Dispersive liquid–liquid microextraction combined we photometric detection

Journal of Chromatography A 1123, 1-9 DOI: 10.1016/j.chroma.2006.05.010

Citation Report

#	Article	IF	CITATIONS
1	Application of dispersive liquid–liquid microextraction combined with highâ€performance liquid chromatography for the determination of methomyl in natural waters. Journal of Separation Science, 2007, 30, 3262-3267.	1.3	51
2	Determination of chlorophenols in water samples using simultaneous dispersive liquid–liquid microextraction and derivatization followed by gas chromatography-electron-capture detection. Journal of Chromatography A, 2007, 1157, 23-29.	1.8	343
3	Determination of volatile phenols in red wines by dispersive liquid–liquid microextraction and gas chromatography–mass spectrometry detection. Journal of Chromatography A, 2007, 1157, 46-50.	1.8	198
4	Determination of triazine herbicides in aqueous samples by dispersive liquid–liquid microextraction with gas chromatography–ion trap mass spectrometry. Journal of Chromatography A, 2007, 1161, 89-97.	1.8	293
5	Development of a dispersive liquid–liquid microextraction method for organophosphorus flame retardants and plasticizers determination in water samples. Journal of Chromatography A, 2007, 1166, 9-15.	1.8	137
6	Solid-phase extraction combined with dispersive liquid–liquid microextraction-ultra preconcentration of chlorophenols in aqueous samples. Journal of Chromatography A, 2007, 1169, 63-69.	1.8	171
7	Development of dispersive liquid–liquid microextraction combined with gas chromatography–mass spectrometry as a simple, rapid and highly sensitive method for the determination of phthalate esters in water samples. Journal of Chromatography A, 2007, 1172, 105-112.	1.8	181
8	Application of dispersive liquid–liquid microextraction for the analysis of organophosphorus pesticides in watermelon and cucumber. Journal of Chromatography A, 2007, 1175, 137-140.	1.8	165
9	Dispersive liquid–liquid microextraction combined with graphite furnace atomic absorption spectrometry. Analytica Chimica Acta, 2007, 585, 305-311.	2.6	377
10	Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography-diode array detection as an efficient and sensitive technique for determination of antioxidants. Analytica Chimica Acta, 2007, 591, 69-79.	2.6	227
11	Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid–liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Analytica Chimica Acta, 2007, 597, 349-356.	2.6	177
12	Monitoring of selenium in water samples using dispersive liquid–liquid microextraction followed by iridium-modified tube graphite furnace atomic absorption spectrometry. Microchemical Journal, 2007, 87, 6-12.	2.3	178
13	Determination of Trihalomethanes in Drinking Water by Dispersive Liquid–Liquid Microextraction then Gas Chromatography with Electron-Capture Detection. Chromatographia, 2007, 66, 81-86.	0.7	119
14	Application of dispersive liquid–liquid microextraction and high-performance liquid chromatography for the determination of three phthalate esters in water samples. Analytica Chimica Acta, 2008, 609, 53-58.	2.6	250
15	Rapid determination of amide herbicides in environmental water samples with dispersive liquid–liquid microextraction prior to gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2008, 391, 2915-2921.	1.9	56
16	Analysis of captan, folpet, and captafol in apples by dispersive liquid–liquid microextraction combined with gas chromatography. Analytical and Bioanalytical Chemistry, 2008, 392, 749-754.	1.9	73
17	Selenium analysis in water samples by dispersive liquid-liquid microextraction based on piazselenol formation and GC–ECD. Mikrochimica Acta, 2008, 163, 243-249.	2.5	81
18	Dispersive liquid–liquid microextraction followed by reversed phase HPLC for the determination of decabrominated diphenyl ether in natural water. Journal of Separation Science, 2008, 31, 2371-2376.	1.3	47

#	Article	IF	Citations
19	Determination of four aromatic amines in water samples using dispersive liquid–liquid microextraction combined with HPLC. Journal of Separation Science, 2008, 31, 2932-2938.	1.3	45
20	Multiwalled carbon nanotubes as solidâ€phase extraction materials for the gas chromatographic determination of organophosphorus pesticides in waters. Journal of Separation Science, 2008, 31, 3612-3619.	1.3	35
21	Combination of dispersive liquid–liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples. Analytica Chimica Acta, 2008, 610, 135-141.	2.6	138
22	Sorbent- and liquid-phase microextraction techniques and membrane-assisted extraction in combination with gas chromatographic analysis: A review. Analytica Chimica Acta, 2008, 614, 27-37.	2.6	119
23	Dispersive liquid–liquid microextraction followed by reversed phase-high performance liquid chromatography for the determination of polybrominated diphenyl ethers at trace levels in landfill leachate and environmental water samples. Analytica Chimica Acta, 2008, 615, 96-103.	2.6	98
24	A novel separation/preconcentration system based on solidification of floating organic drop microextraction for determination of lead by graphite furnace atomic absorption spectrometry. Analytica Chimica Acta, 2008, 623, 163-167.	2.6	117
25	Determination of metacrate in water samples using dispersive liquid–liquid microextraction and HPLC with the aid of response surface methodology and experimental design. Analytica Chimica Acta, 2008, 625, 28-34.	2.6	45
26	Rapid determination of atrazine in environmental water samples by a novel liquid phase microextraction. Chinese Chemical Letters, 2008, 19, 89-91.	4.8	23
27	Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction. Journal of Chromatography A, 2008, 1188, 148-153.	1.8	241
28	Dispersive liquid–liquid microextraction combined with semi-automated in-syringe back extraction as a new approach for the sample preparation of ionizable organic compounds prior to liquid chromatography. Journal of Chromatography A, 2008, 1198-1199, 1-6.	1.8	74
29	Dispersive liquid–liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. Journal of Chromatography A, 2008, 1211, 8-12.	1.8	377
30	Comparison of hollow fiber liquid phase microextraction and dispersive liquid–liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection. Journal of Chromatography A, 2008. 1193. 7-18.	1.8	213
31	Partitioned dispersive liquid–liquid microextraction. Journal of Chromatography A, 2008, 1207, 24-28.	1.8	72
32	LC Determination of Chloramphenicol in Honey Using Dispersive Liquid–Liquid Microextraction. Chromatographia, 2008, 68, 629-634.	0.7	54
33	Treatment of Dimethoate Aqueous Solution by Using Ultrasonic Airlift Loop Reactor. Chinese Journal of Chemical Engineering, 2008, 16, 361-364.	1.7	5
34	Dispersive liquid–liquid microextraction and spectrophotometric determination of cobalt in water samples. International Journal of Environmental Analytical Chemistry, 2008, 88, 513-523.	1.8	74
35	Preconcentration Ultra Trace of Cd(II) in Water Samples Using Dispersive Liquidâ€Liquid Microextraction with Salen(<i>N,N′</i> â€Bis(Salicylidene)â€Ethylenediamine) and Determination Graphite Furnace Atomic Absorption Spectrometry. Journal of the Chinese Chemical Society, 2008, 55, 369-376.	0.8	39
36	Determination of Calcium Stearate in Polyolefin Samples by Gas Chromatographic Technique after Performing dispersive Liquid-Liquid Microextraction. Analytical Sciences, 2008, 24, 623-626.	0.8	12

#	ARTICLE Dispersive Liquid–Liquid Microextraction of Silver Prior to Determination by Microsample Introduction-Flame Atomic Absorption Spectrometry. Analytical Letters, 2009, 42, 2214-2231.	IF 1.0	CITATIONS 33
38	Determination of Organophosphorus Pesticides in Underground Water by SPE-GC-MS. Journal of Chromatographic Science, 2009, 47, 110-115.	0.7	40
39	Rapid determination of bisphenol A in drinking water using dispersive liquidâ€phase microextraction with <i>in situ</i> derivatization prior to GCâ€MS. Journal of Separation Science, 2009, 32, 154-159.	1.3	41
40	Sol–gel polydimethylsiloxane/poly(vinylalcohol)â€coated stir bar sorptive extraction of organophosphorus pesticides in honey and their determination by large volume injection GC. Journal of Separation Science, 2009, 32, 147-153.	1.3	86
41	Sensitive determination of amide herbicides in environmental water samples by a combination of solidâ€phase extraction and dispersive liquid–liquid microextraction prior to GC–MS. Journal of Separation Science, 2009, 32, 1069-1074.	1.3	76
42	Dispersive liquidâ€liquid microextraction followed by gas chromatography–electron capture detection for determination of polychlorinated biphenyls in fish. Journal of Separation Science, 2009, 32, 2103-2108.	1.3	42
43	Liquid chromatographic determination of benomyl in water samples after dispersive liquid–liquid microextraction. Journal of Separation Science, 2009, 32, 2442-2447.	1.3	30
44	Dispersive liquid–liquid microextraction using extraction solvent lighter than water. Journal of Separation Science, 2009, 32, 3191-3200.	1.3	185
45	Ultrasound assisted ionic liquid dispersive liquid phase extraction of lovastatin and simvastatin: A new pretreatment procedure. Journal of Separation Science, 2009, 32, 3029-3033.	1.3	45
46	Optimization of dispersive liquid–liquid microextraction of Co(II) and Fe(III) as their oxinate chelates and analysis by HPLC: Application for the simultaneous determination of Co(II) and Fe(III) in water samples. Journal of Separation Science, 2009, 32, 4200-4212.	1.3	29
47	Determination of polybrominated diphenyl ethers in aquatic animal tissue using cleanup by freezingâ€dispersive liquid–liquid microextraction combined with GCâ€MS. Journal of Separation Science, 2009, 32, 4213-4219.	1.3	37
48	Preconcentration and determination of ultra trace amounts of palladium in water samples by dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry. Mikrochimica Acta, 2009, 166, 235-242.	2.5	62
49	lonic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 666-671.	1.5	210
50	Application of dispersive liquid–liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples. Analytica Chimica Acta, 2009, 632, 289-295.	2.6	195
51	Application of chemometric assisted dispersive liquid–liquid microextraction to the determination of personal care products in natural waters. Analytica Chimica Acta, 2009, 649, 135-140.	2.6	64
52	Ionic liquid-based dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Analytica Chimica Acta, 2009, 655, 52-59.	2.6	203
53	Extraction and determination of some psychotropic drugs in urine samples using dispersive liquid–liquid microextraction followed by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49, 572-578.	1.4	133
54	Critical review on recent developments in solventless techniques for extraction of analytes. Analytical and Bioanalytical Chemistry, 2009, 393, 809-833.	1.9	256

#	Article	IF	CITATIONS
55	Application of dispersive liquid–liquid microextraction combined with high-performance liquid chromatography to the determination of carbamate pesticides in water samples. Analytical and Bioanalytical Chemistry, 2009, 393, 1755-1761.	1.9	105
56	Dispersive liquid–liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water. Analytical and Bioanalytical Chemistry, 2009, 395, 1491-1502.	1.9	193
57	Developments of Dispersive Liquid-Liquid Microextraction Technique. Chinese Journal of Analytical Chemistry, 2009, 37, 161-168.	0.9	162
58	Solidified floating organic drop microextraction (SFODME) for simultaneous separation/preconcentration and determination of cobalt and nickel by graphite furnace atomic absorption spectrometry (GFAAS). Journal of Hazardous Materials, 2009, 166, 291-296.	6.5	132
59	Development of dispersive liquid–liquid microextraction method for the analysis of organophosphorus pesticides in tea. Journal of Hazardous Materials, 2009, 169, 907-911.	6.5	114
60	Determination of four heterocyclic insecticides by ionic liquid dispersive liquid–liquid microextraction in water samples. Journal of Chromatography A, 2009, 1216, 885-891.	1.8	291
61	Application of response surface method for optimization of dispersive liquid–liquid microextraction of water-soluble components of Rosa damascena Mill. essential oil. Journal of Chromatography A, 2009, 1216, 198-204.	1.8	74
62	Solid-phase extraction combined with dispersive liquid–liquid microextraction for the determination for polybrominated diphenyl ethers in different environmental matrices. Journal of Chromatography A, 2009, 1216, 2220-2226.	1.8	103
63	Determination of triclosan, triclocarban and methyl-triclosan in aqueous samples by dispersive liquid–liquid microextraction combined with rapid liquid chromatography. Journal of Chromatography A, 2009, 1216, 3038-3043.	1.8	96
64	Dispersive solid-phase extraction followed by dispersive liquid–liquid microextraction for the determination of some sulfonylurea herbicides in soil by high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 5504-5510.	1.8	166
65	One-step in-syringe ionic liquid-based dispersive liquid–liquid microextraction. Journal of Chromatography A, 2009, 1216, 6459-6465.	1.8	147
66	Ionic liquid based dispersive liquid–liquid microextraction for the extraction of pesticides from bananas. Journal of Chromatography A, 2009, 1216, 7336-7345.	1.8	151
67	Trace determination of dichlorodiphenyltrichloroethane and its main metabolites in environmental water samples with dispersive liquid–liquid microextraction in combination with high performance liquid chromatography and ultraviolet detector. Journal of Chromatography A, 2009, 1216, 6680-6684.	1.8	45
68	Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for simultaneous determination of chloramphenicol and thiamphenicol in honey. Analytica Chimica Acta, 2009, 632, 80-85.	2.6	160
69	Dispersive liquid–liquid microextraction combined with high performance liquid chromatography–fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples. Analytica Chimica Acta, 2009, 638, 139-145.	2.6	145
70	Dispersive liquid–liquid microextraction combined with gas chromatography–electron capture detection for the determination of polychlorinated biphenyls in soils. Analytica Chimica Acta, 2009, 640, 100-105.	2.6	67
71	Determination of organochlorine pesticides in water samples by dispersive liquid–liquid microextraction coupled to gas chromatography–mass spectrometry. Analytica Chimica Acta, 2009, 649, 218-221.	2.6	97
72	Application of dispersive liquid–liquid microextraction and dispersive micro-solid-phase extraction for the determination of quinolones in swine muscle by high-performance liquid chromatography with diode-array detection. Analytica Chimica Acta, 2009, 656, 56-62.	2.6	92

#	Article	IF	CITATIONS
73	LC Determination of Trace Amounts of Phenoxyacetic Acid Herbicides in Water after Dispersive Liquid–Liquid Microextraction. Chromatographia, 2009, 69, 45-49.	0.7	34
74	Optimization of Dispersive Liquid–Liquid Microextraction of Irganox 1010 and Irgafos 168 from Polyolefins Before Liquid Chromatographic Analysis. Chromatographia, 2009, 69, 409-419.	0.7	30
75	Separation and Preconcentration by Dispersive Liquid–Liquid Microextraction Procedure: A Review. Chromatographia, 2009, 69, 1149-1159.	0.7	106
76	Dispersive liquid-liquid microextraction and liquid chromatographic determination of pentachlorophenol in water. Open Chemistry, 2009, 7, 369-374.	1.0	19
77	Application of ultrasound-assisted emulsification-micro-extraction for the analysis of organochlorine pesticides in waters. Water Research, 2009, 43, 4269-4277.	5.3	73
78	Dispersive liquid–liquid microextraction based on ionic liquid and spectrophotometric determination of mercury in water samples. International Journal of Environmental Analytical Chemistry, 2009, 89, 21-33.	1.8	111
79	Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography for the determination of three carbamate pesticides in water samples. International Journal of Environmental Analytical Chemistry, 2009, 89, 439-448.	1.8	41
80	lonic Liquids for Simultaneous Preconcentration of Some Lanthanoids Using Dispersive Liquidâ^'Liquid Microextraction Technique in Uranium Dioxide Powder. Environmental Science & Technology, 2009, 43, 1947-1951.	4.6	92
81	Analysis of PAHs in Water and Fruit Juice Samples by DLLME Combined with LC-Fluorescence Detection. Chromatographia, 2009, 69, 1385-1389.	0.7	36
82	Determination of Atrazine and Simazine in Environmental Water Samples by Dispersive Liquid-Liquid Microextraction with High Performance Liquid Chromatography. Analytical Sciences, 2009, 25, 73-76.	0.8	48
83	Analysis of Pesticides by Chemiluminescence Detection. , 2009, , 303-341.		0
84	Dispersive Liquidâ€Liquid Microextraction of Cu(II) Using a Novel Dioxime for Its Highly Sensitive Determination by Graphite Furnace Atomic Absorption Spectrometry. Journal of the Chinese Chemical Society, 2010, 57, 111-117.	0.8	16
85	Preconcentration and Determination of Trace Amount of Nickel in Water and Biological Samples by Dispersive Liquid‣iquid Microextraction. Journal of the Chinese Chemical Society, 2010, 57, 1035-1041.	0.8	31
86	Flame Atomic Absorption Spectrometry Determination of Trace Amounts of Nickel Ions in Water Samples after Ligandless Ultrasound-assisted Emulsification Microextraction. Analytical Sciences, 2010, 26, 973-977.	0.8	22
87	Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid-liquid microextraction for preconcentration and determination of copper. Journal of Analytical Chemistry, 2010, 65, 153-158.	0.4	25
88	Determination of cobalt in water samples by atomic absorption spectrometry after pre-concentration with a simple ionic liquid-based dispersive liquid-liquid micro-extraction methodology. Open Chemistry, 2010, 8, 617-625.	1.0	23
89	Development and evaluation of a dispersive liquid-liquid microextraction based test method for quantitation of total anionic surfactants: advantages against reference methods. Open Chemistry, 2010, 8, 702-708.	1.0	18
90	Determination of Estrone and 17β-Estradiol in Water Samples Using Dispersive Liquid–Liquid Microextraction Followed by LC. Chromatographia, 2010, 71, 405-410.	0.7	34

