Numerical study on the effects of aspect ratio and orien on outdoor thermal comfort in hot and dry climate

Building and Environment 41, 94-108 DOI: 10.1016/j.buildenv.2005.01.013

Citation Report

#	Article	IF	CITATIONS
1	Urban heat islands in humid and arid climates: role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Climate Research, 2007, 34, 241-251.	1.1	146
2	Review of urban climate research in (sub)tropical regions. International Journal of Climatology, 2007, 27, 1859-1873.	3.5	302
3	Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. International Journal of Climatology, 2007, 27, 1995-2004.	3.5	253
4	Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Solar Energy, 2007, 81, 742-754.	6.1	415
5	Thermal comfort in an east–west oriented street canyon in Freiburg (Germany) under hot summer conditions. Theoretical and Applied Climatology, 2007, 87, 223-237.	2.8	127
6	Prediction of air temperature for thermal comfort of people in outdoor environments. International Journal of Biometeorology, 2007, 51, 375-382.	3.0	20
7	Numerical predictions of indoor climate in large industrial premises. A comparison between different k–ε models supported by field measurements. Building and Environment, 2007, 42, 3872-3882.	6.9	127
8	Estimating the radiation absorbed by a human. International Journal of Biometeorology, 2008, 52, 491-503.	3.0	47
9	A biometeorological procedure for weather forecast to assess the optimal outdoor clothing insulation. European Journal of Applied Physiology, 2008, 104, 221-228.	2.5	5
10	Experimental study of temperature and airflow distribution inside an urban street canyon during hot summer weather conditions. Part II: Airflow analysis. Building and Environment, 2008, 43, 1393-1403.	6.9	75
11	Thermal design tool for outdoor spaces based on heat balance simulation using a 3D-CAD system. Building and Environment, 2008, 43, 2112-2123.	6.9	70
13	The Application of Urban Climate Research in the Design of Cities. Advances in Building Energy Research, 2008, 2, 95-121.	2.3	61
14	Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorologische Zeitschrift, 2008, 17, 241-250.	1.0	174
15	Thermal and daylighting evaluation of the effect of varying aspect ratios in urban canyons in Curitiba, Brazil. Journal of Renewable and Sustainable Energy, 2009, 1, 033108.	2.0	6
16	Das stÃ d tische Mikroklima: Analyse für die Stadt- und GebÃ u deplanung. Bauphysik, 2009, 31, 18-24.	0.5	4
17	Thermal bioclimate in Strasbourg - the 2003 heat wave. Theoretical and Applied Climatology, 2009, 98, 209-220.	2.8	88
18	Simulation of the urban thermal comfort in a high density tropical city: Analysis of the proposed urban construction rules for Dhaka, Bangladesh. Building Simulation, 2009, 2, 291.	5.6	29
19	On the development of an urban passive thermal comfort system in Cairo, Egypt. Building and Environment, 2009, 44, 1907-1916.	6.9	116

#	Article	IF	CITATIONS
20	Determination of bioclimatic comfort in Erzurum–Rize expressway corridorÂusingÂGIS. Building and Environment, 2010, 45, 158-164.	6.9	22
21	An application of the thermo-radiative model SOLENE for the evaluation of street canyon energy balance. Building and Environment, 2010, 45, 1262-1275.	6.9	30
22	Modeling study of the aspect ratio influence on urban canopy energy fluxes with a modified wall-canyon energy budget scheme. Building and Environment, 2010, 45, 2497-2505.	6.9	49
23	Large eddy simulation of flow in a street canyon with tree planting under various atmospheric instability conditions. Science China Technological Sciences, 2010, 53, 1928-1937.	4.0	24
24	Microclimate modelling of street tree species effects within the varied urban morphology in the Mediterranean city of Tel Aviv, Israel. International Journal of Climatology, 2010, 30, 44-57.	3.5	154
25	Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment. Applied Energy, 2010, 87, 2068-2078.	10.1	90
26	Impact of street design on urban microclimate for semi arid climate (Constantine). Renewable Energy, 2010, 35, 343-347.	8.9	195
27	Shading effect on long-term outdoor thermal comfort. Building and Environment, 2010, 45, 213-221.	6.9	486
28	LAI based trees selection for mid latitude urban developments: A microclimatic study in Cairo, Egypt. Building and Environment, 2010, 45, 345-357.	6.9	115
29	Evaluation of thermal comfort in a rail terminal location in India. Building and Environment, 2010, 45, 2571-2580.	6.9	62
30	A modeling study for evaluating passive cooling scenarios in urban streets with trees. Case study: Athens, Greece. Building and Environment, 2010, 45, 2798-2807.	6.9	91
31	Influence of Geometry and Orientation on Flank Insolation of Streets in an Arid Climate City. American Journal of Engineering and Applied Sciences, 2010, 3, 540-544.	0.6	7
32	Urban air pollution and mitigation options in Sri Lanka. Proceedings of the Institution of Civil Engineers: Urban Design and Planning, 2010, 163, 127-138.	0.7	1
33	Thermal comfort effects of urban design strategies in high-rise urban environments in a sub-tropical climate. Architectural Science Review, 2011, 54, 285-304.	2.2	79
34	Urban outdoor thermal comfort prediction for public square in moderate and dry climate. , 2011, , .		9
35	Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. Journal of Geophysical Research, 2011, 116, .	3.3	220
36	Outdoor thermal comfort. Frontiers in Bioscience - Scholar, 2011, S3, 1552-1568.	2.1	25
37	Outdoor thermal comfort. Frontiers in Bioscience - Scholar, 2011, S3, 1552.	2.1	47

ARTICLE IF CITATIONS Analysis of the microclimatic and human comfort conditions in an urban park in hot and arid regions. 38 6.9 227 Building and Environment, 2011, 46, 2641-2656. Nature of vegetation and building morphology characteristics across a city: Influence on shadow 2.4 patterns and mean radiant temperatures in London. Urban Ecosystems, 2011, 14, 617-634. Effect of thermal adaptation on seasonal outdoor thermal comfort. International Journal of 40 3.5 181 Climatology, 2011, 31, 302-312. The influence of trees and grass on outdoor thermal comfort in a hotâ \in arid environment. 350 International Journal of Climatology, 2011, 31, 1498-1506. Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate 42 3.5 134 change: the influence of urban geometry. International Journal of Climatology, 2011, 31, 324-335. Urban design to lower summertime outdoor temperatures: An empirical study on high-rise housing in Shanghai. Building and Environment, 2011, 46, 769-785. 6.9 Seasonal effects of urban street shading on long-term outdoor thermal comfort. Building and 44 6.9 249 Environment, 2011, 46, 863-870. Assessing the Effect of Microclimate on Building Energy Performance by Co-Simulation. Applied 0.2 Mechanics and Materials, 0, 121-126, 2860-2867. Impacts of street design parameters on human-biometeorological variables. Meteorologische 1.0 92 46 Zeitschrift, 2011, 20, 541-552. Urban form, thermal comfort and building CO₂ emissions - a numerical analysis in Cairo. 1.8 Building Services Engineering Research and Technology, 2011, 32, 73-84. Landscape Attributes, Microclimate and Thermal Comfort of an Urban Square in Moderate and Dry 48 7 0.3 Climate. Advanced Materials Research, 2012, 610-613, 3780-3784. Verification and application of continuous surface temperature monitoring technique for investigation of nocturnal sensible heat release characteristics by building fabrics. Energy and 49 28 Buildings, 2012, 53, 108-116. Urban human thermal comfort in hot and humid Hong Kong. Energy and Buildings, 2012, 55, 51-65. 50 6.7 248 Quantification of the effect of thermal indices and sky view factor on park attendance. Landscape and Urban Planning, 2012, 107, 137-146. An evaluation of outdoor and building environment cooling achieved through combination 52 6.9 185 modification of trees with ground materials. Building and Environment, 2012, 58, 245-257. Urban Physics: Effect of the micro-climate on comfort, health and energy demand. Frontiers of 2.8 Architectural Research, 2012, 1, 197-228. An integrated simulation method for building energy performance assessment in urban environments. 54 6.7 185 Energy and Buildings, 2012, 54, 243-251. An analysis of influential factors on outdoor thermal comfort in summer. International Journal of 74 Biometeorology, 2012, 56, 941-948.

#	Article	IF	CITATIONS
56	A simplified method to predict the outdoor thermal environment in residential district. Building Simulation, 2012, 5, 157-167.	5.6	22
57	Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Building and Environment, 2012, 47, 170-181.	6.9	164
58	Method to quantify the effect of apartment housing design parameters on outdoor thermal comfort in summer. Building and Environment, 2012, 53, 150-158.	6.9	18
59	Airflow patterns within a complex urban topography under hot and dry climate in the Algerian Sahara. Building and Environment, 2012, 56, 162-175.	6.9	21
60	Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Building and Environment, 2012, 57, 110-119.	6.9	119
61	Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities, 2012, 29, 118-125.	5.6	439
62	A review of urban energy system models: Approaches, challenges and opportunities. Renewable and Sustainable Energy Reviews, 2012, 16, 3847-3866.	16.4	456
63	Study of thermal comfort in courtyards in a hot arid climate. Solar Energy, 2012, 86, 1173-1186.	6.1	164
64	Influence of urban planning regulations on the microclimate in a hot dry climate: The example of Damascus, Syria. Journal of Housing and the Built Environment, 2013, 28, 51-65.	1.8	58
65	Thermal comfort in outdoor spaces and urban canyon microclimate. Renewable Energy, 2013, 55, 182-188.	8.9	129
66	Urban heat island and differences in outdoor comfort levels in Glasgow, UK. Theoretical and Applied Climatology, 2013, 112, 127-141.	2.8	82
67	Assessment of daytime outdoor comfort levels in and outside the urban area of Glasgow, UK. International Journal of Biometeorology, 2013, 57, 521-533.	3.0	38
68	Evaluating the behaviour of different thermal indices by investigating various outdoor urban environments in the hot dry city of Damascus, Syria. International Journal of Biometeorology, 2013, 57, 615-630.	3.0	125
69	Accounting for atmospheric stability conditions in urban heat island studies: The case of Glasgow, UK. Landscape and Urban Planning, 2013, 117, 112-121.	7.5	29
70	Scale-integrated atmospheric simulations to assess thermal comfort in different urban tissues in the warm humid summer of São Paulo, Brazil. Urban Climate, 2013, 6, 24-43.	5.7	61
71	The city and urban heat islands: A review of strategies to mitigate adverse effects. Renewable and Sustainable Energy Reviews, 2013, 25, 749-758.	16.4	432
72	Urban heat islands: Potential effect of organic and structured urban configurations on temperature variations in Dubai, UAE. Renewable Energy, 2013, 50, 747-762.	8.9	93
73	Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Building and Environment, 2013, 60, 93-104.	6.9	237

#	Article	IF	Citations
74	Influence of the compactness index to increase the internal temperature of a building in Saharan climate. Energy and Buildings, 2013, 66, 678-687.	6.7	38
75	Outdoor mean radiant temperature estimation in the tropical urban environment. Building and Environment, 2013, 64, 118-129.	6.9	108
76	Research on ecological design to enhance comfort in open spaces of a city (Valencia, Spain). Utility of the physiological equivalent temperature (PET). Ecological Engineering, 2013, 57, 27-39.	3.6	65
77	The measurement of the solar absorptance of the clothed human body – The case of Japanese, college-aged male subjects. Building and Environment, 2013, 59, 492-500.	6.9	17
78	Effects of thermal comfort and adaptation on park attendance regarding different shading levels and activity types. Building and Environment, 2013, 59, 599-611.	6.9	164
79	Field measurement of albedo for different land cover materials and effects on thermal performance. Building and Environment, 2013, 59, 536-546.	6.9	174
80	Urban Form and Residential Energy Use. Journal of Planning Literature, 2013, 28, 327-351.	3.5	108
81	Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation. Energies, 2013, 6, 598-618.	3.1	169
82	The Research on the Impact of the Underground Parking to the Microclimate in Residential Quarter. Advanced Materials Research, 2013, 869-870, 178-184.	0.3	1
83	Modification of Human-Biometeorologically Significant Radiant Flux Densities by Shading as Local Method to Mitigate Heat Stress in Summer within Urban Street Canyons. Advances in Meteorology, 2013, 2013, 1-13.	1.6	97
84	Effects of Urban Configuration on Human Thermal Conditions in a Typical Tropical African Coastal City. Advances in Meteorology, 2013, 2013, 1-12.	1.6	25
85	Simulation of the effect of downtown greenery on thermal comfort in subtropical climate using PET index: a case study in Hong Kong. Architectural Science Review, 2013, 56, 297-305.	2.2	61
86	Building integrated concentrating solar systems. , 2013, , 563-606.		0
87	How relevant is urban planning for the thermal comfort of pedestrians? Numerical case studies in two districts of the City of Dresden (Saxony/Germany). Meteorologische Zeitschrift, 2013, 22, 739-751.	1.0	28
88	Simulating the influence of microclimatic design on mitigating the Urban Heat Island effect in the Hangzhou Metropolitan Area of China. International Journal of Low-Carbon Technologies, 2013, , ctt050.	2.6	12
89	Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City. PLoS ONE, 2014, 9, e102124.	2.5	38
90	Importance of 3-D radiant flux densities for outdoor human thermal comfort on clear-sky summer days in Freiburg, Southwest Germany. Meteorologische Zeitschrift, 2014, 23, 315-330.	1.0	71
91	Public Housing in Bandung an Assessment and Approaches through Urban Physics. Advanced Materials Research, 0, 935, 273-276.	0.3	1

