CB) filled in situ microfibrillar poly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution. Polymer, 2007, 48, 849-859.	1.8	194
23	Structure and conductivity of multi-walled carbon nanotube/poly(3-hexylthiophene) composite films. Polymer, 2007, 48, 1667-1678.	1.8	120
24	Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer, 2007, 48, 6086-6096.	1.8	161
25	Temperature dependence of electrical conductivity in double-wall and multi-wall carbon nanotube/polyester nanocomposites. Journal of Materials Science, 2007, 42, 9689-9695.	1.7	50
26	Comparison of multiwalled carbon nanotubes and carbon black as percolative paths in aqueous-based natural graphite negative electrodes with high-rate capability for lithium-ion batteries. Journal of Power Sources, 2008, 184, 308-311.	4.0	36
27	Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Composites Science and Technology, 2008, 68, 1886-1894.	3.8	305
28	Sensors and actuators based on carbon nanotubes and their composites: A review. Composites Science and Technology, 2008, 68, 1227-1249.	3.8	845
29	Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer, 2008, 49, 4846-4851.	1.8	152
30	Fabrication and performances of epoxy/multi-walled carbon nanotubes/piezoelectric ceramic composites as rigid piezo-damping materials. Journal of Materials Science, 2008, 43, 4979-4987.	1.7	41
31	Anomalous electrical conductivity and percolation in carbon nanotube composites. Journal of Materials Science, 2008, 43, 6012-6015.	1.7	49
32	Conductive behaviors of carbon nanofibers reinforced epoxy composites. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 139-142.	0.4	7
33	Functionalization of carbon nanofibers (CNFs) through atom transfer radical polymerization for the preparation of poly(<i>tert</i> â€butyl acrylate)/CNF materials: Spectroscopic, thermal, morphological, and physical characterizations. Journal of Polymer Science Part A, 2008, 46, 3326-3335.	2.5	20
34	Rheology, electrical conductivity, and the phase behavior of cocontinuous PA6/ABS blends with MWNT: Correlating the aspect ratio of MWNT with the percolation threshold. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1619-1631.	2.4	107
35	Challenges of shape memory polymers: A review of the progress toward overcoming SMP's limitations. Polymer Engineering and Science, 2008, 48, 2075-2089.	1.5	368
36	The Electrical Conductivity of Graphite Nanoplatelet Filled Conjugated Polyacrylonitrile. Macromolecular Rapid Communications, 2008, 29, 1254-1258.	2.0	20

#	Article	IF	Citations
37	Morphology, thermal expansion, and electrical conductivity of multiwalled carbon nanotube/epoxy composites. Journal of Applied Polymer Science, 2008, 108, 979-986.	1.3	39
38	Cure behavior and thermal stability analysis of multiwalled carbon nanotube/epoxy resin nanocomposites. Journal of Applied Polymer Science, 2008, 110, 2980-2988.	1.3	58
39	Study of the thermal conduction mechanism of nano-SiC/DGEBA/EMI-2,4 composites. Polymer, 2008, 49, 4666-4672.	1.8	128
40	Titania-doped multi-walled carbon nanotubes epoxy composites: Enhanced dispersion and synergistic effects in multiphase nanocomposites. Polymer, 2008, 49, 5105-5112.	1.8	40
41	Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene–butadiene and butadiene rubber blends. Polymer, 2008, 49, 5276-5283.	1.8	273
42	The effect of chemical treatment on the crystallinity of multi-walled carbon nanotubes. Journal of Physics and Chemistry of Solids, 2008, 69, 222-229.	1.9	12
43	Carbon nanotube-based health monitoring of mechanically fastened composite joints. Composites Science and Technology, 2008, 68, 2557-2561.	3.8	84
44	Non-covalent functionalization of multi walled carbon nanotubes and their application for conductive composites. Carbon, 2008, 46, 829-831.	5.4	32
45	Latex technology as a simple route to improve the thermal conductivity of a carbon nanotube/polymer composite. Carbon, 2008, 46, 2107-2112.	5.4	88
46	Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon, 2008, 46, 1497-1505.	5.4	399
47	Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scripta Materialia, 2008, 58, 846-849.	2.6	96
48	Reinforcement with carbon nanotubes in aluminum matrix composites. Scripta Materialia, 2008, 59, 360-363.	2.6	257
49	Influence of chemical processing on the morphology, crystalline content and thermal stability of multi-walled carbon nanotubes. Materials Chemistry and Physics, 2008, 112, 387-392.	2.0	17
50	Isotactic Polypropylene/Carbon Nanotube Composites Prepared by Latex Technology. Thermal Analysis of Carbon Nanotube-Induced Nucleation. Macromolecules, 2008, 41, 5753-5762.	2.2	126
51	Micromechanics Modeling of Polymer Nanocomposites for Use as Multifunctional Materials. , 2008, , .		2
52	Influence of surface treated multi-walled carbon nanotubes on cure behavior of epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1670-1678.	3.8	45
53	Real-time <i>in situ</i> sensing of damage evolution in advanced fiber composites using carbon nanotube networks. Nanotechnology, 2008, 19, 215713.	1.3	223
54	Recent progress of thermal interface materials. , 2008, , .		14

ARTICLE IF CITATIONS # Recent progress of thermal interface material research - an overview. , 2008, , . 22 55 A Micromechanics Model for the Thermal Conductivity of Nanotube-Polymer Nanocomposites. Journal 1.1 of Applied Mechanics, Transactions ASME, 2008, 75, . Analysis of Clustering and Interphase Region Effects on the Electrical Conductivity of Carbon 57 4 Nanotube-Polymer Nanocomposites via Computational Micromechanics., 2008, ... Novel nonconductive adhesives/films with carbon nanotubes for high performance interconnects., 58 2008,,. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. 59 1.2 86 Journal of Materials Research, 2008, 23, 2975-2983. Conductive Property of Carbon-Nanotube Dispersed Nanocomposite Coatings for Steel. Solid State Phenomena, 2008, 135, 35-38. 0.3 The Effect of Nanoscaled-Layered Silicates on Thermal Conductivity of Nanocomposites based on HDPE 61 1.2 10 and PP. Journal of Composite Materials, 2008, 42, 2163-2174. Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube. 1.1 168 EXPRESS Polymer Letters, 2008, 2, 40-48. Development of Cu-based CNT Composite Electrodes for Low Wear Property in Electrical Discharge 63 0.4 8 Machining. International Journal of Electrical Machining, 2008, 13, 41-44. Novel Nonconductive Adhesives/Films With Carbon Nanotubes for High-Performance Interconnects. 1.4 IEEE Transactions on Components and Packaging Technologies, 2009, 32, 754-758. Dielectric monitoring of carbon nanotube network formation in curing thermosetting 17 66 1.3 nanocomposites. Journal Physics D: Applied Physics, 2009, 42, 155402. Shape memory epoxy: a systematic study of their performance., 2009, , . Flame Retardancy of Thermoset Polymers Based on Nanoparticles and Carbon Nanotubes. Solid State 68 0.3 9 Phenomena, 0, 151, 79-87. Influence of Solvents on the MWCNT/Adhesive Grade Epoxy Nanocomposites Preparation. Journal of 1.6 Reinforced Plastics and Composites, 2009, 28, 2805-2812. Compression Strength Degradation of Nanocomposites after Lightning Strike. Journal of Composite 70 1.2 33 Materials, 2009, 43, 2987-3001. Preparation, microstructure and properties of epoxy-based composites containing carbon nanotubes and PMN-PZT piezoceramics as rigid piezo-damping materials. Materials Chemistry and Physics, 2009, 116, 191-197. Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity. Advanced 72 11.1 324 Materials, 2009, 21, 2088-2092. Comparison of Covalently and Noncovalently Functionalized Carbon Nanotubes in Epoxy. 69 Macromolecular Rapid Communications, 2009, 30, 627-632.

#	Article	IF	CITATIONS
74	Conductive polymer tape containing highly oriented carbon nanofillers. Journal of Applied Polymer Science, 2009, 113, 742-751.	1.3	82
75	Degradation behavior of nanoreinforced epoxy systems under pulse laser. Journal of Applied Polymer Science, 2009, 113, 3156-3164.	1.3	6
76	Conductive network formation and electrical properties of poly(vinylidene fluoride)/multiwalled carbon nanotube composites: Percolation and dynamic percolation. Journal of Applied Polymer Science, 2009, 114, 1405-1411.	1.3	29
77	Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Composites Science and Technology, 2009, 69, 801-804.	3.8	117
78	Sulfonated polyoxadiazole composites containing carbon nanotubes prepared via in situ polymerization. Composites Science and Technology, 2009, 69, 220-227.	3.8	19
79	Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Composites Science and Technology, 2009, 69, 335-342.	3.8	317
80	Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. Journal of Materials Science, 2009, 44, 3241-3247.	1.7	168
81	Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites. Journal of Materials Science, 2009, 44, 4003-4012.	1.7	113
82	Enhancement of thermal diffusivity of poly(l-lactic acid) composites with a net-like structure of carbon fibers. Journal of Materials Science, 2009, 44, 4572-4576.	1.7	22
83	Carbon based conductive photoresist. Journal of Materials Science, 2009, 44, 4625-4632.	1.7	16
84	Dielectric properties of epoxy composites with modified multiwalled carbon nanotubes. Polymer Bulletin, 2009, 63, 101-110.	1.7	26
85	Single step synthesis of poly(3â€octylthiophene)/multiâ€walled carbon nanotube composites and their characterizations. Polymers for Advanced Technologies, 2009, 20, 736-741.	1.6	7
86	The effects of triethylenetetramine grafting of multiâ€walled carbon nanotubes on its dispersion, fillerâ€matrix interfacial interaction and the thermal properties of epoxy nanocomposites. Polymer Engineering and Science, 2009, 49, 2158-2167.	1.5	35
87	Noncovalent functionalization of multiwalled and doubleâ€walled carbon nanotubes: Positive effect of the filler functionalization on high glass transition temperature epoxy resins. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1860-1868.	2.4	15
88	The effect of length of singleâ€walled carbon nanotubes (SWNTs) on electrical properties of conducting polymer–SWNT composites. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 89-95.	2.4	20
89	Evidence of multi-walled carbon nanotube fragmentation induced by sonication during nanotube encapsulation via bulk-suspension polymerization. Micron, 2009, 40, 621-627.	1.1	29
90	Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 2009, 34, 783-810.	11.8	1,619
91	A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 2009, 69, 1486-1498.	3.8	2,227

#	Article	IF	CITATIONS
92	The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Composites Science and Technology, 2009, 69, 239-244.	3.8	157
93	Comparative study of the dispersion and functional properties of multiwall carbon nanotubes and helical-ribbon carbon nanofibers in polyester nanocomposites. Composites Science and Technology, 2009, 69, 1521-1532.	3.8	52
94	Influence of preparation procedure on the conductivity and transparency of SWCNT-polymer nanocomposites. Composites Science and Technology, 2009, 69, 1867-1872.	3.8	65
95	Advanced elastomer nano-composites based on CNT-hybrid filler systems. Composites Science and Technology, 2009, 69, 2135-2143.	3.8	151
96	Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon, 2009, 47, 1723-1737.	5.4	381
97	Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon, 2009, 47, 1958-1968.	5.4	172
98	Preparation and properties of multi-walled carbon nanotube/carbon/polystyrene composites. Carbon, 2009, 47, 2733-2741.	5.4	44
99	Fabrication, Morphology and Cure Behavior of Triethylenetetramine-Grafted Multiwalled Carbon Nanotube/Epoxy Nanocomposites. Polymer Journal, 2009, 41, 752-763.	1.3	10
100	Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Physical Review B, 2009, 80, .	1.1	206
101	Polymer interfaces used in electrochemical DNA-based biosensors. Chemical Papers, 2009, 63, 1-14.	1.0	18
102	A Review on Carbon Epoxy Nanocomposites. Journal of Reinforced Plastics and Composites, 2009, 28, 461-487.	1.6	77
103	A Micromechanics Model for the Electrical Conductivity of Nanotube-Polymer Nanocomposites. Journal of Composite Materials, 2009, 43, 917-941.	1.2	163
104	Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Composites Part A: Applied Science and Manufacturing, 2009, 40, 724-730.	3.8	157
105	Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 778-783.	3.8	104
106	Evaluation of dispersion state and thermal conductivity measurement of carbon nanotubes/UV-curable resin nanocomposites. Synthetic Metals, 2009, 159, 827-830.	2.1	19
107	Physical properties of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes. Physical Chemistry Chemical Physics, 2009, 11, 10851.	1.3	60
108	Polymer/Carbon Nanotube Composites. Australian Journal of Chemistry, 2009, 62, 762.	0.5	85
109	Computational Micromechanics Analysis of the Effects of Interphase Regions and Bundle Packing on the Effective Electrical Properties of Carbon Nanotube-Polymer Nanocomposites. , 2009, , .		2

#	Article	IF	CITATIONS
110	Enhanced Electrical Conductivity of Nanocomposites Containing Hybrid Fillers of Carbon Nanotubes and Carbon Black. ACS Applied Materials & amp; Interfaces, 2009, 1, 1090-1096.	4.0	355
111	Electrical anisotropy in multiscale nanotube/fiber hybrid composites. Applied Physics Letters, 2009, 95, 073111.	1.5	41
114	Structure–property relationships in isotactic polypropylene/multi-walled carbon nanotubes nanocomposites. Composites Science and Technology, 2010, 70, 328-335.	3.8	168
115	Quantitative description of the spatial dispersion of carbon nanotubes in polymeric matrix. Journal of Materials Science, 2010, 45, 2305-2310.	1.7	17
116	Recent Advances in Research on Carbon Nanotube–Polymer Composites. Advanced Materials, 2010, 22, 1672-1688.	11.1	788
118	Electrical and mechanical properties of carbon nanotubeâ€epoxy nanocomposites. Journal of Applied Polymer Science, 2010, 116, 191-202.	1.3	45
119	Synthesis and characterization of poly(3â€octylthiophene)/single wall carbon nanotube composites for photovoltaic applications. Journal of Applied Polymer Science, 2010, 118, 1386-1394.	1.3	7
120	Enhanced Thermal Diffusivity by Vertical Double Percolation Structures in Polyimide Blend Films Containing Silver Nanoparticles. Macromolecular Chemistry and Physics, 2010, 211, 2118-2124.	1.1	27
121	Functionalized MWNTâ€Ðoped Thermoplastic Polyurethane Nanocomposites for Aerospace Coating Applications. Macromolecular Materials and Engineering, 2010, 295, 838-845.	1.7	34
122	Recent Developments Concerning the Dispersion of Carbon Nanotubes in Polymers. Macromolecular Rapid Communications, 2010, 31, 247-257.	2.0	180
123	Functionalization of Carbon Materials using the Dielsâ€Alder Reaction. Macromolecular Rapid Communications, 2010, 31, 574-579.	2.0	88
124	Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 2010, 35, 357-401.	11.8	2,738
125	Influence of shear deformation on carbon nanotube networks in polycarbonate melts: Interplay between build-up and destruction of agglomerates. Polymer, 2010, 51, 201-210.	1.8	136
126	Surfactant-modified multiscale composites for improved tensile fatigue and impact damage sensing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7340-7352.	2.6	24
127	Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality. European Polymer Journal, 2010, 46, 854-868.	2.6	186
128	Tribological performance of brake friction materials containing carbon nanotubes. Wear, 2010, 268, 519-525.	1.5	90
129	Comparison of nanotubes produced by fixed bed and aerosol-CVD methods and their electrical percolation behaviour in melt mixed polyamide 6.6 composites. Composites Science and Technology, 2010, 70, 151-160.	3.8	55
130	An assessment of the science and technology of carbon nanotube-based fibers and composites. Composites Science and Technology, 2010, 70, 1-19.	3.8	510

#	Article	IF	CITATIONS
131	A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD- and arc-grown multi-wall carbon nanotubes. Composites Science and Technology, 2010, 70, 173-180.	3.8	57
132	Effects of surface-functionalized multi-walled carbon nanotubes on the properties of poly(dimethyl) Tj ETQq1 1 0.	784314 rg	;BT_/Overloc
133	Electrical conductivity of ion-doped graphite/polyethersulphone composites. Composites Science and Technology, 2010, 70, 1544-1549.	3.8	23
134	Health monitoring in continuous glass fibre reinforced thermoplastics: Manufacturing and application of interphase sensors based on carbon nanotubes. Composites Science and Technology, 2010, 70, 1589-1596.	3.8	79
135	Characterization of carbon nanotube 3D-structures infused with low viscosity epoxy resin system. Composite Structures, 2010, 92, 2252-2257.	3.1	17
136	High CNT content composites with CNT Buckypaper and epoxy resin matrix: Impregnation behaviour composite production and characterization. Composite Structures, 2010, 92, 1291-1298.	3.1	79
137	Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon, 2010, 48, 260-266.	5.4	195
138	Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon, 2010, 48, 1171-1176.	5.4	253
139	Synthesis of carbon nanotube/epoxy composite films with a high nanotube loading by a mixed-curing-agent assisted layer-by-layer method and their electrical conductivity. Carbon, 2010, 48, 2057-2062.	5.4	79
140	A comparative study of damage sensing in fiber composites using uniformly and non-uniformly dispersed carbon nanotubes. Carbon, 2010, 48, 3788-3794.	5.4	77
141	Synergetic effect of carbon nanofibers and short carbon fibers on the mechanical and fracture properties of epoxy resin. Carbon, 2010, 48, 4289-4300.	5.4	82
142	Low electrical percolation threshold in poly(ethylene terephthalate)/multi-walled carbon nanotube nanocomposites. European Polymer Journal, 2010, 46, 928-936.	2.6	99
143	Modification of multiwall carbon nanotubes by <i>grafting from</i> controlled polymerization of styrene: Effect of the characteristics of the nanotubes. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1035-1046.	2.4	22
144	Plasma Functionalization of MWCNTs in He Followed by NH ₃ Treatment and its Application in PMMA Based Nanocomposites. Plasma Processes and Polymers, 2010, 7, 1001-1009.	1.6	24
145	DC and AC conductivity in epoxy resin/multiwall carbon nanotubes percolative system. Polymer Composites, 2010, 31, 1874-1880.	2.3	53
146	Functionalization of carbon nanotubes and carbon nanofibers used in epoxy/amine matrices that avoid partitioning of the monomers at the fiber interface. Polymer Engineering and Science, 2010, 50, 183-190.	1.5	19
147	Studies on morphology and interphase of poly(butylene terephthalate)/carbon nanotubes nanocomposites. Polymer Engineering and Science, 2010, 50, 1571-1576.	1.5	18
148	Effect of nanoparticles on the performance of thermally conductive epoxy adhesives. Polymer Engineering and Science, 2010, 50, 1809-1819.	1.5	81