#	Article	IF	CITATIONS
91	Rapid Determination of Carbamazepine in Human Urine, Plasma Samples and Water Using DLLME followed by RP–LC. Chromatographia, 2010, 71, 517-521.	0.7	66
92	Determination of BTEX Compounds by Dispersive Liquid–Liquid Microextraction with GC–FID. Chromatographia, 2010, 71, 1137-1141.	0.7	55
93	Application of DLLME to Isolation and Concentration of Non-Steroidal Anti-Inflammatory Drugs in Environmental Water Samples. Chromatographia, 2010, 72, 671-678.	0.7	51
94	Application of DLLME Based on the Solidification of Floating Organic Droplets for the Determination of Dinitrobenzenes in Aqueous Samples. Chromatographia, 2010, 72, 695-699.	0.7	27
95	Determination of Benzoic Acid in Water Samples by Ionic Liquid Cold-Induced Aggregation Dispersive LLME Coupling with LC. Chromatographia, 2010, 72, 1195-1199.	0.7	17
96	Sensitive Determination of Thiols Using SPE Coupled to LC with Fluorescence Detection. Chromatographia, 2010, 72, 1049-1054.	0.7	5
97	Novel extraction method based on the dispersion of the extraction solvent for extraction of letrozole from biological fluids. Analytical Methods, 2010, 2, 1341.	1.3	27
98	Quantitation of valproic acid in pharmaceutical preparations using dispersive liquidâ€liquid microextraction followed by gas chromatographyâ€flame ionization detection without prior derivatization. Drug Testing and Analysis, 2010, 2, 362-366.	1.6	16
99	Trace determination of triclosan and triclocarban in environmental water samples with ionic liquid dispersive liquid-phase microextraction prior to HPLC–ESI-MS–MS. Analytical and Bioanalytical Chemistry, 2010, 397, 1627-1633.	1.9	56
100	Determination of organophosphorus pesticides in environmental water samples by dispersive liquid–liquid microextraction with solidification of floating organic droplet followed by high-performance liquid chromatography. Analytical and Bioanalytical Chemistry, 2010, 397, 2543-2549.	1.9	73
101	Determination of five polar herbicides in water samples by ionic liquid dispersive liquid-phase microextraction. Analytical and Bioanalytical Chemistry, 2010, 397, 3089-3095.	1.9	35
102	Dispersive liquid–liquid microextraction using a surfactant as disperser agent. Analytical and Bioanalytical Chemistry, 2010, 397, 3107-3115.	1.9	77
103	Validation of method for determination of different classes of pesticides in aqueous samples by dispersive liquid–liquid microextraction with liquid chromatography–tandem mass spectrometric detection. Analytica Chimica Acta, 2010, 665, 55-62.	2.6	94
104	Application of ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of some organophosphorus pesticides in water samples. Analytica Chimica Acta, 2010, 679, 56-62.	2.6	104
105	Determination of trace amounts of palladium by flame atomic absorption spectrometry after ligandless-dispersive liquid–liquid microextraction. Mikrochimica Acta, 2010, 168, 123-128.	2.5	46
106	Dispersive liquid-liquid microextraction followed by spectrofluorimetry as a simple and accurate technique for determination of thiamine (vitamin B1). Mikrochimica Acta, 2010, 168, 317-324.	2.5	54
107	Central Composite Design Applied to Optimization of Dispersive Liquid–Liquid Microextraction of Cu(II) and Zn(II) in Water Followed by High Performance Liquid Chromatography Determination. Clean - Soil, Air, Water, 2010, 38, 466-477.	0.7	27
108	Determination of Trace Levels of Nickel and Manganese in Soil, Vegetable, and Water. Clean - Soil, Air, Water, 2010, 38, 1177-1183.	0.7	25

#	Article	IF	CITATIONS
109	Extraction of organophosphorus pesticides in water and juice using ultrasoundâ€assisted emulsification–mixroextraction. Journal of Separation Science, 2010, 33, 244-250.	1.3	59
110	Ultrasoundâ€assisted dispersive liquid–liquid microextraction coupled with capillary gas chromatography for simultaneous analysis of nine pyrethroids in domestic wastewaters. Journal of Separation Science, 2010, 33, 1829-1835.	1.3	31
111	Molecularâ€imprinted polymer extraction combined with dispersive liquid–liquid microâ€extractionfor ultraâ€preconcentration of mononitrotoluene. Journal of Separation Science, 2010, 33, 3759-3766.	1.3	33
112	Combination of ultrasoundâ€assisted ionic liquid dispersive liquidâ€phase microextraction and high performance liquid chromatography for the sensitive determination of benzoylureas pesticides in environmental water samples. Journal of Separation Science, 2010, 33, 3734-3740.	1.3	47
113	A simple and rapid dispersive liquid–liquid microextraction method followed by GCâ€FID for determination of <i>N</i> â€methylpyrrolidine in cefepime. Journal of Separation Science, 2010, 33, 3767-3773.	1.3	10
114	Pesticides in water and the performance of the liquid-phase microextraction based techniques. A review. Microchemical Journal, 2010, 96, 225-237.	2.3	108
115	Evaluation of synergism in dispersive liquid–liquid microextraction for simultaneous preconcentration of some lanthanoids. Journal of Molecular Liquids, 2010, 151, 122-124.	2.3	25
116	Dispersive liquid-liquid microextraction for determination of organic analytes. TrAC - Trends in Analytical Chemistry, 2010, 29, 728-751.	5.8	230
117	Methyl parathion sensors based on gold nanoparticles and Nafion film modified glassy carbon electrodes. Sensors and Actuators B: Chemical, 2010, 145, 104-109.	4.0	108
118	Determination of polycyclic aromatic hydrocarbons in waters by ultrasound-assisted emulsification-microextraction and gas chromatography–mass spectrometry. Analytica Chimica Acta, 2010, 665, 193-199.	2.6	77
119	Liquid-phase microextraction approaches combined with atomic detection: A critical review. Analytica Chimica Acta, 2010, 669, 1-16.	2.6	98
120	Application of dispersive liquid–liquid microextraction and spectrophotometric detection to the rapid determination of rhodamine 6G in industrial effluents. Analytica Chimica Acta, 2010, 674, 206-210.	2.6	63
121	Laser induced-thermal lens spectrometry in combination with dispersive liquid–liquid microextraction for trace analysis. Analytica Chimica Acta, 2010, 681, 56-62.	2.6	27
122	Determination of sulfonamides in swine muscle after salting-out assisted liquid extraction with acetonitrile coupled with back-extraction by a water/acetonitrile/dichloromethane ternary component system prior to high-performance liquid chromatography. Journal of Chromatography A, 2010, 1217, 250-255.	1.8	35
123	Dispersive liquid–liquid microextraction based on the solidification of floating organic drop followed by inductively coupled plasma-optical emission spectrometry as a fast technique for the simultaneous determination of heavy metals. Journal of Chromatography A, 2010, 1217, 2358-2364.	1.8	152
124	Evolution of dispersive liquid–liquid microextraction method. Journal of Chromatography A, 2010, 1217, 2342-2357.	1.8	844
125	Low-density extraction solvent-based solvent terminated dispersive liquid–liquid microextraction combined with gas chromatography-tandem mass spectrometry for the determination of carbamate pesticides in water samples. Journal of Chromatography A, 2010, 1217, 1244-1248.	1.8	205
126	In-tube solid-phase microextraction coupled by in valve mode to capillary LC-DAD: Improving detectability to multiresidue organic pollutants analysis in several whole waters. Journal of Chromatography A, 2010, 1217, 2695-2702.	1.8	46

#	Article	IF	CITATIONS
127	Dispersive liquid–liquid microextraction applied to isolation and concentration of alkylphenols and their short-chained ethoxylates in water samples. Journal of Chromatography A, 2010, 1217, 1761-1766.	1.8	59
128	Determination of triazines in honey by dispersive liquid–liquid microextraction high-performance liquid chromatography. Journal of Chromatography A, 2010, 1217, 4241-4246.	1.8	115
129	A new 1,3-dibutylimidazolium hexafluorophosphate ionic liquid-based dispersive liquid–liquid microextraction to determine organophosphorus pesticides in water and fruit samples by high-performance liquid chromatography. Journal of Chromatography A, 2010, 1217, 5013-5020.	1.8	95
130	Determination of organophosphorous pesticides in water using in-syringe ultrasound-assisted emulsification and gas chromatography with electron-capture detection. Journal of Chromatography A, 2010, 1217, 5043-5049.	1.8	52
131	Determination of octylphenol and nonylphenol in aqueous sample using simultaneous derivatization and dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Journal of Chromatography A, 2010, 1217, 6762-6768.	1.8	71
132	Extraction of pesticides in water samples using vortex-assisted liquid–liquid microextraction. Journal of Chromatography A, 2010, 1217, 5868-5871.	1.8	87
133	Optimization of dispersive liquid–liquid microextraction and improvement of detection limit of methyl tert-butyl ether in water with the aid of chemometrics. Journal of Chromatography A, 2010, 1217, 7017-7023.	1.8	22
134	Optimisation of a dispersive liquid–liquid microextraction method for the simultaneous determination of halophenols and haloanisoles in wines. Journal of Chromatography A, 2010, 1217, 7630-7637.	1.8	49
135	Benzimidazole Fungicides in Environmental Samples: Extraction and Determination Procedures. , 0, , .		4
136	Determination of Thiamphenicol in Honey by Dispersive LiquidLiquid Microextraction with High-Performance Liquid Chromatography. Journal of Chromatographic Science, 2010, 48, 450-455.	0.7	13
137	Combination of Dispersive Liquidâ€Liquid Microextraction with Flame Atomic Absorption for Determination of Trace Ni and Co in Water Samples and Vitamin B ₁₂ . Journal of the Chinese Chemical Society, 2010, 57, 1346-1352.	0.8	27
138	Nonlinear Regression Model for Prediction of Dispersive Liquid-Liquid Microextraction-Solidification of Floating Organic Drop (DLLME-SFO) of DecaBDE from River Sediments Based on Undecanol. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering. 2010	0.0	Ο
140	Dispersive liquid–liquid microextraction based on ionic liquid in combination with high-performance liquid chromatography for the determination of bisphenol A in water. International Journal of Environmental Analytical Chemistry, 2010, 90, 880-890.	1.8	21
141	Liquidâ~Liquid Extraction of Low-Concentration Aniline from Aqueous Solutions with Salts. Industrial & Engineering Chemistry Research, 2010, 49, 2581-2588.	1.8	21
142	Simultaneous determination of four phthalate esters in bottled water using ultrasound-assisted dispersive liquid–liquid microextraction followed by GC-FID detection. Analyst, The, 2010, 135, 2585.	1.7	56
143	Dispersive liquid phase micro-extraction of aromatic amines in environmental water samples. International Journal of Environmental Analytical Chemistry, 2010, 90, 1099-1107.	1.8	11
144	Development of a solid phase extraction method for agricultural pesticides in large-volume water samples. Talanta, 2010, 81, 1380-1386.	2.9	22
145	Temperature-assisted ionic liquid dispersive liquid–liquid microextraction combined with high performance liquid chromatography for the determination of anthraquinones in Radix et Rhizoma Rhei samples Talanta, 2010, 82, 1010-1016	2.9	82

#	Article	IF	CITATIONS
146	Determination of alkylphenols in eluates from pyrolysis solid residues using dispersive liquid–liquid microextraction. Chemosphere, 2010, 79, 1026-1032.	4.2	21
147	Application of dispersive liquid–liquid microextraction and reversed phase-high performance liquid chromatography for the determination of two fungicides in environmental water samples. International Journal of Environmental Analytical Chemistry, 2010, 90, 845-855.	1.8	26
148	Determination of organochlorine pesticides in river water using dispersive liquid–liquid microextraction and gas chromatography–electron capture detection. International Journal of Environmental Analytical Chemistry, 2010, 90, 869-879.	1.8	25
149	Analysis of benzophenones in environmental water samples after topical skin application using dispersive liquid–liquid microextraction and micellar electrokinetic capillary chromatography. Analytical Methods, 2011, 3, 2848.	1.3	8
150	Pre-concentration procedure using dispersive liquid–liquid microextraction for the determination of bismuth by flame atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2011, 26, 2064.	1.6	28
151	A novel methodology based on solvents less dense than water through dispersive liquid–liquid microextraction: application in quantitation of l-ascorbate in fruit juices and soft drinks by fiber optic-linear array detection spectrophotometry. Analytical Methods, 2011, 3, 724.	1.3	10
152	Dispersive liquid–liquid microextraction combined with flame atomic absorption spectrometry for determination of cadmium in environmental, water and food samples. Analytical Methods, 2011, 3, 1652.	1.3	38
153	Determination of nitrobenzenes and nitrochlorobenzenes in water samples using dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry. Analytical Methods, 2011, 3, 2254.	1.3	13
154	Study of an Online Molecularly Imprinted Solid Phase Extraction Coupled to Chemiluminescence Sensor for the Determination of Trichlorfon in Vegetables. Journal of Agricultural and Food Chemistry, 2011, 59, 12745-12751.	2.4	32
155	Sensitive determination of phenols from water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction. Analytical Methods, 2011, 3, 653.	1.3	30
156	Preconcentration and determination of pyrethroid insecticides in water with ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography. Analytical Methods, 2011, 3, 356-361.	1.3	30
157	Design and evaluation of synthetic silica-based monolithic materials in shrinkable tube for efficient protein extraction. Analyst, The, 2011, 136, 4321.	1.7	14
158	Dispersive suspended microextraction. Analytica Chimica Acta, 2011, 706, 268-274.	2.6	18
159	Simultaneous determination of six phthalate esters in bottled milks using ultrasound-assisted dispersive liquid–liquid microextraction coupled with gas chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2507-2512.	1.2	84
160	Extraction and determination of opium alkaloids in urine samples using dispersive liquid–liquid microextraction followed by high-performance liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2978-2983.	1.2	78
161	Isolation, preconcentration and determination of rhamnolipids in aqueous samples by dispersive liquid–liquid microextraction and liquid chromatography with tandem mass spectrometry. Talanta, 2011, 83, 744-750.	2.9	37
162	Determination of nitroaromatic explosives in water samples by direct ultrasound-assisted dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Talanta, 2011, 85, 2546-2552.	2.9	56
163	Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: A review. Talanta, 2011, 86, 8-22.	2.9	136

		CITATION REPO	ORT	
#	Article		IF	CITATIONS
164	Sample Preparation in the Analysis of Pesticides Residue in Food by Chromatographic Techniqu	ies. , 0, , .		0
165	Current Trends in Liquid-Liquid Microextraction for Analysis of Pesticide Residues in Food and $\ , 0, , .$	Water.		2
166	IL-USA-DLLME Method to Simultaneously Extract and Determine Four Phenylurea Herbicides in Samples. Current Analytical Chemistry, 2011, 7, 357-364.	Water	0.6	16
167	Evaluation of Dispersive Liquid-Liquid Microextraction Coupled with Gas Chromatography-Microelectron Capture Detection (GCMU.ECD) for the Determination of Organochlorine Pesticides in Water Samples. Analytical Sciences, 2011, 27, 547.		0.8	22
168	Reversed-Phase Dispersive Liquid-Liquid Microextraction with Multivariate Optimization for Ser HPLC Determination of Tyrosol and Hydroxytyrosol in Olive Oil. Analytical Sciences, 2011, 27,		0.8	27
169	Development and validation of a HPTLC method for simultaneous analysis of temephos and fenitrothion in Green tea. Journal of Planar Chromatography - Modern TLC, 2011, 24, 53-56.		0.6	5
170	Dispersive liquid-liquid microextraction. TrAC - Trends in Analytical Chemistry, 2011, 30, 1382-	1399.	5.8	360
171	Electromembrane extraction of amino acids from body fluids followed by capillary electrophore with capacitively coupled contactless conductivity detection. Journal of Chromatography A, 20 1218, 6248-6255.	rsis 11,	1.8	118
172	Vortex-assisted surfactant-enhanced-emulsification liquid–liquid microextraction. Journal of Chromatography A, 2011, 1218, 7071-7077.	:	1.8	65
173	Liquid-phase microextraction preconcentration of impurities. Journal of Analytical Chemistry, 2 66, 331-350.	011,	0.4	40
174	Indium determination and preconcentration using fiber optic linear array detection spectromet combined with dispersive liquid-liquid micro extraction. Journal of Analytical Chemistry, 2011, 6 924-929.	ry 56,	0.4	14
175	Optimization and determination of Cd (II) in different environmental water samples with dispe liquid–liquid microextraction preconcentration combined with inductively coupled plasma of emission spectrometry. Environmental Monitoring and Assessment, 2011, 177, 115-125.		1.3	27
176	Dispersive liquid-liquid microextraction for the analysis of three organophosphorus pesticides i real samples by high performance liquid chromatography-ultraviolet detection and its optimiza experimental design. Mikrochimica Acta, 2011, 172, 465-470.	n tion by	2.5	75
177	Electrochemical behavior of methyl parathion and its sensitive determination at a glassy carbo electrode modified with ordered mesoporous carbon. Mikrochimica Acta, 2011, 173, 215-221.		2.5	67
178	Ultratrace determination of carbamate pesticides in water samples by temperature controlled liquid dispersive liquid phase microextraction combined with high performance liquid phase chromatography. Mikrochimica Acta, 2011, 173, 477-483.		2.5	34
179	Determination of triclosan and triclocarban in environmental water samples with ionic liquid/io liquid dispersive liquid-liquid microextraction prior to HPLC-ESI-MS/MS. Mikrochimica Acta, 201 145-151.		2.5	60
180	Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction followed atomic absorption spectrometry for trace determination of zinc in water and food samples. Mikrochimica Acta, 2011, 175, 159-165.		2.5	45
181	Determination of phenolic compounds in water samples by HPLC following ionic liquid dispersi liquid-liquid microextraction and cold-induced aggregation. Mikrochimica Acta, 2011, 175, 341		2.5	40

