No supernovae associated with two long-duration \hat{I}^3 -ray

Nature 444, 1047-1049 DOI: 10.1038/nature05375

Citation Report

#	Article	IF	CITATIONS
1	A burst of new ideas. Nature, 2006, 444, 1010-1011.	27.8	75
2	A novel explosive process is required for the γ-ray burst GRB 060614. Nature, 2006, 444, 1053-1055.	27.8	319
3	An enigmatic long-lasting Î ³ -ray burst not accompanied by a bright supernova. Nature, 2006, 444, 1050-1052.	27.8	349
4	Supernova classes and subclasses. AIP Conference Proceedings, 2007, , .	0.4	9
5	Optical Afterglows of Gamma-Ray Bursts. AIP Conference Proceedings, 2007, , .	0.4	0
6	Gamma-ray bursts in theSwiftera. New Journal of Physics, 2007, 9, 37-37.	2.9	24
7	Gamma-Ray Bursts in the Swift Era. Research in Astronomy and Astrophysics, 2007, 7, 1-50.	1.1	278
8	The progenitors of short gamma-ray bursts. New Journal of Physics, 2007, 9, 17-17.	2.9	281
9	Magnetically dominated jets inside collapsing stars as a model for gamma-ray bursts and supernova explosions. Physics of Plasmas, 2007, 14, 056506.	1.9	15
10	Observations of short gamma-ray bursts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1293-1305.	3.4	4
11	No supernovae detected in two long-duration gamma-ray bursts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1269-1275.	3.4	8
12	Supernova classes and subclasses. , 2007, , .		1
13	Optical Afterglows of Gamma-Ray Bursts. , 2007, , .		0
14	Swift observations of gamma-ray bursts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1119-1128.	3.4	2
15	On the Redshift Distribution of Gammaâ€Ray Bursts in theSwiftEra. Astrophysical Journal, 2007, 661, 394-415.	4.5	102
16	Magnetarâ€Ðriven Magnetic Tower as a Model for Gammaâ€Ray Bursts and Asymmetric Supernovae. Astrophysical Journal, 2007, 669, 546-560.	4.5	66
17	The Local Environments of Longâ€Ðuration Gammaâ€Ray Bursts. Astrophysical Journal, 2007, 670, 584-591.	4.5	9
18	Making a Short Gamma-Ray Burst from a Long One: Implications for the Nature of GRB 060614. Astrophysical Journal, 2007, 655, L25-L28.	4.5	181

ITATION REDO

#	Article	IF	CITATIONS
19	GRB 060505: A Possible Shortâ€Duration Gammaâ€Ray Burst in a Starâ€forming Region at a Redshift of 0.09. Astrophysical Journal, 2007, 662, 1129-1135.	4.5	97
20	Statistical Evidence for Three Classes of Gammaâ€Ray Bursts. Astrophysical Journal, 2007, 667, 1017-1023.	4.5	72
21	Formation of Massive Primordial Stars in a Reionized Gas. Astrophysical Journal, 2007, 667, L117-L120.	4.5	79
22	The Connection between Gamma-Ray Bursts and Extremely Metal-poor Stars: Black Hole-forming Supernovae with Relativistic Jets. Astrophysical Journal, 2007, 657, L77-L80.	4.5	107
23	Super Star Cluster NGC 1705â€1: A Local Analog to the Birth Site of Longâ€Duration γâ€Ray Bursts. Astrophysical Journal, 2007, 668, 384-391.	4.5	8
24	Low‣uminosity Gammaâ€Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor. Astrophysical Journal, 2007, 662, 1111-1118.	4.5	243
25	A Three‣tage Model for the Inner Engine of Gammaâ€Ray Bursts: Prompt Emission and Early Afterglow. Astrophysical Journal, 2007, 667, 340-350.	4.5	45
26	A Comprehensive Analysis of <i>Swift</i> XRT Data. II. Diverse Physical Origins of the Shallow Decay Segment. Astrophysical Journal, 2007, 670, 565-583.	4.5	217
27	Constraints on an Optical Afterglow and on Supernova Light Following the Short Burst GRB 050813. Astronomical Journal, 2007, 134, 2118-2123.	4.7	18
28	On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae. Astrophysical Journal, 2007, 657, L73-L76.	4.5	201
29	Proto–Neutron Star Winds with Magnetic Fields and Rotation. Astrophysical Journal, 2007, 659, 561-579.	4.5	131
30	On the Absence of Wind Signatures in GRB Afterglow Spectra: Constraints on the Wolfâ€Rayet Winds of GRB Progenitors. Astrophysical Journal, 2007, 663, 420-436.	4.5	41
31	Light-Curve Calculations of Supernovae from Fallback Gamma-Ray Bursts. Astrophysical Journal, 2007, 662, L55-L58.	4.5	30
32	Probing the Interstellar Medium near Starâ€forming Regions with Gammaâ€Ray Burst Afterglow Spectroscopy: Gas, Metals, and Dust. Astrophysical Journal, 2007, 666, 267-280.	4.5	182
33	The Host Galaxy of GRB 060505: Host ISM Properties. Astrophysical Journal, 2007, 667, L121-L124.	4.5	20
34	GRBs as Probes of Massive Stars Near and Far. Proceedings of the International Astronomical Union, 2007, 3, 443-456.	0.0	0
35	The Connection between Gamma-Ray Bursts and Extremely Metal-Poor Stars as Nucleosynthetic Probes of the Early Universe. Proceedings of the International Astronomical Union, 2007, 3, 463-470.	0.0	0
36	Constraints on Type Ib/c Supernovae and Gammaâ€Ray Burst Progenitors. Publications of the Astronomical Society of the Pacific, 2007, 119, 1211-1232.	3.1	101