#	Article	IF	CITATIONS
149	Properties of Thermoplastic Polyurethane/Functionalised Graphene Sheet Nanocomposites Prepared by the <i>in Situ</i> Polymerisation Method. Polymers and Polymer Composites, 2010, 18, 351-358.	1.0	57
150	Advances in nanoparticle reinforcement in structural adhesives. , 2010, , 151-182.		11
151	Morphology and thermal behavior of polymer/carbon nanotube composites. , 2010, , 529-562.		2
152	Fabrication and Mechanical Characterization of Carbon Nanotubes-Enhanced Epoxy. Advanced Materials Research, 2010, 168-170, 1102-1106.	0.3	3
153	Morphological, Thermal, and Electrical Characterization of Syndiotactic Polypropylene/Multiwalled Carbon Nanotube Composites. Journal of Macromolecular Science - Physics, 2010, 49, 1044-1056.	0.4	16
154	Solution of the tunneling-percolation problem in the nanocomposite regime. Physical Review B, 2010, 81, .	1.1	203
155	The Electrical Properties and Conducting Mechanisms of Carbon Nanotube/Polymer Nanocomposites: A Review. Polymer-Plastics Technology and Engineering, 2010, 49, 1172-1181.	1.9	127
156	Conductivity percolation of carbon nanotubes (CNT) in polystyrene (PS) latex film. Canadian Journal of Chemistry, 2010, 88, 267-276.	0.6	21
157	The Utility of Nanocomposites in Fire Retardancy. Materials, 2010, 3, 4580-4606.	1.3	68
158	The Processing and Characterization of MWCNT/Epoxy and CB/Epoxy Nanocomposites Using Twin Screw Extrusion. Polymer-Plastics Technology and Engineering, 2010, 49, 1207-1213.	1.9	24
159	Optoelectrical properties of epoxy/silica nanocomposites. Materials Technology, 2010, 25, 14-18.	1.5	5
160	Recent Developments in Multifunctional Nanocomposites Using Carbon Nanotubes. Applied Mechanics Reviews, 2010, 63, .	4.5	148
161	Shape memory epoxy: Composition, structure, properties and shape memory performances. Journal of Materials Chemistry, 2010, 20, 3431.	6.7	194
162	Applications of Carbon Nanomaterials as Electrical Interconnects and Thermal Interface Materials. , 2010, , 87-138.		6
163	Thermally Conductive Nanocomposites. , 2010, , 277-314.		11
164	Contact thermal resistance between individual multiwall carbon nanotubes. Applied Physics Letters, 2010, 96, .	1.5	134
165	Mechanical and Thermal Properties of Amine Functionalized Multi-walled Carbon Nanotubes Epoxy-Based Nanocomposite. Composite Interfaces, 2010, 17, 197-215.	1.3	8
166	Recent advance in functionalized graphene/polymer nanocomposites. Journal of Materials Chemistry, 2010, 20, 7906.	6.7	447

# 167	ARTICLE Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Composites Part A: Applied Science and Manufacturing, 2010, 41, 215-221.	IF 3.8	CITATIONS
168	Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1345-1367.	3.8	2,787
170	Polycarbazole Nanocomposites with Conducting Metal Oxides for Transparent Electrode Applications. ACS Applied Materials & Interfaces, 2010, 2, 413-424.	4.0	14
171	Nano-Bio- Electronic, Photonic and MEMS Packaging. , 2010, , .		38
172	Dielectric Polymer Nanocomposites. , 2010, , .		227
173	Computational Micromechanics Analysis of the Effects of Bundle Packing and Interphase Addition on the Effective Electrical and Thermal Transverse Conductivity of Carbon Nanotube-Polymer Nanocomposites (Student Paper). , 2010, , .		2
174	Analytical and Computational Micromechanics Analysis of the Effects of Interphase Regions and Orientation on the Effective Coefficient of Thermal Expansion of Carbon Nanotube-Polymer Nanocomposites. , 2010, , .		1
175	Application of multi-wall carbon nanotube/SiC composite to thermal dissipation of high-bright light emitting diode. , 2010, , .		0
176	Thermally conductive adhesives in electronics. , 2011, , 15-52.		7
177	Enhanced thermal conductivity over percolation threshold in polyimide blend films containing ZnO nano-pyramidal particles: advantage of vertical double percolation structure. Journal of Materials Chemistry, 2011, 21, 4402.	6.7	74
178	Elastomer–carbon nanotube composites. , 2011, , 193-229.		4
179	Influence of thermo-rheological history on electrical and rheological properties of polymer–carbon nanotube composites. , 2011, , 295-328.		2
180	Thermal Conductive Materials Based on Carbon Nanotubes and Graphene Nanosheets. World Scientific Series on Carbon Nanoscience, 2011, , 755-786.	0.1	3
181	Nanostructured Materials for Engineering Applications. , 2011, , .		22
182	Nanoreinforcements for Nanocomposite Materials. , 2011, , 119-131.		6
183	A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation. Journal of Materials Chemistry, 2011, 21, 5610.	6.7	81
184	Adhesives with Nanoparticles. , 2011, , 1437-1460.		8
185	Crystallization and Thermal Conductivity of CaCO ₃ Nanoparticle Filled Polypropylene. Journal of Macromolecular Science - Physics, 2011, 50, 1637-1645.	0.4	25

#	ARTICLE Transport and mechanical properties of vapour grown carbon nanofibre/silicone composites.	IF 3.8	Citations
187	Composites Part A: Applied Science and Manufacturing, 2011, 42, 1335-1343. Effects of carbon nanotube diameter and functionality on the properties of soy polyol-based polyurethane. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1620-1626.	3.8	37
188	Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites with High Packing Density. ACS Nano, 2011, 5, 4818-4825.	7.3	425
189	Solvent-Free Preparation of High-Toughness Epoxyâ^'SWNT Composite Materials. ACS Applied Materials & Interfaces, 2011, 3, 1441-1450.	4.0	70
190	Thermally conductive and electrically insulative nanocomposites based on hyperbranched epoxy and nanoâ€Al ₂ O ₃ particles modified epoxy resin. Polymers for Advanced Technologies, 2011, 22, 1032-1041.	1.6	64
191	Manufacturing and characterization of carbon fibre/epoxy composite prepregs containing carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1412-1420.	3.8	92
192	Carbon Nanotubes and Semiconducting Polymer Nanocomposites. , 2011, , .		2
196	Electrical transport measurements of highly conductive nitrogen-doped multiwalled carbon nanotubes/poly(bisphenol A carbonate) composites. Journal of Materials Research, 2011, 26, 2854-2859.	1.2	10
197	Carbon nanotube coated glass fibres for interphase health monitoring in textile composites. Materials Technology, 2011, 26, 153-158.	1.5	11
198	Development of Highly Functional Polylactic Acid Composites to Be Used in Electronic Instruments. Kobunshi Ronbunshu, 2011, 68, 370-381.	0.2	1
199	Effect of Carbon Nanotube (CNT) Size on Wear Properties of Cu-Based CNT Composite Electrodes in Electrical Discharge Machining. Journal of Solid Mechanics and Materials Engineering, 2011, 5, 348-359.	0.5	19
200	Analysis of clustering, interphase region, and orientation effects on the electrical conductivity of carbon nanotube–polymer nanocomposites via computational micromechanics. Mechanics of Materials, 2011, 43, 755-774.	1.7	55
201	Effect of the carbon nanotube type on the thermoelectric properties of CNT/Nafion nanocomposites. Organic Electronics, 2011, 12, 2120-2125.	1.4	66
202	Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer, 2011, 52, 3852-3856.	1.8	193
203	Synthesis of epoxy composites with high carbon nanotube loading and effects of tubular and wavy morphology on composite strength and modulus. Polymer, 2011, 52, 6037-6045.	1.8	76
204	Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites. Nanoscale Research Letters, 2011, 6, 610.	3.1	99
205	Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites. Composites Part B: Engineering, 2011, 42, 2111-2116.	5.9	106
206	Electrical and dielectric properties of polypropylene nanocomposites based on carbon nanotubes and barium titanate nanoparticles. Composites Science and Technology, 2011, 71, 1706-1712.	3.8	75

#	Article	IF	CITATIONS
207	Morphology and electrical properties of carbon black/poly(ethylene terephthalate)/polypropylene composite. Journal of Applied Polymer Science, 2012, 124, 4598-4605.	1.3	5
208	Epoxy-amine composites with ultralow concentrations of single-layer carbon nanotubes. Polymer Science - Series A, 2011, 53, 502-509.	0.4	14
209	Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers. Journal of Materials Science, 2011, 46, 659-669.	1.7	83
210	Factors affecting the magnitudes and anisotropies of the thermal and electrical conductivities of poly(l-lactic) acid composites with carbon fibers of various sizes. Journal of Materials Science, 2011, 46, 747-751.	1.7	11
211	How hybridization with zinc oxide whiskers and carbon fibers affects the thermal diffusivity and mechanical properties of poly(l-lactic acid) nanocomposites. Journal of Materials Science, 2011, 46, 1439-1445.	1.7	8
212	Responses and thermal conductivity measurements of multi-wall carbon nanotube (MWNT)/epoxy composites. Journal of Thermal Analysis and Calorimetry, 2011, 103, 533-542.	2.0	11
213	Thermal transport of oil and polymer composites filled with carbon nanotubes. Applied Physics A: Materials Science and Processing, 2011, 105, 781-788.	1.1	15
214	Damage sensing of adhesively-bonded hybrid composite/steel joints using carbon nanotubes. Composites Science and Technology, 2011, 71, 1183-1189.	3.8	99
215	In situ polymerized nanocomposites: Polystyrene/CNT and Poly(methyl methacrylate)/CNT composites. Composites Science and Technology, 2011, 71, 900-907.	3.8	85
216	Core-sheath polyurethane-carbon nanotube nanofibers prepared by electrospinning. Fibers and Polymers, 2011, 12, 721-726.	1.1	18
217	Conductivities of graphite fiber composites with single-walled carbon nanotube layers. International Journal of Precision Engineering and Manufacturing, 2011, 12, 745-748.	1.1	12
218	Influence of surface treatment of multiwall carbon nanotubes on the properties of polypropylene/carbon nanotubes nanocomposites. Polymers for Advanced Technologies, 2011, 22, 38-47.	1.6	23
219	Electrical conductivity and fracture behavior of epoxy/polyamideâ€12/multiwalled carbon nanotube composites. Polymer Engineering and Science, 2011, 51, 2245-2253.	1.5	45
220	Effects of processing conditions on rheological, thermal, and electrical properties of multiwall carbon nanotube/epoxy resin composites. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 431-442.	2.4	41
221	Dramatic Effects of Scalable SNNâ€Assisted Melt Dispersion on Thermal Conductivity and Coefficient of Thermal Expansion of Nanocomposites. Macromolecular Materials and Engineering, 2011, 296, 151-158.	1.7	4
222	Thermoplastic Polyurethane Nanocomposites Produced via Impregnation of Long Carbon Nanotube Forests. Macromolecular Materials and Engineering, 2011, 296, 53-58.	1.7	13
223	Effect of carbon nanotube purification on the electrical and mechanical properties of poly(ethylene) Tj ETQq0 0 0 Science, 2011, 119, 3360-3371.	rgBT /Ove 1.3	erlock 10 Tf 5 21
224	Improvement of the mechanical and electrical properties of waste rubber with carbon nanotubes. Journal of Applied Polymer Science, 2011, 121, 502-507.	1.3	74

#	Article	IF	CITATIONS
225	Poly(3-hexylthiophene) wrapped carbon nanotube/poly(dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors. Carbon, 2011, 49, 106-110.	5.4	173
226	Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon, 2011, 49, 4269-4279.	5.4	112
227	Simultaneous global and local strain sensing in SWCNT–epoxy composites by Raman and impedance spectroscopy. Composites Science and Technology, 2011, 71, 160-166.	3.8	68
228	High electrical performance of carbon nanotubes/rubber composites with low percolation threshold prepared with a rotation–revolution mixing technique. Composites Science and Technology, 2011, 71, 1098-1104.	3.8	50
229	Dispersion, hybrid interconnection and heat dissipation properties of functionalized carbon nanotubes in epoxy composites for electrically conductive adhesives (ECAs). Microelectronics Reliability, 2011, 51, 812-818.	0.9	32
230	Tensile fracture and thermal conductivity characterization of toughened epoxy/CNT nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 906-913.	2.6	48
231	Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. Journal of Power Sources, 2011, 196, 2945-2961.	4.0	238
232	Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Materials & Design, 2011, 32, 4521-4527.	5.1	116
233	Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, 2011, 36, 914-944.	11.8	2,089
234	Flame retarding polymer nanocomposites: Synergism, cooperation, antagonism. Polymer Degradation and Stability, 2011, 96, 256-269.	2.7	30
235	Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polymer Testing, 2011, 30, 548-556.	2.3	244
236	Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Solar Energy Materials and Solar Cells, 2011, 95, 1811-1818.	3.0	215
237	Thermal and electrical conduction behavior of alumina and multiwalled carbon nanotube incorporated poly(dimethyl siloxane). Thermochimica Acta, 2011, 512, 34-39.	1.2	27
238	Thermal Dissipation of High-Brightness Light Emitting Diode by Using Multiwalled Carbon Nanotube/SiC Composites. Japanese Journal of Applied Physics, 2011, 50, 06GE09.	0.8	Ο
239	Assessing the thermal conductivity of non-uniform thin-films: Nanocrystalline Cu composites incorporating carbon nanotubes. Journal of Applied Physics, 2011, 110, 023506.	1.1	3
242	Influence of ionic liquids on the dielectric relaxation behavior of CNT based elastomer nanocomposites. EXPRESS Polymer Letters, 2012, 6, 927-936.	1.1	31
243	Characterization of CNT Enhanced Conductive Adhesives in Terms of Thermal Conductivity. ECS Transactions, 2012, 44, 1011-1017.	0.3	2
244	Light-weight nanocomposite materials with enhanced thermal transport properties. Nanotechnology Reviews, 2012, 1, 363-376.	2.6	22

#	Article	IF	CITATIONS
245	Electrical Conductivity of Anisotropic iPP Carbon Nanotube Thin Films. Materials Research Society Symposia Proceedings, 2012, 1410, 37.	0.1	3
246	Nanoscale spatial resolution probes for scanning thermal microscopy of solid state materials. Journal of Applied Physics, 2012, 112, .	1.1	76
247	Carbon nanotube film interlayer for strain and damage sensing in composites during dynamic compressive loading. Applied Physics Letters, 2012, 101, 221909.	1.5	8
248	Thermal conductivity improvement of electrically nonconducting composite materials. Reviews in Chemical Engineering, 2012, 28, .	2.3	9
249	PIEZORESISTIVE PROPERTIES OF MULTI-WALLED CARBON NANOTUBE–POLY(DIMETHYLSILOXANE) COMPOSITES FOR LOW-PRESSURE-SENSING APPLICATIONS. Nano, 2012, 07, 1250005.	0.5	5
250	Improved Thermal Response in Encapsulated Phase Change Materials by Nanotube Attachment on Encapsulating Solid. Journal of Nanotechnology in Engineering and Medicine, 2012, 3, .	0.8	9
251	Graphene Functionalization: A Review. RSC Nanoscience and Nanotechnology, 2012, , 1-52.	0.2	7
252	Effect of processing methods and functional groups on the properties of multi-walled carbon nanotube filled poly(dimethyl siloxane) composites. Polymer Bulletin, 2012, 69, 937-953.	1.7	33
253	Characterization of nanostructured thermal interface materials – A review. International Journal of Thermal Sciences, 2012, 62, 2-11.	2.6	157
254	Prediction of thermal conductivity of SiC-filled emulsion-polymerized styrene-butadiene rubber composites by finite element method. Journal of Reinforced Plastics and Composites, 2012, 31, 1586-1598.	1.6	7
255	Polymer nanocomposites for aerospace applications. , 2012, , 472-539.		39
256	Fabrication and evaluation of composite bipolar plate to develop a compact and lightweight direct methanol fuel cell stack. , 2012, , .		1
257	Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites. Journal of Physical Chemistry C, 2012, 116, 13629-13639.	1.5	406
258	Enhanced Thermal Conductivity of Epoxy Composites with MWCNTs/AIN Hybrid Filler. Polymer-Plastics Technology and Engineering, 2012, 51, 1578-1582.	1.9	28
259	Dynamics and Deformation Response of Rod-Containing Nanocomposites. Macromolecules, 2012, 45, 543-554.	2.2	42
260	Polymer/carbon nanocomposites for enhanced thermal transport properties – carbon nanotubes versus graphene sheets as nanoscale fillers. Journal of Materials Chemistry, 2012, 22, 17133.	6.7	77
261	Computational modeling and evaluation of the thermal behavior of randomly distributed single-walled carbon nanotube/polymer composites. Computational Materials Science, 2012, 63, 207-213.	1.4	33
262	Impact-damage visualization in CFRP by resistive heating: Development of a new detection method for indentations caused by impact loads. Composites Part A: Applied Science and Manufacturing, 2012, 43, 53-64.	3.8	40

#	Article	IF	CITATIONS
263	Influence of geometries of multi-walled carbon nanotubes on the pore structures of Buckypaper. Composites Part A: Applied Science and Manufacturing, 2012, 43, 469-474.	3.8	38
264	RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 593-602.	3.8	89
265	Creep and recovery of epoxy/MWCNT nanocomposites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1212-1218.	3.8	85
266	Shortened carbon nanotubes and their influence on the electrical properties of polymer nanocomposites. Journal of Composite Materials, 2012, 46, 1313-1322.	1.2	27
268	Towards polymer-based organic thermoelectric generators. Energy and Environmental Science, 2012, 5, 9345.	15.6	684
269	In situ thermoresistive characterization of multifunctional composites of carbon nanotubes. Polymer, 2012, 53, 5367-5374.	1.8	35
270	Surface-Induced Interphases During Curing Processes Between Bi- and Pentafunctional Components: Reactive Coarse-Grained Molecular Dynamics Simulations. Journal of Adhesion, 2012, 88, 903-923.	1.8	7
271	Superposition approach for description of electrical conductivity in sheared MWNT/polycarbonate melts. EXPRESS Polymer Letters, 2012, 6, 438-453.	1.1	8
272	Effect of electrostatic heterocoagulation of PVM/MA grafted carbon black and attapulgite nanorods on electrical and mechanical behaviors of waterborne polyurethane nanocomposites. Colloid and Polymer Science, 2012, 290, 1527-1536.	1.0	6
274	Carbon Nanotube-Based Multifunctional Polymer Nanocomposites. Polymer Reviews, 2012, 52, 355-416.	5.3	144
275	Morphological, electrical, thermal and mechanical properties of phthalocyanine/multi-wall carbon nanotubes nanocomposites prepared by masterbatch dilution. Journal of Polymer Research, 2012, 19, 1.	1.2	20
276	Spectroscopic study of double-walled carbon nanotube functionalization for preparation of carbon nanotube / epoxy composites. Carbon, 2012, 50, 4987-4994.	5.4	35
277	Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites. Materials Research, 2012, 15, 510-516.	0.6	33
278	Improved polyvinylpyrrolidone (PVP)/graphite nanocomposites by solution compounding and spray drying. Polymers for Advanced Technologies, 2012, 23, 652-659.	1.6	35
279	Preparation and Characterization of Epoxy/Inorganic Antiâ€electrostatic Nanocomposites Using Submicrometer Al(OH) ₃ and Colloid Al ₂ O ₃ . Journal of the Chinese Chemical Society, 2012, 59, 975-982.	0.8	2
280	Curing of epoxy/carbon nanotubes physical networks. Polymer Engineering and Science, 2012, 52, 663-670.	1.5	22
282	Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance. Angewandte Chemie - International Edition, 2012, 51, 6498-6501.	7.2	356
283	Effect of nanosized carbon black on the morphology, transport, and mechanical properties of rubbery epoxy and silicone composites. Journal of Applied Polymer Science, 2012, 126, 641-652.	1.3	35