#	Article	IF	CITATIONS
92	Multi-Scale Simulations of Climate-Change Influence on Chicago Heat Island. , 2014, , .		8
93	Effect of Sky View Factor on Outdoor Temperature and Comfort in Montreal. Environmental Engineering Science, 2014, 31, 272-287.	1.6	58
94	Mitigation of urban heat island effect and greenroofs. Indoor and Built Environment, 2014, 23, 62-69.	2.8	38
95	Cities for Smart Environmental and Energy Futures: Urban Heat Island Mitigation Techniques for Sustainable Cities. Energy Systems, 2014, , 215-233.	0.5	5
96	Proposal for a heat balance model tailored to the Korean peninsula. Asia-Pacific Journal of Atmospheric Sciences, 2014, 50, 657-667.	2.3	2
97	The Effect of Urban Design on Outdoor Thermal Environment in a Central Business District Area in Singapore. Advanced Materials Research, 2014, 1073-1076, 1428-1432.	0.3	0
98	Human-biometeorological assessment of heat stress reduction by replanning measures in Stuttgart, Germany. Landscape and Urban Planning, 2014, 122, 78-88.	7.5	150
99	Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Climate, 2014, 10, 367-386.	5.7	219
100	Comparison of mean radiant temperature from field experiment and modelling: a case study in Freiburg, Germany. Theoretical and Applied Climatology, 2014, 118, 535-551.	2.8	94
101	Daytime relapse of the mean radiant temperature based on the six-directional method under unobstructed solar radiation. International Journal of Biometeorology, 2014, 58, 1615-1625.	3.0	23
102	Cities for Smart Environmental and Energy Futures. Energy Systems, 2014, , .	0.5	11
103	Landscape interventions in improving thermal comfort in the hot dry city of Damascus, Syria—The example of residential spaces with detached buildings. Landscape and Urban Planning, 2014, 125, 1-16.	7.5	87
104	Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Building and Environment, 2014, 73, 138-150.	6.9	129
105	Validation of temperature-perturbation and CFD-based modelling for the prediction of the thermal urban environment: the Lecce (IT) case study. Environmental Modelling and Software, 2014, 60, 69-83.	4.5	61
106	Daytime microclimatic impacts of the SOVALP project in summer: A case study in Geneva, Switzerland. Simulation, 2014, 90, 857-873.	1.8	7
107	Review of the impact of urban block form on thermal performance, solar access and ventilation. Renewable and Sustainable Energy Reviews, 2014, 38, 551-560.	16.4	119
108	Seasonal variability of temperatures and outdoor human comfort inÂPhoenix, Arizona, U.S.A Building and Environment, 2014, 72, 377-388.	6.9	73
109	Projections of design implications on energy performance of future cities: A case study from Vienna. Sustainable Cities and Society, 2014, 12, 92-101.	10.4	15

#	Article	IF	CITATIONS
110	The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landscape and Urban Planning, 2014, 121, 129-140.	7.5	202
111	Conditions for thermal circulation in urban street canyons. Building and Environment, 2014, 80, 184-191.	6.9	56
112	Study of the urban heat island in Lecce (Italy) by means of ADMS and ENVI-MET. International Journal of Environment and Pollution, 2014, 55, 41.	0.2	7
113	Development and Preliminary Validation of Integrated Local Microclimate Model for Numerical Evaluation of Cool Pavement Strategies. Transportation Research Record, 2014, 2444, 151-162.	1.9	10
114	Effect of Height-To-Width Ratio on the Sound Propagation in Urban Streets. Acta Acustica United With Acustica, 2015, 101, 73-87.	0.8	20
115	The Influence of Height/width Ratio on Urban Heat Island in Hot-arid Climates. Procedia Engineering, 2015, 118, 101-108.	1.2	55
116	Micro-scale Evaluation of the Relationship between Road Surface and Air Temperature with Respect to Various Surrounding Greenery Covers. Research Journal of Applied Sciences, Engineering and Technology, 2015, 11, 454-459.	0.1	4
117	Improvement of Air Quality and Thermal Environment in an Old City District by Constructing Wind Passages. Sustainability, 2015, 7, 12672-12692.	3.2	6
118	Investigating Thermal Comfort and User Behaviors in Outdoor Spaces: A Seasonal and Spatial Perspective. Advances in Meteorology, 2015, 2015, 1-11.	1.6	33
119	Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. International Journal of Biometeorology, 2015, 59, 657-677.	3.0	92
120	Fusion of Airborne Hyperspectral and LiDAR Remote Sensing Data to Study the Thermal Characteristics of Urban Environments. , 2015, , 273-292.		5
121	Describing the spatial patterns of heat vulnerability from urban design perspectives. International Journal of Sustainable Development and World Ecology, 2015, 22, 189-200.	5.9	30
122	A new method to assess spatial variations of outdoor thermal comfort: Onsite monitoring results and implications for precinct planning. Building and Environment, 2015, 91, 263-270.	6.9	148
123	Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate, 2015, 14, 251-267.	5.7	131
124	Assessment of predicted versus measured thermal comfort and optimal comfort ranges in the outdoor environment in the temperate climate of Glasgow, UK. Building Services Engineering Research and Technology, 2015, 36, 482-499.	1.8	11
125	Chicago's Heat Island and Climate Change: Bridging the Scales via Dynamical Downscaling. Journal of Applied Meteorology and Climatology, 2015, 54, 1430-1448.	1.5	66
126	Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai. Building and Environment, 2015, 94, 644-653.	6.9	135
127	Climate adaptation strategies: achieving insight in microclimate effects of redevelopment options. Smart and Sustainable Built Environment, 2015, 4, 110-136.	4.0	6

#	ARTICLE	IF	Citations
128	Creating drafts in urban settings through coloured façades: Exploring a new climate adaptation measure based on thermal stratification. Urban Climate, 2015, 14, 290-300.	5.7	3
129	Thermal performance characteristics of unshaded courtyards in hot and humid climates. Building and Environment, 2015, 87, 154-168.	6.9	200
131	An hourly simulation method for outdoor thermal environment evaluation. Building Simulation, 2015, 8, 113-122.	5.6	3
132	Climatic and thermal comfort analysis of the Tel-Aviv Geddes Plan: A historical perspective. Building and Environment, 2015, 93, 302-318.	6.9	16
133	Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustainable Cities and Society, 2015, 19, 222-235.	10.4	190
134	Coupled CFD, radiation and building energy model for studying heat fluxes in an urban environment with generic building configurations. Sustainable Cities and Society, 2015, 19, 385-394.	10.4	80
135	How high albedo and traditional buildings' materials and vegetation affect the quality of urban microclimate. A case study. Energy and Buildings, 2015, 99, 32-49.	6.7	159
136	Green infrastructure as an adaptation approach to tackling urban overheating in the Glasgow Clyde Valley Region, UK. Landscape and Urban Planning, 2015, 138, 71-86.	7.5	135
137	Preliminary study of the parameterisation of street-level ventilation in idealised two-dimensional simulations. Building and Environment, 2015, 89, 345-355.	6.9	27
138	Total assessment for various environmentally conscious techniques from three perspectives: Mitigation of global warming, mitigation of UHIs, and adaptation to urban warming. Sustainable Cities and Society, 2015, 19, 236-249.	10.4	39
139	Influence of morphologies on the microclimate in urban neighbourhoods. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 144, 108-117.	3.9	102
140	Preferences for street configuration and street tree planting in urban Hong Kong. Urban Forestry and Urban Greening, 2015, 14, 30-38.	5.3	44
141	Development and application of â€~thermal radiative power' for urban environmental evaluation. Sustainable Cities and Society, 2015, 14, 316-322.	10.4	33
142	The effect of urban geometry on mean radiant temperature under future climate change: a study of three European cities. International Journal of Biometeorology, 2015, 59, 799-814.	3.0	62
143	Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment, 2015, 83, 65-78.	6.9	428
144	Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature. International Journal of Biometeorology, 2015, 59, 285-297.	3.0	88
145	Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 2015, 134, 127-138.	7.5	749
146	Thermal human biometeorological conditions and subjective thermal sensation in pedestrian streets in Chengdu, China. International Journal of Biometeorology, 2015, 59, 99-108.	3.0	72

#	Article	IF	CITATIONS
147	Urban surface temperature behaviour and heat island effect in a tropical planned city. Theoretical and Applied Climatology, 2015, 119, 493-514.	2.8	38
148	Urban Form and Microclimatic Conditions in Urban Open Spaces at the Densely Built Centre of a Greek City. Journal of Sustainable Development, 2016, 9, 132.	0.3	1
150	Street Orientation and Side of the Street Greatly Influence the Microclimatic Benefits Street Trees Can Provide in Summer. Journal of Environmental Quality, 2016, 45, 167-174.	2.0	77
151	Role of Built Environment on Factors Affecting Outdoor Thermal Comfort - A Case of T. Nagar, Chennai, India. Indian Journal of Science and Technology, 2016, 9, .	0.7	14
152	CHALLENGES OF PASSIVE COOLING TECHNIQUES IN BUILDINGS: A CRITICAL REVIEW FOR IDENTIFYING THE RESILIENT TECHNIQUE. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	3
153	Impacto da geometria do cânion urbano na intensidade de ilha de calor noturna: análise através de um modelo simplificado adaptado a um SIG. Ambiente ConstruÃdo, 2016, 16, 73-87.	0.4	8
154	Diurnal Thermal Behavior of Pavements, Vegetation, and Water Pond in a Hot-Humid City. Buildings, 2016, 6, 2.	3.1	29
155	Impacts of inâ€canyon vegetation and canyon aspect ratio on the thermal environment of street canyons: numerical investigation using a coupled <scp>WRFâ€VUCM</scp> model. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2562-2578.	2.7	31
156	Desert New Urbanism: testing for comfort in downtown Tempe, Arizona. Journal of Urban Design, 2016, 21, 746-763.	1.4	10
157	Scale Study of Traditional Shophouse Street in South of China Based on Outdoor Thermal Comfort. Procedia Engineering, 2016, 169, 232-239.	1.2	6
158	Modeling urban microclimate to ameliorate thermal sensation conditions in outdoor areas in Athens (Greece). Building Simulation, 2016, 9, 251-267.	5.6	28
159	Seasonal differences in the subjective assessment of outdoor thermal conditions and the impact of analysis techniques on the obtained results. International Journal of Biometeorology, 2016, 60, 1615-1635.	3.0	64
160	Urban climate modeling: Challenges in the tropics. , 2016, , 255-304.		2
161	Impact of Urban Cool Island measures on outdoor climate and pedestrian comfort: Simulations for a new district of Toulouse, France. Sustainable Cities and Society, 2016, 26, 9-26.	10.4	94
162	Analysis of urban heat island phenomenon and mitigation solutions evaluation for Montreal. Sustainable Cities and Society, 2016, 26, 438-446.	10.4	101
163	Impacts on cooling energy consumption due to the UHI and vegetation changes in Manchester, UK. Energy and Buildings, 2016, 122, 150-159.	6.7	83
164	Spatial-temporal study on the effects of urban street configurations on human thermal comfort in the world heritage city of Camagüey-Cuba. Building and Environment, 2016, 101, 85-101.	6.9	114
165	Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon's micro-climate and thermal comfort. Building and Environment, 2016, 103, 262-275.	6.9	182

#	Article	IF	CITATIONS
166	Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate, 2016, 18, 33-57.	5.7	245
167	Toward advanced representations of the urban microclimate in building performance simulation. Sustainable Cities and Society, 2016, 27, 356-366.	10.4	17
168	Linking urban climate classification with an urban energy and water budget model: Multi-site and multi-seasonal evaluation. Urban Climate, 2016, 17, 196-215.	5.7	37
169	The influence of increasing tree cover on mean radiant temperature across a mixed development suburb in Adelaide, Australia. Urban Forestry and Urban Greening, 2016, 20, 233-242.	5.3	65
170	A comparison of model performance between ENVI-met and Austal2000 for particulate matter. Atmospheric Environment, 2016, 145, 392-404.	4.1	40
171	Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry and Urban Greening, 2016, 20, 305-316.	5.3	241
172	Modelling the effect of tree-shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university. Energy and Buildings, 2016, 130, 721-732.	6.7	87
173	Sensitivity analysis of urban morphology factors regarding solar energy potential of buildings in a Brazilian tropical context. Solar Energy, 2016, 137, 11-24.	6.1	70
174	Effect of pavement thermal properties on mitigating urban heat islands: A multi-scale modeling case study in Phoenix. Building and Environment, 2016, 108, 110-121.	6.9	99
175	Urban geometry and solar availability on façades and ground of real urban forms: using London as a case study. Solar Energy, 2016, 138, 53-66.	6.1	113
177	Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy and Buildings, 2016, 133, 577-595.	6.7	157
178	Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban Forestry and Urban Greening, 2016, 20, 348-357.	5.3	69
179	Evaluating the impact of built environment characteristics on urban boundary layer dynamics using an advanced stochastic approach. Atmospheric Chemistry and Physics, 2016, 16, 6285-6301.	4.9	25
180	Street Geometry Factors Influence Urban Microclimate in Tropical Coastal Cities: A Review. Environmental and Climate Technologies, 2016, 17, 61-75.	1.4	40
181	Projection of rural and urban human thermal comfort in The Netherlands for 2050. International Journal of Climatology, 2016, 36, 1708-1723.	3.5	21
182	Analysis of behaviour patterns and thermal responses to a hot–arid climate in rural China. Journal of Thermal Biology, 2016, 59, 92-102.	2.5	32
183	Quantification of thermal bioclimate for the management of urban design in Mediterranean climate of Barcelona, Spain. International Journal of Biometeorology, 2016, 60, 1261-1270.	3.0	36
184	Post-positivist microclimatic urban design research: A review. Landscape and Urban Planning, 2016, 153, 111-121.	7.5	30

#	Article	IF	CITATIONS
185	Combining measured thermal parameters and simulated wind velocity to predict outdoor thermal comfort. Building and Environment, 2016, 105, 185-197.	6.9	59
186	Spatial optimization procedure for land-use arrangement in a community based on a human comfort perspective. Paddy and Water Environment, 2016, 14, 71-83.	1.8	5
187	Numerical optimisation through dynamic simulation of the position of trees around a stand-alone building to reduce cooling energy consumption. Energy and Buildings, 2016, 112, 234-243.	6.7	63
188	Morphology of pedestrian roads and thermal responses during summer, in the urban area of Bucheon city, Korea. International Journal of Biometeorology, 2016, 60, 999-1014.	3.0	19
189	Environmental-conscious factors affecting street microclimate and individuals' respiratory health in tropical coastal cities. Sustainable Cities and Society, 2016, 21, 35-50.	10.4	22
190	Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landscape and Urban Planning, 2016, 148, 37-50.	7.5	352
191	Outdoor thermal environment for different urban forms under summer conditions. Building Simulation, 2016, 9, 281-296.	5.6	32
192	Urban microclimate and thermal comfort modelling: strategies for urban renovation. International Journal of Sustainable Building Technology and Urban Development, 2016, 7, 22-37.	1.0	30
193	Modeling the urban geometry influence on outdoor thermal comfort in the case of Moroccan microclimate. Urban Climate, 2016, 16, 25-42.	5.7	35
194	Outdoor Thermal Comfort: Impact of the Geometry of an Urban Street Canyon in a Mediterranean Subtropical Climate – Case Study Tunis, Tunisia. Procedia, Social and Behavioral Sciences, 2016, 216, 689-700.	0.5	67
195	Effect of Street Design on Outdoor Thermal Comfort in an Urban Street in Singapore. Journal of the Urban Planning and Development Division, ASCE, 2016, 142, .	1.7	36
196	Evaluation of thermal perception in schoolyards under Mediterranean climate conditions. International Journal of Biometeorology, 2016, 60, 319-334.	3.0	12
197	Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 2016, 114, 265-274.	6.7	314
198	Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 2016, 114, 2-19.	6.7	343
199	Numerical modelling of mean radiant temperature in high-density sub-tropical urban environment. Energy and Buildings, 2016, 114, 80-86.	6.7	77
200	Seasonal differences in thermal sensation in the outdoor urban environment of Mediterranean climates – the example of Athens, Greece. International Journal of Biometeorology, 2017, 61, 1191-1208.	3.0	38
201	Environmental Quality Assessment in Areas Used for Physical Activity and Recreation in a City Affected by Intense Urban Expansion (Fortaleza-CE, Brazil): Implications for Public Health Policy. Exposure and Health, 2017, 9, 169-182.	4.9	15
202	Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustainable Cities and Society, 2017, 30, 79-96.	10.4	250