		CITATION REPORT		
#	Article		IF	CITATIONS
37	The nature of the X-ray flash of August 24 2005. Astronomy and Astrophysics, 2007, 4	56, 839-846.	5.1	43
38	The host galaxy of GRB 031203: a new spectroscopic study. Astronomy and Astrop 815-826.	bhysics, 2007, 474,	5.1	35
39	Multicolor observations of the afterglow of the short/hard GRB 050724. Astronom 2007, 473, 77-84.	y and Astrophysics,	5.1	50
40	A case of mistaken identity? GRB 060912A and the nature of the long–short GRB Notices of the Royal Astronomical Society, 2007, 378, 1439-1446.	divide*. Monthly	4.4	50
41	Magnetar-driven bubbles and the origin of collimated outflows in gamma-ray bursts. Mo of the Royal Astronomical Society, 2007, 380, 1541-1553.	onthly Notices	4.4	93
42	Core-collapse supernovae and their massive progenitors. Astronomy and Geophysics, 2	007, 48, 1.35-1.38.	0.2	4
43	How common are long gamma-ray bursts in the local Universe?. Monthly Notices of the Astronomical Society: Letters, 2007, 382, L21-L25.	. Royal	3.3	47
44	Swift: Gamma-ray Bursts and Other Explosions. Space Research Today, 2008, 172, 17-2	.8.	0.1	0
45	Different progenitors of short hard gamma-ray bursts. Monthly Notices of the Royal Ast Society: Letters, 2008, 385, L10-L14.	ronomical	3.3	106
46	Short-duration gamma-ray bursts with extended emission from protomagnetar spin-dov Notices of the Royal Astronomical Society, 2008, 385, 1455-1460.	wn. Monthly	4.4	310
47	The X-ray transient 080109 in NGC 2770: an X-ray flash associated with a normal core- supernova. Monthly Notices of the Royal Astronomical Society, 2008, 388, 603-610.	collapse	4.4	34
48	Star formation history up to <i>z</i> = 7.4: implications for gamma-ray bursts and cosm evolution. Monthly Notices of the Royal Astronomical Society, 2008, 388, 1487-1500.	ic metallicity	4.4	116
49	Probability for chance coincidence of a gamma-ray burst with a galaxy on the sky. Mont the Royal Astronomical Society, 2008, 391, 935-941.	hly Notices of	4.4	9
50	SWIFT OBSERVATIONS OF GAMMA-RAY BURSTS. International Journal of Modern Physi 1311-1317.	cs D, 2008, 17,	2.1	1
51	Gamma Ray Burst Central Engines. AIP Conference Proceedings, 2008, , .		0.4	0
52	GRB 060614 in the canonical fireshell model. AIP Conference Proceedings, 2008, , .		0.4	0
53	Gamma-ray burst overview. Classical and Quantum Gravity, 2008, 25, 184005.		4.0	0
54	GRB 070125: The First Long-Duration Gamma-ray Burst in a Halo Environment. AIP Con Proceedings, 2008, , .	ference	0.4	0