#	Article	IF	CITATIONS
284	Preparation and properties of polyurethane/multiwalled carbon nanotube nanocomposites by a spray drying process. Journal of Applied Polymer Science, 2012, 126, 789-795.	1.3	8
285	Thermal behavior and dielectric property analysis of boron nitrideâ€filled bismaleimideâ€triazine resin composites. Journal of Applied Polymer Science, 2013, 128, 1353-1359.	1.3	32
286	Multi-walled carbon nanotube/silver nanoparticles used for thermal transportation. Journal of Materials Science, 2012, 47, 5590-5595.	1.7	22
287	Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications. Journal of Materials Science: Materials in Electronics, 2012, 23, 817-824.	1.1	46
288	Effect of processing technique on the transport and mechanical properties of vapour grown carbon nanofibre/rubbery epoxy composites for electronic packaging applications. Carbon, 2012, 50, 84-97.	5.4	25
289	Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon, 2012, 50, 3-33.	5.4	608
290	The use of an electric field in the preparation of glass fibre/epoxy composites containing carbon nanotubes. Carbon, 2012, 50, 2493-2503.	5.4	46
291	Investigation of the rheological and conductive properties of multi-walled carbon nanotube/polycarbonate composites by positron annihilation techniques. Carbon, 2012, 50, 2899-2907.	5.4	26
292	Analysis of the conditions to manufacture a MWCNT buckypaper/benzoxazine nanocomposite. Composites Science and Technology, 2012, 72, 489-497.	3.8	46
293	Texture, transport and mechanical properties of graphite nanoplatelet/silicone composites produced by three roll mill. Composites Science and Technology, 2012, 72, 467-475.	3.8	52
294	Carbon nanotube-based polymer composites: A trade-off between manufacturing cost and mechanical performance. Composites Science and Technology, 2012, 72, 774-787.	3.8	17
295	Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer, 2012, 53, 4-28.	1.8	468
296	Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer, 2012, 53, 471-480.	1.8	410
297	Cationic photocured epoxy nanocomposites filled with different carbon fillers. Polymer, 2012, 53, 1831-1838.	1.8	58
298	Multiwall Carbon Nanotube–Epoxy Composites With High Shielding Effectiveness for Aeronautic Applications. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 28-36.	1.4	34
299	Effect of the preparation methods on electrical properties of epoxy resin/carbon nanofiber composites. Nanotechnologies in Russia, 2012, 7, 169-177.	0.7	19
300	Thermal conductivity and dynamic mechanical property of glycidyl methacrylateâ€grafted multiwalled carbon nanotube/epoxy composites. Journal of Applied Polymer Science, 2012, 123, 888-896.	1.3	11
301	Carbon black/graphite nanoplatelet/rubbery epoxy hybrid composites for thermal interface applications. Journal of Materials Science, 2012, 47, 1059-1070.	1.7	23

#	Article	IF	Citations
302	Epoxy Composites Reinforced with Negativeâ€CTE ZrW ₂ O ₈ Nanoparticles for Electrical Applications. Macromolecular Materials and Engineering, 2013, 298, 136-144.	1.7	13
303	Effect of carbon nanotubes on the curing dynamics and network formation of cyanate ester resin. Journal of Polymer Research, 2013, 20, 1.	1.2	7
304	Electrical Conductivity of Filled Polybenzoxazines. Engineering Materials, 2013, , 139-156.	0.3	1
305	Dependence of electrical properties of polyethylene nanocomposites on aspect ratio of carbon nanotubes. Polymer Composites, 2013, 34, 494-499.	2.3	40
306	A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon, 2013, 55, 116-125.	5.4	232
307	Room temperature ionic liquids for epoxy nanocomposite synthesis: Direct dispersion and cure. Composites Science and Technology, 2013, 86, 38-44.	3.8	42
308	The effect of multiwall carbon nanotubes on the in-plane shear behavior of epoxy glass fiber reinforced composites. Composites Part B: Engineering, 2013, 55, 421-425.	5.9	19
309	The viability and limitations of percolation theory in modeling the electrical behavior of carbon nanotube–polymer composites. Nanotechnology, 2013, 24, 155706.	1.3	53
310	Effect of Curing and Functionalization on the Interface Thermal Conductance in Carbon Nanotube–Epoxy Composites. Jom, 2013, 65, 140-146.	0.9	29
311	Role of graphene waviness on the thermal conductivity of graphene composites. Applied Physics A: Materials Science and Processing, 2013, 111, 221-225.	1.1	60
312	Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Reviews of Modern Physics, 2013, 85, 1295-1326.	16.4	365
313	High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Composites Science and Technology, 2013, 85, 98-103.	3.8	250
314	Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. International Journal of Heat and Mass Transfer, 2013, 67, 1024-1029.	2.5	72
315	Carbon Nanotube-Based Materials—Preparation, Biocompatibility, and Applications in Dentistry. , 2013, , 37-67.		3
316	Transport properties of graphite/epoxy composites: Thermal,Âpermeability and dielectric characterization. Polymer Testing, 2013, 32, 880-888.	2.3	64
317	Zirconium Tungstate/Epoxy Nanocomposites: Effect of Nanoparticle Morphology and Negative Thermal Expansivity. ACS Applied Materials & Interfaces, 2013, 5, 9478-9487.	4.0	44
318	Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120494.	1.6	20
320	Carbon Nanotube Enhanced Aerospace Composite Materials. Solid Mechanics and Its Applications, 2013,	0.1	12

#	Article	IF	CITATIONS
321	Thermal conductivity and dynamic mechanical analysis of NiZn ferrite nanoparticles filled thermoplastic natural rubber nanocomposite. Composites Part B: Engineering, 2013, 52, 334-339.	5.9	35
322	Alloys and Composites of Polybenzoxazines. Engineering Materials, 2013, , .	0.3	54
323	Calorimetric study of nanocomposites of multiwalled carbon nanotubes and isotactic polypropylene polymer. Journal of Applied Polymer Science, 2013, 130, 587-594.	1.3	13
324	The influence of mechanical dispersion of MWCNT in epoxy matrix by calendering method: Batch method versus time controlled. Composites Part B: Engineering, 2013, 48, 88-94.	5.9	34
325	Assessment of nanoparticle loading and dispersion in polymeric materials using optical coherence tomography. Polymer Testing, 2013, 32, 1290-1298.	2.3	12
326	Thermal boundary resistance and temperature dependent phonon conduction in CNT array multilayer structure. International Journal of Thermal Sciences, 2013, 74, 53-62.	2.6	29
327	Effects and mechanism of graft modification on the dielectric performance of polymer–matrix composites. Composites Science and Technology, 2013, 89, 127-133.	3.8	22
328	Exponentially increased nucleation ability for poly(L-lactide) by adding acid-oxidized multiwalled carbon nanotubes with reduced aspect ratios. Science China Chemistry, 2013, 56, 181-194.	4.2	16
329	Hygrothermal ageing of adhesive joints with nanoreinforced adhesives and different surface treatments of carbon fibre/epoxy substrates. International Journal of Adhesion and Adhesives, 2013, 40, 179-187.	1.4	38
330	Chemical Functionalization of Carbon Nanotubes for Dispersion in Epoxy Matrices. Solid Mechanics and Its Applications, 2013, , 155-183.	0.1	2
331	A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena. Carbon, 2013, 55, 285-290.	5.4	90
332	Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 2013, 47, 143-149.	3.8	256
333	Effects of carbon loading on the performance of functionalized carbon nanotube polymer heat sink for ultra high power light-emitting diode. , 2013, , .		0
334	Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Progress in Polymer Science, 2013, 38, 1037-1066.	11.8	336
335	Thermal conductivity of micro/nano filler filled polymeric composites. RSC Advances, 2013, 3, 6417.	1.7	21
336	Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. European Polymer Journal, 2013, 49, 1347-1353.	2.6	236
337	Effects of Functionalization on Thermal Properties of Single-Wall and Multi-Wall Carbon Nanotube–Polymer Nanocomposites. ACS Nano, 2013, 7, 5114-5121.	7.3	205
338	Hierarchical Composite Structures Prepared by Electrophoretic Deposition of Carbon Nanotubes onto Glass Fibers. ACS Applied Materials & amp; Interfaces, 2013, 5, 2022-2032.	4.0	140

		CITATION REPORT		
#	Article	IF		CITATIONS
339	Thermal degradation and flammability of novel organic/inorganic epoxy hybrids containing organophosphorus-modified oligosiloxane. Thermochimica Acta, 2013, 552, 87-97.	1.	2	50
340	Effects of particle size and electrical resistivity of filler on mechanical, electrical, and thermal properties of linear low density polyethylene–zinc oxide composites. Journal of Applied Pc Science, 2013, 130, 2734-2743.	l Jymer 1.	3	14
341	Thermally Conductive Aluminum Nitride–Multiwalled Carbon Nanotube/Cyanate Ester Con with High Flame Retardancy and Low Dielectric Loss. Industrial & Engineering Chemistr 2013, 52, 3342-3353.		8	51
342	Enhanced thermal conductivity for PVDF composites with a hybrid functionalized graphene sheet-nanodiamond filler. Fibers and Polymers, 2013, 14, 1317-1323.	1.	1	53
343	Epoxy resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites. , 20	013,,88-121.		19
344	Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposit addition of functionalized graphene oxide. Polymer International, 2013, 62, 827-835.	te film by 1.	6	91
345	Strain Sensing of Glass Fiber Reinforced Coupons by Using Carbon Nanotube Doped Resin. ,	2013, , .		0
346	Multifunctional Hierarchical Nanocomposites: A Review. , 2013, , .			0
347	ELASTOMER COMPOSITES BASED ON CARBON NANOTUBES AND IONIC LIQUID. Rubber Ch Technology, 2013, 86, 367-400.	nemistry and 0.	.6	40
348	Electrical and Thermal Characterization of Electrospun PVP Nanocomposite Fibers. Journal o Nanomaterials, 2013, 2013, 1-9.	f 1.	5	21
349	Structure-Electrical Transport Property Relationship of Anisotropic iPP/CNT Films. Materials Research Society Symposia Proceedings, 2013, 1499, 1.	0.	.1	3
350	Mechanical properties of 3-glycidoxypropyltrimethoxysilane functionalized multi-walled carb nanotubes/epoxy composites cured by electron beam irradiation. Journal of Composite Mate 47, 1685-1694.	oon erials, 2013, 1.	2	7
351	Effects of Multi-Walled Carbon Nanotubes (MWCNTS) on the Mechanical and Thermal Prop Plasticized Polylactic Acid Nanocomposites. Advanced Materials Research, 0, 812, 181-186.	erties of 0.	.3	8
352	Properties of Freestanding Buckypapers with Monodispersion of Multi-Walled Carbon Nano Aqueous Solution. Advanced Materials Research, 0, 765-767, 3162-3165.	tube 0.	.3	2
353	Thermoplastic Nanocomposites with Carbon Nanotubes. Engineering Materials, 2013, , 19-6	50. 0.	.3	25
354	Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles. EXPRESS Polymer Letters, 2013, 7, 585-59	4. 1.	1	101
355	Effects of Carbon Loading on the Performance of Functionalized Carbon Nanotube Polymer for High Power Light-Emitting Diode in Switching Applications. IEEE Nanotechnology Magaz 12, 1104-1110.		1	3
356	Quasi-solid state uniaxial and biaxial deformation of PET/MWCNT composites: structural evo electrical and mechanical properties. RSC Advances, 2013, 3, 5162.	olution, 1.	7	39

#	Article	IF	CITATIONS
357	Multifunctional carbon nanotube–epoxy composites for thermal energy management. Journal of Composite Materials, 2013, 47, 77-95.	1.2	20
358	Graphene functionalization and its application to polymer composite materials. Nanomaterials and Energy, 2013, 2, 97-111.	0.1	5
359	Visualization of flowing current in braided carbon fiber reinforced plastics using SQUID gradiometer for nondestructive evaluation. Journal of Physics: Conference Series, 2013, 433, 012013.	0.3	0
360	Effect of the filler structure of carbon nanomaterials on the electrical, thermal, and rheological properties of epoxy composites. Journal of Applied Polymer Science, 2013, 129, 3366-3372.	1.3	42
361	Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials. Materials Research, 2013, 16, 1299-1308.	0.6	33
362	Evaluation of Effect of Various Nanofillers on Technological Properties of NBR/NR Blend Vulcanized Using BIAT-CBS System. Journal of Polymers, 2013, 2013, 1-10.	0.9	3
363	Non-linear Viscoelastic Behaviour of Rubber-Rubber Blend Composites and Nanocomposites: Effect of Spherical, Layered and Tubular Fillers. Advances in Polymer Science, 2014, , 85-134.	0.4	9
364	Computational micromechanics analysis of electron-hopping-induced conductive paths and associated macroscale piezoresistive response in carbon nanotube–polymer nanocomposites. Journal of Intelligent Material Systems and Structures, 2014, 25, 2141-2164.	1.4	43
365	A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black. Journal of Nanomaterials, 2014, 2014, 1-9.	1.5	34
366	Thermal conductivity of epoxy nanocomposites filled with MWCNT and hydrotalcite clay: A preliminary study. , 2014, , .		1
367	Transport Properties of Epoxy-Binary Filler Composites. Molecular Crystals and Liquid Crystals, 2014, 589, 195-201.	0.4	5
368	Aligned carbon nanotubeâ€liquid silicone rubber conductors and electrode surfaces for stimulating medical implants. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1439-1447.	0.8	7
369	Chemical Functionalization of Carbon Nanotubes and its Effects on Electrical Conductivity. Journal of Nano Research, 0, 28, 51-61.	0.8	19
370	Hierarchical multifunctional nanocomposites. , 2014, , .		1
371	Cellular Automata Simulations of Thermal Transport Properties of Thin-Film Polymer/CNTs Nano-Composites for Improved Design. Materials Research Society Symposia Proceedings, 2014, 1619, 1.	0.1	0
372	Thermal and Electrical Transport Properties of Sheared and Un-Sheared Thin-Film Polymer/CNTs Nanocomposites. Materials Research Society Symposia Proceedings, 2014, 1660, 25.	0.1	3
373	Morphology, mechanical, bound rubber, swelling, and dynamic mechanical studies of chlorobutyl elastomer nanocomposites: effect of multiwalled carbon nanotube and solvent. Journal of Polymer Engineering, 2014, 34, 41-52.	0.6	6
374	Investigation of uniaxial stretching effects on the electrical conductivity of CNT–polymer nanocomposites. Journal Physics D: Applied Physics, 2014, 47, 405103.	1.3	55

	CITATION	Report	
# 375	ARTICLE Fabrication and properties of CNTs reinforced polymeric matrix nanocomposites for sports	IF 0.3	Citations
373	applications. IOP Conference Series: Materials Science and Engineering, 2014, 60, 012009.	0.3	14
376	Effect of CNT Arrays on Electrical and Thermal Conductivity of Epoxy Resins. Advanced Materials Research, 2014, 1043, 27-30.	0.3	0
377	Ultralow percolation threshold of single walled carbon nanotube-epoxy composites synthesized via an ionic liquid dispersant/initiator. Materials Research Express, 2014, 1, 035013.	0.8	11
378	Direct Dry Spinning of Millimeter-long Carbon Nanotube Arrays for Aligned Sheet and Yarn. , 2014, , 389-414.		2
379	Thermal Conductivity of Nanotube Assemblies and Superfiber Materials. , 2014, , 425-456.		4
380	Sol–gel synthesis of nano-sized silica in confined amorphous space of polypropylene: Impact of nano-level structures of silica on physical properties of resultant nanocomposites. Polymer, 2014, 55, 1940-1947.	1.8	14
381	Studies of nanocomposites of carbon nanotubes and a negative dielectric anisotropy liquid crystal. Journal of Chemical Physics, 2014, 140, 104908.	1.2	23
382	Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Composites Part B: Engineering, 2014, 56, 611-620.	5.9	184
383	Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes. Composites Science and Technology, 2014, 95, 16-20.	3.8	55
384	Polymer/Carbon Nanotube Nano Composite Fibers–A Review. ACS Applied Materials & Interfaces, 2014, 6, 6069-6087.	4.0	462
385	Methanol vapor sensor based on poly(styrene-co-butylacrylate)/polypyrrole-EG core–shell nanocomposites. Sensors and Actuators B: Chemical, 2014, 199, 320-329.	4.0	16
386	Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances. Composites Part A: Applied Science and Manufacturing, 2014, 56, 103-126.	3.8	213
387	Effect of silica coating thickness on the thermal conductivity of polyurethane/SiO2 coated multiwalled carbon nanotube composites. Composites Part A: Applied Science and Manufacturing, 2014, 58, 1-6.	3.8	94
388	Coupled thermalâ€electrical analysis of carbon nanotube/epoxy composites. Polymer Engineering and Science, 2014, 54, 1976-1982.	1.5	10
389	Effects of carbon nanotube dispersion methods on the radar absorbing properties of MWCNT/epoxy nanocomposites. Macromolecular Research, 2014, 22, 1221-1228.	1.0	20
390	A study on the DC-electrical and thermal conductivities of epoxy/ZnO composites doped with carbon black. Radiation Effects and Defects in Solids, 2014, 169, 560-572.	0.4	11
391	The investigation of methyl phenyl silicone resin/epoxy resin using epoxy-polysiloxane as compatibilizer. Journal of Thermal Analysis and Calorimetry, 2014, 118, 247-254.	2.0	33
392	Highly Efficient Hyperbranched CNT Surfactants: Influence of Molar Mass and Functionalization. Langmuir, 2014, 30, 12200-12209.	1.6	17