4	A	IC.	CITATIONS
#	ARTICLE Rapid Enrichment and Sensitive Determination of Tetrabromobisphenol A in Environmental Water	IF	CITATIONS
182	Samples with Ionic Liquid Dispersive Liquid-Phase Microextraction Prior to HPLC–ESI-MS–MS. Chromatographia, 2011, 73, 793-797.	0.7	29
183	Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Combined with Low Solvent Consumption for Determination of Polycyclic Aromatic Hydrocarbons in Seawater by GC–MS. Chromatographia, 2011, 74, 89-98.	0.7	43
184	Dispersive liquid-phase microextraction using ionic liquid as extractant for the enrichment and determination of DDT and its metabolites in environmental water samples. Analytical and Bioanalytical Chemistry, 2011, 399, 1287-1293.	1.9	30
185	Separation of trace amount of silver using dispersive liquid–liquid based on solidification of floating organic drop microextraction. Analytica Chimica Acta, 2011, 684, 54-58.	2.6	41
186	Determination of phthalate esters in water samples by ionic liquid cold-induced aggregation dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography. Analytica Chimica Acta, 2011, 689, 137-142.	2.6	116
187	Low-density solvent-based solvent demulsification dispersive liquid–liquid microextraction for the fast determination of trace levels of sixteen priority polycyclic aromatic hydrocarbons in environmental water samples. Journal of Chromatography A, 2011, 1218, 5040-5046.	1.8	152
188	Dispersive liquid–liquid microextraction coupled with highâ€performance liquid chromatographyâ€diode array detection for the determination of <i>N</i> â€methyl carbamate pesticides in vegetables. Journal of Separation Science, 2011, 34, 202-209.	1.3	43
189	Improved solvent collection system for a dispersive liquid–liquid microextraction of organochlorine pesticides from water using lowâ€density organic solvent. Journal of Separation Science, 2011, 34, 837-843.	1.3	32
190	Ionic liquid/ionic liquid dispersive liquid–liquid microextraction. Journal of Separation Science, 2011, 34, 830-836.	1.3	55
191	Extraction and preconcentration technique for triazole pesticides from cow milk using dispersive liquid–liquid microextraction followed by GCâ€FID and GCâ€MS determinations. Journal of Separation Science, 2011, 34, 1309-1316.	1.3	57
192	Validated dispersive liquid–liquid microextraction for analysis of organophosphorous pesticides in water. Journal of Separation Science, 2011, 34, 1326-1332.	1.3	23
193	Determination of organophosphorous pesticides in the ppq range using a simple solidâ€phase extraction method combined with dispersive liquid–liquid microextraction. Journal of Separation Science, 2011, 34, 2475-2481.	1.3	35
194	Determination of insecticides in water using <i>in situ</i> halide exchange reactionâ€essisted ionic liquid dispersive liquid–liquid microextraction followed by highâ€performance liquid chromatography. Journal of Separation Science, 2011, 34, 3178-3185.	1.3	36
195	Simultaneous determination of tetrahydropalmatine and tetrahydroberberine in rat urine using dispersive liquid–liquid microextraction coupled with highâ€performance liquid chromatography. Journal of Separation Science, 2011, 34, 3279-3286.	1.3	13
196	Surfactant Enhance DLLME/FO‣ADS: Assay of Malachite Green Level in Aquatic Environment of <i>Trout</i> Fish. Clean - Soil, Air, Water, 2011, 39, 83-87.	0.7	17
197	Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid–liquid microextraction. Food Chemistry, 2011, 126, 1840-1844.	4.2	152
198	Trace determination of hexabromocyclododecane diastereomers in water samples with temperature controlled ionic liquid dispersive liquid phase microextraction. Chinese Chemical Letters, 2011, 22, 97-100.	4.8	21
199	Optimized ultrasonic assisted extraction–dispersive liquid–liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent Journal of Chromatography A, 2011, 1218, 4593-4598.	1.8	76

#	Article	IF	CITATIONS
200	A novel method of ultrasound-assisted dispersive liquid–liquid microextraction coupled to liquid chromatography–mass spectrometry for the determination of trace organoarsenic compounds in edible oil. Analytica Chimica Acta, 2011, 690, 221-227.	2.6	59
201	Determination of N-methylcarbamate insecticides in water samples using dispersive liquid–liquid microextraction and HPLC with the aid of experimental design and desirability function. Analytica Chimica Acta, 2011, 699, 113-119.	2.6	110
202	Application of an ultrasound-assisted surfactant-enhanced emulsification microextraction method for the analysis of diethofencarb and pyrimethanil fungicides in water and fruit juice samples. Analytica Chimica Acta, 2011, 701, 86-91.	2.6	64
203	Combination of dispersive liquid–liquid microextraction and flame atomic absorption spectrometry for preconcentration and determination of copper in water samples. Desalination, 2011, 266, 238-243.	4.0	88
204	Gas purge microsyringe extraction for quantitative direct gas chromatographic–mass spectrometric analysis of volatile and semivolatile chemicals. Journal of Chromatography A, 2011, 1218, 1549-1555.	1.8	41
205	Preparation and characterization of amino functionalized nano-composite material and its application for multi-residue analysis of pesticides in cabbage by gas chromatography–triple quadrupole mass spectrometry. Journal of Chromatography A, 2011, 1218, 5568-5580.	1.8	32
206	Combination of supercritical fluid extraction with dispersive liquid–liquid microextraction for extraction of organophosphorus pesticides from soil and marine sediment samples. Journal of Supercritical Fluids, 2011, 57, 219-226.	1.6	86
207	Determination of Some Organophosphorus and Azole Group Pesticides in Water Samples by Dispersive Liquid–Liquid Microextraction Coupled with GC/MS. Journal of AOAC INTERNATIONAL, 2011, 94, 1882-1890.	0.7	7
208	Determination of As(III) using developed dispersive liquid–liquid microextraction and flame atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2011, 91, 1453-1465.	1.8	13
209	Dispersive Liquid-Liquid Microextraction Coupled with Gas Chromatography for the Determination of Orthochlorophenol in Environmental Water Samples. Advanced Materials Research, 2012, 518-523, 1379-1382.	0.3	0
210	An Improved Ionic Liquid-Based Headspace Single-Drop Microextraction-Liquid Chromatography Method for the Analysis of Camphor and Trans-Anethole in Compound Liquorice Tablets. Journal of Chromatographic Science, 2012, 50, 457-463.	0.7	13
211	Recent Advances in Dispersive Liquid - Liquid Microextraction for Organic Compounds Analysis in Environmental Water: A Review. Current Analytical Chemistry, 2012, 8, 78-90.	0.6	82
212	Rapid determination of ultra-trace amounts of acrylamide contaminant in water samples using dispersive liquid–liquid microextraction coupled to gas chromatography-electron capture detector. International Journal of Environmental Analytical Chemistry, 2012, 92, 1493-1505.	1.8	22
213	Determination of trace leaching phthalate esters in water by magnetic solid phase extraction based on magnetic multi-walled carbon nanotubes followed by GC-MS/MS. Analytical Methods, 2012, 4, 2729.	1.3	46
214	Trace Determination of Dichlorvos in Environmental Samples by Room Temperature Ionic Liquid-Based Dispersive Liquid-Phase Microextraction Combined with HPLC. Journal of Chromatographic Science, 2012, 50, 702-708.	0.7	11
215	Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-ultraviolet detection for the determination of three triazole derivatives in environmental water samples. International Journal of Environmental Analytical Chemistry, 2012, 92, 1176-1186.	1.8	9
216	Recent advances in liquid microextraction techniques coupled with MS for determination of small-molecule drugs in biological samples. Bioanalysis, 2012, 4, 725-739.	0.6	10
217	Temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with HPLC with ultraviolet detector for the determination of fungicides. Journal of Separation Science, 2012, 35, 3569-3574	1.3	36

#	Article	IF	CITATIONS
218	Sequential dispersive liquid–liquid microextraction for the determination of aryloxyphenoxyâ€propionate herbicides in water. Journal of Separation Science, 2012, 35, 3389-3395.	1.3	46
219	Simultaneous separation and determination of eight organophosphorous pesticide residues in vegetables through molecularly imprinted solid-phase extraction coupled to gas chromatography. Journal of Separation Science, 2012, 35, 3501-3508.	1.3	25
220	Ultrasound-assisted extraction followed by dispersive liquid–liquid microextraction before gas chromatography-mass spectrometry for the simultaneous determination of flavouring compounds in tobacco additives. Analytical Methods, 2012, 4, 995.	1.3	14
221	Ligandless-ultrasound-assisted emulsification-microextraction combined with inductively coupled plasma-optical emission spectrometry for simultaneous determination of heavy metals in water samples. Analytical Methods, 2012, 4, 236-241.	1.3	16
222	Determination of organophosphorus pesticides using dispersive liquid–liquid microextraction combined with reversed electrode polarity stacking mode—micellar electrokinetic chromatography. Talanta, 2012, 98, 62-68.	2.9	57
223	Ultrasound-assisted ionic liquid/ionic liquid-dispersive liquid–liquid microextraction for the determination of sulfonamides in infant formula milk powder using high-performance liquid chromatography. Talanta, 2012, 99, 875-882.	2.9	79
224	Determination of chlorpyrifos in environmental water samples by dispersive liquid–liquid microextraction with solidification of a floating organic drop followed by gas chromatography with flame photometry detection. Analytical Methods, 2012, 4, 3246.	1.3	20
225	In-syringe demulsified dispersive liquid–liquid microextraction and high performance liquid chromatography–mass spectrometry for the determination of trace fungicides in environmental water samples. Analytica Chimica Acta, 2012, 724, 47-53.	2.6	55
226	Air-assisted liquid–liquid microextraction method as a novel microextraction technique; Application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography–flame ionization detection. Analytica Chimica Acta, 2012, 728, 31-38.	2.6	262
227	Ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of ultraviolet filters in environmental water samples. Analytica Chimica Acta, 2012, 750, 120-126.	2.6	94
228	Determination of eight fluoroquinolones in groundwater samples with ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction prior to high-performance liquid chromatography and fluorescence detection. Analytica Chimica Acta, 2012, 748, 20-27.	2.6	90
229	A new 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ionic liquid based ultrasound-assisted emulsification microextraction for the determination of organic ultraviolet filters in environmental water samples. Journal of Chromatography A, 2012, 1251, 27-32.	1.8	41
230	Application of ultrasound-assisted emulsification microextraction based on applying low-density organic solvent for the determination of organochlorine pesticides in water samples. Journal of Chromatography A, 2012, 1252, 67-73.	1.8	38
231	Monitoring pesticide residues in greenhouse tomato by combining acetonitrile-based extraction with dispersive liquida€"liquid microextraction followed by gas-chromatography–mass spectrometry. Food Chemistry, 2012, 135, 1071-1077.	4.2	73
232	Preâ€concentration of nonâ€steroidal antiâ€inflammatory drugs in water using dispersive liquid–liquid and singleâ€drop microextraction with highâ€performance liquid chromatography. Journal of Separation Science, 2012, 35, 2476-2483.	1.3	35
233	Simple, rapid, and sensitive determination of betaâ€blockers in environmental water using dispersive liquid–liquid microextraction followed by liquid chromatography with fluorescence detection. Journal of Separation Science, 2012, 35, 2184-2192.	1.3	14
234	Simultaneous preconcentration and determination of 2,4â€< scp>D, alachlor and atrazine in aqueous samples using dispersive liquid–liquid microextraction followed by highâ€performance liquid chromatography ultraviolet detection. Journal of Separation Science, 2012, 35, 2718-2724.	1.3	41
235	Liquid-Based Microextraction Techniques for Environmental Analysis. , 2012, , 835-862.		7

#	Article	IF	CITATIONS
236	Determination of hydroxylated metabolites of polycyclic aromatic hydrocarbons in sediment samples by combining subcritical water extraction and dispersive liquid–liquid microextraction with derivatization. Analytica Chimica Acta, 2012, 753, 57-63.	2.6	49
237	Extraction and preconcentration of trace amounts of diazinon and fenitrothion from environmental water by magnetite octadecylsilane nanoparticles. Journal of Chromatography A, 2012, 1256, 40-45.	1.8	95
238	Combination of solid-phase extraction and dispersive liquid–liquid microextraction for detection of cypermethrin and permethrin in environmental water. Analytical Methods, 2012, 4, 3002.	1.3	9
239	Dispersive Liquid–Liquid Microextraction. , 2012, , 181-212.		15
240	Automated preconcentration and analysis of organic compounds by on-line hollow fiber liquid-phase microextraction–high performance liquid chromatography. Journal of Chromatography A, 2012, 1262, 27-33.	1.8	55
241	A Miniaturized Preconcentration Method Based on Dispersive Liquid–Liquid Microextraction for the Spectrophotometric Determination of Aziridine in Food Simulants. Food Analytical Methods, 2012, 5, 1398-1403.	1.3	3
242	A three phase dispersive liquid-liquid microextraction technique for the extraction of antibiotics in milk. Mikrochimica Acta, 2012, 179, 179-184.	2.5	21
243	Application of ultrasound-assisted emulsification microextraction followed by gas chromatography for determination of organophosphorus pesticides in water and soil samples. Analytical Methods, 2012, 4, 830.	1.3	23
244	IONIC LIQUID–LIQUID PHASE MICROEXTRACTION FOR THE SENSITIVE DETERMINATION OF SANGUINARINE AND CHELERYTHRINE IN CHINESE HERBAL MEDICINES AND HUMAN URINE. Journal of Liquid Chromatography and Related Technologies, 2012, 35, 1662-1675.	0.5	11
245	Extraction Procedures for Organic Pollutants Determination in Water. Environmental Chemistry for A Sustainable World, 2012, , 171-235.	0.3	3
246	Determination of some carbamate pesticides in watermelon and tomato samples by dispersive liquid–liquid microextraction combined with high performance liquid chromatography. International Journal of Environmental Analytical Chemistry, 2012, 92, 571-581.	1.8	19
247	Ultrasound Assisted Emulsification Microextraction Based on dimetyl Iron in Water and Tea Samples. Journal of the Chinese Chemical Society, 2012, 59, 659-666.	0.8	18
248	Pressurized Liquid Extraction Combined with Dispersive Liquidâ€liquid Microâ€extraction as an Efficient Sample Preparation Method for Determination of Volatile Components in Tobacco. Journal of the Chinese Chemical Society, 2012, 59, 909-916.	0.8	2
249	Determination of rifaximin in rat serum by ionic liquid based dispersive liquid–liquid microextraction combined with <scp>RP</scp> â€ <scp>HPLC</scp> . Journal of Separation Science, 2012, 35, 1945-1952.	1.3	19
250	Dispersive liquid–liquid microextraction of organophosphorous pesticides using nonhalogenated solvents. Journal of Separation Science, 2012, 35, 2653-2658.	1.3	23
251	Evaluation of lithium separation by dispersive liquid–liquid microextraction using benzo-15-crown-5. Journal of Radioanalytical and Nuclear Chemistry, 2012, 293, 247-254.	0.7	13
252	Assay of Total Mercury in Commercial Food Supplements of Marine Origin by Means of DLLME/ICP-AES. Food Analytical Methods, 2012, 5, 695-701.	1.3	26
253	Ionic liquid based dispersive liquid-liquid microextraction combined with ICP-OES for the determination of trace quantities of cobalt, copper, manganese, nickel and zinc in environmental water samples. Mikrochimica Acta, 2012, 177, 119-127.	2.5	89

#	Article	IF	CITATIONS
254	Micro-scale quantitation of ten phthalate esters in water samples and cosmetics using capillary liquid chromatography coupled to UV detection: effective strategies to reduce the production of organic waste. Mikrochimica Acta, 2012, 177, 167-175.	2.5	25
255	Simultaneous determination of carbazole-based explosives in environmental waters by dispersive liquid—liquid microextraction coupled to HPLC with UV-Vis detection. Mikrochimica Acta, 2012, 177, 145-152.	2.5	52
256	Ultrasound assisted cold-induced aggregation: an improved method for trace determination of volatile phenol. Mikrochimica Acta, 2012, 177, 349-355.	2.5	12
257	Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water samples using solid-phase extraction followed by dispersive liquid–liquid microextraction and gas chromatography with flame photometric detection. Journal of Chromatography A, 2012, 1219, 61-65.	1.8	108
258	Bell-shaped extraction device assisted liquid–liquid microextraction technique and its optimization using response-surface methodology. Journal of Chromatography A, 2012, 1230, 24-29.	1.8	30
259	Electro membrane extraction followed by low-density solvent based ultrasound-assisted emulsification microextraction combined with derivatization for determining chlorophenols and analysis by gas chromatography–mass spectrometry. Journal of Chromatography A, 2012, 1243, 14-22.	1.8	93
260	In-line cold column trapping of organic phase in dispersive liquid–liquid microextraction: Enrichment and determination of curcumin in human serum. Journal of Chromatography A, 2012, 1244, 14-19.	1.8	29
261	Microwave assisted extraction combined with dispersive liquid–liquid microextraction as a sensitive sample preparation method for the determination of haloanisoles and halophenols in cork stoppers and oak barrel sawdust. Food Chemistry, 2012, 132, 2202-2210.	4.2	29
262	Considerations on the application of miniaturized sample preparation approaches for the analysis of organic compounds in environmental matrices. Open Chemistry, 2012, 10, 433-449.	1.0	11
263	Combination of solidâ€phase extractionâ€hollow fiber for ultraâ€preconcentration of some triazole pesticides followed by gas chromatographyâ€flame ionization detection. Journal of Separation Science, 2012, 35, 121-127.	1.3	45
264	Comparison of dispersive liquid–liquid microextraction based on organic solvent and ionic liquid combined with highâ€performance liquid chromatography for the analysis of emodin and its metabolites in urine samples. Journal of Separation Science, 2012, 35, 145-152.	1.3	45
265	Ultrasound-enhanced surfactant-assisted dispersive liquid–liquid microextraction and high-performance liquid chromatography for determination of ketoconazole and econazole nitrate in human blood. Analytical and Bioanalytical Chemistry, 2012, 402, 1241-1247.	1.9	42
266	Determination of synthetic polycyclic musks in aqueous samples by ultrasound-assisted dispersive liquid–liquid microextraction and gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 402, 1723-1730.	1.9	25
267	Extraction and determination of polybrominated diphenyl ethers in water and urine samples using solidified floating organic drop microextraction along with high performance liquid chromatography. Mikrochimica Acta, 2012, 176, 303-309.	2.5	33
268	Development of a home-made extraction device for vortex-assisted surfactant-enhanced-emulsification liquid–liquid microextraction with lighter than water organic solvents. Journal of Chromatography A, 2013, 1300, 58-63.	1.8	25
269	Ultrasound-assisted emulsification–microextraction for the sensitive determination of ethyl carbamate in alcoholic beverages. Analytical and Bioanalytical Chemistry, 2013, 405, 6791-6797.	1.9	16
270	Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography–ultraviolet detection to determination of opium alkaloids in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 2013, 85, 14-20.	1.4	59
271	Ultra-Preconcentration and Determination of Multiple Pesticide Residues in Water Samples Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction and GC-FID. Chromatographia, 2013, 76, 671-678.	0.7	10