#	Article	IF	CITATIONS
55	Highâ€Redshift Gammaâ€Ray Bursts. , 2008, , .		0
56	Gamma-ray Bursts, Classified Physically. AIP Conference Proceedings, 2008, , .	0.4	14
57	GRB 060614: a Fake Short Gamma-Ray Burst. AIP Conference Proceedings, 2008, , .	0.4	0
58	Reconciling the Metallicity Distributions of Gamma-ray Burst, Damped Lyman-α, and Lyman-break Galaxies atzâ‰^ 3. Proceedings of the International Astronomical Union, 2008, 4, 41-48.	0.0	1
59	Chemical Yields from Supernovae and Hypernovae. Proceedings of the International Astronomical Union, 2008, 4, 355-368.	0.0	2
60	The Swift satellite lives up to its name, revealing cosmic explosions as they happen. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 4393-4404.	3.4	2
61	GRB 060218: The Nature of the Opticalâ€UV Component. Astrophysical Journal, 2008, 672, 443-448.	4.5	2
62	Nucleosynthesis in Magnetically Driven Jets from Collapsars. Astrophysical Journal, 2008, 680, 1350-1358.	4.5	64
63	Spatially Resolved Properties of the GRB 060505 Host: Implications for the Nature of the Progenitor1. Astrophysical Journal, 2008, 676, 1151-1161.	4.5	105
64	The Spectral Lag of GRB 060505: A Likely Member of the Long-Duration Class. Astrophysical Journal, 2008, 677, L85-L88.	4.5	40
65	Gravitational Waveforms of Kerr Black Holes Interacting with High-Density Matter. Astrophysical Journal, 2008, 684, L91-L94.	4.5	24
66	Correlations of Prompt and Afterglow Emission in <i>Swift</i> Long and Short Gammaâ€Ray Bursts. Astrophysical Journal, 2008, 689, 1161-1172.	4.5	100
67	A Comprehensive Analysis of <i>Swift</i> XRT Data. III. Jet Break Candidates in Xâ€Ray and Optical Afterglow Light Curves. Astrophysical Journal, 2008, 675, 528-552.	4.5	171
68	Long Gammaâ€Ray Bursts without Visible Supernovae: A Case Study of Redshift Estimators and Alleged Novel Objects. Astrophysical Journal, 2008, 678, 353-359.	4.5	7
69	GRB 070125: The First Longâ€Ðuration Gammaâ€Ray Burst in a Halo Environment. Astrophysical Journal, 2008, 677, 441-447.	4.5	36
70	A Tidal Disruption Model for the Gammaâ€Ray Burst of GRB 060614. Astrophysical Journal, 2008, 684, 1330-1335.	4.5	30
71	The GRB-Supernova Connection. , 2008, , .		2
72	Can optical afterglows be used to discriminate between Type I and Type II GRBs?. , 2008, , .		0

#	Article	IF	CITATIONS
73	Intrinsic properties of a complete sample of <i>HETE</i> -2 gamma-ray bursts. Astronomy and Astrophysics, 2008, 491, 157-171.	5.1	49
74	GRB 070707: the first short gamma-ray burst observed by <i>INTEGRAL</i> . Astronomy and Astrophysics, 2008, 486, 405-410.	5.1	13
75	Global characteristics of GRBs observed with <i>INTEGRAL</i> and the inferred large population of low-luminosity GRBs. Astronomy and Astrophysics, 2008, 484, 143-157.	5.1	37
76	The short GRB 070707 afterglow and its very faint host galaxy. Astronomy and Astrophysics, 2008, 491, 183-188.	5.1	36
77	Swift Observations of GRBs. , 2008, , .		0
78	Spectroscopy and multiband photometry of the afterglow of intermediate duration <i>γ</i> -ray burst GRB 040924 and its host galaxy. Astronomy and Astrophysics, 2008, 481, 319-326.	5.1	21
79	VERY HIGH ENERGY Î ³ -RAY AFTERGLOW EMISSION OF NEARBY GAMMA-RAY BURSTS. Astrophysical Journal, 2009, 703, 60-67.	4.5	13
80	DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF <i>z</i> = 6.7 GRB 080913, <i>z</i> = 8.2 GRB 090423, AND SOME SHORT/HARD GRBs. Astrophysical Journal, 2009, 703, 1696-1724.	4.5	307
81	IN SEARCH OF PROGENITORS FOR SUPERNOVALESS GAMMA-RAY BURSTS 060505 AND 060614: RE-EXAMINATION OF THEIR AFTERGLOWS. Astrophysical Journal, 2009, 696, 971-979.	4.5	59
82	GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION. Astrophysical Journal, 2009, 696, 1871-1885.	4.5	167
83	ANGULAR ENERGY DISTRIBUTION OF COLLAPSAR-JETS. Astrophysical Journal, 2009, 699, 1261-1273.	4.5	88
84	TESTING THE <i>E</i> _{peak} – <i>E</i> _{iso} RELATION FOR GRBs DETECTED BY <i>SWIFT</i> AND <i>SUZAKU</i> -WAM. Astrophysical Journal, 2009, 704, 1405-1432.	4.5	67
85	NGC 2770: A SUPERNOVA Ib FACTORY?. Astrophysical Journal, 2009, 698, 1307-1320.	4.5	45
86	A COMPARISON OF THE AFTERGLOWS OF SHORT- AND LONG-DURATION GAMMA-RAY BURSTS. Astrophysical Journal, 2009, 701, 824-836.	4.5	120
87	GAMMA-RAY BURST PRODUCTION AND SUPERNOVA SIGNATURES IN SLOWLY ROTATING COLLAPSARS. Astrophysical Journal, 2009, 692, 804-815.	4.5	30
88	Rise and fall of the X-ray flash 080330: an off-axis jet?. Astronomy and Astrophysics, 2009, 499, 439-453.	5.1	44
89	THE PROPERTIES OF THE HOST GALAXY AND THE IMMEDIATE ENVIRONMENT OF GRB 980425/SN 1998bw FROM THE MULTIWAVELENGTH SPECTRAL ENERGY DISTRIBUTION. Astrophysical Journal, 2009, 693, 347-354.	4.5	50
90	DEVELOPMENT OF A GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC CODE AND ITS APPLICATION TO THE CENTRAL ENGINE OF LONG GAMMA-RAY BURSTS. Astrophysical Journal, 2009, 704, 937-950.	4.5	69