#	Article	IF	CITATIONS
393	Polymer–Clay Nanocomposite Microspheres and their Thermosensitive Characteristics. Macromolecular Chemistry and Physics, 2014, 215, 295-305.	1.1	14
394	Simulation and experimental characterization of polymer/carbon nanotubes composites for strain sensor applications. Journal of Applied Physics, 2014, 116, .	1.1	71
395	Dielectric and thermal properties of flame retardant fillers in polypropylene/ethylene propylene diene monomer composites. Journal of Reinforced Plastics and Composites, 2014, 33, 1931-1940.	1.6	10
396	Conducting Instant Adhesives by Grafting of Silane Polymer onto Expanded Graphite. ACS Applied Materials & Interfaces, 2014, 6, 16097-16105.	4.0	21
397	Phonon Transport through Point Contacts between Graphitic Nanomaterials. Physical Review Letters, 2014, 112, .	2.9	60
398	Amorphous silica-coated graphite particles for thermally conductive and electrically insulating resins. Carbon, 2014, 78, 204-211.	5.4	36
399	Electromagnetic Interference Shielding Materials Derived from Gelation of Multiwall Carbon Nanotubes in Polystyrene/Poly(methyl methacrylate) Blends. ACS Applied Materials & Interfaces, 2014, 6, 11302-11310.	4.0	125
400	Synergistic effect of methyl phenyl silicone resin and DOPO on the flame retardancy of epoxy resins. Journal of Thermal Analysis and Calorimetry, 2014, 118, 369-375.	2.0	26
401	The Influence of CNT Contents on the Electrical and Electromagnetic Properties of CNT/Vinylester. Journal of Electronic Materials, 2014, 43, 3477-3485.	1.0	7
402	Mechanical and thermal properties of hierarchical composites enhanced by pristine graphene and graphene oxide nanoinclusions. Journal of Applied Polymer Science, 2014, 131, .	1.3	33
403	Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes. International Journal of Heat and Mass Transfer, 2014, 72, 440-451.	2.5	35
404	Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite. International Journal of Thermal Sciences, 2014, 76, 90-100.	2.6	48
405	A Thermally Conductive Composite with a Silica Gel Matrix and Carbon-Encapsulated Copper Nanoparticles as Filler. Journal of Electronic Materials, 2014, 43, 2759-2769.	1.0	14
406	Effect of Thermal Interface on Heat Flow in Carbon Nanofiber Composites. ACS Applied Materials & Interfaces, 2014, 6, 1061-1072.	4.0	40
407	Prediction of the effective thermal conductivity of carbon nanotubeâ€reinforced polymer systems. Polymer Composites, 2014, 35, 1997-2009.	2.3	17
408	Enhanced crack detection sensitivity of carbon fiber composites by carbon nanotubes directly grown on carbon fibers. Composites Part B: Engineering, 2014, 60, 284-291.	5.9	31
409	Electrical conductivity phenomena in an epoxy resin–carbon-based materials composite. Composites Part A: Applied Science and Manufacturing, 2014, 61, 108-114.	3.8	42
410	Effect of Carbon Nanotube Functionalization on Mechanical and Thermal Properties of Cross-Linked Epoxy–Carbon Nanotube Nanocomposites: Role of Strengthening the Interfacial Interactions. ACS Applied Materials & Interfaces, 2014, 6, 6098-6110.	4.0	163

#	ARTICLE	IF	CITATIONS
411	Ion-conductive and mechanical properties of polyether/silica thin fiber composite electrolytes. Reactive and Functional Polymers, 2014, 81, 40-44.	2.0	13
412	- Brief Introduction to Nanocomposites for Electromagnetic Shielding. , 2014, , 244-283.		1
413	Characterization of Material Properties for Multi-Scale Polymer Composites Extruded From Straight and Divergent Die Geometries Using Various Filler Concentrations. , 2015, , .		0
414	Electrical Properties of Polymer Nanocomposites. , 0, , 521-549.		1
415	Stiffness threshold of randomly distributed carbon nanotube networks. Journal of the Mechanics and Physics of Solids, 2015, 84, 395-423.	2.3	75
416	Nanoâ€SiO ₂ / <scp>PMMAâ€PU</scp> composite particles with coreâ€shell structure via emulsion polymerization and their application in epoxy resin. Journal of Applied Polymer Science, 2015, 132, .	1.3	7
417	Effect of styrene addition on thermal properties of epoxy resin doped with carbon nanotubes. Polymers for Advanced Technologies, 2015, 26, 1593-1599.	1.6	10
418	Phenomenological characterization of fabrication of aligned pristine-SWNT and COOH-SWNT nance composites via dielectrophoresis under AC electric field. Polymer Composites, 2015, 36, 1266-1279.	2.3	19
419	Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring. Materials, 2015, 8, 6697-6718.	1.3	23
420	Study of the Effect of Damage on the Electrical Impedance of Carbon Nanotube Reinforced Epoxy Nanocomposites. Journal of Sensors, 2015, 2015, 1-7.	0.6	15
421	Nanoscale Azide Polymer Functionalization: A Robust Solution for Suppressing the Carbon Nanotube–Polymer Matrix Thermal Interface Resistance. Journal of Physical Chemistry C, 2015, 119, 12193-12198.	1.5	32
423	A contribution from dielectric analysis to the study of the formation of multi-wall carbon nanotubes percolated networks in epoxy resin under an electric field. Materials Chemistry and Physics, 2015, 160, 289-295.	2.0	10
424	Influence of Surface Chemical Groups and Content of Carbon Nanotubes on Electrical Property of Epoxy Resin Composites. Materials Science Forum, 0, 814, 101-106.	0.3	0
425	Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers. Composites Part A: Applied Science and Manufacturing, 2015, 76, 73-81.	3.8	131
426	Multifunctional hierarchical nanocomposite laminates for automotive/aerospace applications. , 2015, , 491-526.		0
427	Self-sensing carbon nanotube composites. , 2015, , 752-784.		7
428	Graphite–graphene hybrid filler system for high thermal conductivity of epoxy composites. Journal of Materials Research, 2015, 30, 959-966.	1.2	39
429	Electric field induced alignment of multiwalled carbon nanotubes in polymers and multiscale composites. Advanced Manufacturing: Polymer and Composites Science, 2015, 1, 16-25.	0.2	12

#	Article	IF	Citations
430	Thermal and ablative properties of binary carbon nanotube and nanodiamond reinforced carbon fibre epoxy matrix composites. Plastics, Rubber and Composites, 2015, 44, 397-404.	0.9	8
431	Influences of different gravity environments on the curing process and cured products of carbonâ€nanotubeâ€reinforced epoxy composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	0
432	Thermal conductivity of epoxy resins filled with <scp>MWCNT</scp> and hydrotalcite clay: Experimental data and theoretical predictive modeling. Polymer Composites, 2015, 36, 1118-1123.	2.3	19
433	Thermal, rheological and electrical analysis of MWCNTs/epoxy matrices. Composites Science and Technology, 2015, 110, 118-125.	3.8	22
434	Thermally conductive PP/AlN composites with a 3-D segregated structure. Composites Science and Technology, 2015, 110, 26-34.	3.8	86
435	Enhanced thermal conductivity of rheologically percolated carbon nanofiber reinforced polypropylene composites. Polymers for Advanced Technologies, 2015, 26, 369-375.	1.6	9
436	The impact strength and electrical properties of polyimide-/polyolefin elastomer-grafted multiwalled carbon nanotube composites. Journal of Thermoplastic Composite Materials, 2015, 28, 295-302.	2.6	2
437	PTC MWCNT/DI-water switchable composites. Journal of Materials Chemistry A, 2015, 3, 5270-5274.	5.2	5
438	Strain and damage monitoring in carbon-nanotube-based composite under cyclic strain. Composites Part A: Applied Science and Manufacturing, 2015, 71, 9-16.	3.8	84
439	Effective Moduli Evaluation of Carbon Nanotube Reinforced Polymers Using Micromechanics. Mechanics of Advanced Materials and Structures, 2015, 22, 819-828.	1.5	14
440	Effect of carbon nanotubes addition on properties of 0–3 pyroelectric ceramic/polymer composites. Journal of Electroceramics, 2015, 34, 216-220.	0.8	10
441	Improved Thermal Conductivity in Carbon Nanotubes-Reinforced Syntactic Foam Achieved by a New Dispersing Technique. Jom, 2015, 67, 2848-2854.	0.9	12
442	Carbon Nanotube Based Sensor to Monitor Crack Growth in Cracked Aluminum Structures Underneath Composite Patching. Applied Composite Materials, 2015, 22, 457-473.	1.3	4
443	The influence of layered, spherical, and tubular carbon nanomaterials' concentration on the flame retardancy of polypropylene. Polymer Composites, 2015, 36, 1230-1241.	2.3	69
444	Flexible plane heater: Graphite and carbon nanotube hybrid nanocomposite. Synthetic Metals, 2015, 203, 127-134.	2.1	35
445	Improving flexural and dielectric properties of MWCNT/epoxy nanocomposites by introducing advanced hybrid filler system. Composite Structures, 2015, 132, 50-64.	3.1	44
446	A Review on Polymeric Nanocomposites of Nanodiamond, Carbon Nanotube, and Nanobifiller: Structure, Preparation and Properties. Polymer-Plastics Technology and Engineering, 2015, 54, 1379-1409.	1.9	55
447	Preparation of alumina-coated graphite for thermally conductive and electrically insulating epoxy composites. RSC Advances, 2015, 5, 55170-55178.	1.7	32

#	Article	IF	CITATIONS
448	Drilling delamination and thermal damage of carbon nanotube/carbon fiber reinforced epoxy composites processed by microwave curing. International Journal of Machine Tools and Manufacture, 2015, 97, 11-17.	6.2	69
449	Comparative electrocatalytic studies of nanocomposites of mixed and covalently linked multiwalled carbon nanotubes and 4-(4,6-diaminopyrimidin-2-ylthio) phthalocyaninato cobalt(II). Polyhedron, 2015, 98, 47-54.	1.0	2
450	The Evolution of Carbon Nanotube Network Structure in Unidirectional Nanocomposites Resolved by Quantitative Electron Tomography. ACS Nano, 2015, 9, 6050-6058.	7.3	62
451	Preparation, characterization, and applications of poly(ethylene terephthalate) nanocomposites. , 2015, , 167-198.		5
452	Thermal, mechanical and electrical properties of highly loaded CNT-epoxy composites – A model for the electric conductivity. Composites Science and Technology, 2015, 117, 183-190.	3.8	54
453	Investigation of Some Magnetic and Thermal Properties of \$\$hbox {Epoxy/Ni}_{0.5}hbox {Zn}_{0.5}hbox {Fe}_{2}hbox {O}_{4}\$\$ Epoxy/Ni 0.5 Zn 0.5 Fe 2 O 4 Composites. International Journal of Thermophysics, 2015, 36, 1661-1672.	1.0	2
454	Effect of Multiwall Carbon Nanotubes on the Ablative Properties of Carbon Fiber-Reinforced Epoxy Matrix Composites. Arabian Journal for Science and Engineering, 2015, 40, 1529-1538.	1.1	17
455	Thermal Conductivity of MWNT–Epoxy Composites by Transient Thermoreflectance. Journal of Electronic Materials, 2015, 44, 2624-2630.	1.0	6
456	The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites. Chemistry Central Journal, 2015, 9, 10.	2.6	61
457	Linear and non-linear electrical dependency of carbon nanotube reinforced composites to internal damage. IOP Conference Series: Materials Science and Engineering, 2015, 74, 012002.	0.3	6
458	Effective electrical conductivity of carbon nanotube-polymer composites: a simplified model and its validation. Materials Research Express, 2015, 2, 045602.	0.8	41
459	Synergy in hybrid polymer/nanocarbon composites. A review. Composites Part A: Applied Science and Manufacturing, 2015, 73, 204-231.	3.8	257
460	Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites. Modelling and Simulation in Materials Science and Engineering, 2015, 23, 065003.	0.8	15
461	An approach to correlate experimental and theoretical thermal conductivity of MWNT/PMMA polymer composites. Materials Research Express, 2015, 2, 095302.	0.8	2
462	A novel epoxy-functionalized hyperbranched polysiloxane (HPSi) endowing methyl phenyl silicone resin (Si603)/epoxy systems with enhanced compatibility and fire retardancy performance. RSC Advances, 2015, 5, 97413-97421.	1.7	23
463	One-pot synthesis of aminated multi-walled carbon nanotube using thiol-ene click chemistry for improvement of epoxy nanocomposites properties. RSC Advances, 2015, 5, 98692-98699.	1.7	57
464	Molecular dynamics of SWNT/Epoxy nanocomposites. , 2015, , .		2
465	Enhanced thermal conductive property of polyamide composites by low mass fraction of covalently grafted graphene nanoribbons. Journal of Materials Chemistry C, 2015, 3, 10990-10997.	2.7	36

	Сітатіо	N REPORT	
# 466	ARTICLE Micromechanics Modeling of Bi-Axial Stretching Effects on the Electrical Conductivity of	IF 1.3	CITATIONS
400	CNT-Polymer Composites. International Journal of Applied Mechanics, 2015, 07, 1550005.	1.0	20
467	Electrical characteristics of carbon nanotube-doped composites. Physics-Uspekhi, 2015, 58, 209-251.	0.8	61
468	Heat Transport in Liquid Polyester Resin with Carbon Nanotubes. International Journal of Thermophysics, 2015, 36, 2854-2861.	1.0	3
469	Enhanced electrical conductivity and mechanical properties of ABS/EPDM composites filled with graphene. Composites Part B: Engineering, 2015, 83, 66-74.	5.9	49
470	Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns. Composite Structures, 2015, 134, 523-532.	3.1	32
471	Electrical conductivity of 3D periodic architectured interpenetrating phase composites with carbon nanostructured-epoxy reinforcements. Composites Science and Technology, 2015, 118, 127-134.	3.8	44
472	Effects of covalent functionalization on the thermal transport in carbon nanotube/polymer composites: A multi-scale investigation. Polymer, 2015, 56, 563-571.	1.8	42
473	Self-repair of structural and functional composites with intrinsically self-healing polymer matrices: A review. Composites Part A: Applied Science and Manufacturing, 2015, 69, 226-239.	3.8	164
474	Effect of type and aspect ratio of different carbon nanotubes on cure behavior of epoxy-based nanocomposites. Iranian Polymer Journal (English Edition), 2015, 24, 1-12.	1.3	37
475	High thermal conductive mâ€xylylenediamine functionalized multiwall carbon nanotubes/epoxy resin composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	5
476	Radiation-crosslinking of shape memory polymers based on poly(vinyl alcohol) in the presence of carbon nanotubes. Radiation Physics and Chemistry, 2015, 106, 376-384.	1.4	23
477	Thermal transmittance of carbon nanotube networks: Guidelines for novel thermal storage systems and polymeric material of thermal interest. Renewable and Sustainable Energy Reviews, 2015, 41, 1028-1036.	8.2	35
478	Carbon nanotube functionalization effects on thermal properties of multiwall carbon nanotube/polycarbonate composites. Polymer Composites, 2015, 36, 1242-1248.	2.3	14
479	Impedance analysis, dielectric relaxation, and electrical conductivity of multi-walled carbon nanotube-reinforced silicon elastomer nanocomposites. Journal of Elastomers and Plastics, 2015, 47, 394-415.	0.7	22
481	Fabrication and characterization of branched carbon nanostructures. Beilstein Journal of Nanotechnology, 2016, 7, 1260-1266.	1.5	8
482	Optimization of Conductive Thin Film Epoxy Composites Properties Using Desirability Optimization Methodology. Journal of Optimization, 2016, 2016, 1-8.	6.0	9
483	Influence of Carbon Nanotube Clustering on Mechanical and Electrical Properties of Cement Pastes. Materials, 2016, 9, 220.	1.3	38
484	Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein Journal of Nanotechnology, 2016, 7, 1174-1196.	1.5	215

ARTICLE IF CITATIONS Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications., 0, , . 485 62 Improvement of dispersion of carbon nanotubes in epoxy resin through pyrogallol functionalization. 486 1.5 Polymer Engineering and Science, 2016, 56, 1079-1085. Effect of carbon nanotube dispersion and network formation on thermal conductivity of 487 thermoplastic polyurethane/carbon nanotube nanocomposites. Polymer Engineering and Science, 2016, 1.5 26 56, 394-407. Highâ€Performance Multifunctional Thermoplastic Composites Enhanced by Aligned Buckypaper. Advanced Engineering Materials, 2016, 18, 1460-1468. Electroconductive hydrophobic polymer composite materials based on oxidized carbon nanotubes 489 0.7 7 modified with tetrafluoroethylene telomers. Nanotechnologies in Russia, 2016, 11, 782-790. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 035005. Array Volume Fraction-Dependent Thermal Transport Properties of Vertically Aligned Carbon 491 1.2 13 Nanotube Arrays. Journal of Heat Transfer, 2016, 138, . A comprehensive study of surface modified graphene based polymer nanocomposites for 492 multifunctional electronic applications., 2016,,. Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites. 493 1.5 52 Applied Physics Letters, 2016, 108, . Improving electrical properties of SrTiO<inf>3</inf>/epoxy nanocomposites with high 494 thermal conductivity., 2016, , . Preparation and characterisation of graphene oxide/ carbon nanotubes films. , 2016, , . 495 0 Poly dimethylsiloxane/carbon nanofiber nanocomposites: fabrication and characterization of 496 24 electrical and thermal properties. International Journal of Smart and Nano Materials, 2016, 7, 236-247. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites. Jom, 2016, 68, 1396-1410. 497 0.9 16 Enhancing the thermal conductivities of SiO₂/Epoxy composites by orientation. Polymer 498 2.3 Composites, 2016, 37, 818-823. Electrical conductivity of melt-spun thermoplastic poly(hydroxy ether of bisphenol A) fibres 499 1.8 22 containing multi-wall carbon nanotubes. Polymer, 2016, 97, 80-94. A novel route for tethering graphene with iron oxide and its magnetic field alignment in polymer nanocomposites. Polymer, 2016, 97, 273-284. 1.8 Effect of Chemical Structure and Geometry of Carbon Nanotubes on Electrical and Mechanical 501 Properties of Nanocomposites Based on Cross-Linked Polyurethane. Theoretical and Experimental 0.2 0 Chemistry, 2016, 52, 16-20. Cellulose/boron nitride coreâ€"shell microbeads providing high thermal conductivity for thermally 38 conductive composite sheets. RSC Advances, 2016, 6, 33036-33042.