#	Article	IF	CITATIONS
272	Sensitive determination of trace molybdenum in natural waters using dispersive liquid–liquid microextraction and electrothermal atomic absorption spectrometry. Analytical Methods, 2013, 5, 2098.	1.3	8
273	Dispersive liquid-phase microextraction in combination with HPLC for the enrichment and rapid determination of benzoylurea pesticides in environmental water samples. Journal of Separation Science, 2013, 36, 2323-2329.	1.3	28
274	Modified dispersive liquid-liquid microextraction for pre-concentration of benzene, toluene, ethylbenzene and xylenes prior to their determination by GC. Mikrochimica Acta, 2013, 180, 1141-1148.	2.5	14
275	Novel solvent-free microwave-assisted extraction coupled with low-density solvent-based in-tube ultrasound-assisted emulsification microextraction for the fast analysis of organophosphorus pesticides in soils. Journal of Separation Science, 2013, 36, 2339-2347.	1.3	11
276	Determination of salmeterol in dried blood spot using an ionic liquid based dispersive liquid–liquid microextraction coupled with HPLC. Journal of Pharmaceutical and Biomedical Analysis, 2013, 85, 283-287.	1.4	30
277	Determination of phthalate esters in bottled water using dispersive liquid–liquid microextraction coupled with <scp>GC</scp> – <scp>MS</scp> . Journal of Separation Science, 2013, 36, 2003-2009.	1.3	58
278	Trichloroacetic acid assisted synthesis of gold nanoparticles and its application in detection and estimation of pesticide. Journal of Analytical Science and Technology, 2013, 4, 3.	1.0	5
279	lonic Liquid-Based Dispersive Liquid–Liquid Microextraction Following High-Performance Liquid Chromatography for the Determination of Fungicides in Fruit Juices. Food Analytical Methods, 2013, 6, 481-487.	1.3	18
280	Application of dispersive liquid–liquid microextraction based on solidification of floating organic drop for simultaneous determination of alachlor and atrazine in aqueous samples. Journal of Separation Science, 2013, 36, 684-689.	1.3	49
281	Simultaneous derivatization and ultrasound-assisted dispersive liquid–liquid microextraction of chloropropanols in soy milk and other aqueous matrices combined with gas-chromatography–mass spectrometry. Journal of Chromatography A, 2013, 1319, 35-45.	1.8	28
282	Room Temperature Ionic Liquid-Based Dispersive Liquid Phase Microextraction for the Separation/Preconcentration of Trace Cd2+ as 1-(2-pyridylazo)-2-naphthol (PAN) Complex from Environmental and Biological Samples and Determined by FAAS. Biological Trace Element Research, 2013, 156, 49-55.	1.9	27
283	Liquid–Liquid Microextraction of Nitrophenols Using Supramolecular Solvent and Their Determination by HPLC with UV Detection. Chromatographia, 2013, 76, 1641-1647.	0.7	31
284	The simultaneous analysis of sulfonylurea herbicide residues in fruit samples using ultrasound-assisted surfactant-enhanced emulsification microextraction coupled with high-performance liquid chromatography. Analytical Methods, 2013, 5, 6009.	1.3	12
285	Dispersive liquid-liquid microextraction of phenolic compounds using solidified floating organic droplets, and their determination by HPLC. Mikrochimica Acta, 2013, 180, 341-346.	2.5	20
286	Five Years of Dispersive Liquid–Liquid Microextraction. Applied Spectroscopy Reviews, 2013, 48, 161-259.	3.4	74
287	Development of an ionic liquid-based dispersive liquid–liquid microextraction method for the determination of nifurtimox and benznidazole in human plasma. Talanta, 2013, 107, 95-102.	2.9	38
288	Ligandless, ion pair-based and ultrasound assisted emulsification solidified floating organic drop microextraction for simultaneous preconcentration of ultra-trace amounts of gold and thallium and determination by GFAAS. Talanta, 2013, 103, 375-383.	2.9	61
289	Low cost methodology for estrogens monitoring in water samples using dispersive liquid–liquid microextraction and HPLC with fluorescence detection. Talanta, 2013, 115, 980-985.	2.9	49

#	Article	IF	CITATIONS
290	An in situ benzoylation-dispersive liquid–liquid microextraction method based on solidification of floating organic droplets for determination of biogenic amines by liquid chromatography–ultraviolet analysis. Journal of Chromatography A, 2013, 1282, 1-10.	1.8	52
291	Vortex-assisted ionic liquid microextraction coupled to flame atomic absorption spectrometry for determination of trace levels of cadmium in real samples. Journal of Advanced Research, 2013, 4, 35-41.	4.4	84
292	Molecularly Imprinted Polymer as Sorbent for Solid-Phase Extraction Coupling to Gas Chromatography for the Simultaneous Determination of Trichlorfon and Monocrotophos Residues in Vegetables. Food Analytical Methods, 2013, 6, 274-281.	1.3	38
293	Lowâ€density solventâ€based vortexâ€assisted surfactantâ€enhanced emulsification liquid–liquid microextraction and its application. Journal of Separation Science, 2013, 36, 916-922.	1.3	23
294	QuEChERS in Combination with Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Method for the Simultaneous Analysis of Six Fungicides in Grape. Food Analytical Methods, 2013, 6, 1515-1521.	1.3	14
295	Ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction coupled with liquid chromatography-quadrupole-linear ion trap-mass spectrometry for simultaneous analysis of pharmaceuticals in wastewaters. Journal of Chromatography A, 2013, 1291, 19-26.	1.8	72
296	Optimization of dispersive liquid-liquid microextraction with central composite design for preconcentration of chlordiazepoxide drug and its determination by HPLC-UV. Journal of Separation Science, 2013, 36, 1734-1742.	1.3	83
297	Ionic liquid-linked dual magnetic microextraction: A novel and facile procedure for the determination of pyrethroids in honey samples. Talanta, 2013, 107, 81-87.	2.9	74
298	Vortex-assisted micro-solid-phase extraction followed by low-density solvent based dispersive liquid–liquid microextraction for the fast and efficient determination of phthalate esters in river water samples. Journal of Chromatography A, 2013, 1300, 24-30.	1.8	62
299	Determination of organophosphorous pesticides in summer crops using ultrasound-assisted solvent extraction followed by dispersive liquid–liquid microextraction based on the solidification of floating organic drop. Food Control, 2013, 34, 378-385.	2.8	94
300	Analysis of amino acids in tobacco by derivatization and dispersive liquid–liquid microextraction based on solidification of floating organic droplet method. Journal of Chromatography A, 2013, 1296, 243-247.	1.8	36
301	Comparison of air-agitated liquid–liquid microextraction technique and conventional dispersive liquid–liquid micro-extraction for determination of triazole pesticides in aqueous samples by gas chromatography with flame ionization detection. Journal of Chromatography A, 2013, 1300, 70-78.	1.8	66
302	Dispersive liquid–liquid microextraction combined with field-amplified sample stacking in capillary electrophoresis for the determination of non-steroidal anti-inflammatory drugs in milk and dairy products. Food Chemistry, 2013, 138, 890-897.	4.2	67
303	Selective dispersive liquid–liquid microextraction and preconcentration of Ni(II) into a micro droplet followed by ETAAS determination using a yellow Schiff's base bisazanyl derivative. Materials Science and Engineering C, 2013, 33, 916-922.	3.8	37
304	Ultrasound-assisted emulsification microextraction using low density solvent for analysis of toxic nitrophenols in natural waters. International Journal of Environmental Analytical Chemistry, 2013, 93, 199-212.	1.8	23
305	A Dispersive Liquid - Liquid Microextraction Methodology for Copper(II) in Environmental Samples Prior to Determination Using Microsample Injection Flame Atomic Absorption Spectrometry. Journal of AOAC INTERNATIONAL, 2013, 96, 1425-1429.	0.7	11
306	DISPERSIVE LIQUID–LIQUID MICROEXTRACTION BASED ON SOLIDIFICATION OF FLOATING ORGANIC DROPLET FOR HPLC DETERMINATION OF TANSHINONES IN TRADITIONAL CHINESE MEDICINAL INJECTIONS CONTAINING SALVIA MILTIORRHIZA BUNGE. Journal of Liquid Chromatography and Related Technologies, 2013, 36, 2095-2106.	0.5	3
307	Determination of Trace Amounts of Palladium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Dispersive Liquid-Liquid Microextraction. Journal of Chemistry, 2013, 2013, 1-6.	0.9	7

ARTICLE IF CITATIONS # Synthesis of a Novel Imprinted Polymeric Material for Simultaneous Recognition of Methamidophos 308 0.8 3 and Acephate. Advances in Polymer Technology, 2013, 32, . Determination of Trace Organophosphorus Pesticides in Water Samples by Solid Phase Disk Extraction 309 1.0 and Gas Chromatography-Thermionic Specific Detector. Analytical Letters, 2013, 46, 764-775. Temperature-controlled ultrasound- and vortex-assisted liquid-liquid microextraction combined with GC for the determination of the concentrations of organophosphorus pesticides in beverage 310 1.3 11 samples. Journal of Separation Science, 2013, 36, 3918-3925. Application of response surface methodology for optimization of ionic liquid-based dispersive liquid $\widehat{\in}$ "liquid microextraction of cadmium from water samples. Human and Experimental Toxicology, 1.1 2013, 32, 620-631 Determination of Gemfibrozil (Lipitor and Lopid) in Water, Biological Fluids and Drug Matrix by Dispersive Liquid-Liquid micro Extraction (DLLME) and Liquid Chromatography. E3S Web of 312 0.2 0 Conferences, 2013, 1, 41031. Dispersive Liquid–Liquid Microextraction Combined with Micellar Electrokinetic Chromatography for the Determination of Pesticide in Apple Sample. Journal of Dispersion Science and Technology, 1.3 2014, 35, 1319-1324. Determination of Herbicides in Soil by Dispersive Solid-Phase Extraction, Dispersive Liquid–Liquid 314 1.0 5 Microextraction, and High-Performance Liquid Chromatography. Analytical Letters, 2014, 47, 2871-2881. Evaluation of dispersive liquid-liquid microextraction for the determination of cobalt and cadmium by flame atomic absorption spectrometry: application in water and food samples. Sample Preparation, 0.4 2014, 2, . Enrichment of Copper as 1-(2-Pyridylazo)-2-Naphthol Complex by the Combination of Dispersive 316 Liquid–Liquid Microextraction/Flame Atomic Absorption Spectrometry. Journal of AOAC 0.7 14 INTERNATIONAL, 2014, 97, 205-210. A hydroxyl functionalized ionic liquid-based ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of herbicides in water samples. Analytical Methods, 2014, 6, 1.3 8744-8751. In-syringe ionic liquid dispersive liquid–liquid microextraction for the determination of sulfonamides in blood using high-performance liquid chromatography. Analytical Methods, 2014, 6, 318 1.3 18 2545-2552. Ultrasonic nebulization extraction assisted dispersive liquid–liquid microextraction followed by gas chromatography for the simultaneous determination of six parabens in cosmetic products. Journal of 319 1.3 Separation Science, 2014, 37, 2349-2356. Determination of fungicides in sediments using a dispersive liquid–liquid microextraction procedure 320 1.3 21 based on solidification of floating organic drop. Journal of Separation Science, 2014, 37, 1337-1342. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid–liquid microextraction for the separation and determination of estrogens in water samples by high \hat{e} performance liquid chromatography with fluorescence detection. Journal of Separation Science, 2014, 37, 3133-3141. 1.3 Trace Determination of Petroleum Pollutants in Water Samples by Dispersive Liquid–Liquid 322 0.7 6 Microextraction Method. Clean - Soil, Air, Water, 2014, 42, 1106-1114. Interfacing whispering gallery mode microresonators for environmental biosensing., 2014, , . Determination of ultra traces of lead in water samples after combined solid-phase extractionâ€"dispersive liquidâ€"liquid microextraction by graphite furnace atomic absorption 324 1.2 38 spectrometry. Journal of the Iranian Chemical Society, 2014, 11, 249-256. Speciation Analysis of Mn(II)/Mn(VII) in Tea Samples Using Flame Atomic Absorption Spectrometry After Room Temperature Ionic Liquid-Based Dispersive Liquid–Liquid Microextraction. Food Analytical 1.3 Methods, 2014, 7, 291-297.

#	Article	IF	CITATIONS
326	Optimized solid phase extraction based on diethyldithiocarbamate-coated Fe3O4 magnetic nanoparticles followed by ICP-OES for determination of Cd(II) and Ni(II) in rice and water samples. Journal of the Iranian Chemical Society, 2014, 11, 1129-1136.	1.2	10
327	Rapid analysis of aflatoxins B ₁ , B ₂ , and ochratoxin A in rice samples using dispersive liquid-liquid microextraction combined with HPLC. Journal of Separation Science, 2014, 37, 92-98.	1.3	64
328	Capillary liquid chromatography combined with pressurized liquid extraction and dispersive liquid–liquid microextraction for the determination of vitamin E in cosmetic products. Journal of Pharmaceutical and Biomedical Analysis, 2014, 94, 173-179.	1.4	28
329	Ionic Liquid-based Ultrasound-Assisted In Situ Solvent Formation Microextraction Combined with Electrothermal Atomic Absorption Spectrometry as a Practical Method for Preconcentration and Trace Determination of Vanadium in Water and Food Samples. Food Analytical Methods, 2014, 7, 1783-1790.	1.3	24
330	Dispersive liquid–liquid microextraction in food analysis. A critical review. Analytical and Bioanalytical Chemistry, 2014, 406, 2067-2099.	1.9	179
331	Beyond dispersive liquid–liquid microextraction. Journal of Chromatography A, 2014, 1335, 2-14.	1.8	202
332	Application of optimized dispersive liquid–liquid microextraction for determination of melatonin by HPLC–UV in plasma samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 960, 1-7.	1.2	44
333	Application of ionic liquid-based dispersive liquid–liquid microextraction for the analysis of ochratoxin A in rice wines. Food Chemistry, 2014, 161, 317-322.	4.2	33
334	Development of a new microextraction method based on elevated temperature dispersive liquid–liquid microextraction for determination of triazole pesticides residues in honey by gas chromatography-nitrogen phosphorus detection. Journal of Chromatography A, 2014, 1347, 8-16.	1.8	90
335	Macrocyclic polyamineâ€functionalized silica as a solidâ€phase extraction material coupled with ionic liquid dispersive liquid–liquid extraction for the enrichment of polycyclic aromatic hydrocarbons. Journal of Separation Science, 2014, 37, 1004-1011.	1.3	19
336	Study on a Molecularly Imprinted Solid-Phase Extraction Coupled to Capillary Electrophoresis Method for the Determination of Trace Trichlorfon in Vegetables. Food Analytical Methods, 2014, 7, 1159-1165.	1.3	24
337	Recent developments in dispersive liquid–liquid microextraction. Analytical and Bioanalytical Chemistry, 2014, 406, 2027-2066.	1.9	178
338	Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta, 2014, 119, 34-45.	2.9	285
339	Ultrasound-vortex-assisted dispersive liquid–liquid microextraction coupled with gas chromatography with a nitrogen–phosphorus detector for simultaneous and rapid determination of organophosphorus pesticides and triazines in wine. Analytical Methods, 2014, 6, 782-790.	1.3	56
340	Emulsion-based liquid-phase microextraction: a review. Journal of the Iranian Chemical Society, 2014, 11, 1087-1101.	1.2	28
341	New Trends in Sample Preparation Techniques for Environmental Analysis. Critical Reviews in Analytical Chemistry, 2014, 44, 142-185.	1.8	86
342	Liquid phase microextraction of pesticides: a review on current methods. Mikrochimica Acta, 2014, 181, 829-851.	2.5	85
343	Preconcentration and determination of bisphenol A, naphthol and dinitrophenol from environmental water samples by dispersive liquid-phase microextraction and HPLC. Analytical Methods, 2014, 6, 187-193.	1.3	20