	CITATION RE	CITATION REPORT	
# 203	ARTICLE Observational studies of mean radiant temperature across different outdoor spaces under shaded	IF 6.9	CITATIONS
203	conditions in densely built environment. Building and Environment, 2017, 114, 397-409.	0.9	01
204	A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal comfort. Building and Environment, 2017, 115, 1-17.	6.9	270
205	Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China. International Journal of Biometeorology, 2017, 61, 1421-1432.	3.0	27
206	Thermal performance of stadium's Field of Play in hot climates. Energy and Buildings, 2017, 139, 702-718.	6.7	10
207	Urban development and pedestrian thermal comfort in Melbourne. Solar Energy, 2017, 144, 681-698.	6.1	96
208	Street Canyon Geometry Effects on Microclimate and Comfort; A Case Study in Thessaloniki. Procedia Environmental Sciences, 2017, 38, 643-650.	1.4	30
209	Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Building and Environment, 2017, 120, 93-109.	6.9	106
210	Characterization of different heat mitigation strategies in landscape to fight against heat island and improve thermal comfort in hot–humid climate (Part I): Measurement and modelling. Sustainable Cities and Society, 2017, 32, 523-531.	10.4	47
211	Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban Climate, 2017, 21, 1-26.	5.7	92
212	Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustainable Cities and Society, 2017, 33, 85-101.	10.4	148
213	Numerical investigation of roof heating impacts on thermal comfort and air quality in urban canyons. Applied Thermal Engineering, 2017, 123, 310-326.	6.0	13
214	Impact of site-specific morphology on outdoor thermal perception: A case-study in a subtropical location. Urban Climate, 2017, 21, 123-135.	5.7	26
215	The Thermoheliodome – "Air conditioning―without conditioning the air, using radiant cooling and indirect evaporation. Energy and Buildings, 2017, 157, 11-19.	6.7	32
216	A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews, 2017, 80, 1613-1640.	16.4	398
217	Urban measures for hot weather conditions in a temperate climate condition: A review study. Renewable and Sustainable Energy Reviews, 2017, 75, 515-533.	16.4	36
218	Evaluation of canopy-layer air and mean radiant temperature simulations by a microclimate model over a tropical residential neighbourhood. Building and Environment, 2017, 112, 177-189.	6.9	86
219	Urban space's morphology and microclimatic analysis: A study for a typical urban district in the Mediterranean city of Thessaloniki, Greece. Energy and Buildings, 2017, 156, 96-108.	6.7	59
220	Improvement of the summer cooling induced by an earth-to-air heat exchanger integrated in a residential building under hot and arid climate. Applied Energy, 2017, 208, 428-445.	10.1	45

#	Article	IF	Citations
221	Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate. Sustainable Cities and Society, 2017, 35, 449-467.	10.4	76
222	An integrated school and schoolyard design method for summer thermal comfort and energy efficiency in Northern China. Building and Environment, 2017, 124, 369-387.	6.9	63
223	Simultaneous environmental parameter monitoring and human subject survey regarding outdoor thermal comfort and its modelling. Building and Environment, 2017, 125, 502-514.	6.9	105
224	Development of outdoor thermal comfort model for tourists in urban historical areas; A case study in Isfahan. Building and Environment, 2017, 125, 356-372.	6.9	76
225	Effect of different land cover/use types on canopy layer air temperature in an urban area with a dry climate. Building and Environment, 2017, 125, 451-463.	6.9	32
226	Investigating the effect of urban configurations on the variation of air temperature. International Journal of Sustainable Built Environment, 2017, 6, 389-399.	3.2	18
227	Correlation between the geometrical characteristics of streets and morphological features of trees for the formation of tree lines in the urban design of the city of Orestiada, Greece. Urban Ecosystems, 2017, 20, 1081-1093.	2.4	10
228	Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city. Environmental Science and Pollution Research, 2017, 24, 1811-1820.	5.3	17
229	Outdoor thermal comfort under subarctic climate of north Sweden – A pilot study in Umeå. Sustainable Cities and Society, 2017, 28, 387-397.	10.4	130
230	Human-biometeorological assessment of increasing summertime extreme heat events in Shanghai, China during 1973–2015. Theoretical and Applied Climatology, 2017, 130, 1055-1064.	2.8	6
231	Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landscape and Urban Planning, 2017, 157, 502-511.	7.5	117
232	Comparisons of Respondent Thermal Perceptions in Underneath-elevated-building (UEB) Areas and Direct-radiated (DR) Areas. Procedia Engineering, 2017, 205, 4165-4171.	1.2	0
233	Effects of planting and structural configurations on human thermal comfort in a schoolyard. Acta Horticulturae, 2017, , 229-234.	0.2	0
234	Analysis of Solar Radiation Shading Effects by Trees in the Open Space around Buildings. Sustainability, 2017, 9, 1398.	3.2	14
235	Influence of the Ground Greening Configuration on the Outdoor Thermal Environment in Residential Areas under Different Underground Space Overburden Thicknesses. Sustainability, 2017, 9, 1656.	3.2	6
236	A Conceptual Modeling Approach to Health-Related Urban Well-Being. Urban Science, 2017, 1, 17.	2.3	22
237	Renewable Energy Potential by the Application of a Building Integrated Photovoltaic and Wind Turbine System in Global Urban Areas. Energies, 2017, 10, 2158.	3.1	13
238	Seasonal Regional Differentiation of Human Thermal Comfort Conditions in Algeria. Advances in Meteorology, 2017, 2017, 1-14.	1.6	7

#	Article	IF	CITATIONS
239	Urban Heat Island of ValparaÃso, Chile - A Comparison between 2007 and 2016. IOP Conference Series: Materials Science and Engineering, 2017, 245, 072036.	0.6	1
240	Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City. Sustainability, 2017, 9, 882.	3.2	14
241	Solar radiation and street temperature as function of street orientation. An analysis of the status quo and simulation of future scenarios towards sustainability in Bahrain. E3S Web of Conferences, 2017, 23, 02002.	0.5	4
242	Reducing CO 2 emissions of conventional fuel cars by vehicle photovoltaic roofs. Transportation Research, Part D: Transport and Environment, 2018, 59, 313-324.	6.8	37
243	The effect of an urban park on the microclimate in its vicinity: a case study for Antwerp, Belgium. International Journal of Climatology, 2018, 38, e303.	3.5	48
244	Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba. Renewable Energy, 2018, 125, 840-856.	8.9	53
245	Efficient and Nice – Urban Metabolism and Outdoor Comfort. Urban Book Series, 2018, , 125-130.	0.6	0
246	Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban Forestry and Urban Greening, 2018, 29, 212-222.	5.3	105
247	Development of the VTUF-3D v1.0 urban micro-climate model to support assessment of urban vegetation influences on human thermal comfort. Urban Climate, 2018, 24, 1052-1076.	5.7	50
248	External shading devices for energy efficient building. IOP Conference Series: Earth and Environmental Science, 2018, 117, 012034.	0.3	7
249	Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls. International Journal of Biometeorology, 2018, 62, 1199-1209.	3.0	44
250	The Urban Heat Island phenomenon modelling and analysis as an adaptation of Maghreb cities to climate change. MATEC Web of Conferences, 2018, 149, 02090.	0.2	2
251	Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions. Theoretical and Applied Climatology, 2018, 131, 455-469.	2.8	82
252	Multi-stage downscaling procedure to analyse the impact of exposure concentration in a factory on a specific worker through computational fluid dynamics modelling. Indoor and Built Environment, 2018, 27, 486-498.	2.8	13
253	Effect of the position of the visible sky in determining the sky view factor on micrometeorological and human thermal comfort conditions in urban street canyons. Theoretical and Applied Climatology, 2018, 131, 1083-1100.	2.8	24
254	Simulations of local heat islands in Zürich with coupled CFD and building energy models. Urban Climate, 2018, 24, 340-359.	5.7	60
255	Urban greening and the UHI: Seasonal trade-offs in heating and cooling energy consumption in Manchester, UK. Urban Climate, 2018, 23, 173-187.	5.7	8
256	GIS-based mapping of Local Climate Zone in the high-density city of Hong Kong. Urban Climate, 2018, 24, 419-448.	5.7	132

#	Article	IF	CITATIONS
257	Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania. International Journal of Biometeorology, 2018, 62, 373-385.	3.0	87
258	THIS – Tool for Heat Island Simulation: A GIS extension model to calculate urban heat island intensity based on urban geometry. Computers, Environment and Urban Systems, 2018, 67, 157-168.	7.1	47
259	Analysis of urban heat in a corridor environment – The case of Doha, Qatar. Urban Climate, 2018, 24, 692-702.	5.7	17
260	On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons. Renewable Energy, 2018, 118, 825-839.	8.9	81
261	Human-biometeorological significance of shading in urban public spaces—Summertime measurements in Pécs, Hungary. Landscape and Urban Planning, 2018, 170, 241-255.	7.5	91
262	Parâmetros urbanÃsticos e o conforto térmico de cânions urbanos: o exemplo de Campinas, SP. Ambiente ConstruÃdo, 2018, 18, 177-196.	0.4	6
263	Combination of Tree Configuration with Street Configuration for Thermal Comfort Optimization under Extreme Summer Conditions in the Urban Center of Shantou City, China. Sustainability, 2018, 10, 4192.	3.2	18
264	Night ventilation at courtyard housing estate in warm humid tropic for sustainable environment. IOP Conference Series: Earth and Environmental Science, 2018, 126, 012029.	0.3	2
265	Quantification of thermal comfort based on different street orientation in winter months of urban city DadaÅŸkent. Acta Horticulturae, 2018, , 67-72.	0.2	4
266	Urban Surface Albedo as a Tool of a Bioclimatic Design in Semi-aride Climate: Case of Fez. , 2018, , .		0
267	Beyond Singular Climatic Variables—Identifying the Dynamics of Wholesome Thermo-Physiological Factors for Existing/Future Human Thermal Comfort during Hot Dry Mediterranean Summers. International Journal of Environmental Research and Public Health, 2018, 15, 2362.	2.6	19
268	Quantitative Study of Using Piloti for Passive Climate Adaptability in a Hot-Summer and Cold-Winter City in China. International Journal of Environmental Research and Public Health, 2018, 15, 2202.	2.6	6
269	Numerical modeling of outdoor thermal comfort in 3D. Urban Climate, 2018, 26, 212-230.	5.7	34
270	Optimization Design of Underground Space Overburden Thickness in a Residential Area Concerning Outdoor Thermal Environment Evaluation. Sustainability, 2018, 10, 3205.	3.2	3
271	Quantification of the Tourism Climate of Algeria Based on the Climate-Tourism-Information-Scheme. Atmosphere, 2018, 9, 250.	2.3	11
272	Investigating the relationships between the built environment, the climate, walkability and physical activity in the Arabian Peninsula: The case of Bahrain. Cogent Social Sciences, 2018, 4, 1502907.	1.1	7
273	Assessment of outdoor thermal comfort in Hong Kong based on the individual desirability and acceptability of sun and wind conditions. Building and Environment, 2018, 145, 50-61.	6.9	51
274	Urban geometry, SVF and insolation of open spaces: London and Paris. Building Research and Information, 2018, 46, 881-898.	3.9	15

#	Article	IF	CITATIONS
275	A multilayer mean radiant temperature model for pedestrians in a street canyon with trees. Building and Environment, 2018, 141, 298-309.	6.9	34
276	The Impact of Façade Orientation and Woody Vegetation on Summertime Heat Stress Patterns in a Central European Square: Comparison of Radiation Measurements and Simulations. Advances in Meteorology, 2018, 2018, 1-15.	1.6	24
277	Experimental and simulation studies on the thermal behavior of vertical greenery system for temperature mitigation in urban spaces. Journal of Building Engineering, 2018, 20, 277-284.	3.4	56
278	Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere, 2018, 9, 108.	2.3	68
279	The Impact of Green Space Layouts on Microclimate and Air Quality in Residential Districts of Nanjing, China. Forests, 2018, 9, 224.	2.1	65
280	Thermal Environmental Design in Outdoor Space Focusing on Radiation Environment Influenced by Ground Cover Material and Solar Shading, through the Examination on the Redevelopment Buildings in Front of Central Osaka Station. Sustainability, 2018, 10, 337.	3.2	5
281	Implementation of Observed Sky-View Factor in a Mesoscale Model for Sensitivity Studies of the Urban Meteorology. Sustainability, 2018, 10, 2183.	3.2	21
282	Sensing transient outdoor comfort: A georeferenced method to monitor and map microclimate. Journal of Building Engineering, 2018, 20, 94-104.	3.4	30
283	A holistic approach to assess the exploitation of renewable energy sources for design interventions in the early design phases. Energy and Buildings, 2018, 175, 235-256.	6.7	25
284	Design of natural elements in open spaces of cities with a Mediterranean climate, conditions for comfort and urban ecology. Environmental Science and Pollution Research, 2018, 25, 26643-26652.	5.3	11
285	Megacity-scale analysis of urban vegetation temperatures. Remote Sensing of Environment, 2018, 213, 18-33.	11.0	42
286	Comparative Study of Form and Features of Courtyards in Terms of Outdoor Thermal Comfort in Two Contrasting Climates of Iran. Journal of Sustainable Development, 2018, 11, 112.	0.3	0
287	Evaluation of thermal indices for their applicability in obstacle-resolving meteorology models. International Journal of Biometeorology, 2018, 62, 1887-1900.	3.0	23
288	Analyzing the ENVI-met microclimate model's performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 2018, 43, 55-76.	10.4	296
289	Interdependent energy relationships between buildings at the street scale. Building Research and Information, 2018, 46, 829-844.	3.9	17
290	Numerical coupling model to compute the microclimate parameters inside a street canyon. Solar Energy, 2018, 170, 470-485.	6.1	19
291	Mapping the spatio-temporal distribution of solar radiation within street canyons of Boston using Google Street View panoramas and building height model. Landscape and Urban Planning, 2019, 191, 103387.	7.5	54
292	Design for climate resilience: influence of environmental conditions on thermal sensation in subtropical high-density cities. Architectural Science Review, 2019, 62, 3-13.	2.2	16