#	Article	IF	CITATIONS
503	Electrically conductive adhesives based on thermoplastic polyurethane filled with silver flakes and carbon nanotubes. Composites Science and Technology, 2016, 129, 191-197.	3.8	73
504	Conductivity in carbon nanotube polymer composites: A comparison between model and experiment. Composites Part A: Applied Science and Manufacturing, 2016, 87, 237-242.	3.8	44
505	Surface modification of BN/Fe3O4 hybrid particle to enhance interfacial affinity for high thermal conductive material. Polymer, 2016, 91, 74-80.	1.8	88
506	Review of Applications of Polymer/Carbon Nanotubes and Epoxy/CNT Composites. Polymer-Plastics Technology and Engineering, 2016, 55, 1167-1191.	1.9	208
507	Electron beam curing of poly(ethylene glycol) diglycidyl ether-functionalized MWNTs/epoxy composites. Journal of Composite Materials, 2016, 50, 1595-1602.	1.2	2
508	Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science, 2016, 61, 1-28.	11.8	910
509	Electrical Conductivity and Percolation Behavior of Polymer Nanocomposites. , 2016, , 51-82.		4
510	Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach. Composites Part A: Applied Science and Manufacturing, 2016, 90, 699-710.	3.8	76
511	Silver fillers aspect ratio influence on electrical and thermal conductivity in PEEK/Ag nanocomposites. European Polymer Journal, 2016, 85, 115-125.	2.6	82
512	Multiscale metrologies for process optimization of carbon nanotube polymer composites. Carbon, 2016, 108, 381-393.	5.4	24
513	Influence of multiwalled carbon nanotubes content on thermal conductivity of polyactic acid/liquid natural rubber nanocomposite. World Journal of Engineering, 2016, 13, 1-5.	1.0	3
514	Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer, 2016, 103, 315-327.	1.8	69
515	Thermal degradation mechanism and flame retardancy of MQ silicone/ epoxy resin composites. Polymer Degradation and Stability, 2016, 134, 144-150.	2.7	54
516	Thermal conductivity of aligned CNT/polymer composites using mesoscopic simulation. Composites Part A: Applied Science and Manufacturing, 2016, 90, 410-416.	3.8	53
517	Transparent and flexible films of horizontally aligned carbon nanotube/polyimide composites with highly anisotropic mechanical, thermal, and electrical properties. Carbon, 2016, 109, 131-140.	5.4	60
518	Core-shell structured BN/PPS composite film for high thermal conductivity with low filler concentration. Composites Science and Technology, 2016, 134, 209-216.	3.8	80
519	Tuning the structure and mechanical property of polymer nanocomposites by employing anisotropic nanoparticles as netpoints. Physical Chemistry Chemical Physics, 2016, 18, 25090-25099.	1.3	5
521	Hybrid network structure and thermal conductive properties in poly(vinylidene fluoride) composites based on carbon nanotubes and graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing, 2016, 90, 614-625.	3.8	139

#	Article	IF	CITATIONS
522	Thermal resistance measurement of 3D graphene foam/polymer composite by laser flash analysis. International Journal of Heat and Mass Transfer, 2016, 101, 470-475.	2.5	50
523	Conductivity analysis of epoxy/carbon nanotubes composites by dipole relaxation and hopping models. Physica B: Condensed Matter, 2016, 499, 57-63.	1.3	13
524	Thermoplastic polypropylene/aluminum nitride nanocomposites with enhanced thermal conductivity and low dielectric loss. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23, 2768-2776.	1.8	54
525	Hybrid multifunctional graphene/glass-fibre polypropylene composites. Composites Science and Technology, 2016, 137, 44-51.	3.8	93
526	Template-free, facile synthesis of core–shell carbon networks. Nanocomposites, 2016, 2, 153-161.	2.2	5
527	Thermal conductivity of carbon nanotube and hexagonal boron nitride polymer composites. Composites Part B: Engineering, 2016, 100, 19-30.	5.9	58
528	Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles. Applied Thermal Engineering, 2016, 106, 1067-1074.	3.0	74
529	Enhanced thermal-conductive and anti-dripping properties of polyamide composites by 3D graphene structures at low filler content. Composites Part A: Applied Science and Manufacturing, 2016, 88, 305-314.	3.8	111
530	Highly deformable thermal interface materials enabled by covalently-bonded carbon nanotubes. Carbon, 2016, 106, 152-157.	5.4	49
531	Polymer nanocomposite films with thicknesses (≤0Âμm) corresponding to the lateral dimension of graphite nanosheets as straightforward thermal conducting pathways. Composites Science and Technology, 2016, 127, 106-112.	3.8	6
532	High thermal conductivity and temperature probing of copper nanowire/upconversion nanoparticles/epoxy composite. Composites Science and Technology, 2016, 130, 63-69.	3.8	61
533	Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites. , 2016, , .		1
534	Effects of foaming through leaching on the electrical behavior of polystyrene/carbon nanotube composites. Journal of Thermoplastic Composite Materials, 2016, 29, 735-753.	2.6	12
535	Effect of aspect ratio on thermal conductivity of high density polyethylene/multi-walled carbon nanotubes nanocomposites. Composites Part A: Applied Science and Manufacturing, 2016, 82, 208-213.	3.8	79
536	Enhanced thermal conductive property of epoxy composites by low mass fraction of organic–inorganic multilayer covalently grafted carbon nanotubes. Composites Science and Technology, 2016, 125, 90-99.	3.8	54
537	Specific heat capacity and thermal conductivity of PEEK/Ag nanoparticles composites determined by Modulated-Temperature Differential Scanning Calorimetry. Polymer Degradation and Stability, 2016, 127, 98-104.	2.7	56
538	Rheology of electrostatically tethered nanoplatelets and multi-walled carbon nanotubes in epoxy. Polymer, 2016, 84, 223-233.	1.8	20
539	3D-Printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect. Infrared Physics and Technology, 2016, 76, 111-115.	1.3	11

#	Article	IF	CITATIONS
540	Increasing the Thermal Conductivity of Graphene-Polyamide-6,6 Nanocomposites by Surface-Grafted Polymer Chains: Calculation with Molecular Dynamics and Effective-Medium Approximation. Journal of Physical Chemistry B, 2016, 120, 1336-1346.	1.2	51
541	Assessment of nanoparticle loading and dispersion in polymeric materials using oscillatory photon correlation spectroscopy. Polymer Testing, 2016, 49, 107-114.	2.3	0
542	Simulation of lightning strike damage in carbon nanotube doped CFRP composites. Journal of Reinforced Plastics and Composites, 2016, 35, 504-515.	1.6	18
543	Photothermal spectroscopy of polymer nanocomposites. , 2016, , 312-361.		3
544	Influence of MWCTs and nanometal oxide/MWCTs hybrids on the thermal conduction of their acrylic-based nanocomposites. Iranian Polymer Journal (English Edition), 2016, 25, 243-250.	1.3	7
545	Effects of amino group on the properties of carbon nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 249-252.	1.0	3
546	Effects of silica-coated carbon nanotubes on the curing behavior and properties of epoxy composites. RSC Advances, 2016, 6, 23318-23326.	1.7	15
547	Development of high-performance resin nanocomposites by resin cellulation using multi-walled carbon nanotubes. Composites Part B: Engineering, 2016, 91, 422-430.	5.9	5
548	Modeling of carbon nanotubes and carbon nanotube–polymer composites. Progress in Aerospace Sciences, 2016, 80, 33-58.	6.3	77
549	Multiwall carbon nanotubes-reinforced epoxy hybrid coatings with high electrical conductivity and corrosion resistance prepared via electrostatic spraying. Progress in Organic Coatings, 2016, 90, 139-146.	1.9	73
550	The effect of carbon nanofillers on the performance of electromechanical polyaniline-based composite actuators. Nanotechnology, 2016, 27, 015501.	1.3	17
551	Three-dimensional dynamic behavior of suspended single wall carbon nanotubes. International Journal of Mechanical Sciences, 2016, 105, 369-377.	3.6	4
552	Shape memory properties of electrically conductive multi-walled carbon nanotube-filled polyurethane/modified polystyrene blends. Journal of Plastic Film and Sheeting, 2016, 32, 272-292.	1.3	24
553	Correlation between the free volume and thermal conductivity of porous poly(vinyl) Tj ETQq1 1 0.784314 rgBT /C 871-878.	Overlock 1 5.4	0 Tf 50 227 48
554	Effect of treating method on the physicochemical properties of amine-functionalized carbon nanotubes. International Journal of Materials Research, 2016, 107, 35-43.	0.1	7
555	Effect of carbon nanotubes on strengthening of RC beams retrofitted with carbon fiber/epoxy composites. Materials and Design, 2016, 89, 225-234.	3.3	50
556	Multiscale modeling of effective electrical conductivity of short carbon fiber-carbon nanotube-polymer matrix hybrid composites. Materials and Design, 2016, 89, 129-136.	3.3	92
557	Exploration of Epoxy Resins, Hardening Systems, and Epoxy/Carbon Nanotube Composite Designed for High Performance Materials: A Review. Polymer-Plastics Technology and Engineering, 2016, 55, 312-333.	1.9	98

		CITATION REPORT		
#	Article		IF	Citations
		carbon		
558	Effect of annealing at room temperature on the surface resistivity of elastomer/multiwalled ca nanotube nanocomposites. Polymer Composites, 2017, 38, E525.		2.3	2
559				

#	ARTICLE	IF	CITATIONS
576	Repair of heat-damaged RC columns using carbon nanotubes modified CFRP. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	15
577	A representative and comprehensive review of the electrical and thermal properties of polymer composites with carbon nanotube and other nanoparticle fillers. Polymer International, 2017, 66, 1237-1251.	1.6	45
578	Investigation of dielectric and thermal conductive properties of epoxy resins modified by core-shell structured PS@SiO 2. Composites Part A: Applied Science and Manufacturing, 2017, 97, 76-82.	3.8	24
579	Molecular dynamics study of the interfacial thermal conductance of multi-walled carbon nanotubes and van der Waals force induced deformation. Journal of Applied Physics, 2017, 121, 054302.	1.1	10
580	Nanoscale subsurface imaging. Journal of Physics Condensed Matter, 2017, 29, 173001.	0.7	25
581	Tensile properties and electrical conductivity of epoxy composite thin films containing zinc oxide quantum dots and multi-walled carbon nanotubes. Carbon, 2017, 115, 18-27.	5.4	47
582	Experiments and micromechanical modeling of electrical conductivity of carbon nanotube/cement composites with moisture. Cement and Concrete Composites, 2017, 77, 49-59.	4.6	56
583	Recycling of metal sludge wastes for thermal conductive filler via sintering and surface modification. Journal of Alloys and Compounds, 2017, 694, 1011-1018.	2.8	3
584	Carbon nanotubes and core–shell rubber nanoparticles modified structural epoxy adhesives. Journal of Materials Science, 2017, 52, 4493-4508.	1.7	37
585	Poly(lactic acid)-based polymer composites with high electric and thermal conductivity and their characterization. Polymer Testing, 2017, 58, 241-248.	2.3	81
586	Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Progress in Polymer Science, 2017, 67, 1-47.	11.8	491
587	Simple theory of low-temperature thermal conductivity in single- and double-walled carbon nanotubes. Physical Review B, 2017, 96, .	1.1	3
588	Adhesives with Nanoparticles. , 2017, , 1-27.		0
589	Carbon Fibers and Their Thermal Transporting Properties. , 2017, , 135-184.		8
590	Effect of MWCNTs and their modification on crystallization and thermal degradation of poly(butylene naphthalate). Thermochimica Acta, 2017, 656, 59-69.	1.2	16
591	Engineered carbon nanotubes reinforced polymer composites for enhanced thermoelectric performance. Materials Research Express, 2017, 4, 105002.	0.8	6
592	Carbon nanotube/reduced graphene oxide hybrid for simultaneously enhancing the thermal conductivity and mechanical properties of styrene -butadiene rubber. Carbon, 2017, 123, 158-167.	5.4	85
593	Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon, 2017, 123, 385-394.	5.4	114

#	Article	IF	CITATIONS
594	A simple methodology to predict the tunneling conductivity of polymer/CNT nanocomposites by the roles of tunneling distance, interphase and CNT waviness. RSC Advances, 2017, 7, 34912-34921.	1.7	68
595	Assessing the electrical behaviour of MWCNTs/epoxy nanocomposite for strain sensing. Composites Part B: Engineering, 2017, 128, 91-99.	5.9	52
596	The fabrication and thermal conductivity of epoxy composites with 3D nanofillers of AgNWs@SiO2&GNPs. Journal of Materials Science: Materials in Electronics, 2017, 28, 16141-16147.	1.1	16
597	Carbon black and graphite filled conducting nanocomposite films for temperature sensor applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 9514-9518.	1.1	12
598	Electrical and Thermal Properties of Polymer Composites Based on Polyvinylidene Fluoride. Russian Physics Journal, 2017, 60, 115-121.	0.2	3
599	Insights into the physical properties of biobased polyurethane/expanded graphite composite foams. Composites Science and Technology, 2017, 138, 24-31.	3.8	49
600	Effective electrical conductivity of carbon nanotube–epoxy nanocomposites. Journal of Composite Materials, 2017, 51, 2979-2988.	1.2	19
601	Synthesis, characterisation and performance of piezo-resistive cementitious nanocomposites. Cement and Concrete Composites, 2017, 75, 10-21.	4.6	17
602	Significance of Carbon Nanotube in Flame-Retardant Polymer/CNT Composite: A Review. Polymer-Plastics Technology and Engineering, 2017, 56, 470-487.	1.9	34
603	Enhanced thermal and mechanical properties of liquid crystalline-grafted graphene oxide-filled epoxy composites. Polymer Bulletin, 2017, 74, 1611-1627.	1.7	16
604	Improving electrical and mechanical properties of a conductive nano adhesive. Journal of Adhesion Science and Technology, 2017, 31, 699-712.	1.4	13
605	A critical review of nanotechnologies for composite aerospace structures. CEAS Space Journal, 2017, 9, 35-57.	1.1	36
606	Out-of-plane bending of carbon nanotube films. International Journal of Solids and Structures, 2017, 106-107, 183-199.	1.3	10
607	Electrical conductivity and transparency of polymer hybrid nanocomposites based on poly(trimethylene terephthalate) containing single walled carbon nanotubes and expanded graphite. Journal of Applied Polymer Science, 2017, 134, .	1.3	22
608	Restored pseudo heat flux (RPHF) algorithm for carbon fibre composite defect detection using thermography under uneven heating. Quantitative InfraRed Thermography Journal, 0, , 1-15.	2.1	2
609	Electric conductivity of high explosives with carbon nanotubes. Journal of Physics: Conference Series, 2017, 899, 092012.	0.3	7
610	Toward enhancing thermal conductivity of polymer-based thin films for microelectronics cooling. , 2017, , .		1
611	Enhanced thermal conductivity of epoxy composites with coreâ€shell SiC@SiO ₂ nanowires. High Voltage, 2017, 2, 154-160.	2.7	25

#	Article	IF	CITATIONS
612	Effective Assembly of Nano-Ceramic Materials for High and Anisotropic Thermal Conductivity in a Polymer Composite. Polymers, 2017, 9, 413.	2.0	66
613	Study on the Thermal and Dielectric Properties of SrTiO3/Epoxy Nanocomposites. Energies, 2017, 10, 692.	1.6	17
614	Simultaneous Determination of Dihydroxybenzene Isomers by MWCNTs-NTiO2 Modified Glassy Carbon Electrode. International Journal of Electrochemical Science, 2017, 12, 1421-1433.	0.5	10
615	Selfâ€sensing damage in <scp>CNT</scp> infused epoxy panels with and without glassâ€fibre reinforcement. Strain, 2018, 54, e12268.	1.4	5
616	A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Advanced Composites and Hybrid Materials, 2018, 1, 415-439.	9.9	139
617	Synergistic effect of CNT films impregnated with CNT modified epoxy solution towards boosted interfacial bonding and functional properties of the composites. Composites Part A: Applied Science and Manufacturing, 2018, 110, 1-10.	3.8	37
618	Synergistic effect of dual nanofillers (MWCNT and Ni–Al LDH) on the electrical and thermal characteristics of polystyrene nanocomposites. Journal of Applied Polymer Science, 2018, 135, 46513.	1.3	7
619	Microinjection molding of multiwalled carbon nanotubes (<scp>CNT</scp>)–filled polycarbonate nanocomposites and comparison with electrical and morphological properties of various other <scp>CNT</scp> â€filled thermoplastic micromoldings. Polymers for Advanced Technologies, 2018, 29, 1753-1764.	1.6	20
620	Thermal Conductivity of Polymers and Their Nanocomposites. Advanced Materials, 2018, 30, e1705544.	11.1	442
622	Outstanding Comprehensive Performance of La(Fe, Si) ₁₃ H _y /In Composite with Durable Service Life for Magnetic Refrigeration. Advanced Electronic Materials, 2018, 4, 1700636.	2.6	61
623	Enhancing the heat and load transfer efficiency by optimizing the interface of hexagonal boron nitride/elastomer nanocomposites for thermal management applications. Polymer, 2018, 143, 1-9.	1.8	132
624	Morphological, rheological and electrical properties of composites filled with carbon nanotubes functionalized with 1-pyrenebutyric acid. Composites Part B: Engineering, 2018, 147, 12-21.	5.9	51
625	Thermal conductivity of pillared graphene-epoxy nanocomposites using molecular dynamics. Applied Physics Letters, 2018, 112, 151902.	1.5	18
626	Thermal and mechanical properties of woodâ€plastic composites filled with multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2018, 135, 46308.	1.3	6
627	Thermal transport in organic/inorganic composites. Frontiers in Energy, 2018, 12, 72-86.	1.2	13
629	Investigation of phase separated polyimide blend films containing boron nitride using FTIR imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 195, 1-6.	2.0	11
630	Heat transport in electrically aligned multiwalled carbon nanotubes dispersed in water. Journal Physics D: Applied Physics, 2018, 51, 065302.	1.3	8
631	Annealing effect on thermal conductivity and microhardness of carbon nanotube containing Se80Te16Cu4glassy composites. Materials Research Express, 2018, 5, 025203.	0.8	1