#	Article	IF	CITATIONS
344	DETERMINATION OF CHLORPYRIFOS AND ITS MAIN DEGRADATION PRODUCT TCP IN WATER SAMPLES BY DISPERSIVE LIQUID–LIQUID MICROEXTRACTION BASED ON SOLIDIFICATION OF FLOATING ORGANIC DROPLET COMBINED WITH HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. Journal of Liquid Chromatography and Related Technologies, 2014, 37, 1499-1512.	0.5	14
345	Trace analysis of herbicides in wastewaters by a dispersive liquid-liquid microextraction approach and liquid chromatography with quadrupole linear ion trap mass spectrometry: Evaluation of green parameters. Journal of Separation Science, 2014, 37, 1511-1520.	1.3	7
346	Trace level enrichment of lead from environmental water samples utilizing dispersive liquid-liquid microextraction and quantitative determination by graphite furnace atomic absorption spectrometry. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 833-842.	0.9	5
347	Magnetically mixed hemimicelles solid-phase extraction based on ionic liquid-coated Fe3O4 nanoparticles for the analysis of trace organic contaminants in water. Analytical Methods, 2014, 6, 6783-6788.	1.3	12
348	Aptamer-Controlled Reversible Inhibition of Gold Nanozyme Activity for Pesticide Sensing. Analytical Chemistry, 2014, 86, 11937-11941.	3.2	271
349	lonic liquid dispersive liquid–liquid microextraction combined with high performance liquid chromatography for determination of tetracycline drugs in eggs. Analytical Methods, 2014, 6, 6459-6466.	1.3	23
350	Ultrasound-assisted dispersive liquid–liquid microextraction based on the solidification of a floating organic droplet followed by gas chromatography for the determination of eight pyrethroid pesticides in tea samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 969, 123-127.	1.2	66
351	ZnO nanoparticle-modified polymethyl methacrylate-assisted dispersive liquid–liquid microextraction coupled with MALDI-MS for rapid pathogenic bacteria analysis. RSC Advances, 2014, 4, 45973-45983.	1.7	38
352	Slow-Injection Ultrasound-Assisted Emulsiffation–Microextraction for Determination of Phthalate Esters in Waterâ€. Journal of Chromatographic Science, 2014, 52, 1127-1134.	0.7	8
353	Determination of Tetracyclines in Water by Ethyl Acetate–Ionic Liquid Dispersive Liquid–Liquid Microextraction and High-Performance Liquid Chromatography. Analytical Letters, 2014, 47, 1783-1795.	1.0	13
354	Rapid analysis of non-steroidal anti-inflammatory drugs in tap water and drinks by ionic liquid dispersive liquid–liquid microextraction coupled to ultra-high performance supercritical fluid chromatography. Analytical Methods, 2014, 6, 7294-7304.	1.3	27
355	Comparison of two ionic liquid dispersive liquid–liquid microextraction approaches for the determination of benzoylurea insecticides in wastewater using liquid chromatography–quadrupole-linear ion trap–mass spectrometry: Evaluation of green parameters. lournal of Chromatography A. 2014. 1356. 1-9.	1.8	54
356	Application of vortex-assisted supramolecular solvent liquid–liquid microextraction for trace determination of nitroaniline isomers. International Journal of Environmental Analytical Chemistry, 2014, 94, 812-821.	1.8	9
357	Ionic liquid based dispersive liquid–liquid microextraction followed by RP-HPLC determination of balofloxacin in rat serum. Analytical Methods, 2014, 6, 1674.	1.3	7
358	Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid–liquid microextraction based on the solidification of floating organic drop. Talanta, 2014, 130, 26-32.	2.9	90
359	Dispersive liquid-liquid microextraction for simultaneous determination of six parabens in aqueous cosmetics. Chemical Research in Chinese Universities, 2014, 30, 368-373.	1.3	7
360	Determination of Phthalate Esters in Wine Using Dispersive Liquid–Liquid Microextraction and Gas Chromatography. Analytical Letters, 2014, 47, 1874-1887.	1.0	6
361	Determination of Fenvalerate in Tomato by Ultrasound-Assisted Solvent Extraction Combined with Dispersive Liquid-Liquid Microextraction. Journal of Chromatographic Science, 2014, 52, 944-949.	0.7	10

#	Article	IF	CITATIONS
362	Determination of pesticides and related compounds in water by dispersive liquid–liquid microextraction and gas chromatography-triple quadrupole mass spectrometry. Analytical Methods, 2014, 6, 5020.	1.3	15
363	Evaluation of IL-ATPS and IL-MAE for Simultaneous Determination of Herbicides and Plant Growth Regulators in Sediment. Chromatographia, 2014, 77, 923-931.	0.7	14
364	Further investigation of array capillary in-tube solid-phase microextraction of trace organic pollutants in water samples. Analytical Methods, 2014, 6, 750-757.	1.3	10
365	Determination and Control of Pesticide Residues in Beverages: A Review of Extraction Techniques, Chromatography, and Rapid Detection Methods. Applied Spectroscopy Reviews, 2014, 49, 97-120.	3.4	44
366	Preparation of a Magnetic Metal Organic Framework Composite and Its Application for the Detection of Methyl Parathion. Analytical Sciences, 2014, 30, 663-668.	0.8	15
367	Two dispersive liquid–liquid microextraction methods coupled with gas chromatography–mass spectrometry for the determination of organophosphorus pesticides in field water. Environmental Chemistry, 2014, 11, 661.	0.7	3
368	Determination of nifurtimox in dog plasma by stable-isotope dilution LC–MS/MS. Bioanalysis, 2015, 7, 2777-2787.	0.6	1
371	Comparison of airâ€agitated liquid–liquid microextraction and ultrasoundâ€assisted emulsification microextraction for polycyclic aromatic hydrocarbons determination in hookah water. Journal of Separation Science, 2015, 38, 2496-2502.	1.3	25
372	Simultaneous Determination of Nonsteroidal Antiâ€Inflammatory Drugs in Aqueous Samples Using Dispersive Liquid–Liquid Microextraction and <scp>HPLC</scp> Analysis. Bulletin of the Korean Chemical Society, 2015, 36, 2901-2906.	1.0	16
373	A sensitive and efficient method for trace analysis of some phenolic compounds using simultaneous derivatization and airâ€assisted liquid–liquid microextraction from human urine and plasma samples followed by gas chromatography–nitrogen phosphorous detection. Biomedical Chromatography, 2015, 29, 1921-1931	0.8	2
374	Ultrasoundâ€Assisted Emulsificationâ€Microextraction With In Situ Derivatization and Gas Chromatographyâ€Electron apture Detection for Determination of Chlorophenols in Water. Clean - Soil, Air, Water, 2015, 43, 1143-1149.	0.7	4
375	Vortexâ€assisted liquid–liquid microextraction using a lowâ€ŧoxicity solvent for the determination of five organophosphorus pesticides in water samples by highâ€performance liquid chromatography. Journal of Separation Science, 2015, 38, 3487-3493.	1.3	29
376	High-throughput dispersive liquid/liquid microextraction (DLLME) method for the rapid determination of drugs of abuse, benzodiazepines and other psychotropic medications in blood samples by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and application to forensic cases. Microchemical Journal, 2015, 123, 33-41.	2.3	86
377	Cases, Microchemicar Journal, 2019, 123, 55-41. Development of a green liquid–liquid microextraction method using a solid disperser performed in a narrow-bore tube for trace analysis of some organophosphorus pesticides in fruit juices. Journal of Food Composition and Analysis, 2015, 43, 96-105.	1.9	15
378	Analysis of organo-chlorine pesticides residue in raw coffee with a modified "quick easy cheap effective rugged and safe―extraction/clean up procedure for reducing the impact of caffeine on the gas chromatography–mass spectrometry measurement. Journal of Chromatography A, 2015, 1376, 167-171.	1.8	20
379	Negative corona discharge-ion mobility spectrometry as a detection system for low density extraction solvent-based dispersive liquid–liquid microextraction. Talanta, 2015, 134, 724-731.	2.9	12
380	Spatial distribution and partitioning of organophosphates pesticide in water and sediment from Sarno River and Estuary, Southern Italy. Environmental Science and Pollution Research, 2015, 22, 8629-8642.	2.7	53
381	Determination of 13 endocrine disrupting chemicals in sediments by gas chromatography–mass spectrometry using subcritical water extraction coupled with dispersed liquid–liquid microextraction and derivatization. Analytica Chimica Acta, 2015, 866, 41-47.	2.6	36

#	Article	IF	CITATIONS
382	Use of switchable hydrophilicity solvents for the homogeneous liquid–liquid microextraction of triazine herbicides from environmental water samples. Journal of Separation Science, 2015, 38, 990-995.	1.3	79
383	<i>>n</i> -Octylated Magnetic Nanoparticle-Based Microextraction for the Determination of Organophosphorus Pesticides in Water. Analytical Letters, 2015, 48, 1604-1618.	1.0	6
384	Extraction and determination of polycyclic aromatic hydrocarbons in water samples using stir bar sorptive extraction (SBSE) combined with dispersive liquid–liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) followed by HPLC-UV. RSC Advances, 2015, 5, 20339-20345.	1.7	43
385	Detection of Posaconazole by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Dispersive Liquid–Liquid Microextraction. Journal of the American Society for Mass Spectrometry, 2015, 26, 530-533.	1.2	7
386	Development of an ionicâ€liquidâ€based dispersive liquid–liquid microextraction method for the determination of antichagasic drugs in human breast milk: Optimization by central composite design. Journal of Separation Science, 2015, 38, 1591-1600.	1.3	18
387	High-throughput screening for new psychoactive substances (NPS) in whole blood by DLLME extraction and UHPLC–MS/MS analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1000, 57-68.	1.2	86
388	In-tube electro-membrane extraction with a sub-microliter organic solvent consumption as an efficient technique for synthetic food dyes determination in foodstuff samples. Journal of Chromatography A, 2015, 1410, 35-43.	1.8	41
389	Exploitation of pulsed flows for on-line dispersive liquid–liquid microextraction: Spectrophotometric determination of formaldehyde in milk. Talanta, 2015, 144, 1189-1194.	2.9	55
390	Magnetic solid phase extraction and gas chromatography–mass spectrometrical analysis of sixteen polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2015, 1406, 40-47.	1.8	29
391	Fast Analytical Techniques Based on Microextraction. Comprehensive Analytical Chemistry, 2015, 67, 85-134.	0.7	8
392	Analytical methods for determination of anticoagulant rodenticides in biological samples. Forensic Science International, 2015, 253, 94-102.	1.3	27
393	Liquid Chromatographic Determination of NSAIDs in Urine After Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplets. Chromatographia, 2015, 78, 987-994.	0.7	27
394	Recent achievements in solidified floating organic drop microextraction. TrAC - Trends in Analytical Chemistry, 2015, 68, 48-77.	5.8	88
395	Extraction and GC-MS analysis of phthalate esters in food matrices: a review. RSC Advances, 2015, 5, 37023-37043.	1.7	86
396	Optimization of dispersive liquid–liquid microextraction combined with high performance liquid chromatography for the analysis of dipyridamole in water and urine samples. Monatshefte Für Chemie, 2015, 146, 1593-1601.	0.9	11
397	Ionic Liquid-Based Ultrasonic-Assisted Extraction Combined with HPLC–MS/MS for the Determination of Seven Mercapturic Acids in Human Urine. Chromatographia, 2015, 78, 641-648.	0.7	11
398	Comparison of ultrasound-enhanced air-assisted liquid–liquid microextraction and low-density solvent-based dispersive liquid–liquid microextraction methods for determination of nonsteroidal anti-inflammatory drugs in human urine samples. Journal of Pharmaceutical and Biomedical Analysis, 2015, 111, 297-305.	1.4	46
399	DNA technology for small molecules sensing: a new approach for Acetamiprid detection. , 2015, , .		1

	Article	IF	CITATIONS
400	Conversion of Inhibition Biosensing to Substrate-Like Biosensing for Quinalphos Selective Detection. Analytical Chemistry, 2015, 87, 5270-5277.	3.2	18
401	Dispersive liquid–liquid microextraction for the determination of new generation pesticides in soils by liquid chromatography and tandem mass spectrometry. Journal of Chromatography A, 2015, 1394, 1-8.	1.8	35
402	Analysis of oxybutynin and N-desethyloxybutynin in human urine by dispersive liquid–liquid microextraction (DLLME) and capillary electrophoresis (CE). Analytical Methods, 2015, 7, 8763-8770.	1.3	8
403	Determination of Organothiophosphate Insecticides in Environmental Water Samples by a Very Simple and Sensitive Spectrofluorimetric Method. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 536-541.	1.3	9
404	Acetylcholinesterase inhibition-based ultrasensitive fluorometric detection of malathion using unmodified silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 485, 111-117.	2.3	27
405	Determination of benzoylurea insecticides in environmental water and honey samples using ionic-liquid-mingled air-assisted liquid–liquid microextraction based on solidification of floating organic droplets. RSC Advances, 2015, 5, 25572-25580.	1.7	32
406	Modified QuEChERS in Combination with Dispersive Liquid–Liquid Microextraction Based on Solidification of the Floating Organic Droplet Method for the Determination of Organophosphorus Pesticides in Milk Samples. Journal of Chromatographic Science, 2015, 53, bmv089.	0.7	6
407	A simple one-step extraction method for the determination of organophosphorus pesticides in shuanghuanglian and antivirus oral liquids by gas chromatography-tandem mass spectrometry. Analytical Methods, 2015, 7, 6821-6827.	1.3	3
408	Applications of Experimental Design to the Optimization of Microextraction Sample Preparation Parameters for the Analysis of Pesticide Residues in Fruits and Vegetables. Journal of AOAC INTERNATIONAL, 2015, 98, 1171-1185.	0.7	10
409	A simple and sensitive fluorescent sensor for methyl parathion based on I -tyrosine methyl ester		0.05
	functionalized carbon dots. Biosensors and Bioelectronics, 2015, 68, 20-26.	5.3	207
410	functionalized carbon dots. Biosensors and Bioelectronics, 2015, 68, 20-26. Solvent Extraction. , 2015, , 131-189.	5.3	8
410		5.3 0.7	
	Solvent Extraction. , 2015, , 131-189. Determination of Clevidipine and Its Primary Metabolite in Rat Plasma by a Dispersive Liquid–Liquid		8
411	Solvent Extraction. , 2015, , 131-189. Determination of Clevidipine and Its Primary Metabolite in Rat Plasma by a Dispersive Liquid–Liquid Microextraction Method. Journal of Chromatographic Science, 2015, 53, 830-835. Ionic liquids for improving the extraction of NSAIDs in water samples using dispersive liquid–liquid microextraction by high performance liquid chromatography-diode array–fluorescence detection.	0.7	8
411 412	Solvent Extraction., 2015, , 131-189. Determination of Clevidipine and Its Primary Metabolite in Rat Plasma by a Dispersive Liquid–Liquid Microextraction Method. Journal of Chromatographic Science, 2015, 53, 830-835. Ionic liquids for improving the extraction of NSAIDs in water samples using dispersive liquid–liquid microextraction by high performance liquid chromatography-diode array–fluorescence detection. Talanta, 2015, 134, 619-626. Determination of fluoroquinolone drugs in meat by ionic-liquid-based dispersive liquid–liquid	0.7 2.9	8 3 56
411 412 413	Solvent Extraction., 2015, , 131-189. Determination of Clevidipine and Its Primary Metabolite in Rat Plasma by a Dispersive Liquid–Liquid Microextraction Method. Journal of Chromatographic Science, 2015, 53, 830-835. Ionic liquids for improving the extraction of NSAIDs in water samples using dispersive liquid–liquid microextraction by high performance liquid chromatography-diode array–fluorescence detection. Talanta, 2015, 134, 619-626. Determination of fluoroquinolone drugs in meat by ionic-liquid-based dispersive liquid–liquid microextraction-high performance liquid chromatography. Analytical Methods, 2015, 7, 1046-1052. Application of nonionic surfactant as a new method for the enhancement of electromembrane extraction performance for determination of basic drugs in biological samples. Journal of	0.7 2.9 1.3	8 3 56 18
411 412 413 414	Solvent Extraction., 2015, , 131-189. Determination of Clevidipine and Its Primary Metabolite in Rat Plasma by a Dispersive Liquid–Liquid Microextraction Method. Journal of Chromatographic Science, 2015, 53, 830-835. Ionic liquids for improving the extraction of NSAIDs in water samples using dispersive liquid–liquid microextraction by high performance liquid chromatography-diode array–fluorescence detection. Talanta, 2015, 134, 619-626. Determination of fluoroquinolone drugs in meat by ionic-liquid-based dispersive liquid–liquid microextraction-high performance liquid chromatography. Analytical Methods, 2015, 7, 1046-1052. Application of nonionic surfactant as a new method for the enhancement of electromembrane extraction performance for determination of basic drugs in biological samples. Journal of Chromatography A, 2015, 1378, 1-7. Recent Advances in Analysis of Pesticides in Food and Drink Samples Using LPME Techniques Coupled	0.7 2.9 1.3 1.8	8 3 56 18 40