#	Article	IF	CITATIONS
293	The influence of urban canyon microclimate and contrasting photoperiod on the physiological response of street trees and the potential benefits of water sensitive urban design. Urban Forestry and Urban Greening, 2019, 40, 152-164.	5.3	16
294	Effect of Underground Space Development on the Outdoor Thermal Environment in a Residential Area. IOP Conference Series: Earth and Environmental Science, 2019, 233, 022019.	0.3	0
295	Numerical evaluation of outdoor thermal comfort and weather parameters in summertime at Széchenyi square. Pollack Periodica, 2019, 14, 131-142.	0.4	6
296	Spatio-temporal planning of urban neighborhoods in the context of global climate change: Lessons for urban form design in Tehran, Iran. Sustainable Cities and Society, 2019, 51, 101554.	10.4	30
297	Verification of a bioclimatic modeling system in a growing suburb in Melbourne. Science of the Total Environment, 2019, 689, 883-898.	8.0	8
298	The Effects of Different Space Forms in Residential Areas on Outdoor Thermal Comfort in Severe Cold Regions of China. International Journal of Environmental Research and Public Health, 2019, 16, 3960.	2.6	11
299	Multi-criteria and multiscale assessment of building envelope response-ability to rising heat waves. Sustainable Cities and Society, 2019, 51, 101755.	10.4	14
300	Investigating the Behaviour of Human Thermal Indices under Divergent Atmospheric Conditions: A Sensitivity Analysis Approach. Atmosphere, 2019, 10, 580.	2.3	14
301	Assessment of Role of Water Body on Thermal Comfort in Ahmedabad, India. IOP Conference Series: Earth and Environmental Science, 2019, 281, 012023.	0.3	3
302	A simulation based framework to optimize the interior design parameters for effective Indoor Environmental Quality (IEQ) experience in affordable residential units: Cases from Mumbai, India. IOP Conference Series: Earth and Environmental Science, 2019, 294, 012060.	0.3	5
303	The impact of urban greening and urban geometry on the microclimate at the neighborhood level in hot arid climates. , 2019, , .		0
304	Field Study on the Microclimate of Public Spaces in Traditional Residential Areas in a Severe Cold Region of China. International Journal of Environmental Research and Public Health, 2019, 16, 2986.	2.6	5
305	A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts. Applied Energy, 2019, 254, 113637.	10.1	108
306	Prediction of Outdoor Human Thermal Sensation at the Pedestrian Level in High-rise Residential Areas in Severe Cold Regions of China. Energy Procedia, 2019, 157, 51-58.	1.8	7
307	Numerical investigations on outdoor thermal comfort for built environment: case study of a Northwest campus in China. Energy Procedia, 2019, 158, 6557-6563.	1.8	9
308	Effects of natural and artificial shade on human thermal comfort in residential neighborhood parks of Phoenix, Arizona, USA. Urban Forestry and Urban Greening, 2019, 44, 126429.	5.3	56
309	Evaluating urban vegetation scenarios to mitigate urban heat island and reduce buildings' energy in dense built-up areas in Cairo. Building and Environment, 2019, 166, 106407.	6.9	64
310	A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment, 2019, 661, 337-353.	8.0	405

#	Article	IF	CITATIONS
311	Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings. Sustainable Cities and Society, 2019, 46, 101448.	10.4	113
312	Nature-Based Designs to Mitigate Urban Heat: The Efficacy of Green Infrastructure Treatments in Portland, Oregon. Atmosphere, 2019, 10, 282.	2.3	38
313	A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar. Sustainability, 2019, 11, 730.	3.2	7
314	Evaluation of uWRF performance and modeling guidance based on WUDAPT and NUDAPT UCP datasets for Hong Kong. Urban Climate, 2019, 28, 100460.	5.7	35
315	The "plant evaluation model―for the assessment of the impact of vegetation on outdoor microclimate in the urban environment. Building and Environment, 2019, 159, 106151.	6.9	70
316	Coupling a Building Energy Simulation Tool with a Microclimate Model to Assess the Impact of cool Pavements on the Building's Energy Performance. Application in a Dense Residential Area. Sustainability, 2019, 11, 2519.	3.2	15
317	The synergistic effect of street canyons and neighbourhood layout design on pedestrian-level thermal comfort in hot-humid area of China. Sustainable Cities and Society, 2019, 49, 101571.	10.4	37
318	Study of the Seasonal Effect of Building Shadows on Urban Land Surface Temperatures Based on Remote Sensing Data. Remote Sensing, 2019, 11, 497.	4.0	38
319	Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152, 119-131.	11.1	284
320	Outdoor thermal performance of heterogeneous urban environment: An indicator-based approach for climate-sensitive planning. Science of the Total Environment, 2019, 669, 872-886.	8.0	32
321	Towards feasibility of photovoltaic road for urban traffic-solar energy estimation using street view image. Journal of Cleaner Production, 2019, 228, 303-318.	9.3	57
322	Accurate prediction of heating energy demand of courtyard's surrounding envelopes using temperature correction factor. Energy and Buildings, 2019, 193, 49-68.	6.7	7
323	The Air-temperature Response to Green/blue-infrastructure Evaluation Tool (TARGETÂv1.0): an efficient and user-friendly model of city cooling. Geoscientific Model Development, 2019, 12, 785-803.	3.6	26
324	The role of sky view factor and urban street greenery in human thermal comfort and heat stress in a desert climate. Journal of Arid Environments, 2019, 166, 68-76.	2.4	66
325	Correlative Impact of Shading Strategies and Configurations Design on Pedestrian-Level Thermal Comfort in Traditional Shophouse Neighbourhoods, Southern China. Sustainability, 2019, 11, 1355.	3.2	22
326	Outdoor thermal comfort autonomy: Performance metrics for climate-conscious urban design. Building and Environment, 2019, 155, 145-160.	6.9	52
327	A meta-analysis over geometric modeling simplifications in ENVI-met urban climate simulation. Ambiente ConstruÃdo, 2019, 19, 143-160.	0.4	0
328	Variations in pedestrian mean radiant temperature based on the spacing and size of street trees. Sustainable Cities and Society, 2019, 48, 101521.	10.4	42

#	Article	IF	CITATIONS
329	Impact of viaduct on flow reversion and pollutant dispersion in 2D urban street canyon with different roof shapes - Numerical simulation and wind tunnel experiment. Science of the Total Environment, 2019, 671, 976-991.	8.0	42
330	Influence of context-sensitive urban and architectural design factors on the energy demand of buildings in Toulouse, France. Energy and Buildings, 2019, 190, 262-278.	6.7	31
331	Research on the Spatial Pattern Characteristics of the Taihu Lake "Dock Village―Based on Microclimate: A Case Study of Tangli Village. Sustainability, 2019, 11, 368.	3.2	16
332	A solar-based sustainable urban design: The effects of city-scale street-canyon geometry on solar access in Geneva, Switzerland. Applied Energy, 2019, 240, 173-190.	10.1	49
333	Outdoor thermal comfort in urban canyon and courtyard in hot arid climate: A parametric study based on the vernacular settlement of Mardin. Sustainable Cities and Society, 2019, 48, 101398.	10.4	28
334	Climate-responsive design strategy for Erbil city. Archnet-IJAR, 2019, 14, 90-111.	1.5	1
335	The Maturing Interdisciplinary Relationship between Human Biometeorological Aspects and Local Adaptation Processes: An Encompassing Overview. Climate, 2019, 7, 134.	2.8	14
336	The impact of courtyard geometry on its mean radiant temperature. Journal of Physics: Conference Series, 2019, 1343, 012022.	0.4	8
337	Thermal Environment Design of Outdoor Spaces by Examining Redevelopment Buildings Opposite Central Osaka Station. Climate, 2019, 7, 143.	2.8	6
338	District-scale energy demand modeling and urban microclimate: A case study in The Netherlands. Journal of Physics: Conference Series, 2019, 1343, 012003.	0.4	0
339	Effects of Street Geometry on Airflow Regimes for Natural Ventilation in Three Different Street Configurations in Enugu City. , 0, , .		4
340	A comparison of outdoor thermal comfort in historical and contemporary urban fabrics of Lar City. Urban Climate, 2019, 27, 212-226.	5.7	17
341	On the Development and Optimization of an Urban Design Comfort Model (UDCM) on a Passive Solar Basis at Mid-Latitude Sites. Climate, 2019, 7, 1.	2.8	44
342	Identifying urban geometric types as energy performance patterns. Energy for Sustainable Development, 2019, 48, 115-129.	4.5	30
343	Effects of urban geometry and green area on thermal condition of urban street canyons in Bangkok. Architectural Science Review, 2019, 62, 35-46.	2.2	15
344	To what extent does the air flow initialisation of the ENVI-met model affect human heat stress simulated in a common street canyon?. International Journal of Biometeorology, 2019, 63, 73-81.	3.0	9
345	Energy Efficiency in Building Renovation. , 2019, , 675-810.		4
346	Effect of street design on pedestrian thermal comfort. Architectural Science Review, 2019, 62, 92-111.	2.2	29

#	Article	IF	Citations
347	Urban morphology, outdoor thermal comfort and walkability in hot, dry cities:. International Review for Spatial Planning and Sustainable Development, 2019, 7, 117-133.	1.1	12
348	Spatiotemporal patterns of street-level solar radiation estimated using Google Street View in a high-density urban environment. Building and Environment, 2019, 148, 547-566.	6.9	66
349	Resilient urban forms: A review of literature on streets and street networks. Building and Environment, 2019, 147, 171-187.	6.9	147
350	Optimal interior design for naturally ventilated low-income housing: a design-route for environmental quality and cooling energy saving. Advances in Building Energy Research, 2020, 14, 494-526.	2.3	21
351	Building in Hot and Humid Regions. , 2020, , .		3
352	Evaluation of Microclimatic Comfort Around Campus Buildings at the Pedestrian Level by Means of Field Measurements and Survey of Satisfaction. , 2020, , 75-106.		0
353	Integrating four radiant heat load mitigation strategies is an efficient intervention to improve human health in urban environments. Science of the Total Environment, 2020, 698, 134259.	8.0	21
354	Classification and mapping of urban canyon geometry using Google Street View images and deep multitask learning. Building and Environment, 2020, 167, 106424.	6.9	61
355	Numerical evaluation of urban geometry's control of wind movements in outdoor spaces during winter period. Case of Mediterranean climate. Renewable Energy, 2020, 146, 1062-1069.	8.9	12
356	Clustering weather types for urban outdoor thermal comfort evaluation in a tropical area. Theoretical and Applied Climatology, 2020, 139, 659-675.	2.8	18
357	Urban Adaptation to Climate Change. SpringerBriefs in Environmental Science, 2020, , .	0.3	1
358	Urban Form and Variation in Temperatures. SpringerBriefs in Environmental Science, 2020, , 51-73.	0.3	2
359	Shading in the outdoor environments of climate-friendly hot and dry historical streets: The passageways of Sanliurfa, Turkey. Environmental Impact Assessment Review, 2020, 80, 106318.	9.2	16
360	Analysis of Open Urban Design as a tool for pedestrian thermal comfort enhancement in Moroccan climate. Journal of Building Engineering, 2020, 28, 101042.	3.4	16
361	On the daytime micro-climatic conditions inside an idealized 2D urban canyon. Building and Environment, 2020, 167, 106427.	6.9	8
362	Review of methods used to estimate the sky view factor in urban street canyons. Building and Environment, 2020, 168, 106497.	6.9	55
363	Wind-sensitive urban planning and design: Precinct ventilation performance and its potential for local warming mitigation in an open midrise gridiron precinct. Journal of Building Engineering, 2020, 29, 101145.	3.4	82
364	Impact of evolving building morphology on microclimate in a hot arid climate. Sustainable Cities and Society, 2020, 54, 102011.	10.4	23

			_
#	ARTICLE	IF	CITATIONS
365	Field assessment of winter outdoor 3-D radiant environment and its impact on thermal comfort in a severely cold region. Science of the Total Environment, 2020, 709, 136175.	8.0	27
366	Sky View Factor-based correlation of landscape morphology and the thermal environment of street canyons: A case study of Harbin, China. Building and Environment, 2020, 169, 106587.	6.9	28
367	Impact of the spacing between tree crowns on the mitigation of daytime heat stress for pedestrians inside E-W urban street canyons under Central European conditions. Urban Forestry and Urban Greening, 2020, 48, 126558.	5.3	52
368	Impact of urban canyon geometries on outdoor thermal comfort in central business districts. Sustainable Cities and Society, 2020, 53, 101966.	10.4	78
369	Urban geometry and the microclimate of street canyons in tropical climate. Building and Environment, 2020, 169, 106547.	6.9	58
370	A semi-empirical method for estimating complete surface temperature from radiometric surface temperature, a study in Hong Kong city. Remote Sensing of Environment, 2020, 237, 111540.	11.0	23
371	Field Assessment of Neighboring Building and Tree Shading Effects on the 3D Radiant Environment and Human Thermal Comfort in Summer within Urban Settlements in Northeast China. Advances in Meteorology, 2020, 2020, 1-19.	1.6	8
372	The role of urban morphology on outdoor thermal comfort: The case of Al-Sharq City – Az Zarqa. Urban Climate, 2020, 34, 100706.	5.7	25
373	An Integrated Microclimate-Energy Demand Simulation Method for the Assessment of Urban Districts. Frontiers in Built Environment, 2020, 6, .	2.3	19
374	The structural model for thermal comfort based on perceptions individuals in open urban spaces. Building and Environment, 2020, 185, 107260.	6.9	14
375	The impact of urban form on outdoor thermal comfort in hot arid environments during daylight hours, case study: New Aswan. Building and Environment, 2020, 184, 107222.	6.9	32
376	A Multi-Layer Model for Transpiration of Urban Trees Considering Vertical Structure. Forests, 2020, 11, 1164.	2.1	5
377	Study on the Effect of Streets' Space Forms on Campus Microclimate in the Severe Cold Region of China—Case Study of a University Campus in Daqing City. International Journal of Environmental Research and Public Health, 2020, 17, 8389.	2.6	7
378	Using Climate-Sensitive 3D City Modeling to Analyze Outdoor Thermal Comfort in Urban Areas. ISPRS International Journal of Geo-Information, 2020, 9, 688.	2.9	10
379	The effect of exhaust emissions from a group of moving vehicles on pollutant dispersion in the street canyons. Building and Environment, 2020, 181, 107120.	6.9	27
380	Spatial relationship between land development pattern and intra-urban thermal variations in Taipei. Sustainable Cities and Society, 2020, 62, 102415.	10.4	25
381	Comparing impact of multi-factor planning layouts in residential areas on summer thermal comfort based on orthogonal design of experiments (ODOE). Building and Environment, 2020, 182, 107145.	6.9	27
382	Effects of greenery enhancements for the resilience to heat waves: A comparison of analysis performed through mesoscale (WRF) and microscale (Envi-met) modeling. Science of the Total Environment, 2020, 747, 141300.	8.0	74