# 632	ARTICLE 6.8 Carbon Nanotube-Based Composites. , 2018, , 201-229.	IF	CITATIONS
633	Silane surface treatment of boron nitride to improve the thermal conductivity of polyethylene naphthalate requiring high temperature molding. Polymer Composites, 2018, 39, E1692.	2.3	17
634	Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes. Results in Physics, 2018, 9, 1-5.	2.0	10
635	Multifunctional graphene/POSS epoxy resin tailored for aircraft lightning strike protection. Composites Part B: Engineering, 2018, 140, 44-56.	5.9	98
636	Micromechanical modeling of thermal conducting behavior of general carbon nanotube-polymer nanocomposites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 229, 173-183.	1.7	28
637	Role of rheology in tunning thermal conductivity of polyamide 12/polyamide 6 composites with a segregated multiwalled carbon nanotube network. Journal of Composite Materials, 2018, 52, 2549-2557.	1.2	9
638	Thermal transport in polymeric materials and across composite interfaces. Applied Materials Today, 2018, 12, 92-130.	2.3	299
639	Electrical percolation in graphene–polymer composites. 2D Materials, 2018, 5, 032003.	2.0	266
640	Electrical and structural properties of multi-walled carbon nanotube–doped polymer electrolyte for photo electrochemical device. High Performance Polymers, 2018, 30, 949-956.	0.8	15
641	High-performance flame retardant epoxy resin based on a bi-group molecule containing phosphaphenanthrene and borate groups. Polymer Degradation and Stability, 2018, 153, 210-219.	2.7	69
642	Electrical, thermal and thermo-mechanical properties of epoxy/multi-wall carbon nanotubes/mineral fillers nanocomposites. Journal of Composite Materials, 2018, 52, 3209-3217.	1.2	7
643	Conductivity Modification of Carbon-Based Nanocomposites. Applied Mechanics and Materials, 2018, 879, 41-46.	0.2	0
644	Study on the effect of graphene and glycerol plasticizer on the properties of chitosan-graphene nanocomposites via in situ green chemical reduction of graphene oxide. International Journal of Biological Macromolecules, 2018, 114, 599-613.	3.6	51
645	Polyaniline/silver decoratedâ€MWCNT composites with enhanced electrical and thermal properties. Polymer Composites, 2018, 39, E1346.	2.3	21
646	Novel nanostructured thermal interface materials: a review. International Materials Reviews, 2018, 63, 22-45.	9.4	261
647	Influence of carbon nanotubes on thermal response and reaction to fire properties of carbon fibre-reinforced plastic material. Journal of Composite Materials, 2018, 52, 567-579.	1.2	15
648	Recent Developments on Epoxy-Based Thermally Conductive Adhesives (TCA): A Review. Polymer-Plastics Technology and Engineering, 2018, 57, 903-934.	1.9	27
649	Enhanced thermal and mechanical properties of polyvinlydene fluoride composites with magnetic oriented carbon nanotube. Carbon, 2018, 126, 197-207.	5.4	65

#	Article	IF	CITATIONS
650	A simple model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the filler properties, interphase dimension, network level, interfacial tension and tunneling distance. Composites Science and Technology, 2018, 155, 252-260.	3.8	68
651	Review on micromechanics of nano―and microâ€fiber reinforced composites. Polymer Composites, 2018, 39, 4243-4274.	2.3	72
652	Graphene Oxide Epoxy (GOâ€xy): GO as Epoxy Adhesive by Interfacial Reaction of Functionalities. Advanced Materials Interfaces, 2018, 5, 1700657.	1.9	19
653	Investigation of Electrical and Thermal Properties of Reduced Graphene Oxide–Multiwalled Carbon Nanotubes/PMMA Hybrid Nanocomposite. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700476.	0.8	2
654	Electrical conductivity, aging behavior, and electromagnetic interference (EMI) shielding properties of polyaniline/MWCNT nanocomposites. Journal of Thermoplastic Composite Materials, 2018, 31, 1393-1415.	2.6	27
655	Preparation and properties of amine functionalized graphene filled epoxy thin film nano composites for electrically conductive adhesive. Journal of Materials Science: Materials in Electronics, 2018, 29, 3160-3169.	1.1	13
656	Transenergo Plastics Based on Film-Type Composite Materials. Fibre Chemistry, 2018, 50, 274-279.	0.0	4
657	Thermal and Electrical Conductivity of Copper-Fluoroplast Composites Produced by Explosive Pressing. Inorganic Materials: Applied Research, 2018, 9, 584-587.	0.1	2
658	Determination of Key Influencing Factors on Thermal Conductivity Enhancement of Graphene Nano-Platelets Reinforced Epoxy. , 2018, , .		0
659	Cellulose nanofiber nanocomposites with aligned silver nanoparticles. Nanocomposites, 2018, 4, 167-177.	2.2	22
660	Studies of Nanocomposites of Carbon Nanotubes and a Negative Dielectric Anisotropy Liquid Crystal. , 2018, , .		0
662	Highly Hydrophobic Conducting Nanocomposites Based on a Fluoropolymer with Carbon Nanotubes. Russian Journal of Applied Chemistry, 2018, 91, 1654-1659.	0.1	2

#	Article	IF	CITATIONS
669	Predicting the electrical conductivity in polymer carbon nanotube nanocomposites based on the volume fractions and resistances of the nanoparticle, interphase, and tunneling regions in conductive networks. RSC Advances, 2018, 8, 19001-19010.	1.7	64
670	Fiber length distribution and thermal, mechanical and morphological properties of thermally conductive polycarbonate/chopped carbon fiber composites. Polymer International, 2018, 67, 1137-1144.	1.6	9
671	High Thermal Conductivity of Bulk Epoxy Resin by Bottom-Up Parallel-Linking and Strain: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2018, 122, 13140-13147.	1.5	62
672	Noncovalent functionalization of carbon nanotubes using branched random copolymer for improvement of thermal conductivity and mechanical properties of epoxy thermosets. Polymer International, 2018, 67, 1128-1136.	1.6	6
673	Thermal conductivity of polypropylene/aluminum oxide nanocomposites prepared based on reactor granule technology. Composites Science and Technology, 2018, 165, 259-265.	3.8	34
674	The Effect of Multi Wall Carbon Nanotubes on Some Physical Properties of Epoxy Matrix. Journal of Physics: Conference Series, 2018, 1003, 012102.	0.3	4
675	Electrical and Electromagnetic Properties of CNT/Polymer Composites. , 2018, , 233-258.		4
676	6.11 Conductive Nanocomposites for Multifunctional Sensing Applications. , 2018, , 315-351.		4
677	A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Advances, 2018, 8, 28048-28085.	1.7	163
678	Dielectric Properties of TiO ₂ /Silicone Rubber Micro- and Nanocomposites. Advances in Materials Science and Engineering, 2018, 2018, 1-7.	1.0	20
679	High Strength Conductive Polyamide 6 Nanocomposites Reinforced by Prebuilt Three-Dimensional Carbon Nanotube Networks. ACS Applied Materials & Interfaces, 2018, 10, 28103-28111.	4.0	26
680	Effects of Graphene Nanoplatelet Size and Surface Area on the AC Electrical Conductivity and Dielectric Constant of Epoxy Nanocomposites. Polymers, 2018, 10, 477.	2.0	70
681	Constructing continuous networks by branched alumina for enhanced thermal conductivity of polymer composites. Composites Science and Technology, 2018, 165, 307-313.	3.8	76
682	Development of the thermo-conductive electrically insulating epoxy composites using electrospun alumina microfibers. , 2018, , .		Ο
683	Novel timed and self-resistive heating shape memory polymer hybrid for large area and energy efficient application. Carbon, 2018, 139, 626-634.	5.4	15
684	Modelling the electrical resistance change in a multidirectional laminate with a delamination. Composites Science and Technology, 2018, 162, 225-234.	3.8	19
685	A multi-scale modeling approach for simulating crack sensing in polymer fibrous composites using electrically conductive carbon nanotube networks. Part I: Micro-scale analysis. Computational Materials Science, 2018, 154, 530-537.	1.4	6
686	Interfacial characteristics of carbon nanotube-polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 2018, 114, 149-169.	3.8	142

ARTICLE IF CITATIONS Adhesives with Nanoparticles., 2018, , 1677-1702. 687 1 Smart dispersion: Validation of OCT and impedance spectroscopy as solutions for in-situ dispersion 1.3 9 analysis of CNP/EP-composites. Materialia, 2018, 1, 185-197. Thermal and electrical properties of carbon nanotube-based epoxy composite materials. Materials 689 0.8 6 Research Express, 2018, 5, 065051. Curing and subsurface damage monitoring of epoxy-based composites. Structural Health Monitoring, 2019, 18, 1040-1055. Simplification and development of McLachlan model for electrical conductivity of polymer carbon 691 nanotubes nanocomposites assuming the networking of interphase regions. Composites Part B: 5.9 69 Engineering, 2019, 156, 64-71. Multifunctional primer film made from percolation enhanced CNT/Epoxy nanocomposite and ultrathin CNT network. Composites Part B: Engineering, 2019, 175, 107107. Epoxy matrix composites reinforced with purified carbon nanotubes for thermal management 693 1.6 6 applications. Polymers for Advanced Technologies, 2019, 30, 2770-2780. Noncovalent engineering of carbon nanotube surface by imidazolium ionic liquids: A promising strategy for enhancing thermal conductivity of epoxy composites. Composite's Part A: Applied Science 3.8 and Manufacturing, 2019, 125, 105517. Following the morphological and thermal properties of PLA/PEO blends containing carbon nanotubes 695 5.9 78 (CNTs) during hydrolytic degradation. Composites Part B: Engineering, 2019, 175, 107132. Development of strain monitoring system for glass fiber reinforced composites via embedded 1.0 electrically conductive pathways. Advanced Composite Materials, 2019, 28, 653-673. Thermal Conductivity and Electrical Resistivity of Melt-Mixed Polypropylene Composites Containing 697 42 2.0 Mixtures of Carbon-Based Fillers. Polymers, 2019, 11, 1073. Dispersion of multi-walled carbon nanotubes mechanically milled under different process conditions. Materials Chemistry and Physics, 2019, 236, 121798. 3D printing to enable multifunctionality in polymer-based composites: A review. Composites Part B: 699 5.9 112 Engineering, 2019, 179, 107540. Carbon nanofiber reinforced Co-continuous HDPE/PMMA composites: Exploring the role of viscosity ratio on filler distribution and electrical/thermal properties. Composites Science and Technology, 3.8 2019, 184, 107859. Towards next-generation fiber-reinforced polymer composites: a perspective on multifunctionality. 701 1.6 24 Functional Composites and Structures, 2019, 1, 042002. Recent Advances in Characterization Techniques for the Interface in Carbon Nanotube-Reinforced 1.0 Polymer Nanocomposites. Advances in Materials Science and Engineering, 2019, 2019, 1-24. Effect of various carbon nanofillers and different filler aspect ratios on the thermal conductivity of 703 2.0 23 epoxy matrix nanocomposites. Results in Physics, 2019, 15, 102771. Graphite/UPE Nanocomposite: Transport, Thermal, Mechanical and Viscoelastic Properties. , 2019, 23, 704 201-212.

#	Article	IF	CITATIONS
705	Study of interfaces in polymer-metal oxide films and free-volume hole using low-energy positron lifetime measurements. Journal of Science: Advanced Materials and Devices, 2019, 4, 413-419.	1.5	4
706	Customizable Ceramic Nanocomposites Using Carbon Nanotubes. Molecules, 2019, 24, 3176.	1.7	5
707	Structural and chemical comparison between moderately oxygenated and edge oxygenated graphene: mechanical, electrical and thermal performance of the epoxy nanocomposites. SN Applied Sciences, 2019, 1, 1.	1.5	9
708	Electrical conductivity of short fibre-reinforced polymers. , 2019, , 241-269.		1
709	Polyvinyl alcohol covalently grafted CNT for free-standing, flexible, and high-performance thermoelectric generator film. Nanotechnology, 2019, 30, 14LT01.	1.3	7
710	Surface Modification of Aluminum Nitride to Fabricate Thermally Conductive poly(Butylene) Tj ETQq1 1 0.784314	4 rgBT /Ov	erlock 10 Tf
711	Fabrication of polymethyl methacrylate composites with silanized boron nitride by in-situ polymerization for high thermal conductivity. Composites Science and Technology, 2019, 172, 153-162.	3.8	95
712	A Monte Carlo model with equipotential approximation and tunneling resistance for the electrical conductivity of carbon nanotube polymer composites. Carbon, 2019, 146, 125-138.	5.4	51
713	Enhanced thermal conductivity of flexible h-BN/polyimide composites films with ethyl cellulose. E-Polymers, 2019, 19, 305-312.	1.3	11
714	High Thermal Conductivity Silicone Elastomer Doped with Graphene Nanoplatelets and Eutectic Galn Liquid Metal Alloy. ECS Journal of Solid State Science and Technology, 2019, 8, P357-P362.	0.9	37
715	Stealth technology: Methods and composite materials—A review. Polymer Composites, 2019, 40, 4457-4472.	2.3	74
716	A Novel Methodology for Macroscale, Thermal Characterization of Carbon Fiber-Reinforced Polymer for Integrated Aircraft Electrical Power Systems. IEEE Transactions on Transportation Electrification, 2019, 5, 479-489.	5.3	2
717	Multiscale Polymer Dynamics in Hierarchical Carbon Nanotube Grafted Glass Fiber Reinforced Composites. ACS Applied Polymer Materials, 2019, 1, 1905-1917.	2.0	11
718	A developed equation for electrical conductivity of polymer carbon nanotubes (CNT) nanocomposites based on Halpin-Tsai model. Results in Physics, 2019, 14, 102406.	2.0	66
719	<i>In situ</i> alignment of graphene nanoplatelets in poly(vinyl alcohol) nanocomposite fibers with controlled stepwise interfacial exfoliation. Nanoscale Advances, 2019, 1, 2510-2517.	2.2	21
720	Processing Influence on Thermal Conductivity of Polymer Nanocomposites. , 2019, , 463-487.		9
721	Carbon-Based Aeronautical Epoxy Nanocomposites: Effectiveness of Atomic Force Microscopy (AFM) in Investigating the Dispersion of Different Carbonaceous Nanoparticles. Polymers, 2019, 11, 832.	2.0	16
722	Multi-walled Carbon Nanotube (MWCNT)/PDMS-based Flexible Sensor for Medical Applications. , 2019, ,		8

#	Article	IF	CITATIONS
723	Electrical and Thermal Conductivity of Epoxy-Carbon Filler Composites Processed by Calendaring. Materials, 2019, 12, 1522.	1.3	60
724	Highly Optimized Nitrogen-Doped MWCNTs through In-Depth Parametric Study Using Design of Experiments. Nanomaterials, 2019, 9, 643.	1.9	5
725	Carbon nanotube-based materials—Preparation, biocompatibility, and applications in dentistry. , 2019, , 41-76.		4
726	Preparation and Characterization of Polyhydroxyamide Hybrid Nanocomposite Films Containing MWCNTs and Clay as Reinforcing Materials. Fibers and Polymers, 2019, 20, 832-838.	1.1	8
727	Transport Properties of One-Step Compression Molded Epoxy Nanocomposite Foams. Polymers, 2019, 11, 756.	2.0	5
728	The mechanical and electrical properties of direct-spun carbon nanotube mat-epoxy composites. Carbon, 2019, 150, 489-504.	5.4	32
729	A multistep methodology for effective conductivity of carbon nanotubes reinforced nanocomposites. Journal of Alloys and Compounds, 2019, 793, 1-8.	2.8	39
730	Highly Thermally Conducting Polymer-Based Films with Magnetic Field-Assisted Vertically Aligned Hexagonal Boron Nitride for Flexible Electronic Encapsulation. ACS Applied Materials & Interfaces, 2019, 11, 17915-17924.	4.0	70
731	Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nature Communications, 2019, 10, 1300.	5.8	267
732	Heat Transfer at the Interface of Graphene Nanoribbons with Different Relative Orientations and Gaps. Energies, 2019, 12, 796.	1.6	10
733	Elastomer Composites with a Tailored Interface Network toward Tunable Piezoresistivity: Effect of Elastomer Particle Size. ACS Applied Polymer Materials, 2019, 1, 714-721.	2.0	22
734	An alternative synthesis route to graphene oxide: influence of surface chemistry on charge transport in epoxy-based composites. Journal of Materials Science, 2019, 54, 8302-8318.	1.7	23
735	Size-controlled graphite nanoplatelets: thermal conductivity enhancers for epoxy resin. Journal of Materials Science, 2019, 54, 10041-10054.	1.7	13
736	Comparison of the carbon additives on the conductivity, thermomechanical, and corrosion properties for TEOS oligomer modified epoxy-amine coating systems. Progress in Organic Coatings, 2019, 130, 168-181.	1.9	10
737	Preparation of Cellulose-Polyaniline Composite Microspheres via Electron Beam Irradiation Grafting and It's Properties. IOP Conference Series: Materials Science and Engineering, 2019, 493, 012111.	0.3	0
738	Effect of MWCNT content on conductivity and mechanical and wear properties of copper foam/resin composite. Composites Part B: Engineering, 2019, 168, 572-580.	5.9	16
739	Preparation of Renewable Epoxy-Amine Resins With Tunable Thermo-Mechanical Properties, Wettability and Degradation Abilities From Lignocellulose- and Plant Oils-Derived Components. Frontiers in Chemistry, 2019, 7, 159.	1.8	26
740	Polymerâ€Based Nano omposites for Thermal Insulation. Advanced Engineering Materials, 2019, 21, 1801162.	1.6	45

#	Article	IF	CITATIONS
741	NanoComposites for structural health monitoring. , 2019, , 227-259.		4
742	Graphene–graphite hybrid epoxy composites with controllable workability for thermal management. Beilstein Journal of Nanotechnology, 2019, 10, 95-104.	1.5	13
743	Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress in Materials Science, 2019, 103, 319-373.	16.0	490
744	Designing Superlattice Structure via Self-Assembly of One-Component Polymer-Grafted Nanoparticles. Journal of Physical Chemistry B, 2019, 123, 2157-2168.	1.2	16
745	Improved dielectric stability of epoxy composites with ultralow boron nitride loading. RSC Advances, 2019, 9, 4344-4350.	1.7	8
746	Review on Thermal Conductivity of the Graphene Reinforced Resin Matrix Composites. IOP Conference Series: Materials Science and Engineering, 2019, 562, 012018.	0.3	3
747	Development of Coffee Biochar Filler for the Production of Electrical Conductive Reinforced Plastic. Polymers, 2019, 11, 1916.	2.0	61
748	Electrical conductivity modelling of polypropylene composites with carbon fillers. IOP Conference Series: Materials Science and Engineering, 2019, 537, 022012.	0.3	0
749	Future Prospects: Shape Memory Features in Shape Memory Polymers and Their Corresponding Composites. , 0, , .		4
750	Measurement of thermal contact resistance between individual carbon fibers using a laser-flash Raman mapping method. Carbon, 2019, 141, 92-98.	5.4	44
751	Real-time impact damage sensing and localization in composites through embedded aligned carbon nanotube sheets. Composites Part B: Engineering, 2019, 162, 522-531.	5.9	35
752	Combustion enhancement of hydroxyl-terminated polybutadiene by doping multiwall carbon nanotubes. Carbon, 2019, 144, 472-480.	5.4	24
753	Hexagonal Boron Nitride/Microfibril Cellulose/Poly(vinyl alcohol) Ternary Composite Film with Thermal Conductivity and Flexibility. Materials, 2019, 12, 104.	1.3	18
754	Novel non-destructive evaluation technique for the detection of poor dispersion of carbon nanotubes in nanocomposites. Composites Part B: Engineering, 2019, 163, 52-58.	5.9	15
755	Interlaminar fracture toughness of CFRPs interleaved with stainless steel fibres. Composite Structures, 2019, 210, 49-56.	3.1	24
756	Damage Micro-mechanisms in Notched Hierarchical Nanoengineered Thin-ply Composite Laminates Studied by In Situ Synchrotron X-ray Microtomography. , 2019, , .		2
757	Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon, 2019, 142, 445-460.	5.4	246
758	Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Progress in Materials Science, 2019, 100, 170-186.	16.0	370