#	Article	IF	Citations
418	Application of dispersive liquid–liquid microextraction and gas chromatography with mass spectrometry for the determination of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen. Journal of Separation Science, 2016, 39, 2604-2615.	1.3	41
419	Dispersive Liquid–Liquid Microextraction Combined with High-Performance Liquid Chromatography for the Simultaneous Analysis of Matrine Alkaloids in Traditional Chinese Medicine. Journal of Chromatographic Science, 2016, 54, 1687-1693.	0.7	11
420	Application of dispersive liquid—liquid microextraction for the analysis of organophosphorus pesticides in Hawthorn (Crataegus pinnatifida var. major) juice samples. Acta Chromatographica, 2016, 28, 403-414.	0.7	6
421	Optimization of ionic liquid based dispersive liquid–liquid microextraction combined with dispersive micro-solid phase extraction for the spectrofluorimetric determination of sulfasalazine in aqueous samples by response surface methodology. RSC Advances, 2016, 6, 113551-113560.	1.7	13
422	New procedure for the control of the treatment of industrial effluents to remove volatile organosulfur compounds. Journal of Separation Science, 2016, 39, 3946-3956.	1.3	26
424	Characteristics of selected bioaccumulative substances and their impact on fish health. Journal of Veterinary Research (Poland), 2016, 60, 473-480.	0.3	7
425	Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosensors and Bioelectronics, 2016, 85, 445-449.	5.3	166
426	Estimates of Tiber River organophosphate pesticide loads to the Tyrrhenian Sea and ecological risk. Science of the Total Environment, 2016, 559, 218-231.	3.9	60
427	Gas-assisted dispersive liquid-phase microextraction using ionic liquid as extracting solvent for spectrophotometric speciation of copper. Talanta, 2016, 154, 461-466.	2.9	37
428	A sensitive and efficient method for the determination of 8 chlorophenoxy acid herbicides in crops by dispersive liquid–liquid microextraction and HPLC with fluorescence detection and identification by MS. Analytical Methods, 2016, 8, 3536-3544.	1.3	10
429	Homogeneous Liquid–Liquid Microextraction for Determination of Organophosphorus Pesticides in Environmental Water Samples Prior to Gas Chromatography-Flame Photometric Detection. Journal of Chromatographic Science, 2016, 54, 1061-1067.	0.7	27
430	Separation of uranium (VI) using dispersive liquid-liquid extraction from leach liquor. Progress in Nuclear Energy, 2016, 90, 212-218.	1.3	19
431	In-syringe reversed dispersive liquid–liquid microextraction coupled to high performance liquid chromatography for the determination of sulfonylurea herbicide residues in cereal samples. Analytical Methods, 2016, 8, 4254-4262.	1.3	13
432	Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples. Talanta, 2016, 156-157, 126-133.	2.9	75
433	Turn-off fluorescence probe for the selective determination of pendimethalin using a mechanistic docking model of novel oxacalix[4]arene. RSC Advances, 2016, 6, 53573-53577.	1.7	30
434	Analysis of Malathion pesticide residues in rice samples using ultrasound-assisted emulsification-microextraction coupled to UV photoionization source ion mobility spectrometry. International Journal for Ion Mobility Spectrometry, 2016, 19, 189-195.	1.4	3
435	Solid-phase extraction combined with dispersive liquid-liquid microextraction and chiral liquid chromatography-tandem mass spectrometry for the simultaneous enantioselective determination of representative proton-pump inhibitors in water samples. Analytical and Bioanalytical Chemistry, 2016, 408, 6381-6392.	1.9	28
436	Simultaneous extraction and determination of phthalate esters in aqueous solution by yolk-shell magnetic mesoporous carbon-molecularly imprinted composites based on solid-phase extraction coupled with gas chromatography–mass spectrometry. Talanta, 2016, 161, 114-121.	2.9	47

#	Article	lF	CITATIONS
437	Combination of homogenous liquid–liquid extraction and dispersive liquid–liquid microextraction for extraction and preconcentration of amantadine from biological samples followed by its indirect determination by flame atomic absorption spectrometry. RSC Advances, 2016, 6, 108603-108610.	1.7	50
438	Application of tandem dispersive liquid–liquid microextraction for the determination of doxepin, citalopram, and fluvoxamine in complicated samples. Journal of Separation Science, 2016, 39, 4828-4834.	1.3	18
439	Study of Analytical Techniques to Determine Chlorpyrifos in the Surface Waterways of the Rural Zone of Ouro Branco, Brazil: A Case Study. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	1
440	Preconcentration of valsartan by dispersive liquid–liquid microextraction based on solidification of floating organic drop and its determination in urine sample: Central composite design. Journal of Separation Science, 2016, 39, 1935-1944.	1.3	22
441	Electromembrane extraction of polar basic drugs from plasma with pure bis(2-ethylhexyl) phosphite as supported liquid membrane. Analytica Chimica Acta, 2016, 934, 80-87.	2.6	52
442	Response surface methodology based on central composite design as a chemometric tool for optimizing dispersive liquid–liquid microextraction for determining ultra-trace amounts of zinc in oil and water samples. Analytical Methods, 2016, 8, 5101-5110.	1.3	15
443	Sensitive determination of trace urinary 3-hydroxybenzo[a]pyrene using ionic liquids-based dispersive liquid–liquid microextraction followed by chemical derivatization and high performance liquid chromatography–high resolution tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1027, 200-206.	1.2	17
444	Dispersive solidâ€phase extraction followed by vortexâ€assisted dispersive liquid–liquid microextraction based on the solidification of a floating organic droplet for the determination of benzoylurea insecticides in soil and sewage sludge. Journal of Separation Science, 2016, 39, 1258-1265.	1.3	24
445	Rapid and simultaneous determination of ten off-flavor compounds in water by headspace solid phase microextraction and gas chromatography-mass spectrometry. Journal of Central South University, 2016, 23, 59-67.	1.2	14
446	Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples. Analytical and Bioanalytical Chemistry, 2016, 408, 1701-1713.	1.9	71
447	Determination of Forty Pollutants in Wastewater by Liquid–Liquid Extraction and Gas Chromatography–Mass Spectrometry. Analytical Letters, 2016, 49, 1480-1491.	1.0	10
448	Extraction of organophosphorus pesticides by carbonâ€coated Fe ₃ O ₄ nanoparticles through response surface experimental design. Journal of Separation Science, 2016, 39, 256-263.	1.3	14
449	Determination of ultra-trace palladium (II) in water, soil, and food samples by dispersive liquidâ€liquid microextraction-atomic absorption spectrometry using 2-mercaptobenzimidazole as a complexing agent. Microchemical Journal, 2016, 127, 46-51.	2.3	38
450	Dispersive solid phase extraction followed by low-toxicity vortex-assisted liquid–liquid microextraction for the determination of organophosphorus pesticides by high-performance liquid chromatography. Analytical Methods, 2016, 8, 2684-2690.	1.3	9
451	Comparative Evaluation of QuEChERS Method Coupled to DLLME Extraction for the Analysis of Multiresidue Pesticides in Vegetables and Fruits by Gas Chromatography-Mass Spectrometry. Food Analytical Methods, 2016, 9, 2656-2669.	1.3	50
452	Tandem air-agitated liquid–liquid microextraction as an efficient method for determination of acidic drugs in complicated matrices. Analytica Chimica Acta, 2016, 917, 44-52.	2.6	56
453	Determination of immunosuppressive drugs in human urine and serum by surface-assisted laser desorption/ionization mass spectrometry with dispersive liquid-liquid microextraction. Analytical and Bioanalytical Chemistry, 2016, 408, 629-637.	1.9	13
454	Preparation of molecularly imprinted polymers using theanine as dummy template and its application as SPE sorbent for the determination of eighteen amino acids in tobacco. Talanta, 2016, 150, 388-398.	2.9	40

#	Article	IF	Citations
455	Tandem dispersive liquid–liquid microextraction as an efficient method for determination of basic	1.8	54
100	drugs in complicated matrices. Journal of Chromatography A, 2016, 1429, 13-21.	210	
456	Supramolecular based-ligandless ultrasonic assisted-dispersion solidification liquid–liquid microextraction of uranyl ion prior to spectrophotometric determination with dibenzoylmethane. RSC Advances, 2016, 6, 2394-2401.	1.7	11
457	Selective and sensitive electrochemical detection of methyl parathion using chemically modified overhead projector sheets as flexible electrodes. Sensors and Actuators B: Chemical, 2016, 227, 169-177.	4.0	61
458	Synthesis and sensing applications of a new fluorescent derivative of cholesterol. New Journal of Chemistry, 2016, 40, 1817-1824.	1.4	8
459	Acid–base reaction-based dispersive liquid–liquid microextraction method for extraction of three classes of pesticides from fruit juice samples. Journal of Chromatography A, 2016, 1431, 8-16.	1.8	17
460	Electrophoretic micro-preconcentration of ionizable compounds as a green approach in sample preparation. Microchemical Journal, 2016, 125, 124-129.	2.3	11
461	Determination of carbamazepine in formulation samples using dispersive liquid–liquid microextraction method followed by ion mobility spectrometry. International Journal for Ion Mobility Spectrometry, 2016, 19, 51-56.	1.4	12
462	Dispersive Liquid-Liquid Microextraction for the Determination of Emerging Fusarium Mycotoxins in Water. Food Analytical Methods, 2016, 9, 856-862.	1.3	10
463	Extraction and preconcentration of triazine pesticides using rapid, simple, and disperser solventless microextraction technique followed by gas chromatography–nitrogen phosphorous detection. European Journal of Lipid Science and Technology, 2017, 119, 1600208.	1.0	5
464	Determination of Natamycin in Dairy Products Using Dispersive Liquid-Liquid Microextraction and Indirect Flame Atomic Absorption Spectrometry. Food Analytical Methods, 2017, 10, 2529-2538.	1.3	6
465	Centrifuge-free dispersive liquid–liquid microextraction based on the salting-out effect followed by high performance liquid chromatography for simple and sensitive determination of polycyclic aromatic hydrocarbons in water samples. Analytical Methods, 2017, 9, 1732-1740.	1.3	17
466	Occurrence of erythromycin and its degradation products residues in honey. Validation of an analytical method. Journal of Separation Science, 2017, 40, 1353-1360.	1.3	5
467	Selective determination of chromium(VI) ions using in-tube electro-membrane extraction followed by flame atomic absorption spectrometry. Microchemical Journal, 2017, 132, 378-384.	2.3	24
468	Analysis of sulfur compounds using a water stationary phase in gas chromatography with flame photometric detection. Analytical Methods, 2017, 9, 1097-1104.	1.3	10
469	Determination of five endosulfan pesticides in the fish pond water by dispersive liquid–liquid microextraction combined with GC–MS. Forensic Sciences Research, 2017, 2, 40-45.	0.9	8
470	Determination of triazine herbicides in juice samples by microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography. Journal of Separation Science, 2017, 40, 2950-2958.	1.3	28
471	Determination of organotin compounds in sediment samples by dispersive liquid-liquid microextraction followed by gas chromatography – Pulsed flame photometric detection (DLLME-GC-PFPD). Microchemical Journal, 2017, 134, 49-53.	2.3	19
472	A convenient method for determination of malathion based on the resonance Rayleigh scattering enhancement. Journal of Molecular Structure, 2017, 1144, 1-8.	1.8	7

#	Article	IF	CITATIONS
473	Novel Bifunctional Electrocatalyst for ORR Activity and Methyl Parathion Detection Based on Reduced Graphene Oxide/Palladium Tetraphenylporphyrin Nanocomposite. Journal of Physical Chemistry C, 2017, 121, 14096-14107.	1.5	30
474	Improved in-tube electro-membrane extraction followed by high-performance liquid chromatography for simple and selective determination of ionic compounds: Optimization by central composite design. Journal of Separation Science, 2017, 40, 2967-2974.	1.3	9
475	Trace determination of five triazole fungicide residues in traditional Chinese medicine samples by dispersive solidâ€phase extraction combined with ultrasoundâ€essisted dispersive liquid–liquid microextraction and UHPLC–MS/MS. Journal of Separation Science, 2017, 40, 3257-3266.	1.3	30
476	A two-in-one device for online monitoring of direct immersion single-drop microextraction: an optical probe as both microdrop holder and measuring cell. RSC Advances, 2017, 7, 29421-29427.	1.7	23
477	Microspectrophotometric determination of erythrosine in beverage and water samples after ultrasonic assisted supramolecular-based dispersion solidification liquid–liquid microextraction. Journal of Analytical Chemistry, 2017, 72, 617-623.	0.4	21
478	Reduced Graphene Oxide Supported Cobalt Bipyridyl Complex for Sensitive Detection of Methyl Parathion in Fruits and Vegetables. Electroanalysis, 2017, 29, 1950-1960.	1.5	43
479	Ni(II) analysis in food and environmental samples by liquid-liquid microextraction combined with electro-thermal atomic absorption spectrometry. Microchemical Journal, 2017, 133, 311-319.	2.3	10
480	Evaluation of abamectin, diazinon and chlorpyrifos pesticide residues in apple product of Mahabad region gardens: Iran in 2014. Food Chemistry, 2017, 231, 148-155.	4.2	51
481	An overview of advances in dispersive liquid–liquid microextraction for the extraction of pesticides and emerging contaminants from environmental samples. Trends in Environmental Analytical Chemistry, 2017, 14, 1-18.	5.3	77
482	Rapid determination of some psychotropic drugs in complex matrices by tandem dispersive liquid–liquid microextraction followed by high performance liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1052, 51-59.	1.2	27
483	Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples. Journal of Chromatography A, 2017, 1493, 1-9.	1.8	62
484	Centrifugeless ultrasoundâ€assisted emulsification microextraction based on saltingâ€out phenomenon followed by highâ€performance liquid chromatography for the simple determination of phthalate esters in aqueous samples. Journal of Separation Science, 2017, 40, 2022-2029.	1.3	12
485	Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon as an efficient method for determination of phenolic compounds in environmental samples. Analytical and Bioanalytical Chemistry, 2017, 409, 3007-3016.	1.9	21
486	Using enantioselective dispersive liquid–liquid microextraction for the microseparation of trans -cyclohexane-1,2-diamine enantiomers. Tetrahedron: Asymmetry, 2017, 28, 454-459.	1.8	2
487	Ultrasonic energy enhanced the efficiency of advance extraction methodology for enrichment of trace level of copper in serum samples of patients having neurological disorders. Ultrasonics Sonochemistry, 2017, 37, 23-28.	3.8	11
488	Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues. Sensors and Actuators B: Chemical, 2017, 241, 1008-1013.	4.0	76
489	Hyaluronan–tyrosine–gold nanoparticles as an enzyme-free colorimetric probe for the detection of phosphorothiolate pesticides. Analytical Methods, 2017, 9, 6139-6147.	1.3	9
490	Rapid derivatization and extraction of paraben preservatives by fast syringe-assisted liquid–liquid microextraction and their determination in cosmetic and aqueous sample solutions by gas chromatography. Analytical Methods, 2017, 9, 5963-5969.	1.3	23

#	Article	IF	CITATIONS
491	Chlorobenzene Release During Thermal Drying of Sludge: Mechanism and Source. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	6
493	Triple Quadrupole Mass Spectrometry with Liquid Chromatography and Dispersive Liquid-Liquid Microextraction for the Determination of Monoterpenes in Alcoholic Drinks. Food Analytical Methods, 2017, 10, 3615-3622.	1.3	5
494	Simple and rapid determination of zaltoprofen in human plasma by manualâ€shakingâ€assisted dispersive liquid–liquid microextraction followed by liquid chromatography with ultraviolet detection. Journal of Separation Science, 2017, 40, 4050-4059.	1.3	4
495	Development of solidification of floating organic drops liquid–liquid microextraction in a newly designed extraction device. New Journal of Chemistry, 2017, 41, 15384-15391.	1.4	2
496	Pesticide analysis in coffee leaves using a quick, easy, cheap, effective, rugged and safe approach and liquid chromatography tandem mass spectrometry: Optimization of the clean-up step. Journal of Chromatography A, 2017, 1512, 98-106.	1.8	35
497	Comprehensive review of trends and analytical strategies applied forÂbiological samples preparation and storage in modern medical lipidomics: State of the art. TrAC - Trends in Analytical Chemistry, 2017, 86, 276-289.	5.8	38
498	Simplified Determination of Organophosphorus Pesticides in Camellia Oil. Analytical Letters, 2017, 50, 1248-1259.	1.0	4
499	Ten years of dispersive liquid–liquid microextraction and derived techniques. Applied Spectroscopy Reviews, 2017, 52, 267-415.	3.4	78
500	Low-toxic air-agitated liquid-liquid microextraction using a solidifiable organic solvent followed by gas chromatography for analysis of amitriptyline and imipramine in human plasma and wastewater samples. Microchemical Journal, 2017, 130, 122-128.	2.3	30
501	Magnetic Solid-Phase Extraction of Oxadiazon and Profenofos from Environmental Water Using Magnetite Fe3O4@SiO2–C18 Nanoparticles. Journal of Polymers and the Environment, 2017, 25, 770-780.	2.4	16
502	Electromembrane extraction with alkylated phosphites and phosphates as supported liquid membranes. Journal of Membrane Science, 2017, 526, 18-24.	4.1	45
503	Stirring-controlled solidified floating solid-liquid drop microextraction as a new solid phase-enhanced liquid-phase microextraction method by exploiting magnetic carbon nanotube-nickel hybrid. Analytica Chimica Acta, 2017, 951, 78-88.	2.6	19
504	11. Selected Applications. , 2017, , 269-346.		0
505	6. Enrichment and Sample Cleanup. , 2017, , 79-128.		0
506	Supramolecular-Based Ultrasonic-Assisted Dispersion Solidification Liquid–Liquid Microextraction of Copper and Cobalt Prior to Their Flame Atomic Absorption Spectrometry Determination. Journal of AOAC INTERNATIONAL, 2017, 100, 1861-1868.	0.7	7
507	Hollow-Fibre-Supported Dispersive Liquid-Liquid Microextraction for Determination of Atrazine and Triclosan in Aqueous Samples. International Journal of Analytical Chemistry, 2017, 2017, 1-8.	0.4	30
508	Filter-Based Low-Toxic Emulsification Microextraction Followed by High-Performance Liquid Chromatography for Determination of Sudan Dyes in Foodstuff Samples. Food Analytical Methods, 2018, 11, 2287-2295.	1.3	10
509	Analytical Confirmation of Various Herbicides in Drinking Water Resources in Sugarcane Production Regions of Guangxi, China. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 815-820.	1.3	36