#	Article	IF	CITATIONS
383	How parks provide thermal comfort perception in the metropolitan cores; a case study in Madrid Mediterranean climatic zone. Climate Risk Management, 2020, 30, 100245.	3.2	22
384	ASSESSING THE COOLING EFFECT OF URBAN TEXTILE SHADING DEVICES THROUGH TIME-LAPSE THERMOGRAPHY. Sustainable Cities and Society, 2020, 63, 102458.	10.4	25
385	Climatically responsive urban configuration in residential area: Research gaps. AIP Conference Proceedings, 2020, , .	0.4	3
386	Outdoor Thermal Comfort: Coupling Microclimatic Parameters with Subjective Thermal Assessment to Design Urban Performative Spaces. Buildings, 2020, 10, 238.	3.1	20
387	Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review. Sustainability, 2020, 12, 10000.	3.2	28
388	Green Infrastructure as an Urban Heat Island Mitigation Strategy—A Review. Water (Switzerland), 2020, 12, 3577.	2.7	51
389	Awareness of urban climate adaptation strategies –an international overview. Urban Climate, 2020, 34, 100705.	5.7	33
390	Effect of Building Shade on Evapotranspiration in Las Vegas Valley. , 2020, , .		1
391	Street grids for efficient district cooling systems in high-density cities. Sustainable Cities and Society, 2020, 60, 102224.	10.4	10
392	On the influence of density and morphology on the Urban Heat Island intensity. Nature Communications, 2020, 11, 2647.	12.8	148
393	Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustainable Cities and Society, 2020, 60, 102289.	10.4	134
394	Study on importance, procedure, and scope of outdoor thermal comfort –A review. Sustainable Cities and Society, 2020, 61, 102297.	10.4	98
395	A meta-analytical review of outdoor thermal comfort research: Applications, gaps and a framework to assess low-income settlements in Indian megacities. Urban Climate, 2020, 33, 100641.	5.7	8
396	The effect of building height diversity on outdoor microclimate conditions in hot climate. A case study of Dubai-UAE. Urban Climate, 2020, 32, 100611.	5.7	36
397	The impact of outdoor shading strategies on student thermal comfort in open spaces between education building. Sustainable Cities and Society, 2020, 58, 102124.	10.4	40
398	A novel comprehensive workflow for modelling outdoor thermal comfort and energy demand in urban canyons: Results and critical issues. Energy and Buildings, 2020, 216, 109946.	6.7	52
399	Assessment of the Outdoor Thermal Comfort in Oases Settlements. Atmosphere, 2020, 11, 185.	2.3	19
400	Effects of Roadside Trees and Road Orientation on Thermal Environment in a Tropical City. Sustainability, 2020, 12, 1053.	3.2	29

#	Article	IF	CITATIONS
401	Use of outdoor microclimate simulation maps for a planting design to improve thermal comfort. Sustainable Cities and Society, 2020, 57, 102137.	10.4	40
402	Effect of traffic tidal flow on pollutant dispersion in various street canyons and corresponding mitigation strategies. Energy and Built Environment, 2020, 1, 242-253.	5.9	26
403	Influence of Weather Factors on Thermal Comfort in Subtropical Urban Environments. Sustainability, 2020, 12, 2001.	3.2	27
404	A Review and Insights for Eleven Years of Urban Microclimate Research Towards a New Egyptian ERA of Low Carbon, Comfortable and Energy-Efficient Housing Typologies. Atmosphere, 2020, 11, 236.	2.3	18
405	Field comparison test study of external shading effect on thermal-optical performance of ultralow-energy buildings in cold regions of China. Building and Environment, 2020, 180, 106926.	6.9	22
406	Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports, 2020, 6, 1670-1684.	5.1	76
407	The effect of trees on human energy fluxes in a humid subtropical climate region. International Journal of Biometeorology, 2020, 64, 1675-1686.	3.0	11
408	A new approach of urban livability in Tehran: Thermal comfort as a primitive indicator. Case study, district 22. Urban Climate, 2020, 33, 100656.	5.7	15
409	Between aspiration and actuality: A systematic review of morphological heat mitigation strategies in hot urban deserts. Urban Climate, 2020, 31, 100570.	5.7	9
410	Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics. Applied Energy, 2020, 264, 114724.	10.1	33
411	Impacts of future weather data on the energy performance of buildings in the context of urban geometry. Cogent Engineering, 2020, 7, 1714112.	2.2	5
412	Efficacy of cool roofs at reducing pedestrian-level air temperature during projected 21st century heatwaves in Atlanta, Detroit, and Phoenix (USA). Environmental Research Letters, 2020, 15, 084007.	5.2	24
413	Canyon effects in urban configurations: tropical context study. IOP Conference Series: Earth and Environmental Science, 2020, 436, 012028.	0.3	6
414	Modeling the influences of layouts of residential townhouses and tree-planting patterns on outdoor thermal comfort in Bangkok suburb. Journal of Building Engineering, 2020, 30, 101262.	3.4	43
415	Behavioural Perspectives of Outdoor Thermal Comfort in Urban Areas: A Critical Review. Atmosphere, 2020, 11, 51.	2.3	48
416	Comparison of urban airflow between solar-induced thermal wall and uniform wall temperature boundary conditions by coupling CitySim and CFD. Building and Environment, 2020, 172, 106732.	6.9	16
417	Right tree, right place (urban canyon): Tree species selection approach for optimum urban heat mitigation - development and evaluation. Science of the Total Environment, 2020, 719, 137461.	8.0	122
418	Evaluation of settlement textures in terms of building energy, economic performance, and outdoor thermal comfort. Sustainable Cities and Society, 2020, 56, 102110.	10.4	13

#	Article	IF	CITATIONS
419	Modeling the effects of green alternative on heat island mitigation of a meso level town, West Bengal, India. Advances in Space Research, 2020, 65, 1789-1802.	2.6	27
420	Vegetation in different street orientations of aspect ratio (H/W 1:1) to mitigate UHI and reduce buildings' energy in arid climate. Building and Environment, 2020, 172, 106712.	6.9	65
421	Urban Warming and Cities' Microclimates: Investigation Methods and Mitigation Strategies—A Review. Energies, 2020, 13, 1414.	3.1	45
422	Knowledge Atlas on the Relationship between Urban Street Space and Residents' Health—A Bibliometric Analysis Based on VOSviewer and CiteSpace. Sustainability, 2020, 12, 2384.	3.2	51
423	Post-occupancy evaluation of outdoor thermal comfort in hot arid zone. International Journal of Low-Carbon Technologies, 2021, 16, 50-60.	2.6	10
424	The impact of urban form on building energy and cost efficiency in temperate-humid zones. Journal of Building Engineering, 2021, 33, 101626.	3.4	26
425	Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses. Applied Energy, 2021, 281, 116077.	10.1	40
426	Urban outdoor thermal comfort in western China. Journal of Asian Architecture and Building Engineering, 2021, 20, 222-236.	2.0	15
427	Analysis of urban thermal environments based on the perception and simulation of the microclimate in the historic city of Tlemcen. Smart and Sustainable Built Environment, 2021, 10, 141-168.	4.0	11
428	Impact of building regulations on the perceived outdoor thermal comfort in the mixed-use neighbourhood of Chennai. Frontiers of Architectural Research, 2021, 10, 148-163.	2.8	10
429	On the study of the effects of microclimate and park and surrounding building configuration on thermal comfort in urban parks. Sustainable Cities and Society, 2021, 64, 102512.	10.4	40
430	Solar elevation impact on the heat stress mitigation of pedestrians on tree-lined sidewalks of E-W street canyons – Analysis under Central European heat wave conditions. Urban Forestry and Urban Greening, 2021, 58, 126905.	5.3	17
431	The effect of urban shading and canyon geometry on outdoor thermal comfort in hot climates: A case study of Ahvaz, Iran. Sustainable Cities and Society, 2021, 65, 102638.	10.4	60
432	Study on a full-year improvement of indoor thermal comfort by different vertical greening patterns. Journal of Building Engineering, 2021, 35, 101969.	3.4	16
433	Exploration of the thermal behaviour and energy balance of urban canyons in relation to their geometrical and constructive properties. Building and Environment, 2021, 188, 107466.	6.9	13
434	Outdoor space quality: Impact of deep canyon thermal comfort in an urban residential community. Science and Technology for the Built Environment, 2021, 27, 477-488.	1.7	3
435	Urban evapotranspiration of green spaces in arid regions through two established approaches: a review of key drivers, advancements, limitations, and potential opportunities. Urban Water Journal, 2021, 18, 115-127.	2.1	28
436	Evaluation of design schemes for urban squares in arid climate cities, Mendoza, Argentina. Building Simulation, 2021, 14, 763-777.	5.6	10

#	Article	IF	CITATIONS
437	Benefits of street sun sails to limit building cooling needs in a mediterranean city. Building and Environment, 2021, 187, 107403.	6.9	13
438	Streets are forever: thermal coefficient of street orientation as a strategy to develop cooler street networks in hot climates. Architectural Science Review, 2021, 64, 225-234.	2.2	1
439	Analysis of Microclimate Environment and Human Comfort in Summer and Winter Out-er Space of Universities—Taking Chenggong Campus of Yunnan University as an Example. Geographical Science Research, 2021, 10, 72-82.	0.1	0
440	Interrelationships between Land Use Land Cover (LULC) and Human Thermal Comfort (HTC): A Comparative Analysis of Different Spatial Settings. Sustainability, 2021, 13, 382.	3.2	10
442	The Influence of Wind Effects on Street Canyon Width at the Pedestrian Level in Iraq. Lecture Notes in Civil Engineering, 2021, , 39-49.	0.4	1
443	Analysis of the Effects of Floor Area Ratio Change in Urban Street Canyons on Microclimate and Particulate Matter. Energies, 2021, 14, 714.	3.1	8
444	Field study of pedestrians' comfort temperatures under outdoor and semi-outdoor conditions in Malaysian university campuses. International Journal of Biometeorology, 2021, 65, 453-477.	3.0	15
445	Design the Urban Microclimate: Nature-Based Solutions and Technology at Nexus. Future City, 2021, , 413-433.	0.5	0
446	Human Biometeorological Models: Existing and Future Reflections for Lisbon. , 2021, , 443-464.		2
447	UHI drivers and mapping the urban thermal environment. , 2021, , 69-115.		4
447 448	UHI drivers and mapping the urban thermal environment. , 2021, , 69-115. Project Coolbit: can your watch predict heat stress and thermal comfort sensation?. Environmental Research Letters, 2021, 16, 034031.	5.2	4
	Project Coolbit: can your watch predict heat stress and thermal comfort sensation?. Environmental	5.2 2.8	
448	Project Coolbit: can your watch predict heat stress and thermal comfort sensation?. Environmental Research Letters, 2021, 16, 034031. Urban design considerations in the environmental assessment of vernacular buildings with timber projections (sachnisi): The case of Nicosia's historic center. Frontiers of Architectural Research,		44
448 449	 Project Coolbit: can your watch predict heat stress and thermal comfort sensation?. Environmental Research Letters, 2021, 16, 034031. Urban design considerations in the environmental assessment of vernacular buildings with timber projections (sachnisi): The case of Nicosia's historic center. Frontiers of Architectural Research, 2021, 10, 176-189. Modelling the influence of high-rise urban geometry on outdoor thermal comfort in Singapore. 	2.8	44 7
448 449 450	 Project Coolbit: can your watch predict heat stress and thermal comfort sensation?. Environmental Research Letters, 2021, 16, 034031. Urban design considerations in the environmental assessment of vernacular buildings with timber projections (sachnisi): The case of Nicosia's historic center. Frontiers of Architectural Research, 2021, 10, 176-189. Modelling the influence of high-rise urban geometry on outdoor thermal comfort in Singapore. Urban Climate, 2021, 36, 100775. Can urban heat be mitigated in a single urban street? Monitoring, strategies, and performance results 	2.8 5.7	44 7 30
448 449 450 451	 Project Coolbit: can your watch predict heat stress and thermal comfort sensation?. Environmental Research Letters, 2021, 16, 034031. Urban design considerations in the environmental assessment of vernacular buildings with timber projections (sachnisi): The case of Nicosia's historic center. Frontiers of Architectural Research, 2021, 10, 176-189. Modelling the influence of high-rise urban geometry on outdoor thermal comfort in Singapore. Urban Climate, 2021, 36, 100775. Can urban heat be mitigated in a single urban street? Monitoring, strategies, and performance results from a real scale redevelopment project. Solar Energy, 2021, 216, 564-588. Perceptions of urban heat island mitigation and implementation strategies: survey and gap analysis. 	2.8 5.7 6.1	44 7 30 35
448 449 450 451 452	 Project Coolbit: can your watch predict heat stress and thermal comfort sensation?. Environmental Research Letters, 2021, 16, 034031. Urban design considerations in the environmental assessment of vernacular buildings with timber projections (sachnisi): The case of Nicosia's historic center. Frontiers of Architectural Research, 2021, 10, 176-189. Modelling the influence of high-rise urban geometry on outdoor thermal comfort in Singapore. Urban Climate, 2021, 36, 100775. Can urban heat be mitigated in a single urban street? Monitoring, strategies, and performance results from a real scale redevelopment project. Solar Energy, 2021, 216, 564-588. Perceptions of urban heat island mitigation and implementation strategies: survey and gap analysis. Sustainable Cities and Society, 2021, 66, 102687. Quantification of the Outdoor Thermal Comfort within Different Oases Urban Fabrics. Sustainability, 	2.8 5.7 6.1 10.4	44 7 30 35 41