	CHANO	N REPORT	
#	Article	IF	CITATIONS
759	Epoxy nanocomposites: Improved thermal and dielectric properties by benzoxazinyl modified polyhedral oligomeric silsesquioxane. Materials Chemistry and Physics, 2019, 223, 260-267.	2.0	34
760	Synergistic improvement of electrical and thermal conductivities of carbon-based nanocomposites and its prediction by Mori-Tanaka scheme with interfacial resistances. Composite Structures, 2019, 211, 56-62.	3.1	18
761	Effect of carbon nanotube length on the piezoresistive response of poly (methyl methacrylate) nanocomposites. European Polymer Journal, 2019, 110, 394-402.	2.6	22
762	Carbon Nanotubes: Electronic Structure and Spectroscopy. , 2019, , 205-218.		5
763	Thermal Conduction in Polymer Composites. , 2019, , 77-110.		7
764	Study on strength and defect detection capability of bonded joints according to CNT content. Composite Structures, 2019, 207, 204-212.	3.1	8
765	Mechanical and thermal properties of high-density polyethylene/alumina/glass fiber hybrid composites. Journal of Thermoplastic Composite Materials, 2019, 32, 1566-1581.	2.6	16
766	Design and Synthesis of Polymer Nanocomposites. , 2019, , 47-83.		74
767	Dielectric composite reinforced by in-situ growth of carbon nanotubes on boron nitride nanosheets with high thermal conductivity and mechanical strength. Chemical Engineering Journal, 2019, 358, 718-724.	6.6	73
768	Thermal conductivity of natural rubber nanocomposites with hybrid fillers. Chinese Journal of Chemical Engineering, 2019, 27, 928-934.	1.7	27
769	Magnetic nano-nets for capture of microbes in solution based on physical contact. Journal of Colloid and Interface Science, 2019, 535, 33-40.	5.0	3
770	The roles of interphase and filler dimensions in the properties of tunneling spaces between CNT in polymer nanocomposites. Polymer Composites, 2019, 40, 801-810.	2.3	64
771	Prediction of thermal conductivities of polyacrylonitrile electrospun nanocomposite fibers using artificial neural network and prey predator algorithm. Journal of King Saud University - Science, 2019, 31, 618-627.	1.6	15
772	Preparation and properties of poly(aryl ether ketone)-based phthalonitrile conductive composite film. High Performance Polymers, 2019, 31, 3-11.	0.8	5
773	Experimental and molecular dynamics study of boron nitride nanotube-reinforced polymethyl methacrylate composites. Journal of Composite Materials, 2020, 54, 3-11.	1.2	9
774	Polymer composite for antistatic application in aerospace. Defence Technology, 2020, 16, 107-118.	2.1	159
775	Thermal Transport in Conductive Polymer–Based Materials. Advanced Functional Materials, 2020, 30, 1904704.	7.8	122
776	Graphitic carbon nitride (g ₃ N ₄) reinforced polymer nanocomposite systems—A review. Polymer Composites, 2020, 41, 430-442.	2.3	65

# 777	ARTICLE Multifunctionality in Epoxy Resins. Polymer Reviews, 2020, 60, 1-41.	IF 5.3	Citations 182
778	Investigation of mechanical, thermal and electrical properties of hybrid composites reinforced with multi-walled carbon nanotubes and fused silica particles. Carbon Letters, 2020, 30, 353-365.	3.3	7
779	Surface modification of MWCNT and its influence on properties of paraffin/MWCNT nanocomposites as phase change material. Journal of Applied Polymer Science, 2020, 137, 48428.	1.3	31
780	Significances of interphase conductivity and tunneling resistance on the conductivity of carbon nanotubes nanocomposites. Polymer Composites, 2020, 41, 748-756.	2.3	68
781	Simulation of Percolation Threshold, Tunneling Distance, and Conductivity for Carbon Nanotube (CNT)-Reinforced Nanocomposites Assuming Effective CNT Concentration. Polymers, 2020, 12, 114.	2.0	23
782	Designing biocompatible spin-coated multiwall carbon nanotubes-polymer composite coatings. Surface and Coatings Technology, 2020, 385, 125199.	2.2	9
783	Quantification of carbon nanotube dispersion and its correlation with mechanical and thermal properties of epoxy nanocomposites. Journal of Applied Polymer Science, 2020, 137, 48879.	1.3	19
784	Simultaneously improving the thermal conductive and flame retardant performance for epoxy resins thermosets by constructing coreâ€shellâ€brush structure and distributing of MWCNTs in brush intervals. Polymers for Advanced Technologies, 2020, 31, 589-601.	1.6	8
785	Improvement of electrical conductivity of PEMA film by incorporating EMITFSI and carbon based nanofiller. Organic Electronics, 2020, 78, 105562.	1.4	1
786	Thermal properties enhancement of epoxy resins by incorporating polybenzimidazole nanofibers filled with graphene and carbon nanotubes as reinforcing material. Polymer Testing, 2020, 82, 106317.	2.3	52
787	Modeling the effect of interfacial conductivity between polymer matrix and carbon nanotubes on the electrical conductivity of nanocomposites. RSC Advances, 2020, 10, 424-433.	1.7	5
788	A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. Journal of Hazardous Materials, 2020, 388, 121815.	6.5	98
789	Stochastic multiscale modeling of heat conductivity of Polymeric clay nanocomposites. Mechanics of Materials, 2020, 142, 103280.	1.7	38
790	Promotion of the mechanical properties and thermal conductivity of epoxy by low Si ₃ N ₄ whisker content and its mechanisms. Journal of Applied Polymer Science, 2020, 137, 48721.	1.3	6
791	Morphology, rheological, and electrical properties of flexible epoxy/carbon composites cured by UV technique. Journal of Materials Research, 2020, 35, 1874-1887.	1.2	2
792	Advancement of a model for electrical conductivity of polymer nanocomposites reinforced with carbon nanotubes by a known model for thermal conductivity. Engineering With Computers, 2022, 38, 2497-2507.	3.5	3
793	Spectroscopic, microscopic and electrical characterization of nanoscopic polyindole DNA-templated nanomaterials. IOP Conference Series: Materials Science and Engineering, 2020, 805, 012007.	0.3	1
794	Effect of hydroxylated carbon nanotubes on the thermal and electrical properties of derived epoxy composite materials. Results in Physics, 2020, 18, 103246.	2.0	20

#	Article	IF	Citations
795	Factors that Affect Network Formation in Carbon Nanotube Composites and their Resultant Electrical Properties. Journal of Composites Science, 2020, 4, 100.	1.4	18
796	Highâ€Resolution Onâ€Demand Nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900688.	0.8	1
797	Construction of micro-thermal conductive network of self-assembled CNTs hybrids with 1D–0D structure. Journal of Thermal Analysis and Calorimetry, 2022, 147, 169-180.	2.0	1
798	An Approach Towards Optimization Appraisal of Thermal Conductivity of Magnetic Thermoplastic Elastomeric Nanocomposites Using Response Surface Methodology. Polymers, 2020, 12, 2030.	2.0	15
799	Spray-On Nanocomposite Coatings: Wettability and Conductivity. Langmuir, 2020, 36, 11393-11410.	1.6	32
800	Carbon Nanotubes Dispersion Assessment in Nanocomposites by Means of a Pulsed Thermographic Approach. Materials, 2020, 13, 5649.	1.3	13
801	Using a Novel Approach to Estimate Packing Density and Related Electrical Resistance in Multiwall Carbon Nanotube Networks. Nanomaterials, 2020, 10, 2350.	1.9	4
802	Multi-Functional Properties of MWCNT/PVA Buckypapers Fabricated by Vacuum Filtration Combined with Hot Press: Thermal, Electrical and Electromagnetic Shielding. Nanomaterials, 2020, 10, 2503.	1.9	12
803	Thermoplastic Polyurethane/Lead Zirconate Titanate/Carbon Nanotube Composites with Very High Dielectric Permittivity and Low Dielectric Loss. Journal of Composites Science, 2020, 4, 137.	1.4	12
804	Mechanical, Electrical, and Thermal Properties of Carbon Nanotube Buckypapers/Epoxy Nanocomposites Produced by Oxidized and Epoxidized Nanotubes. Materials, 2020, 13, 4308.	1.3	17
805	A simulation study for tunneling conductivity of carbon nanotubes (CNT) reinforced nanocomposites by the coefficient of conductivity transferring amongst nanoparticles and polymer medium. Results in Physics, 2020, 17, 103091.	2.0	3
806	A comparative study of the incorporation effect of SWCNT-OH and DWCNT with varied microstructural defects on tensile and impact strengths of epoxy based nanocomposite. Journal of Polymer Research, 2020, 27, 1.	1.2	7
807	Combination of enhanced thermal conductivity and strength of MWCNTs reinforced Mg-6Zn matrix composite. Journal of Alloys and Compounds, 2020, 838, 155573.	2.8	29
808	Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites. International Journal of Heat and Mass Transfer, 2020, 152, 119565.	2.5	23
809	Double-segregated multiwalled carbon nanotube/silicone composites with large electrical to thermal conductivity ratios via in-situ silicone emulsion polymerization. Journal of Composite Materials, 2020, 54, 3447-3456.	1.2	2
810	Secondary recycled acrylonitrile–butadiene–styrene and graphene composite for 3D/4D applications: Rheological, thermal, magnetometric, and mechanical analyses. Journal of Thermoplastic Composite Materials, 2022, 35, 761-781.	2.6	27
811	Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3-D printing. Thermochimica Acta, 2020, 690, 178649.	1.2	32
812	4 Carbon nanotube-based materials for space applications. , 2020, , 81-114.		0

#	Article	IF	CITATIONS
813	Damage monitoring of adhesively bonded composite-metal hybrid joints using carbon nanotube-based sensing layer. Nanocomposites, 2020, 6, 12-21.	2.2	9
814	A review on epoxy-based electrically conductive adhesives. International Journal of Adhesion and Adhesives, 2020, 99, 102596.	1.4	104
815	Compression-enhanced thermal conductivity of carbon loaded polymer composites. Carbon, 2020, 163, 333-340.	5.4	55
816	Percolation and conductivity development of the rod networks within randomly packed porous media. Composites Part B: Engineering, 2020, 187, 107837.	5.9	14
817	Interphase thickness and electrical conductivity of polymer carbon nanotube (CNT) nanocomposites assuming the interfacial conductivity between polymer matrix and nanoparticles. Journal of Materials Science, 2020, 55, 5402-5414.	1.7	3
818	Recyclable conductive epoxy composites with segregated filler network structure for EMI shielding and strain sensing. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105837.	3.8	61
819	SbSI Composites Based on Epoxy Resin and Cellulose for Energy Harvesting and Sensors—The Influence of SBSI Nanowires Conglomeration on Piezoelectric Properties. Materials, 2020, 13, 902.	1.3	15
820	Study on the Effects of the Interphase Region on the Network Properties in Polymer Carbon Nanotube Nanocomposites. Polymers, 2020, 12, 182.	2.0	21
821	Modelling the electrical resistance of multidirectional laminates with off-axis cracks. Composite Structures, 2020, 237, 111928.	3.1	5
822	Enhancement of thermo-mechanical stability for nanocomposites containing plasma treated carbon nanotubes with an experimental study and molecular dynamics simulations. Scientific Reports, 2020, 10, 405.	1.6	17
823	Development of advanced fiberâ€reinforced polymer composites by polymer hybridization technique: Emphasis on cure kinetics, mechanical, and thermomechanical performance. Journal of Applied Polymer Science, 2020, 137, 49318.	1.3	8
824	Structural health monitoring of carbon fiber reinforced matrix by the resistance variation method. Journal of Composite Materials, 2020, 54, 3919-3930.	1.2	9
825	Nanofiber-reinforced biocomposites. , 2020, , 199-233.		18
826	Natural rubber composites containing low and high dielectric constant fillers and their application as substrates for compact flexible antennas. Polymers and Polymer Composites, 2021, 29, 233-245.	1.0	6
827	Synergistic toughening and electrical functionalization of an epoxy using <scp>MWCNTs</scp> and silane―/plasmaâ€activated basalt fibers. Journal of Applied Polymer Science, 2021, 138, .	1.3	8
828	Mechanical, thermal and dielectric studies of reduced graphene oxide reinforced cardanol based polybenzoxazine/epoxy nanocomposites. Composite Interfaces, 2021, 28, 461-476.	1.3	6
829	Improving delamination resistance of carbon fiber reinforced polymeric composite by interface engineering using carbonaceous nanofillers through electrophoretic deposition: An assessment at different inâ€service temperatures. Journal of Applied Polymer Science, 2021, 138, 50208.	1.3	22
830	Enhancing the thermoelectric performance of Cu–Ni alloys by introducing carbon nanotubes. Materials Today Physics, 2021, 16, 100311.	2.9	15

#	Article	IF	Citations
831	Fabrication and evaluation of structural, thermal, mechanical and optical behavior of epoxy–TEOS/MWCNTs composites for solar cell covering. Polymer Bulletin, 2021, 78, 3995-4017.	1.7	23
832	Molecular simulation of different structure dopamine-modified graphene oxide and its effects on thermal and mechanical properties of the epoxy resin system. Polymer, 2021, 212, 123120.	1.8	21
833	Nanoscale thermal properties of carbon nanotubes/epoxy composites by atomistic simulations. International Journal of Thermal Sciences, 2021, 159, 106588.	2.6	27
834	Effects of mineral fillers addition and preparation method on the morphology and electrical conductivity of epoxy/multiwalled carbon nanotube nanocomposites. Polymer Engineering and Science, 2021, 61, 538-550.	1.5	4
835	Recent advances and future perspectives of carbon materials for fuel cell. Renewable and Sustainable Energy Reviews, 2021, 138, 110535.	8.2	57
836	An extended finite element method formulation for modeling multi-phase boundary interactions in steady state heat conduction problems. Composite Structures, 2021, 258, 113202.	3.1	13
837	Flexible and bio-compatible temperature sensors based on carbon nanotube composites. Measurement: Journal of the International Measurement Confederation, 2021, 172, 108889.	2.5	16
838	Self-diagnostic carbon nanocomposites manufactured from industrial epoxy masterbatches. Composite Structures, 2021, 259, 113244.	3.1	13
839	Silver nanoparticle modified carbon fiber-reinforced polymer material for resistance against thermal damage induced by irradiation. Journal of Composite Materials, 2021, 55, 1267-1278.	1.2	3
840	Advancement in Carbon Nanotubes: Processing Techniques, Purification and Industrial Applications. , 2021, , 309-337.		0
841	Effect of General Thermal Boundary Conditions on the Dynamic and Buckling of Polymeric Hybrid Nanocomposite Beam with Variable Thickness. Journal of the Institution of Engineers (India): Series C, 2021, 102, 305-321.	0.7	0
842	Polymer Nanocomposite Matrix. , 2021, , 523-542.		0
843	Molecular dynamics methodologies for predicting thermal transport in aerospace polymers and their composites. , 2021, , 19-34.		0
844	Design and development of polyaniline/nanocarbon nanocomposites. , 2021, , 77-102.		0
845	Self-sensing cement-based sensor with carbon nanotube: Fabrication and properties – A review. Materials Today: Proceedings, 2021, 46, 5801-5807.	0.9	34
846	Applications of Carbon Nanomaterials as Electrical Interconnects and Thermal Interface Materials. , 2021, , 31-60.		0
847	Improvement in mechanical, electrical, and shape memory properties of the polystyreneâ€based carbon fiberâ€reinforced polymer composites containing carbon nanotubes. Journal of Applied Polymer Science, 2021, 138, 50541.	1.3	5
848	Thermomagnetic Generation Performance of Gd and La(Fe, Si) ₁₃ H <i>_y</i> /In Material for Lowâ€Grade Waste Heat Recovery. Advanced Sustainable Systems, 2021, 5, 2000234.	2.7	8

#	Article	IF	CITATIONS
849	Effect of bamboo-like carbon nanotubes on morphology, electrical properties, and thermal conductivity of poly(ether-ketone) matrix nanocomposites. Polymer-Plastics Technology and Materials, 2021, 60, 1292-1307.	0.6	3
850	Strain Mapping and Damage Tracking in Carbon Fiber Reinforced Epoxy Composites during Dynamic Bending Until Fracture with Quantum Resistive Sensors in Array. Journal of Composites Science, 2021, 5, 60.	1.4	3
851	Applications and Impacts of Nanoscale Thermal Transport in Electronics Packaging. Journal of Electronic Packaging, Transactions of the ASME, 2021, 143, .	1.2	38
853	Micromechanics Modeling of Electrical Conductivity for Polymer Nanocomposites by Network Portion, Interphase Depth, Tunneling Properties and Wettability of Filler by Polymer Media. Fibers and Polymers, 2021, 22, 1343-1351.	1.1	2
854	Electrical Conductivity of PA6/Graphite and Graphite Nanoplatelets Composites using Two Processing Streams. Journal of BP Koirala Institute of Health Sciences, 2021, 5, 19-31.	0.1	0
855	Development and simplification of a micromechanic model for conductivity of carbon nanotubes-reinforced nanocomposites. Journal of Polymer Research, 2021, 28, 1.	1.2	0
856	Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano Research, 2021, 14, 3253-3259.	5.8	25
857	Additive manufacturing of embedded carbon nanocomposite structures with multi-material digital light processing (MMDLP). Journal of Materials Research, 0, , 1.	1.2	3
858	Ultrasonic-assisted synthesis of polythiophene-carbon nanotubes composites as supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 16203-16214.	1.1	15
859	Hybridâ€Filler Stretchable Conductive Composites: From Fabrication to Application. Small Science, 2021, 1, 2000080.	5.8	80
860	Synthesis and characterization of N-(2-acetyl benzofuran-3-yl) methacryl amide and ethyl methacrylate copolymer/graphite oxide composites and study of their kinetic and electrical properties. Polymer Bulletin, 2022, 79, 4721-4743.	1.7	3
861	2D boron nitride nanosheets for polymer composite materials. Npj 2D Materials and Applications, 2021, 5, .	3.9	110
862	Expanded and nano-structured carbonaceous graphite for high performance anisotropic fuel cell polymer composites. Composites Science and Technology, 2021, 207, 108654.	3.8	18
863	Improvements in thermal and mechanical properties of composites based on epoxy-carbon nanomaterials - A brief landscape. Polymer Testing, 2021, 98, 107180.	2.3	29
864	Mechanical and Electrical Properties of Epoxy Composites Modified by Functionalized Multiwalled Carbon Nanotubes. Materials, 2021, 14, 3325.	1.3	21
865	Thermal performance and thermal decomposition kinetics of a novel lignin-based epoxy resin containing phosphorus and nitrogen elements. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5237-5253.	2.0	10
866	Unzipping Carbon Nanotube Bundles through NHâ^'Ï€ Stacking for Enhanced Electrical and Thermal Transport. ACS Applied Materials & Interfaces, 2021, 13, 28583-28592.	4.0	6
867	Degradation of Carbon Nanotube Array Thermal Interface Materials through Thermal Aging: Effects of Bonding, Array Height, and Catalyst Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 30992-31000.	4.0	15