#	Article	IF	CITATIONS
510	Development of new extraction method based on liquid–liquid–liquid extraction followed by dispersive liquid–liquid microextraction for extraction of three tricyclic antidepressants in plasma samples. Biomedical Chromatography, 2018, 32, e4251.	0.8	14
511	A novel aptasensor for malathion blood samples detection based on DNA–silver nanocluster. Analytical Methods, 2018, 10, 1928-1934.	1.3	16
512	Magnetic core micelles as a nanosorbent for the efficient removal and recovery of three organophosphorus pesticides from fruit juice and environmental water samples. Journal of Separation Science, 2018, 41, 2037-2045.	1.3	17
513	Determination of Nonâ€Steroidal Antiâ€Inflammatory Drugs in Urine by HPLC–UV/Vis Analysis Coupled with Electromembrane Extraction. Bulletin of the Korean Chemical Society, 2018, 39, 335-340.	1.0	8
514	Simple determination of some antidementia drugs in wastewater and human plasma samples by tandem dispersive liquid–liquid microextraction followed by highâ€performance liquid chromatography. Journal of Separation Science, 2018, 41, 2214-2220.	1.3	4
515	Simultaneous Determination of Bismuth, Lead, and Iron in Water Samples by Optimization of USAEME and ICP–OES via Experimental Design. Journal of Analysis and Testing, 2018, 2, 98-105.	2.5	10
516	In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides. Journal of Chromatography A, 2018, 1559, 95-101.	1.8	105
517	A nanocomposite prepared from a zinc-based metal-organic framework and polyethersulfone as a novel coating for the headspace solid-phase microextraction of organophosphorous pesticides. Mikrochimica Acta, 2018, 185, 62.	2.5	43
518	Development of a liquid-phase microextraction based on the freezing of a deep eutectic solvent followed by HPLC-UV for sensitive determination of common pesticides in environmental water samples. RSC Advances, 2018, 8, 11412-11418.	1.7	69
519	Zirconium dioxide-reduced graphene oxide nanocomposite-coated stir-bar sorptive extraction coupled with ion mobility spectrometry for determining ethion. Talanta, 2018, 182, 285-291.	2.9	32
520	Determination of benzodiazepines in beverages using green extraction methods and capillary HPLC-UV detection. Journal of Pharmaceutical and Biomedical Analysis, 2018, 154, 492-500.	1.4	28
521	Dispersive-Solid-Phase Extraction Cleanup Integrated to Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet for Determination of Organochlorine Pesticides in Vegetables. Food Analytical Methods, 2018, 11, 693-702.	1.3	15
522	Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon followed by high performance liquid chromatography for determination of Sudan dyes in different species. Food Chemistry, 2018, 244, 1-6.	4.2	51
523	Response surface methodology optimized dispersive liquid–liquid microextraction coupled with surface plasmon resonance of silver nanoparticles as colorimetric probe for determination of captopril. Sensors and Actuators B: Chemical, 2018, 256, 251-260.	4.0	21
524	Development of salt and pH–induced solidified floating organic droplets homogeneous liquid–liquid microextraction for extraction of ten pyrethroid insecticides in fresh fruits and fruit juices followed by gas chromatography-mass spectrometry. Talanta, 2018, 176, 565-572.	2.9	59
525	Magnetic solid-phase extraction of triazine herbicides from rice using metal-organic framework MIL-101(Cr) functionalized magnetic particles. Talanta, 2018, 179, 512-519.	2.9	112
526	Molecular spectroscopy – Information rich detection for gas chromatography. TrAC - Trends in Analytical Chemistry, 2018, 99, 47-65.	5.8	34
527	Isotope dilution determination for the trace level of 4(5)-methylimidazole in beverages using dispersive liquid-liquid microextraction coupled with ESI-HPLC–MS/MS. Food Chemistry, 2018, 245, 687-691.	4.2	14

#	Article	IF	CITATIONS
528	Rapid and simple procedure for the determination of cathinones, amphetamine-like stimulants and other new psychoactive substances in blood and urine by GC–MS. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 494-501.	1.4	84
529	Application of Response Surface Methodology and Genetic Algorithm for Optimization and Determination of Iron in Food Samples by Dispersive Liquid–Liquid Microextraction Coupled UV–Visible Spectrophotometry. Arabian Journal for Science and Engineering, 2018, 43, 229-240.	1.7	9
530	Microwave-assisted-demulsification–dispersive liquid–liquid microextraction coupled with gas chromatography–mass spectrometry for the determination of PAHs in water. Analytical Methods, 2018, 10, 5105-5111.	1.3	4
531	Molecular dynamics study of copper wire bonding process. , 2018, , .		0
532	Simple determination of amphetamine and methamphetamine in complicated matrices by filterâ€based emulsification microextraction followed by highâ€performance liquid chromatography. Separation Science Plus, 2018, 1, 669-675.	0.3	1
533	Microwaveâ€assistedâ€demulsification dispersive liquid–liquid microextraction for the determination of triazole fungicides in water by gas chromatography with mass spectrometry. Journal of Separation Science, 2018, 41, 4498-4505.	1.3	31
534	Response surface methodology for optimization and determination of Riluzole by microfunnel magnetic stirring-assisted liquid–liquid microextraction coupled with high-performance liquid chromatography. Separation Science and Technology, 2018, 53, 2926-2934.	1.3	0
535	Fixed-bed column and batch reactors performance in removal of diazinon pesticide from aqueous solutions by using walnut shell-modified activated carbon. Environmental Technology and Innovation, 2018, 12, 148-159.	3.0	43
536	Application of molecularly imprinted polymer in solid-phase microextraction coupled with HPLC-UV for analysis of dibutyl phthalate in bottled water and soft drink samples. Journal of Liquid Chromatography and Related Technologies, 2018, 41, 552-560.	0.5	10
537	Trace enantioselective determination of triazole fungicides in honey by a sensitive and efficient method. Journal of Food Composition and Analysis, 2018, 74, 62-70.	1.9	19
538	A lighter-than-water deep eutectic-solvent-based dispersive liquid-phase microextraction method in a U-shaped homemade device. New Journal of Chemistry, 2018, 42, 10100-10110.	1.4	28
539	Development of novel 3D flower-like praseodymium molybdate decorated reduced graphene oxide: An efficient and selective electrocatalyst for the detection of acetylcholinesterase inhibitor methyl parathion. Sensors and Actuators B: Chemical, 2018, 270, 353-361.	4.0	45
540	Simultaneous Determination of Phorate and Oxyfluorfen in Well Water Samples with High Accuracy by GC-MS After Binary Dispersive Liquid-Liquid Microextraction. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	7
541	Selective extraction of organophosphorous pesticides in plasma by magnetic molecularly imprinted polymers with the aid of computational design. Analytical Methods, 2018, 10, 4136-4142.	1.3	14
542	Dual detection of Malation and Hg (II) by fluorescence switching of graphene quantum dots. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 308-313.	1.7	13
543	A Fast and Easy QuEChERS-DLLME Method Combined with GC-MS for Ethion and Bifenthrin Residues Determination and Study of Their Dissipation Dynamics in Palm Dates. Food Analytical Methods, 2018, 11, 3542-3550.	1.3	13
544	Double salting-out effect assisted heat-shrinkable tubing liquid phase microextraction followed by high performance liquid chromatography for determination of flavonoids in human plasma. Journal of Chromatography A, 2019, 1603, 44-50.	1.8	5
545	Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC. Mikrochimica Acta, 2019, 186, 481.	2.5	25

#	Article	IF	CITATIONS
546	Determination of Pyrethroids and Phthalate Esters in Radix et Rhizoma Glycyrrhizae by Successive Ultrasonic-assisted Extraction and Dispersive Liquid-Liquid Microextraction Followed by Gas Chromatography-Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2019, 47, e19121-e19129.	0.9	4
547	Determination of an organophosphate pesticide using antibody immobilised hybrid nanocomposites. International Journal of Environmental Analytical Chemistry, 2021, 101, 1485-1498.	1.8	6
548	Ionic liquid-based vortex-assisted DLLME followed by RP-LC-PDA method for bioassay of daclatasvir in rat serum: application to pharmacokinetics. Journal of Analytical Science and Technology, 2019, 10, .	1.0	3
549	A Simple, Low-Cost and Efficient ß-CD/MWCNTs/CP-based Electrochemical Sensor for the Rapid and Sensitive Detection of Methyl Parathion. International Journal of Electrochemical Science, 2019, 14, 9785-9795.	0.5	20
550	Dual-signal aptamer sensor based on polydopamine-gold nanoparticles and exonuclease I for ultrasensitive malathion detection. Sensors and Actuators B: Chemical, 2019, 287, 428-436.	4.0	83
551	Dispersive liquid–liquid microextraction for rapid and inexpensive determination of tetramethylpyrazine in vinegar. Food Chemistry, 2019, 286, 141-145.	4.2	26
552	Rational design of an ionic liquid dispersive liquid–liquid micro-extraction method for the detection of organophosphorus pesticides. Analyst, The, 2019, 144, 2166-2172.	1.7	21
553	Tandem dispersive liquid–liquid microextraction coupled with micro-sampling flame atomic absorption spectrometry for rapid determination of lead(II) and cadmium(II) ions in environmental water samples. International Journal of Environmental Analytical Chemistry, 2019, 99, 1235-1246.	1.8	9
554	Deep eutectic solvent as a novel disperser in dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFOD) for preconcentration of steroids in water samples: Assessment of the method deleterious impact on the environment using Analytical Eco-Scale and Green Analytical Procedure Index. Microchemical Journal, 2019, 149, 103988.	2.3	57
555	Soil Pollution and Remediation. , 2019, , 583-616.		1
556	Determination of 5-Hydroxymethyl-2-Furaldehyde in Cooked Japonica Rice Using a Modified QuEChERS Method Combined with Dispersive Liquid-Liquid Microextraction Followed by UPLC-ESI-MS/MS. Food Analytical Methods, 2019, 12, 1838-1848.	1.3	12
557	Microfunnelâ€filterâ€based emulsification microextraction followed by gas chromatography for simple determination of organophosphorus pesticides in environmental water samples. Journal of Separation Science, 2019, 42, 2418-2425.	1.3	13
558	Ecological risk and estimates of organophosphate pesticides loads into the Central Mediterranean Sea from Volturno River, the river of the "Land of Fires―area, southern Italy. Science of the Total Environment, 2019, 678, 741-754.	3.9	50
559	A simple colorimetric probe based on anti-aggregation of AuNPs for rapid and sensitive detection of malathion in environmental samples. Analytical and Bioanalytical Chemistry, 2019, 411, 2645-2652.	1.9	44
560	Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples. Journal of Chromatography A, 2019, 1597, 39-45.	1.8	85
561	Highly selective determination of some antiâ€depressant drugs in complicated matrices by dual emulsification liquidâ€phase microextraction based on filtration followed by highâ€performance liquid chromatography. Separation Science Plus, 2019, 2, 129-136.	0.3	3
562	Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 762-778.	1.1	38
563	Determination of malathion by homogeneous liquid-liquid micro extraction via flotation assistance combined with gas chromatography in water samples. Bulletin of the Chemical Society of Ethiopia, 2019, 33, 1.	0.5	8

#	Article	IF	CITATIONS
564	Analysis of 32 priority substances from EU water framework directive in wastewaters, surface and drinking waters with a fast sample treatment methodology. International Journal of Environmental Analytical Chemistry, 2019, 99, 16-32.	1.8	12
565	Application of D-Limonene as a Bio-based Solvent in Low DensityDispersive Liquid?Liquid Microextraction of Acidic Drugs from Aqueous Samples. Analytical Sciences, 2019, 35, 1385-1391.	0.8	25
566	Determination of Organophosphorus Pesticides in Fortified Tomatoes by Fluorescence Quenching of Cadmium Selenium – Zinc Sulfide Quantum Dots. Analytical Letters, 2019, 52, 729-744.	1.0	15
567	Determination of acidic drugs in biological and environmental matrices by membraneâ€based dual emulsification liquidâ€phase microextraction followed by highâ€performance liquid chromatography. Journal of Separation Science, 2019, 42, 897-905.	1.3	5
568	Electromembrane extraction—looking into the future. Analytical and Bioanalytical Chemistry, 2019, 411, 1687-1693.	1.9	24
569	Solid-phase extraction coupled with switchable hydrophilicity solvent-based homogeneous liquid–liquid microextraction for chloramphenicol enrichment in environmental water samples: a novel alternative to classical extraction techniques. Analytical and Bioanalytical Chemistry, 2019, 411, 803-812.	1.9	38
570	Magnetic effervescent tablet-assisted ionic liquid-based dispersive liquid-liquid microextraction of polybrominated diphenyl ethers in liquid matrix samples. Talanta, 2019, 195, 785-795.	2.9	49
571	Determination of organophosphorus pesticide residues in vegetables using solid phase micro-extraction coupled with gas chromatography–flame photometric detector. Arabian Journal of Chemistry, 2019, 12, 1934-1944.	2.3	52
573	Microextraction With Supported Liquid Membranes. , 2020, , 241-263.		2
574	Sampling and Sample preparation techniques for environmental analysis. , 2020, , 75-119.		7
575	Sustainable development and environmental analysis. , 2020, , 343-379.		0
576	Analysis of organophosphorus and pyrethroid pesticides in organic and conventional vegetables using QuEChERS combined with dispersive liquid-liquid microextraction based on the solidification of floating organic droplet. Food Chemistry, 2020, 309, 125755.	4.2	68
577	Development of polyindole/tungsten carbide nanocomposite-modified electrodes for electrochemical quantification of chlorpyrifos. Journal of Nanostructure in Chemistry, 2020, 10, 33-45.	5.3	33
578	Determination of organophosphorus pesticides in wastewater samples using vortex-assisted dispersive liquid–liquid microextraction with liquid chromatography–mass spectrometry. International Journal of Environmental Science and Technology, 2020, 17, 2325-2336.	1.8	23
579	Sample preparation and extraction methods for pesticides in aquatic environments: A review. TrAC - Trends in Analytical Chemistry, 2020, 123, 115772.	5.8	120
580	Application of dispersive liquid–liquid microextraction based on solidification of floating organic drop for the determination of extractables from pharmaceutical packaging materials. Talanta, 2020, 209, 120540.	2.9	7
581	Dispersive Liquid-Liquid Microextraction Method for the Simultaneous Determination of Four Isomers of Hexachlorocyclohexane and Six Pyrethroid Pesticides in Milk by Gas Chromatography Electron Capture Detector. Food Analytical Methods, 2020, 13, 370-381.	1.3	10
582	Orthogonal array design optimisation of an in situ ionic liquid dispersive liquid–liquid microextraction for the detection of phenol and endocrine-disrupting phenols in aqueous samples. Journal of the Iranian Chemical Society, 2020, 17, 825-838.	1.2	6

#	Article	IF	CITATIONS
583	Microextraction approaches for bioanalytical applications: An overview. Journal of Chromatography A, 2020, 1616, 460790.	1.8	58
584	New extraction media in microextraction techniques. A review of reviews. Microchemical Journal, 2020, 153, 104386.	2.3	57
585	Review: Microextraction Technique Based New Trends in Food Analysis. Critical Reviews in Analytical Chemistry, 2022, 52, 968-999.	1.8	17
586	Dissociable photoelectrode materials boost ultrasensitive photoelectrochemical detection of organophosphorus pesticides. Analytica Chimica Acta, 2020, 1130, 100-106.	2.6	26
587	Kinetic modeling of Methyl Tert-Butyl Ether (MTBE) removal by bacterial isolated from contaminated soils. International Journal of Environmental Analytical Chemistry, 2022, 102, 6014-6029.	1.8	8
588	Determination of fipronil and bixafen pesticides residues using gas chromatography mass spectroscopy with matrix matching calibration strategy after binary dispersive liquid-liquid microextraction. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2020, 55, 1041-1047.	0.7	9
589	High recycling Fe3O4-CdTe nanocomposites for the detection of organophosphorothioate pesticide chlorpyrifos. Green Energy and Environment, 2022, 7, 229-235.	4.7	4
590	Novel ε-arsenene nanosheets for sensing toxic malathion and parathion – A first-principles approach. Computational and Theoretical Chemistry, 2020, 1190, 112995.	1.1	15
591	Advances in mass spectrometry-based omics analysis of trace organics in water. TrAC - Trends in Analytical Chemistry, 2020, 128, 115918.	5.8	5
592	Development of microwave radiations-induced homogeneous liquid-liquid microextraction method for extraction of pyrethroid pesticides in fruit and vegetable samples. International Journal of Environmental Analytical Chemistry, 2020, , 1-12.	1.8	2
593	Type of new generation separation and preconcentration methods. , 2020, , 75-148.		3
594	An accurate and sensitive analytical method for the simultaneous determination of glycine, methionine and homocysteine in biological matrices by matrix matching strategy and LC–quadrupole-time-of-flight-MS/MS. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118394.	2.0	7
595	Application of temperature-assisted tandem dispersive liquid–liquid microextraction for the extraction and high preconcentration of triazole pesticides. International Journal of Environmental Analytical Chemistry, 2020, , 1-17.	1.8	1
596	A La ³⁺ -doped TiO ₂ nanoparticle decorated functionalized-MWCNT catalyst: novel electrochemical non-enzymatic sensing of paraoxon-ethyl. Nanoscale Advances, 2020, 2, 3033-3049.	2.2	18
597	Trace analysis of Pb(II) in milk samples by Fe ₃ O ₄ @SiO ₂ @3â€chloropropyltriethoxysilane@oâ€phenylendiamine nanoparticles as an unprecedented adsorbent for magnetic dispersive solid phase extraction. Micro and Nano Letters, 2020, 15, 390-395.	0.6	16
598	Ferrofluid-based dispersive liquid–liquid microextraction using a deep eutectic solvent as a support: applications in the analysis of polycyclic aromatic hydrocarbons in grilled meats. Analytical Methods, 2020, 12, 1522-1531.	1.3	27
599	Application of a magnetic nanocomposite of cross-linked poly(styrene/divinylbenzene) as an adsorbent for the magnetic dispersive solid phase extraction-dispersive liquid–liquid microextraction of atrazine in soil and aqueous samples. Analytical Methods, 2020, 12, 1834-1844.	1.3	10
600	Dispersive Liquid–Liquid Microextraction for the Quantitation of Terpenes in Wine. Journal of Agricultural and Food Chemistry, 2020, 68, 13302-13309.	2.4	8