#	Article	IF	CITATIONS
456	Thermal environmental effects of vertical greening and building layout in open residential neighbourhood design: a case study in Shanghai. Architectural Science Review, 2022, 65, 72-88.	2.2	6
457	A regression-based three-phase approach to assess outdoor thermal comfort in informal micro-entrepreneurial settings in tropical Mumbai. International Journal of Biometeorology, 2022, 66, 313-329.	3.0	6
458	The Contribution of Urban Morphology to the Formation of the Microclimate in Compact Urban Cores: A Study in the City Center of Thessaloniki. Urban Science, 2021, 5, 37.	2.3	11
459	Thermal comfort interventions of landscape elements in a humid and subtropical residential area in China. Journal of Asian Architecture and Building Engineering, 2022, 21, 1106-1123.	2.0	3
460	Spatial analysis of the impact of urban geometry and socio-demographic characteristics on COVID-19, a study in Hong Kong. Science of the Total Environment, 2021, 764, 144455.	8.0	48
461	Urban heat-mitigating building form and façade framework. Architectural Science Review, 2022, 65, 57-71.	2.2	5
462	Positional error modeling of skyâ€view factor measurements within urban street canyons. Transactions in GIS, 2021, 25, 1970-1990.	2.3	5
463	Effects of street geometries on building cooling demand in Nanjing, China. Renewable and Sustainable Energy Reviews, 2021, 142, 110862.	16.4	9
464	A Method for the Automated Construction of 3D Models of Cities and Neighborhoods from Official Cadaster Data for Solar Analysis. Sustainability, 2021, 13, 6028.	3.2	6
465	Effectiveness of Tree Pattern in Street Canyons on Thermal Conditions and Human Comfort. Assessment of an Urban Renewal Project in Historical District in Lodz (Poland). Atmosphere, 2021, 12, 751.	2.3	9
466	Outdoor thermal comfort: Analyzing the impact of urban configurations on the thermal performance of street canyons in the humid subtropical climate of Sydney. Frontiers of Architectural Research, 2021, 10, 394-409.	2.8	48
467	Uncertainty of solar radiation in urban canyons propagates to indoor thermo-visual comfort. Solar Energy, 2021, 221, 545-558.	6.1	9
468	Understanding the summertime warming in canyon and non-canyon surfaces. Urban Climate, 2021, 38, 100916.	5.7	9
469	Spatially Resolved Analysis of Urban Thermal Environments Based on a Three-Dimensional Sampling Algorithm and UAV-Based Radiometric Measurements. Sensors, 2021, 21, 4847.	3.8	6
470	Study of the thermal environment of sidewalks within varied urban road structures. Urban Forestry and Urban Greening, 2021, 62, 127137.	5.3	9
471	Analysis and optimization of external venetian blind shading for nearly zero-energy buildings in different climate regions of China. Solar Energy, 2021, 223, 54-71.	6.1	41
472	Effect of Different Landscapes on Heat Load to Buildings. Land, 2021, 10, 733.	2.9	3
473	Application of weather data morphing for calibration of urban ENVI-met microclimate models. Results and critical issues. Urban Climate, 2021, 38, 100895.	5.7	19

#	Article	IF	CITATIONS
474	Quantifying the Effect of Building Shadowing and Cloudiness on Mean Radiant Temperature in Singapore. Atmosphere, 2021, 12, 1012.	2.3	7
475	A review on the significance and perspective of the numerical simulations of outdoor thermal environment. Sustainable Cities and Society, 2021, 71, 102971.	10.4	50
476	Effect of heat mitigation strategies on thermal environment, thermal comfort, and walkability: A case study in Hong Kong. Building and Environment, 2021, 201, 107988.	6.9	34
477	A Quantitative Morphological Method for Mapping Local Climate Types. Urban Planning, 2021, 6, 240-257.	1.3	7
478	Empirical analysis of building energy consumption and urban form in a large city: A case of Seoul, South Korea. Energy and Buildings, 2021, 245, 111046.	6.7	23
479	Urban geometry as an adaptation strategy to improve the outdoor thermal performance in hot arid regions: Aswan University as a case study. Sustainable Cities and Society, 2021, 71, 102965.	10.4	22
480	Observing the impact of urban morphology and building geometry on thermal environment by high spatial resolution thermal images. Urban Climate, 2021, 39, 100937.	5.7	15
481	Urban green space and health: The role of thermal comfort on the health benefits from the urban green space; a review study. Building and Environment, 2021, 202, 108039.	6.9	24
482	Research on Reducing Carbon Consumption in Residential Community Spaces as Influenced by Microclimate Environments. Journal of the Urban Planning and Development Division, ASCE, 2021, 147, .	1.7	2
483	Effects of Urban Geometry on Mean Radiant Temperature. SpringerBriefs in Architectural Design and Technology, 2022, , 69-83.	0.3	1
484	A new comprehensive workflow for modelling outdoor thermal comfort in Egypt. Solar Energy, 2021, 225, 162-172.	6.1	7
485	Urban Greening Strategies for Enhancing Outdoor Thermal Comfort. SpringerBriefs in Architectural Design and Technology, 2022, , 85-100.	0.3	2
486	Effect of Tree Species on Outdoor Thermal Comfort. SpringerBriefs in Architectural Design and Technology, 2022, , 101-123.	0.3	0
487	Tree layout methodology for shading pedestrian zones: Thermal comfort study in Bilbao (Northern) Tj ETQq1 1 C	.784314 r 10.4	gB <mark>T</mark> /Overloc
488	The effect of urban morphology on heat accumulation in urban street canyons and mitigation approach. Sustainable Cities and Society, 2021, 73, 103127.	10.4	21
489	A quantitative assessment of the dependence of outdoor thermal-stresses on tree-building morphology and wind: A case-study in sub-tropical Patna, India. Sustainable Cities and Society, 2021, 73, 103085.	10.4	0
490	Assessing local heat stress and air quality with the use of remote sensing and pedestrian perception in urban microclimate simulations. Science of the Total Environment, 2021, 794, 148709.	8.0	26
491	A multilevel approach for assessing the effects of microclimatic urban design on pedestrian thermal comfort: The High Line in New York. Building and Environment, 2021, 205, 108244.	6.9	20

#	Article	IF	CITATIONS
492	The Street Walkability and Thermal Comfort Index (SWTCI): A new assessment tool combining street design measurements and thermal comfort. Science of the Total Environment, 2021, 795, 148663.	8.0	24
493	Classification of the influence of urban canyon geometry and reflectance on seasonal solar irradiation in three European cities. Sustainable Cities and Society, 2021, 75, 103379.	10.4	11
494	A parametric optimisation study of urban geometry design to assess outdoor thermal comfort. Sustainable Cities and Society, 2021, 75, 103352.	10.4	24
495	The influence of perceived aesthetic and acoustic quality on outdoor thermal comfort in urban environment. Building and Environment, 2021, 206, 108333.	6.9	37
496	Impact of neighborhood spatial characteristics on the microclimate in a hot arid climate – A field based study. Sustainable Cities and Society, 2021, 75, 103273.	10.4	7
497	Identifying the optimal travel path based on shading effect at pedestrian level in cool and hot climates. Urban Climate, 2021, 40, 100988.	5.7	9
498	Green Infrastructure to Mitigate Extreme Temperatures in Cities. , 2021, , 403-417.		0
499	Trade-Offs between Urban Green Space and Densification: Balancing Outdoor Thermal Comfort, Mobility, and Housing Demand. Urban Planning, 2021, 6, 5-19.	1.3	19
500	Mediterranean Morphologies in Hot Summer Conditions: Learning from France's "Glorious Thirty― Holiday Housing. Journal of Contemporary Urban Affairs, 2021, 5, 19-34.	1.0	2
502	The impact of different cooling strategies on urban air temperatures: the cases of Campinas, Brazil and Mendoza, Argentina. Theoretical and Applied Climatology, 2017, 130, 35-50.	2.8	28
503	Integration of the WUDAPT, WRF, and ENVI-met models to simulate extreme daytime temperature mitigation strategies in San Jose, California. Building and Environment, 2020, 184, 107180.	6.9	42
504	Residential cluster design and potential improvement for maximum energy performance and outdoor thermal comfort on a hot summer in Thailand. International Journal of Low-Carbon Technologies, 2021, 16, 592-603.	2.6	6
505	Investigating the nighttime urban heat island (Canopy Layer) using mobile transverse method: A case study of colon street in Cebu City, Philippines. Pollack Periodica, 2017, 12, 109-116.	0.4	1
506	Estudo de conforto em espaços abertos em região de clima temperado: o caso de Glasgow, Reino Unido. Ambiente ConstruÁdo, 2012, 12, 7-25.	0.4	5
507	URBAN GEOMETRY MITIGATION GUIDELINES TO IMPROVE OUTDOOR THERMAL PERFORMANCE IN EGYPTIAN HOT ARID NEW CITIES. JES Journal of Engineering Sciences, 2019, 47, 172-193.	0.1	4
508	Green roofs and cool materials as retrofitting strategies for urban heat island mitigation: Case study in Belgrade, Serbia. Thermal Science, 2018, 22, 2309-2324.	1.1	17
509	A Comparative Study Between the Climate Response Strategies and Thermal Comfort of a Traditional and Contemporary Houses in KRG: Erbil. Kurdistan Journal of Applied Research, 2017, 2, 320-329.	0.4	3
510	Rice-Straw Based Cement Brick Microclimatic Thermal Impact Assessment in Cairo, Egypt. , 2011, , .		5

#	Article	IF	CITATIONS
511	INFLUENCE OF PLANTING DESIGNS ON WINTER THERMAL COMFORT IN AN URBAN PARK. Journal of Environmental Engineering and Landscape Management, 2018, 26, 232-240.	1.0	22
512	Measurement Study of Diurnal Variations of PM2.5 Mass Concentrations and Affecting Factors on Pollutant Dispersion in Urban Street Canyons under Weak-Wind Conditions in Xi'an. Aerosol and Air Quality Research, 2012, 12, 1261-1268.	2.1	9
513	La calidad peatonal como método para evaluar entornos de movilidad urbana. Documents D' Analisi Geografica, 2014, 60, 161.	0.1	18
514	Optimizing trees distances in urban streets for insolation mitigation. Geographica Pannonica, 2019, 23, 329-336.	1.3	1
515	Recent trends on human thermal bioclimate conditions in Kyiv, Ukraine. Geographia Polonica, 2020, 93, 89-106.	1.0	21
516	UTCI: validation and practical application to the assessment of urban outdoor thermal comfort. Geographia Polonica, 2013, 86, 11-20.	1.0	38
517	Empirical and computational assessment of the Urban Heat Island phenomenon and related mitigation measures. Geographia Polonica, 2014, 87, 505-516.	1.0	7
518	UHI effect in the city of Padua: Simulations and mitigation strategies using the Rayman and Envimet models. Geographia Polonica, 2014, 87, 517-530.	1.0	6
519	A Mathematical Model for the Calculation of Effective Albedo of an Urban Canyon and Its Applications. SSRN Electronic Journal, 0, , .	0.4	0
520	An Exploration of the Effects of Urban Block Design on the Outdoor Thermal Environment in Tropical Savannah Climate: Case Study of Nyamirambo Neighborhood of Kigali. Advances in Science, Technology and Innovation, 2021, , 17-28.	0.4	0
521	Energetics of Urban Canopies: A Meteorological Perspective. J, 2021, 4, 645-663.	0.9	1
522	Optimization Strategy of Traditional Block Form Based on Field Investigation—A Case Study of Xi'an Baxian'an, China. International Journal of Environmental Research and Public Health, 2021, 18, 10895.	2.6	1
523	Evaluating the role of the albedo of material and vegetation scenarios along the urban street canyon for improving pedestrian thermal comfort outdoors. Urban Climate, 2021, 40, 100993.	5.7	47
524	Assessing the influence of street configurations on human thermal conditions in open balconies in the Mediterranean climate. Urban Climate, 2021, 40, 100975.	5.7	12
525	Chapitre 5. Repenser la ville, sa forme, ses flux. , 2010, , 140-148.		0
526	Towards a Unifying Visualization Modelling Platform for Supporting Climate Change Conscious Urban Neighbourhood Design. , 2011, , .		0
527	ALCANCES Y LIMITACIONES DE LAS HERRAMIENTAS DE SIMULACIÓN PARA EL ESTUDIO DEL MICROCLIMA URBANO. Dyna Energia Y Sostenibilidad, 2013, 2, [17 p.]-[17 p.].	0.1	2
528	Orientation of Buildings: Predictive Control Based on the Calculation of Temperature and Solar Direct Contribution. International Letters of Chemistry, Physics and Astronomy, 0, 55, 94-101.	0.0	1