#	Article	IF	CITATIONS
868	CNT/Epoxy-Masterbatch Based Nanocomposites: Thermal and Electrical Properties. , 2021, , .		4
869	Formation Features of Electric Conductive Networks in the ABS/MCNT Composite when Manufacturing Filament for FDM-Printing. Nanobiotechnology Reports, 2021, 16, 473-479.	0.2	1
870	Effect of π–π Stacking Interfacial Interaction on the Properties of Graphene/Poly(styrene-b-isoprene-b-styrene) Composites. Nanomaterials, 2021, 11, 2158.	1.9	16
871	Effect of Nanomaterial Inclusion in Phase Change Materials for Improving the Thermal Performance of Heat Storage: A Review. ACS Applied Energy Materials, 2021, 4, 7462-7480.	2.5	27
872	Thermal and Principal Ablation Properties of Carbon-Fibre-Reinforced Polymers with Out-of-Plane Fibre Orientation. Journal of Carbon Research, 2021, 7, 64.	1.4	0
873	Molecular weight effect of PS latex particles on optical and electrical percolations of PS latex/MWCNT nanocomposite films. Phase Transitions, 2021, 94, 715-730.	0.6	1
874	Multiscale modeling and numerical analyses of the electric conductivity of <scp>CNT</scp> /polymer nanocomposites taking into account the tunneling effect. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2021, 34, e2955.	1.2	4
875	Effect of carbazole coating on TiO2 nanoparticles as a photosensitizer and MWCNTs on the performance of epoxy composites. Journal of Science: Advanced Materials and Devices, 2021, 6, 425-434.	1.5	3
876	A comparative study on the effect of carbon-based and ceramic additives on the properties of fiber reinforced polymer matrix composites for high temperature applications. Ceramics International, 2021, 47, 33956-33971.	2.3	21
877	Controllable thermal conductivity in composites by constructing thermal conduction networks. Materials Today Physics, 2021, 20, 100449.	2.9	63
878	Micro-Macroscopic coupled modeling for the prediction of synergistic improvement on the thermal conductivity of boron nitride and multi-walled carbon nanotube reinforced composites. Composites Part A: Applied Science and Manufacturing, 2021, 148, 106474.	3.8	7
879	Engineering the electrospinning of MWCNTs/epoxy nanofiber scaffolds to enhance physical and mechanical properties of CFRPs. Composites Science and Technology, 2021, 213, 108941.	3.8	22
880	Comparative study on thermal and electrical transport properties of hexagonal boron nitride and reduced graphene oxide/epoxy nanocomposite by transient plane source techniques and impedance spectroscopy. Journal of Materials Science: Materials in Electronics, 2021, 32, 25350-25362.	1.1	8
881	Development of an advanced Takayanagi equation for the electrical conductivity of carbon nanotube-reinforced polymer nanocomposites. Journal of Physics and Chemistry of Solids, 2021, 157, 110191.	1.9	3
882	Effect of loading fraction of three-dimensional graphene foam (3D-C) on thermal, mechanical, and shape memory properties of 3D-C/SMP composite. Materials Research Bulletin, 2021, 142, 111378.	2.7	9
883	Micro-end-milling of carbon nanotube reinforced epoxy nanocomposites manufactured using three roll mill technique. Journal of Manufacturing Processes, 2021, 70, 307-320.	2.8	11
884	Electrical conductivity of random and aligned nanocomposites: Theoretical models and experimental validation. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106543.	3.8	23
885	Thermal conductivities and mechanical properties of epoxy resin as a function of the degree of cross-linking. International Journal of Heat and Mass Transfer, 2021, 180, 121821.	2.5	22

#	ARTICLE	IF	Citations
886 887	Electrical conductivity of polymer-graphene composites. , 2022, , 107-139. Thermally Conductive Nanocomposites. , 2021, , 115-136.		5
888	Polymer Nanocomposite Matrix. , 2021, , 1-20.		0
889	Non-linear Field Grading Materials and Carbon Nanotube Nanocomposites with Controlled Conductivity. , 2010, , 259-284.		6
890	Natural Polyisoprene Composites and Their Electronic Applications. Springer Series on Polymer and Composite Materials, 2016, , 1-35.	0.5	1
891	Thermal Conductivity of Polymer–Carbon Composites. Springer Series on Polymer and Composite Materials, 2019, , 369-396.	0.5	2
892	Electrical and Electronic Application of Polymer–Carbon Composites. Springer Series on Polymer and Composite Materials, 2019, , 397-455.	0.5	8
893	Mechanical and strain sensing properties of carbon nanotube reinforced epoxy/poly(caprolactone) blends. Polymer, 2020, 190, 122236.	1.8	17
894	Mesoscale strain and damage sensing in nanocomposite bonded energetic materials under low velocity impact with frictional heating via peridynamics. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 085011.	0.8	13
895	Transmission Light Microscopy of Carbon Nanotubes-Epoxy Nanocomposites Involving Different Dispersion Methods. Advanced Composites Letters, 2006, 15, 096369350601500.	1.3	25
896	Prediction of thermal conductivity of polyvinylpyrrolidone (PVP) electrospun nanocomposite fibers using artificial neural network and prey-predator algorithm. PLoS ONE, 2017, 12, e0183920.	1.1	24
897	Electrical conductivity and thermal properties of functionalized carbon nanotubes/polyurethane composites. Polimeros, 2012, 22, 117-124.	0.2	40
898	THERMAL TRANSPORT IN POLYMERS. Annual Review of Heat Transfer, 2014, 17, 485-520.	0.3	100
899	Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik ve Termal Karakterizasyonu. Journal of Natural and Applied Sciences, 2016, 20, .	0.1	2
901	Limiting Mechanisms of Thermal Transport in Carbon Nanotube-Based Heterogeneous Media. Recent Patents on Engineering, 2011, 5, 209-232.	0.3	4
902	Electrical, Thermal and Mechanical Properties of CNT Treated Prepreg CFRP Composites. Materials Sciences and Applications, 2016, 07, 465-483.	0.3	6
903	A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers : Carbon Nanotubes and Carbon Fibers. Carbon Letters, 2010, 11, 347-356.	3.3	53
904	Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene) Tj ETQq1 1 0	.784314 r	gBT /Overloci

# 905	ARTICLE Investigation of Thermal Stability of Epoxy Composite Reinforced with Multi-Walled Carbon Nanotubes and Micrometer-Sized Silica Particles. Composites Research, 2016, 29, 306-314.	IF 0.1	CITATIONS 2
906	Nano-Enhanced Adhesives. Reviews of Adhesion and Adhesives, 2014, 2, 371-412.	3.3	25
907	Preparation of Electrically Conductive Composites Filled with Nickel Powder and MWCNT Fillers. Korean Chemical Engineering Research, 2016, 54, 410-418.	0.2	1
908	A comparative study on thermal conductivity and permittivity of composites based on linear lowâ€density polyethylene and poly(lactic acid) filled with hexagonal boron nitride. Polymer Composites, 2022, 43, 111-117.	2.3	10
909	Lightning Protection of Wind Turbine Blades—How Supersizing Has Created New Challenges for Nanodielectrics Research. IEEE Electrical Insulation Magazine, 2021, 37, 6-20.	1.1	2
910	Effects of Functionalization on the Morphology, Cure Kinetics and Mechanical Behavior of Thermosetting Polymers. , 2010, , 143-152.		0
911	Thermal Dissipation of High-Brightness Light Emitting Diode by Using Multiwalled Carbon Nanotube/SiC Composites. Japanese Journal of Applied Physics, 2011, 50, 06GE09.	0.8	0
912	Carbon Nanotube-Based Interphase Sensor for Structural Health Monitoring in Continuous Glass Fiber-Reinforced Polypropylene. , 2013, , 323-346.		0
913	Characterization of Thermal Transport in Carbon Nanotube Yarns. International Journal of Micro-nano Scale Transport, 2014, 5, 59-68.	0.2	0
914	Synthesis of Dispersed and Self-Assembled Metal Particles in Epoxy via Aqueous to Organic Phase Transfer Technique. International Journal of Theoretical and Applied Nanotechnology, 0, , .	0.0	0
916	Predicting The Thermal Conductivity Of Epoxy/Mwcnt Composites Using Analytical Modelling. , 2018, , .		0
917	Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and applications. Composites Part A: Applied Science and Manufacturing, 2022, 152, 106685.	3.8	86
918	Electrical and Structural Properties of HDPE/MWCNT/PE-g-MAH Nanocomposites Prepared Using Solution Mixing and Hot Compaction Two-Step Approach. Current Nanoscience, 2021, 17, .	0.7	1
921	Joule Heating and mechanical properties of epoxy/graphene based aerogel composite. Composites Science and Technology, 2022, 218, 109199.	3.8	23
922	Electromagnetic interference shielding epoxy composites with satisfactory thermal conductivity and electrical insulation performance enabled by low-melting-point alloy layered structure. Composites Part B: Engineering, 2022, 232, 109611.	5.9	29
923	Conductive thermoplastic vulcanizates based on carbon black-filled bromo-isobutylene-isoprene rubber (BIIR)/polypropylene (PP). Reviews on Advanced Materials Science, 2021, 60, 303-312.	1.4	4
924	Dynamic Mechanical Analysis of the Performance of Silicone Rubber. , 2022, , .		0
925	An integrated XFEM modeling with experimental measurements for optimizing thermal conductivity in carbon nanotube reinforced polyethylene. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 025014.	0.8	2

#	Article	IF	CITATIONS
926	A Review of Nanocarbon-Based Solutions for the Structural Health Monitoring of Composite Parts Used in Renewable Energies. Journal of Composites Science, 2022, 6, 32.	1.4	8
928	Testing the Dispersion of Nanoparticles in a Nanocomposite with an Ultra-Low Fill Content Using a Novel Non-Destructive Evaluation Technique. Materials, 2022, 15, 1208.	1.3	5
930	Review on Improvement, Modeling, and Application of Ionic Polymer Metal Composite Artificial Muscle. Journal of Bionic Engineering, 2022, 19, 279-298.	2.7	21
931	Novel wet-free interfacial affinity modulation of non-polar polymers for imparting efficient heat transfer capability to incompatible polypropylene/graphite nanoplatelet composite. Journal of Industrial and Engineering Chemistry, 2022, 107, 346-353.	2.9	1
932	Thermophysics of pristine and functionalized carbon nanotube reinforced paraffin/EVA composites as phase change materials: a molecular dynamics study. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	2
933	Improved thermal conductivity of ceramic-epoxy composites by constructing vertically aligned nanoflower-like AIN network. Ceramics International, 2022, 48, 10438-10446.	2.3	12
934	Impact and strain monitoring in glass fiber reinforced epoxy laminates with embedded quantum resistive sensors (QRSs). Composites Science and Technology, 2022, 221, 109352.	3.8	5
935	Tuning of a mechanics model for the electrical conductivity of CNT-filled samples assuming extended CNT. European Physical Journal Plus, 2022, 137, 1.	1.2	1
936	Solid epoxy for functional 3D printing with isotropic mechanical properties by material extrusion. Additive Manufacturing, 2022, 55, 102797.	1.7	1
937	Carbon nanotubes doped concrete-based sensor for strain measurements. , 2022, , .		0
938	Non-linear Field Grading Materials and Carbon Nanotube Nanocomposites with Controlled Conductivity. , 2010, , 259-284.		0
941	Blending for Achieving Theoretical Mechanical and Electrical Property Enhancement in Polyacrylonitrile/SWNT Materials. Journal of Composites Science, 2022, 6, 122.	1.4	0
942	Role of formulation additives on the properties of thermoplastic polyether ester elastomer-based and carbon fabric-reinforced multilayer composites. Journal of Thermoplastic Composite Materials, 2023, 36, 2757-2776.	2.6	1
943	A novel composite material for flexible wearable devices based on eutectic gallium indium (EGaIn), multi-walled carbon nanotubes (MWCNTs) and polydimethylsiloxane (PDMS). Composite Structures, 2022, 291, 115653.	3.1	10
944	Meso, Micro, and Nano Particulate Filled Shape-Memory Polymers. , 2022, , 253-266.		2
945	A comprehensive review on 3D printing advancements in polymer composites: technologies, materials, and applications. International Journal of Advanced Manufacturing Technology, 2022, 121, 127-169.	1.5	23
946	A review of the thermal conductivity of silver-epoxy nanocomposites as encapsulation material for packaging applications. Chemical Engineering Journal, 2022, 446, 137319.	6.6	40
947	A review of electrical and thermal conductivities of epoxy resin systems reinforced with carbon nanotubes and graphene-based nanoparticles. Polymer Testing, 2022, 112, 107645.	2.3	51

		CITATION REPORT		
#	Article		IF	CITATIONS
948	Epoxy Nanocomposites with Carbon Nanotubes. ACS Symposium Series, 0, , 169-200.		0.5	1
949	Formation of Thermally Conductive Network Accompanied by Reduction of Interface R Thermal Conductivity Enhancement of Silicone Rubber. ACS Applied Electronic Materia 3503-3511.	esistance for ls, 2022, 4,	2.0	9
950	Effective Conductivity of Carbon-Nanotube-Filled Systems by Interfacial Conductivity t Breast Cancer Cell Sensors. Nanomaterials, 2022, 12, 2383.	o Optimize	1.9	0
951	Influence of nanocomposite preparation techniques on the multifunctional properties fabricâ€reinforced polystyreneâ€based composites with carbon nanotubes. SPE Polym		1.4	8
952	Thermophysical and Dielectric Properties of Polymer Composites Filled with Hexagonal Russian Physics Journal, 2022, 65, 91-98.	Boron Nitride.	0.2	1
953	State of the art review on mechanical properties of sandwich composite structures. Po Composites, 2022, 43, 5820-5830.	lymer	2.3	16
954	Tailoring Multifunctional and Lightweight Hierarchical Hybrid Graphene Nanoplatelet a Composites. ACS Applied Materials & Interfaces, 2022, 14, 40232-40246.	nd Glass Fiber	4.0	3
955	Hyperbolic Graphene Framework with Optimum Efficiency for Conductive Composites 16, 14703-14712.	ACS Nano, 2022,	7.3	20
956	Fabrication of cardanol thermosetting resin reinforced with cellulose nanofibril/expand nano-biocomposites. Industrial Crops and Products, 2022, 187, 115392.	ed graphite	2.5	3
957	A combined method to probe the behaviour of the filler in polymer blend nanocomposi diffraction and thermal measurement. Nano Structures Nano Objects, 2022, 32, 1009		1.9	4
958	Interface and Interphase in Carbon Nanotube-Based Polymer Composites. , 2022, , 147	⁷ -168.		2
959	Theoretical Study of the Effect of Fibre Porosity on the Heat Conductivity of Reinforce Composite Material. Polymers, 2022, 14, 3973.	d Gypsum	2.0	1
960	Synergistic Enhanced Thermal Conductivity and Crack Resistance of Reactor Epoxy Ins Boron Nitride Nanosheets and Multiwalled Carbon Nanotubes. Nanomaterials, 2022, 1	ulation with 2, 3235.	1.9	5
961	3D printing of flexible strain sensor based on MWCNTs/flexible resin composite. Nanot 2023, 34, 045701.	echnology,	1.3	4
962	Binder-free, pre-consolidated single-walled carbon nanotubes for manufacturing therm nanocomposites. Carbon, 2023, 202, 450-463.	oset	5.4	6
963	Unified modeling and experimental realization of electrical and thermal percolation in p composites. Applied Physics Reviews, 2022, 9, .	polymer	5.5	4
964	Boron nitride based polymer nanocomposites for heat dissipation and thermal manage applications. Applied Materials Today, 2022, 29, 101672.	ment	2.3	9
965	Structural Investigation of Carbon Nanotube-Polymer Composites by FTIR, UV, NMR, a Spectroscopy. , 2022, , 1043-1066.	nd Raman		0

#	Article	IF	CITATIONS
966	Uncertainties in Electric Circuit Analysis of Anisotropic Electrical Conductivity and Piezoresistivity of Carbon Nanotube Nanocomposites. Polymers, 2022, 14, 4794.	2.0	4
967	Nanocomposites Based on Polymer Blends and CNT. , 2022, , 1187-1208.		0
968	Thermal conductivity of composites of polymers and 0D/1D/2D materials. , 2022, , .		0
969	Materials' characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber. Journal of Nanoparticle Research, 2022, 24, .	0.8	1
970	Mechanical Properties of Carbon Fiber/Epoxy Composites Modified with Micro- and Nano-Sized Magnesium Oxide Particles. Journal of Macromolecular Science - Physics, 2022, 61, 1147-1155.	0.4	1
971	Modeling, Simulation, and Machine Learning in Thermally Conductive Epoxy Materials. Engineering Materials, 2023, , 295-326.	0.3	0
972	Imparting Electrical Conductivity in Epoxy Resins (Chemistry and Approaches). Engineering Materials, 2023, , 365-413.	0.3	1
973	THERMALLY CONDUCTIVE DURABLE STRAIN SENSORS FOR NEXT-GENERATION INTELLIGENT TIRES FROM NATURAL RUBBER NANOCOMPOSITES. Rubber Chemistry and Technology, 2023, 96, 20-39.	0.6	1
975	Hybrid Carbon Nanocomposites Made of Aerospace-Grade Epoxy Showing Synergistic Effects in Electrical Properties and High Processability. Polymers, 2023, 15, 1163.	2.0	1
976	Uranium adsorption property of carboxylated tubular carbon nanofibers enhanced chitosan microspheres. , 2023, , 133-152.		0
977	Investigation of wear and mechanical properties of hybrid polymer composites. Materials Today: Proceedings, 2023, , .	0.9	0
978	Recent progress in reinforcement of nanofillers in epoxy-based nanocomposites. Materials Today: Proceedings, 2023, , .	0.9	7
979	The through-thickness thermal conductivity and heat transport mechanism of carbon fiber three-dimensional orthogonal woven fabric composite. Journal of the Textile Institute, 2024, 115, 308-315.	1.0	0
981	Advances in toughening strategies for structural adhesives. , 2023, , 251-286.		0
990	Processing Influence on Thermal Conductivity of Polymer Nanocomposites. , 2019, , 463-487.		0
993	Polyurethanes for Thermal Insulation. ACS Symposium Series, 0, , 93-117.	0.5	0
999	Incorporation of soft materials for flexible electronics. , 2024, , 155-225.		0