#	Article	IF	CITATIONS
601	Ion Pair-dispersive Liquid–Liquid Microextraction Combined with Spectrophotometry for Carbamazepine Determination in Pharmaceutical Formulations and Biological Samples. Journal of Analytical Chemistry, 2020, 75, 733-741.	0.4	4
602	Dispersive liquid–liquid microextraction followed by green high-performance liquid chromatography for fluconazole determination in cerebrospinal fluid with the aid of chemometric tools. Analytical Methods, 2020, 12, 3106-3114.	1.3	4
603	Application of ultrasoundâ€assisted liquid–liquid microextraction coupled with gas chromatography and mass spectrometry for the rapid determination of synthetic cannabinoids and metabolites in biological samples. Journal of Separation Science, 2020, 43, 2858-2868.	1.3	15
604	Reverse phase dispersive liquid–liquid microextraction coupled to slotted quartz tube flame atomic absorption spectrometry as a new analytical strategy for trace determination of cadmium in fish and olive oil samples. Journal of Food Composition and Analysis, 2020, 90, 103486.	1.9	15
605	Determination of trace levels of selenium in natural water, agriculture soil and food samples by vortex assisted liquid-liquid microextraction method: Multivariate techniques. Food Chemistry, 2021, 344, 128706.	4.2	26
606	Ultra-trace Extraction of Two Bactericides Via Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction. Journal of Chromatographic Science, 2021, 59, 182-190.	0.7	4
607	Sensitive determination of deferasirox in blood of patients with thalassemia using dispersive liquid-liquid microextraction based on solidification of floating organic drop followed by HPLC–UV. Journal of Pharmaceutical and Biomedical Analysis, 2021, 193, 113735.	1.4	15
608	An innovative continuous sample drop flow microextraction for GC–MS determination of pesticides in grape juice and water samples. Journal of Food Composition and Analysis, 2021, 95, 103695.	1.9	15
609	Solvent extraction. , 2021, , 191-279.		1
610	Facile synthesis of magnetic molybdenum disulfide@graphene nanocomposite with amphiphilic properties and its application in solid-phase extraction for a wide polarity of insecticides in wolfberry samples. Analytical Methods, 2021, 13, 672-684.	1.3	7
611	Determination of sulfonamide residues in animal foodstuffs by magnetic dispersive solid-phase extraction using magnetic carbon nanocomposites coupled with ion pair-dispersive liquid–liquid micro-extraction combined with HPLC-DAD. Journal of the Iranian Chemical Society, 2021, 18, 1433-1442.	1.2	10
612	Application of microextraction techniques in alternative biological matrices with focus on forensic toxicology: a review. Bioanalysis, 2021, 13, 45-64.	0.6	10
613	Determination of prohibited lead and cadmium traces in hair dyes and henna samples using ultrasound assisted-deep eutectic solvent-based liquid phase microextraction followed by microsampling-flame atomic absorption spectrometry. Analytical Methods, 2021, 13, 1058-1068.	1.3	17
614	A Cationic Surfactant-Decorated Liquid Crystal-Based Aptasensor for Label-Free Detection of Malathion Pesticides in Environmental Samples. Biosensors, 2021, 11, 92.	2.3	28

CITATION	Report	

#	Article	IF	CITATIONS
619	Determination of the Synthetic Antioxidants Butylated Hydroxyanisole (BHA) and Butylated Hydroxytoluene (BHT) by Matrix Acidity-Induced Switchable Hydrophilicity Solvent-Based Homogeneous Liquid-Liquid Microextraction (MAI-SHS-HLLME) and High-Performance Liquid Chromatography with Ultraviolet Detection (HPLC-UV). Analytical Letters, 2022, 55, 480-494.	1.0	10
620	Rapid and Sensitive Quantitation of Inorganic Anions in Olive Oil by Coupling Reversed-Phase Dispersive Liquid–Liquid Microextraction and Ion Chromatography. Food Analytical Methods, 2021, 14, 2461-2468.	1.3	2
621	Yellow-emission and pH-responsive carbon dots employed for "turn-off―and "turn-off-on―assaying adenosine triphosphate and kanamycin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127640.	2.3	8
622	A comprehensive review on microextraction techniques for sampling and analysis of fuel ether oxygenates in different matrices. Microchemical Journal, 2021, 168, 106437.	2.3	6
623	Determination of psychoactive drugs in serum using conductive vial electromembrane extraction combined with UHPLC-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1183, 122926.	1.2	18
624	Solid-liquid-solid conversion microextraction combined with high-performance liquid chromatography for determination of bisphenols. Microchemical Journal, 2021, 169, 106538.	2.3	10
625	Total sulfonamides determination in bovine milk using smartphone-based digital images. Microchemical Journal, 2021, 170, 106657.	2.3	10
626	Cyclodextrin-based dispersive liquid–liquid microextraction for the determination of fungicides in water, juice, and vinegar samples via HPLC. Food Chemistry, 2022, 367, 130664.	4.2	23
627	A NiAg-graphene quantum dot-graphene hybrid with high oxidase-like catalytic activity for sensitive colorimetric detection of malathion. New Journal of Chemistry, 2021, 45, 7129-7137.	1.4	11
628	Palm Oil Fuel Ash-Based Eco-Efficient Concrete: A Critical Review of the Short-Term Properties. Materials, 2021, 14, 332.	1.3	41
629	Soil Pollution and Remediation. , 2018, , 1-34.		1
630	A new microextraction method for trace nickel determination in green tea samples: Solventless dispersion based dispersive liquid-liquid microextraction combined with slotted quartz tube- flame atomic absorption spectrophotometry. Journal of Food Composition and Analysis, 2020, 94, 103623.	1.9	13
631	Administering Pesticide Assays in In Vivo-Implanted Biosensors. Australian Journal of Chemistry, 2008, 61, 826.	0.5	6
632	Fingermarks, Bitemarks and Other Impressions (Barefoot, Ears, Lips). , 2010, , 695-778.		1
633	LIQUID CHROMATOGRAPHY-UV DETERMINATION OF HEAVY METAL IONS IN ENVIRONMENTAL SAMPLES USING DISPERSIVE LIQUID-LIQUID MICROEXTRACTION COUPLED WITH MAGNETIC NANOPARTICLES. Applied Ecology and Environmental Research, 2019, 17, 1571-1584.	0.2	7
634	Optimization and validation of the salting-out assisted liquid-liquid extraction method and analysis by gas chromatography to determine pesticides in water. Ecletica Quimica, 2018, 43, 11.	0.2	3
636	The Comparison of Advanced Oxidation Process and Chemical Coagulation for the Removal of Residual Pesticides from Water. Research Journal of Environmental Sciences, 2011, 5, 817-826.	0.5	5
637	Utilization of Dispersive Liquid-Liquid Microextraction Coupled with HPLC-UV as a Sensitive and Efficient Method for the Extraction and Determination of Oleanolic Acid and Ursolic Acid in Chinese Medicinal Herbs. American Journal of Analytical Chemistry, 2012, 03, 675-682.	0.3	7

щ	Apticie	IC	CITATIONS
#	ARTICLE Highly selective and responsive detection of simetryn in tobacco samples based on molecularly	IF	CITATIONS
638	imprinted photonic crystal hydrogels. Polymer Testing, 2021, 104, 107386.	2.3	2
639	Environmental Forensic science. , 2010, , 455-528.		0
640	Applications of microextraction techniques in environmental analysis. Chinese Journal of Chromatography (Se Pu), 2013, 28, 1-13.	0.1	0
641	Analysis of Lead(II) in Human Blood Using Dispersive Liquid-Liquid Microextraction and Graphite Furnace Atomic Absorption Spectrometry. International Journal of Scientific Research in Knowledge, 2014, 2, 116-123.	0.1	0
642	The Dispersive Liquid-Liquid Microextraction Technology in the Application of Ketamine Inspection. Hans Journal of Chemical Engineering and Technology, 2015, 05, 33-39.	0.0	0
644	Surface plasmon resonance imaging for detection of drug metabolites in water. , 2019, , .		0
645	Molecular analysis of Peganum harmala L. callus to determine the gene expression of beta-carboline alkaloids harmine and harmaline. Iraqi Journal of Science, 0, , 2410-2417.	0.3	1
646	Eco-friendly production of metal nanoparticles immobilised on organic monolith for pepsin extraction. Polish Journal of Chemical Technology, 2020, 22, 18-28.	0.3	1
647	Modification of Glassy Carbon Electrode by (E)-2-(Mercapto-) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 432 Td (phen Palladium by Adsorptive Stripping Voltammetry. International Journal of Electrochemical Science, 0, , 4827-4839.	ylamino-m 0.5	ethylene)-3-0 0
648	Protocols for Extraction of Pesticide Residues. Sustainable Agriculture Reviews, 2021, , 77-128.	0.6	0
649	Novel Salt-Assisted Liquid-Liquid Microextraction Technique for Environmental, Food, and Biological Samples Analysis Applications: A Review. Current Analytical Chemistry, 2022, 18, 577-587.	0.6	6
650	Ultra Rapid and Highly Sensitive Disperser-less Liquid-liquid Microextraction of Organophosphate Pesticides Prior to Gas Chromatography with Mass Spectrometry Detection. Jundishapur Journal of Health Sciences, 2020, 12, .	0.1	1
651	Spectrophotometric Determination of Zirconium by Dispersive Liquid-Liquid Microextraction based on Solidification of Floating Organic Droplets. Asian Journal of Chemistry, 2020, 32, 3191-3196.	0.1	0
652	Optimized Vortex-Assisted Dispersive Liquid–Liquid Microextraction Coupled with Spectrofluorimetry for Determination of Aspirin in Human Urine: Response Surface Methodology. Current Pharmaceutical Analysis, 2020, 16, 201-209.	0.3	4
653	Recent Advances in Electrochemical Sensor and Biosensors for Environmental Contaminants. Nanotechnology in the Life Sciences, 2020, , 1-31.	0.4	1
654	Application of solid phase extraction (SPE) coupled to dispersive liquid–liquid micro-extraction (DLLME) and sensory evaluation technique for the study of taste and odor active compounds in water. Water Science and Technology: Water Supply, 2020, 20, 2737-2746.	1.0	1
655	Determination of valproic acid in human plasma using dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection. Iranian Journal of Basic Medical Sciences, 2015, 18, 979-88.	1.0	12
657	Analytical microextraction with supported liquid membranes. , 2021, , 97-109.		1

#	Article	IF	CITATIONS
658	Graphene/g-carbon nitride (GO/g-C3N4) nanohybrids as a sensor material for the detection of methyl parathion and carbendazim. Chemosphere, 2022, 292, 133450.	4.2	47
659	Fabrication of functionalized nanomaterial-based electrochemical sensors' platforms. , 2022, , 445-486.		2
660	GNP/Al-MOF nanocomposite as an efficient fiber coating of headspace solid-phase micro-extraction for the determination of organophosphorus pesticides in food samples. Mikrochimica Acta, 2022, 189, 45.	2.5	12
661	Extraction of Phenol from Water using Dispersive Liquid-liquid Microextraction Coupled with UV-VIS Spectroscopy. Journal of Analytical Chemistry, 2022, 77, 8-17.	0.4	0
662	Current developments of bioanalytical sample preparation techniques in pharmaceuticals. Journal of Pharmaceutical Analysis, 2022, 12, 517-529.	2.4	27
663	COSMO-RS evaluation as a tool for prediction of solvents in dispersive liquid-phase microextraction: Evaluation of conventional solvents and ionic liquids as extractants. Journal of Molecular Liquids, 2022, 354, 118861.	2.3	1
664	Application of Polypyrrole/Fe3O4 Composite for the Extraction of Chlorpyrifos Using Magnetic Solid-Phase Extraction Combined with Dispersive Liquid–Liquid Microextraction. Journal of Analytical Chemistry, 2021, 76, 1422-1429.	0.4	2
665	Detection of pesticides in environmental and food matrix: A review. IP International Journal of Comprehensive and Advanced Pharmacology, 2021, 6, 158-167.	0.1	0
666	Dispersive liquid–liquid microextraction based on solidification of floating organic drop: Determination of nonsteroidal antiâ€inflammatory drugs in water. Separation Science Plus, 2022, 5, 32-39.	0.3	1
667	Dispersive liquid-liquid microextraction: Evolution in design, application areas, and green aspects. TrAC - Trends in Analytical Chemistry, 2022, 152, 116636.	5.8	39
669	Rapid and non-invasive surface-enhanced Raman spectroscopy (SERS) detection of chlorpyrifos in fruits using disposable paper-based substrates charged with gold nanoparticle/halloysite nanotube composites. Mikrochimica Acta, 2022, 189, 197.	2.5	7
670	Effective Electrochemiluminescence Aptasensor for Detection of Atrazine Residue. Sensors, 2022, 22, 3430.	2.1	9
671	The Dispersive Liquid–Liquid Extraction Method Coupled with HPLC and its Application in Determining S-triazine Group of Herbicides in Soil Samples. Oriental Journal of Chemistry, 2022, 38, 444-451.	0.1	0
673	Analytical methodologies and techniques for pesticide residue analysis in water and wastewater. , 2022, , 55-73.		1
674	Vinegar Volatile Organic Compounds: Analytical Methods, Constituents, and Formation Processes. Frontiers in Microbiology, 0, 13, .	1.5	5
675	3D-flower-like porous neodymium molybdate nanostructure for trace level detection of organophosphorus pesticide in food samples. Food Chemistry, 2022, 396, 133722.	4.2	10
676	Dispersive liquid–liquid microextraction coupled with microfluidic paper-based analytical device for the determination of organophosphate and carbamate pesticides in the water sample. Analytical Sciences, 2022, 38, 1359-1367.	0.8	4
677	The Effect of Arsenic on the Photocatalytic Removal of Methyl Tet Butyl Ether (MTBE) Using Fe2O3/MgO Catalyst, Modeling, and Process Optimization. Catalysts, 2022, 12, 927.	1.6	4

#	Article	IF	CITATIONS
678	A sensitive silver nanoflower-based SERS sensor coupled novel chemometric models for simultaneous detection of chlorpyrifos and carbendazim in food. LWT - Food Science and Technology, 2022, 167, 113804.	2.5	17
679	Dispersive solid phase extraction of several pesticides from fruit juices using a hydrophobic metal organic framework prior to HPLC-MS/MS determination. Journal of Food Composition and Analysis, 2022, 114, 104788.	1.9	7
680	Development of a new and facile method for determination of chlorpyrifos residues in green tea by dispersive liquid–liquid microextraction. Scientific Reports, 2022, 12, .	1.6	1
681	Colorimetric Detection of 1-Naphthol and Glyphosate Using Modified Gold Nanoparticles. Sustainability, 2022, 14, 10793.	1.6	5
682	Corona discharge ionization ion mobility spectrometry for ultra-trace determination of methamphetamine extracted from urine and plasma samples by dispersive liquid–liquid microextraction. Analytical Sciences, 0, , .	0.8	0
683	Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis?. Molecules, 2022, 27, 7137.	1.7	9
684	Ultrasound-enhanced air-assisted liquid-liquid microextraction for the UPLC determination of organophosphorus pesticides in river water. Microchemical Journal, 2022, 183, 108046.	2.3	6
685	Extraction and preconcentration of parabens in liquid pharmaceutical samples by Dispersive Liquidâ€Liquid Microextraction based on deep eutectic solvent. Biomedical Chromatography, 0, , .	0.8	3
686	Fabrication of gold nanoparticles tethered in heat-cooled calf thymus-deoxyribonucleic acid Langmuir-Blodgett film as effective surface-enhanced Raman scattering sensing platform. Frontiers in Chemistry, 0, 10, .	1.8	0
687	Degradation of mevinphos and monocrotophos by OH radicals in the environment: A computational investigation on mechanism, kinetic, and ecotoxicity. Journal of Hazardous Materials, 2023, 445, 130478.	6.5	7
688	ZnO-Fe2O3 based electrochemiluminescence sensor for sensitive detection of malathion. Microchemical Journal, 2023, 186, 108321.	2.3	4
689	Fabrication of FeVO ₄ /RGO Nanocomposite: An Amperometric Probe for Sensitive Detection of Methyl Parathion in Green Beans and Solar Light-Induced Degradation. ACS Omega, 2022, 7, 45239-45252.	1.6	8
690	Dijital Görüntüleme Temelli Kolorimetrik Analiz Yöntemi Kullanılarak Sıvı-Sıvı Mikroekstraksiyon Önderiştirme İşleminden Sonra Eser Seviyede Antimon(III) Tayini. Journal of Polytechnic, 0, , .	ile 0.4	0
691	Method validation for simultaneous determination of four neonicotinoids in vegetables by liquid chromatography. Analytical Sciences, 2023, 39, 431-439.	0.8	6
692	Simultaneous Dispersive Liquid–Liquid Microextraction and Determination of Different Polycyclic Aromatic Hydrocarbons in Surface Water. Molecules, 2022, 27, 8586.	1.7	4
693	Determination of trace lead(II) in cleavers (Galium aparine) tea by Uv-vis spectrophotometry after preconcentration with deep eutectic solvent/DTZ probe-based liquid-liquid microextraction. Journal of Food Composition and Analysis, 2023, 118, 105164.	1.9	3
694	Electrochemical biosensor based on cellulose nanofibers/graphene oxide and acetylcholinesterase for the detection of chlorpyrifos pesticide in water and fruit juice. RSC Advances, 2023, 13, 9603-9614.	1.7	14
695	Combined effect on properties and durability performance of nanomodified basalt fiber blended with bottom ash-based cement concrete: ANOVA evaluation. Journal of Materials Research and Technology, 2023, 23, 2642-2657.	2.6	5