#	ARTICLE	IF	CITATIONS
529	Considerations of user comfort in open spaces: lessons learned from the design of public spaces in the Eastern Mediterranean. WIT Transactions on the Built Environment, 2015, , 1237-1247.	0.0	0
530	Effect of Galleries on Thermal Conditions of Urban Open Areas. Environment-Behaviour Proceedings Journal, 2016, 1, 215.	0.2	0
531	Microclimatic Conditions of an Urban Square: Role of built environment and geometry. Asian Journal of Behavioural Studies, 2018, 3, 115.	0.2	1
532	The Effect of Shading on Pedestrians' Thermal Comfort in the E-W Street. Journal of the Korean Institute of Landscape Architecture, 2018, 46, 60-74.	0.6	0
533	Digital Simulation for the Outdoor Thermal Comfort Assessment. Advances in Civil and Industrial Engineering Book Series, 2019, , 33-46.	0.2	2
534	Simulation of the thermal comfort conditions of urban areas: a case study in Kyiv. Visnyk of V N Karazin Kharkiv National University Series Geology Geography Ecology, 2019, , .	0.5	0
536	Urban Climates: Theories, Approaches, and Design Implications. Urban Book Series, 2020, , 25-46.	0.6	0
537	Optimizing Urban Texture and Building Typology for the Goal of Achieving Near-Zero High-Rise Residential Building. Gazi University Journal of Science, 0, , 1-1.	1.2	3
538	Case Study on the Pedestrian Wind Environment of Commercial Streets in Beijing and Tokyo Based on CFD Simulation. Environmental Science and Engineering, 2020, , 533-541.	0.2	0
539	Urban Geometry Optimization to Mitigate Climate Change: Towards Energy-Efficient Buildings. Sustainability, 2021, 13, 27.	3.2	8
540	Analysis of Urban Street Microclimate Data Based on ENVI-met. Advances in Intelligent Systems and Computing, 2020, , 759-767.	0.6	0
541	Re-naturing Cities: Impact of Microclimate, Human Thermal Comfort and Recreational Participation. Climate Change Management, 2020, , 545-562.	0.8	6
542	City-scale Modeling of Urban Heat Islands for Kolkata. Climate Change Management, 2020, , 89-133.	0.8	3
543	Technologies in Urban Design Practice. Advances in Environmental Engineering and Green Technologies Book Series, 0, , 133-152.	0.4	0
544	The Urban Heat Island phenomenon modelling and analysis as an adaptation of Maghreb cities to climate change. MATEC Web of Conferences, 2018, 149, 02090.	0.2	0
545	A simulation study on the effects of tree height variations on the façade temperature of enclosed courtyard in North China. Building and Environment, 2022, 207, 108566.	6.9	18
546	Pocket parks towards more sustainable cities. Architectural, environmental, managerial and legal considerations towards an integrated framework: A case study in the Mediterranean region. Environmental Challenges, 2022, 7, 100402.	4.2	24
547	Analysis of Spatio-temporal patterns and related factors of thermal comfort in subtropical coastal cities based on local climate zones. Building and Environment, 2022, 207, 108568.	6.9	32

#	Article	IF	CITATIONS
548	The assessment of outdoor thermal comfort inside oasis settlements in North Africa - Algeria. Journal of Physics: Conference Series, 2021, 2042, 012061.	0.4	0
549	Effects of air temperature, humidity, and wind velocity distribution on indoor cooling load and outdoor human thermal environment at urban scale. Energy and Buildings, 2022, 257, 111792.	6.7	6
550	Impact of boundary conditions in a microclimate model on mitigation strategies affecting temperature, relative humidity, and wind speed in a Mediterranean city. Building and Environment, 2022, 210, 108712.	6.9	7
551	Eficacia de estrategias de disminución del calentamiento urbano. Estudio para una ciudad de clima árido. Informes De La Construccion, 2020, 72, 352.	0.3	2
552	Microclimatic behavior of sustainable urban schemes proposed for hillside areas versus existing neighborhoods in the Metropolitan Area of Mendoza, Argentina. Geographica Pannonica, 2021, 25, 226-242.	1.3	1
553	A Pedestrian-Level Strategy to Minimize Outdoor Sunlight Exposure. Springer Optimization and Its Applications, 2022, , 123-134.	0.9	3
554	Outdoor Thermal Environments of Main Types of Urban Areas during Summer: A Field Study in Wuhan, China. Sustainability, 2022, 14, 952.	3.2	5
555	Biometeorological Conditions during the August 2015 Mega-Heat Wave and the Summer 2010 Mega-Heat Wave in Ukraine. Atmosphere, 2022, 13, 99.	2.3	5
556	The effect of height and orientation of buildings on thermal comfort. Sustainable Cities and Society, 2022, 79, 103720.	10.4	29
557	A review of multi-scale modelling, assessment, and improvement methods of the urban thermal and wind environment. Building and Environment, 2022, 213, 108860.	6.9	33
558	A microscale three-dimensional model of urban outdoor thermal exposure (TUF-Pedestrian). International Journal of Biometeorology, 2022, 66, 833-848.	3.0	15
559	Numerical Study on Microclimate and Outdoor Thermal Comfort of Street Canyon Typology in Extremely Hot Weather—A Case Study of Busan, South Korea. Atmosphere, 2022, 13, 307.	2.3	8
560	Thermal performance prediction of street trees inside isolated open spaces – evaluations from real scale retrofitting project. Journal of Building Performance Simulation, 2023, 16, 381-397.	2.0	8
561	Comparison of Different Blue–Green Infrastructure Strategies in Mitigating Urban Heat Island Effects and Improving Thermal Comfort. , 2022, , .		0
562	Horizontal heat impacts and shading effects of buildings on surface soil layer in Beijing, China. Indoor and Built Environment, 2022, 31, 1806-1821.	2.8	2
563	Thermal Comfort-Based Spatial Planning Model in Jakarta Transit-Oriented Development (TOD). Atmosphere, 2022, 13, 565.	2.3	2
564	Assessment of macroclimate and microclimate effects on outdoor thermal comfort via artificial neural network models. Urban Climate, 2022, 42, 101134.	5.7	21
565	Influence of Building Density on Outdoor Thermal Environment of Residential Area in Cities with Different Climatic Zones in China—Taking Guangzhou, Wuhan, Beijing, and Harbin as Examples. Buildings, 2022, 12, 370.	3.1	2

#	Article	IF	CITATIONS
566	Quantification of Outdoor Thermal Comfort Levels under Sea Breeze in the Historical City Fabric: The Case of Algiers Casbah. Atmosphere, 2022, 13, 575.	2.3	5
567	The Potential of Cool Materials Towards Improving Thermal Comfort Conditions Inside Real-urban Hot-humid Microclimate. Environment and Urbanization ASIA, 2022, 13, 56-72.	1.8	2
568	Experimental study and theoretical discussion of dynamic outdoor thermal comfort in walking spaces: Effect of short-term thermal history. Building and Environment, 2022, 216, 109039.	6.9	27
569	Comparing cooling efficiency of shading strategies for pedestrian thermal comfort in street canyons of traditional shophouse neighbourhoods in Guangzhou, China. Urban Climate, 2022, 43, 101165.	5.7	18
570	A fast calculation tool for assessing the shading effect of surrounding buildings on window transmitted solar radiation energy. Sustainable Cities and Society, 2022, 81, 103834.	10.4	10
571	ERZURUM'DA KENT KANYONU ALANLARININ GELİŞİMİ VE PEYZAJ MİMARLIĞI AÇISINDAN ALINABđ 0, , .	LECEK TEI	OBİRLER. ,
572	An Ambient Noise Analysis Predictive Model for Bengaluru Metropolis Using Noise Descriptors. , 2021, ,		0
573	Integrating solar energy considerations into urban planning for low carbon cities: A systematic review of the state-of-the-art. Urban Governance, 2022, 2, 157-172.	1.9	14
574	Assessing annual thermal comfort extent in central courtyards: Baghdad as a case study. Smart and Sustainable Built Environment, 2023, 12, 660-681.	4.0	2
575	A Review of Urban Microclimate Research Based on CiteSpace and VOSviewer Analysis. International Journal of Environmental Research and Public Health, 2022, 19, 4741.	2.6	26
576	Artificial Neural Network Modeling for Predicting and Evaluating the Mean Radiant Temperature around Buildings on Hot Summer Days. Buildings, 2022, 12, 513.	3.1	5
577	Effect of outdoor thermal comfort condition on visit of tourists in historical urban plazas of Sevilla and Madrid. Environmental Science and Pollution Research, 2022, 29, 60641-60661.	5.3	14
578	Quantifying Interactive Cooling Effects of Morphological Parameters and Vegetation-Related Landscape Features during an Extreme Heat Event. Climate, 2022, 10, 60.	2.8	7
579	The Synergistic Effect of Urban Canyon Geometries and Greenery on Outdoor Thermal Comfort in Humid Subtropical Climates. Frontiers in Environmental Science, 2022, 10, .	3.3	11
580	Findings from a field study of urban microclimate in Korea using mobile meteorological measurements. Open House International, 2022, 47, 473-493.	1.1	4
581	Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city. Science of the Total Environment, 2022, 834, 155294.	8.0	15
582	Effect of Urban Morphology on Micro Climatic Comfort of Public Open Spaces Using Genetic Algorithm: A Case Study on Tehran. SSRN Electronic Journal, 0, , .	0.4	0
583	Bioclimatic Characterisation Methodology of a City. Advances in Environmental Engineering and Green Technologies Book Series, 2022, , 1-31.	0.4	0

		CITATION REPORT		
#	Article		IF	CITATIONS
584	Impact of complex relief on heat transfer in urban area. Urban Climate, 2022, 43, 1011	77.	5.7	4
585	Effects of street orientation and tree species thermal comfort within urban canyons in climate. Ecological Informatics, 2022, 69, 101671.	a hot, dry	5.2	27
586	Urban block configuration and the impact on energy consumption: A case study of sine morphology. Renewable and Sustainable Energy Reviews, 2022, 163, 112507.	ious	16.4	14
587	Analysis of Thermal Environment Modification Effects of Street Trees Depending on Pla and Street Directions in Summertime Using ENVI-Met Simulation. Journal of the Korear Landscape Architecture, 2022, 50, 1-22.		0.6	3
588	Analyzing the influence of urban morphological features on pedestrian thermal comfor Climate, 2022, 44, 101192.	t. Urban	5.7	14
589	Impacts of urban canyon aspect ratio and roof albedo on heat fluxes and temperatures centers. Urban Climate, 2022, 44, 101189.	in four urban	5.7	3
590	Characteristics, Progress and Trends of Urban Microclimate Research: A Systematic Lite and Bibliometric Analysis. Buildings, 2022, 12, 877.	erature Review	3.1	8
591	The Use of Envi-Met for the Assessment of Nature-Based Solutions' Potential Bene Parks—A Case Study of Argales Industrial Park (Valladolid, Spain). Infrastructures, 202		2.8	12
592	Influence of view factors on intra-urban air temperature and thermal comfort variability temperate city. Science of the Total Environment, 2022, 841, 156720.	' in a	8.0	15
593	Thermal Comfort Evaluation for Landscape Design Alternatives Using Envi-Met V4.3.4: Square Renovation, Seoul, South Korea. SSRN Electronic Journal, 0, , .	Gwanghwamun	0.4	0
594	Effects of Creating Street Greenery in Urban Pedestrian Roads on Microclimates and Pa Matter Concentrations. Sustainability, 2022, 14, 7887.	ırticulate	3.2	0
595	New developments and future challenges in reducing and controlling heat island effect areas. Environment, Development and Sustainability, 2023, 25, 10485-10531.	in urban	5.0	12
596	An experimental technique based on globe thermometers for the measurement of mea temperature in urban settings. Building and Environment, 2022, 222, 109373.	n radiant	6.9	4
597	The impact of street geometry on outdoor thermal comfort within three different urba severe cold region of China. Building and Environment, 2022, 222, 109342.	n forms in	6.9	18
598	The Effect of Urban Form on the Heat Island Phenomenon and Human Thermal Comfor Study of UAE Residential Sites. Energies, 2022, 15, 5471.	t: A Comparative	3.1	7
599	Studying the Effect of Blue-Green Infrastructure on Microclimate and Human Thermal (Melbourne's Central Business District. Sustainability, 2022, 14, 9057.	Comfort in	3.2	10
600	Between vision and action: the predicted effects of co-designed green infrastructure so environmental burdens. Urban Ecosystems, 0, , .	olutions on	2.4	2
601	Sustainable Urban Development for Heat Adaptation of Small and Medium Sized Comr 2022, 11, 1385.	nunities. Land,	2.9	1

#	Article	IF	CITATIONS
602	A comprehensive review of outdoor thermal comfort in urban areas: Effective parameters and approaches. Energy and Environment, 2023, 34, 2204-2227.	4.6	15
603	Role of Azadirachta indica (Neem) and Polyalthia longifolia (Asopalav) trees for improving outdoor thermal environment in unorganized urban settings. International Journal of Biometeorology, 2022, 66, 2055-2067.	3.0	3
604	A mathematical model for a rapid calculation of the urban canyon albedo and its applications. Renewable Energy, 2022, 197, 836-851.	8.9	4
605	Linking of pedestrian spaces to optimize outdoor air ventilation and quality in tropical high-density urban areas. Urban Climate, 2022, 45, 101249.	5.7	5
606	A study of subtropical park thermal comfort and its influential factors during summer. Journal of Thermal Biology, 2022, 109, 103304.	2.5	12
607	Optimization of tree positioning to maximize walking in urban outdoor spaces: A modeling and simulation framework. Sustainable Cities and Society, 2022, 86, 104105.	10.4	6
608	Scaled outdoor experimental investigation of thermal environment and surface energy balance in deep and shallow street canyons under various sky conditions. Building and Environment, 2022, 225, 109618.	6.9	17
609	A study of physical factors influencing park cooling intensities and their effects in different time of the day. Journal of Thermal Biology, 2022, 109, 103336.	2.5	8
610	Evaluation of urban form influence on pedestrians' wind comfort. Building and Environment, 2022, 224, 109522.	6.9	18
611	The impact of urban geometry on outdoor thermal comfort in a hot-humid climate. Building and Environment, 2022, 225, 109632.	6.9	20
612	Urban Overheating and the Impact on Health in Melbourne. Advances in Sustainability Science and Technology, 2022, , 233-248.	0.6	0
613	The Influence of Urban Canyon Geometry on Land Surface Temperature: KurtuluÅŸ Neighborhood. Turkish Journal of Remote Sensing and GIS, 0, , .	0.0	0
614	Achieving Effective Thermal Performance of Street Canyons in Various Climatic Zones. Sustainability, 2022, 14, 10780.	3.2	6
615	User Perception Study of Pedestrian Comfort Including Thermal Effects in an Educational Campus. Lecture Notes in Civil Engineering, 2023, , 287-301.	0.4	0
616	Study on correlation between shadow patterns and human behaviour in hot, arid cities: a case study of Biskra, Algeria. International Journal of Biometeorology, 0, , .	3.0	1
617	Experimental study of urban microclimate on scaled street canyons with various aspect ratios. Urban Climate, 2022, 46, 101299.	5.7	31
618	Heat-prone neighbourhood typologies of European cities with temperate climate. Sustainable Cities and Society, 2022, 87, 104174.	10.4	7
619	Model of Spectral and Directional Radiative Transfer in Complex Urban Canopies with Participating Atmospheres. Boundary-Layer Meteorology, 0, , .	2.3	2

#	Article	IF	CITATIONS
620	Analysis of spatially varying relationships between urban environment factors and land surface temperature in Mashhad city, Iran. Egyptian Journal of Remote Sensing and Space Science, 2022, 25, 987-999.	2.0	2
621	Maximizing the pedestrian radiative cooling benefit per street tree. Landscape and Urban Planning, 2023, 230, 104608.	7.5	25
622	The Proper Geometrical Parameters of Urban Street Profile to Enhance Outdoor Thermal Comfort in Highland Zone of Algeria. Innovative Renewable Energy, 2023, , 1-22.	0.4	0
623	Assessment of walkability and walkable routes of a 15-min city for heat adaptation: Development of a dynamic attenuation model of heat stress. Frontiers in Public Health, 0, 10, .	2.7	7
624	Simulation framework for early design guidance of urban streets to improve outdoor thermal comfort and building energy efficiency in summer. Building and Environment, 2023, 228, 109815.	6.9	12
625	Hourly air temperature projection in future urban area by coupling climate change and urban heat island effect. Energy and Buildings, 2023, 279, 112676.	6.7	10
626	Urban Morphology, Urban Ventilation and Urban Heat Island Mitigation: A Methodological Framework. Advances in Science, Technology and Innovation, 2022, , 131-136.	0.4	0
627	Influence of street configuration on human thermal comfort and benefits for climate-sensitive urban planning in Santiago de Chile. Urban Climate, 2023, 47, 101361.	5.7	14
628	Impact of synoptic condition on urban microclimate variation: A measurement study in a humid subtropical city during summer season. Urban Climate, 2023, 47, 101350.	5.7	3
629	Zero-Carbon Urban Design in a Warming World: Learning from Pre-modern Cities. , 2022, , 1-35.		0
630	Tree Canopy Characteristics Affect Street Canyon's Microclimate Conditions and Human Thermal Comfort in Hot-Humid Climate. Advances in Science, Technology and Innovation, 2022, , 91-97.	0.4	0
631	Influence of Roadside Trees and Road Orientation on Outdoor Thermal Environment: Case Study in Kuala Lumpur, Malaysia. , 2022, , 237-253.		0
632	Evaluating the Effects of Different Improvement Strategies for the Outdoor Thermal Environment at a University Campus in the Summer: A Case Study in Northern China. Buildings, 2022, 12, 2254.	3.1	2
633	The Definition of the Heritage Status of Modern Residential Architecture from a Multi-Scalar and Perceptual Approach. A Heritage Perspective in the Case Study of the Neighbourhood of El Plantinar in Seville (Spain). Land, 2022, 11, 2234.	2.9	1
634	Role of sounds in perception of enclosure in urban street canyons. Sustainable Cities and Society, 2023, , 104394.	10.4	1
635	Experimental study on the influence of virtual tourism spatial situation on the tourists' temperature comfort in the context of metaverse. Frontiers in Psychology, 0, 13, .	2.1	4
636	Pedestrian Level Relationship Between Building Forms and Streets Effects on the Condition of Comfort in Historical Context. , 0, , .		0
637	A predictive analysis of thermal stress in a densifying urban business district under summer daytime conditions in a Mediterranean City. Urban Climate, 2023, 48, 101298.	5.7	3

#	Article	IF	CITATIONS
638	On the Thermal Environmental Quality of Typical Urban Settlement Configurations. Buildings, 2023, 13, 76.	3.1	1
639	Role of Urban Landscapes in Changing the Irrigation Water Requirements in Arid Climate. Geosciences (Switzerland), 2023, 13, 14.	2.2	3
640	EOÂ+ÂMorphometrics: Understanding cities through urban morphology at large scale. Landscape and Urban Planning, 2023, 233, 104691.	7.5	9
641	Establishing initial urban bioclimatic planning recommendations for Ankara to address existing and future urban thermophysiological risk factors. Urban Climate, 2023, 49, 101456.	5.7	2
642	Multivariate optimization towards energy balance with geometric constraints of building design and urban space intensity. Sustainable Energy Technologies and Assessments, 2023, 57, 103124.	2.7	0
643	A review of the influence of courtyard geometry and orientation on microclimate. Building and Environment, 2023, 236, 110269.	6.9	5
644	Identifying research progress, focuses, and prospects of local climate zone (LCZ) using bibliometrics and critical reviews. Heliyon, 2023, 9, e14067.	3.2	1
645	Estimation of Urban Evapotranspiration at High Spatiotemporal Resolution and Considering Flux Footprints. Remote Sensing, 2023, 15, 1327.	4.0	2
646	Efficient Use Of Squares in Winter Cities With ENVI-met Analysis and The Effects On Thermal Comfort. Kent Akademisi, 0, , .	0.6	0
647	Urban Microclimate, Outdoor Thermal Comfort, and Socio-Economic Mapping: A Case Study of Philadelphia, PA. Buildings, 2023, 13, 1040.	3.1	4
648	Evaluation of the outdoor thermal environment for three typical urban forms in Nanjing, China. Building and Environment, 2023, 238, 110358.	6.9	6
649	Outdoor Thermal Comfort Integrated with Energy Consumption for Urban Block Design Optimization: A Study of the Hot-Summer Mediterranean City of Irbid, Jordan. Sustainability, 2023, 15, 8412.	3.2	0
650	Microclimatic analysis of outdoor thermal comfort of high-rise buildings with different configurations in Tehran: Insights from field surveys and thermal comfort indices. Building and Environment, 2023, 240, 110445.	6.9	7
651	Detection and quantification of seasonal human heat and cold stress frequencies in representative existing and future urban canyons: the case of Ankara. Theoretical and Applied Climatology, 2023, 153, 593-620.	2.8	4
652	How to quantify the cooling effects of green infrastructure strategies from a spatio-temporal perspective: Experience from a parametric study. Landscape and Urban Planning, 2023, 237, 104808.	7.5	3
653	Outdoor Thermal Comfort Optimization in a Cold Climate to Mitigate the Level of Urban Heat Island in an Urban Area. Energies, 2023, 16, 4546.	3.1	1
655	Developing a three-dimensional urban surface model for spatiotemporal analysis of thermal comfort with respect to street direction. Sustainable Cities and Society, 2023, 97, 104721.	10.4	0
656	Cost-aware generative design for urban â€~cool spots': A random forest-principal component analysis-augmented combinatorial optimization approach. Energy and Buildings, 2023, 295, 113317.	6.7	0

#	Article	IF	CITATIONS
658	A Parametric-Simulation Method to Study the Interconnections between Urban-Street-Morphology Indicators and Their Effects on Pedestrian Thermal Comfort in Tropical Summer. Sustainability, 2023, 15, 8902.	3.2	3
659	Influence of path design cooling strategies on thermal conditions and pedestrian walkability in high-rise residential complexes. Urban Forestry and Urban Greening, 2023, 86, 127981.	5.3	0
661	The Influence of Residential Block Form on Summer Thermal Comfort of Street Canyons in the Warm Temperate Zone of China. Buildings, 2023, 13, 1627.	3.1	1
662	Green roof cooling and carbon mitigation benefits in a subtropical city. Urban Forestry and Urban Greening, 2023, 86, 128018.	5.3	8
663	A simplified outdoor shading assessment method (OSAM) to identify outdoor shading requirements over the year within an urban context. Sustainable Cities and Society, 2023, 97, 104773.	10.4	1
664	Analysis of urban streets and surface thermal characteristics using thermal imaging camera in residential streets of Gurugram City, India. Environmental Science and Pollution Research, 0, , .	5.3	0
665	â€~Super cool roofs': Mitigating the UHI effect and enhancing urban thermal comfort with high albedo-coated roofs. Results in Engineering, 2023, 19, 101269.	5.1	2
666	Evaluating planting strategies for outdoor thermal comfort in high-rise residential complexes: a computational fluid dynamics simulation study. Environmental Science and Pollution Research, 2023, 30, 88641-88663.	5.3	1
667	Modelling the impact of an urban development project on microclimate and outdoor thermal comfort in a mid-latitude city. Energy and Buildings, 2023, 296, 113324.	6.7	0
668	The Influence of Street Morphology on Thermal Environment Based on ENVI-met Simulation: A Case Study of Hangzhou Core Area, China. ISPRS International Journal of Geo-Information, 2023, 12, 303.	2.9	3
669	A comprehensive morphological classification scheme for local ventilation performance zones in spatially heterogeneous urban areas. Developments in the Built Environment, 2023, 15, 100202.	4.0	1
670	Comparing land surface temperature and mean radiant temperature for urban heat mapping in Philadelphia. Urban Climate, 2023, 51, 101615.	5.7	4
671	Well-being in the Built Environment. , 2023, , 77-107.		0
672	Effects of orientation and dimensions of shading structures on thermal comfort. Building and Environment, 2023, 243, 110715.	6.9	1
673	Synergistic Effects of Roadside Trees and Spatial Geometry on Thermal Environment in Urban Streets: A Case Study in Tropical, Medium-Sized City, Taiwan. Buildings, 2023, 13, 2092.	3.1	0
674	Influence of landscape interventions on thermal comfort under time-varying building shadow; new Gwanghwamun square case, Seoul, South Korea. Heliyon, 2023, 9, e19436.	3.2	0
675	A methodological approach to evaluate the passive cooling effect of Oasis palm groves. Sustainable Cities and Society, 2023, 99, 104887.	10.4	1
676	Assessment of Outdoor Thermal Comfort in Urban Public Space, during the Hottest Period in Annaba City, Algeria. Sustainability, 2023, 15, 11763.	3.2	2

#	Article	IF	CITATIONS
677	Research on the spatial form effects of thermal comfort on urban waterfront trails in summer – a case study of West Lake in Hangzhou, China. Journal of Asian Architecture and Building Engineering, 2024, 23, 773-788.	2.0	0
678	Influence of university campus spatial morphology on outdoor thermal environment: A case study from Eastern China. Energy and Built Environment, 2023, , .	5.9	0
679	Design recommendations for the rehabilitation of an urban canyon in a subtropical climate region using aerial thermography and simulation tools. Energy and Buildings, 2023, 298, 113525.	6.7	1
680	Establishing a link between complex courtyard spaces and thermal comfort: A major advancement in evidence-based design. Building and Environment, 2023, 245, 110852.	6.9	1
681	Pitfalls and Potentials of Microclimate Simulations in Urban Planning. Journal of the Urban Planning and Development Division, ASCE, 2023, 149, .	1.7	0
682	Outdoor thermal perception in the semi-arid climate of Constantine, Algeria: A field survey during the post-COVID-19. Building and Environment, 2023, 245, 110920.	6.9	0
683	Spatially resolved indoor overheating evaluation using microscale meteorological simulation as input for building simulation – opportunities and limitations. City and Environment Interactions, 2023, 20, 100122.	4.2	0
685	The Use of Newly Developed Public Transportation System in Relation to People's Thermal Perception of Outdoor Climate. , 2023, , .		0
686	Effect of Double Decker Flyover Construction on Urban Fabric of Ashok Rajpath, Patna, India. , 2023, , .		0
687	Investigating the cooling effect of a green roof in Melbourne. Building and Environment, 2023, 246, 110965.	6.9	1
688	Quantitative Relations between the Physical Characteristics of Street Trees and Their Cooling Potential A Case Study of Kharagpur, West Bengal, India. , 2023, , .		0
689	Predicting solar radiation in the urban area: A data-driven analysis for sustainable city planning using artificial neural networking. Sustainable Cities and Society, 2024, 100, 105042.	10.4	2
690	Outdoor thermal comfort in built environment: A review of studies in India. Energy and Buildings, 2024, 303, 113758.	6.7	0
691	Study on the ancestral rules of bioclimatic urban fabric in southern Algeria. Journal of Physics: Conference Series, 2023, 2600, 082034.	0.4	0
692	The impact of densification and orientation manipulation on outdoor thermal comfort at social housing in arid regions: a sensitivity analysis. HBRC Journal, 2023, 19, 523-541.	0.7	1
693	A Review of Thermal Comfort Evaluation and Improvement in Urban Outdoor Spaces. Buildings, 2023, 13, 3050.	3.1	0
694	Street Design Strategies Based on Spatial Configurations and Building External Envelopes in Relation to Outdoor Thermal Comfort in Arid Climates. Sustainability, 2024, 16, 221.	3.2	0
695	Challenges Ahead for Sustainable Cities: An Urban Form and Transport System Review. Energies, 2024, 17, 409.	3.1	0

#	Article	IF	CITATIONS
697	A new model approach to mapping bioclimatic comfort conditions. Theoretical and Applied Climatology, 2024, 155, 3313-3327.	2.8	1
698	Urban microclimate analysis: residential block morphology impact on outdoor thermal comfort. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 0, , 1-11.	0.7	0
699	Microscale Investigation of Urban Heat Island (UHI) in Annaba City: Unveiling Factors and Mitigation Strategies. Sustainability, 2024, 16, 747.	3.2	0
700	Improving Pedestrian Thermal Comfort Using Optimized Urban Trees Pattern in Aswan City. IOP Conference Series: Earth and Environmental Science, 2024, 1283, 012004.	0.3	Ο
701	Major challenges in the urbanizing world and role of earth observations for livable cities. , 2024, , 23-52.		0
702	Advances in remote sensing in measuring urban heat island effect and its management. , 2024, , 113-132.		0
703	Modes of summertime thermal urban stress over major cities in the Middle East: A comprehensive assessment of heat exposure risks. Sustainable Cities and Society, 2024, 102, 105236.	10.4	0
704	Design of three outdoor combined thermal comfort prediction models based on urban and environmental parameters. Energy and Buildings, 2024, 306, 113946.	6.7	0
705	The microclimate impact of treetop walk based on plant community simulation. Environmental Science and Pollution Research, 0, , .	5.3	0
706	Effect of Street Asymmetry, Albedo, and Shading on Pedestrian Outdoor Thermal Comfort in Hot Desert Climates. Sustainability, 2024, 16, 1291.	3.2	0
707	A Systematic Review on Human Thermal Comfort and Methodologies for Evaluating Urban Morphology in Outdoor Spaces. Climate, 2024, 12, 30.	2.8	0
708	Effects of street tree configuration and placement on roadside thermal environment within a tropical urban canyon. International Journal of Biometeorology, 0, , .	3.0	Ο
709	Assessment of sheltered walkways in tropics: understanding contextual influence and user perception of outdoor thermal comfort. Environment, Development and Sustainability, 0, , .	5.0	0