	Сіта	CITATION REPORT		
#	Article		IF	CITATIONS
91	SN 1999ga: a low-luminosity linear type II supernova?. Astronomy and Astrophysics, 2009, 500, 1013-10)23.	5.1	12
92	THE REDDENING TOWARD CASSIOPEIA A's SUPERNOVA: CONSTRAINING THE ⁵⁶ Ni YIELD. Astrophysical Journal, 2009, 697, 29-36.		4.5	43
93	Statistical studies of optically dark gamma-ray bursts in the <i>Swift</i> era. Research in Astronomy and Astrophysics, 2009, 9, 1103-1118.		1.7	19
94	The Blackholic energy and the canonical Gamma-Ray Burst IV: the "long,―"genuine short―and "fake—disguised short―GRBs. , 2009, , .			5
95	LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE <i>SWIFT</i> SAMPLE AND CHARACTERIZATION OF THE ABSORBERS. Astrophysical Journal, Supplemen Series, 2009, 185, 526-573.	t	7.7	295
96	Confidence intervals for the correlation between the gamma-ray burst peak energy and the associated supernova peak brightness. Monthly Notices of the Royal Astronomical Society, 2009, 393, 1370-1376.		4.4	12
97	A unifying view of gamma-ray burst afterglows. Monthly Notices of the Royal Astronomical Society, 2009, 393, 253-271.		4.4	92
98	Nucleosynthesis of ⁵⁶ Ni in wind-driven supernova explosions and constraints on the central engine of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2009, 394, 1317-1324.		4.4	34
99	Non-thermal transient sources from rotating black holes. Monthly Notices of the Royal Astronomical Society, 2009, 394, 2238-2246.		4.4	18
100	Properties of long gamma-ray burst host galaxies in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1613-1624.		4.4	19
101	A low-energy core-collapse supernova without a hydrogen envelope. Nature, 2009, 459, 674-677.		27.8	159
102	On the origin of long gamma-ray bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 396, L81-L84.		3.3	4
103	Gamma-Ray Bursts in the <i>Swift</i> Era. Annual Review of Astronomy and Astrophysics, 2009, 47, 567-617.		24.3	456
104	JET BREAKS AND ENERGETICS OF <i>Swift</i> GAMMA-RAY BURST X-RAY AFTERGLOWS. Astrophysical Journal, 2009, 698, 43-74.		4.5	239
105	Using stellar population studies to determine the progenitors of GRBs and SNe. Proceedings of the International Astronomical Union, 2009, 5, 436-437.		0.0	0
106	THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS. Astrophysical Journal, 2009, 691, 182-211.		4.5	352
107	ABSOLUTE MAGNITUDE DISTRIBUTION AND LIGHT CURVES OF GAMMA-RAY BURST SUPERNOVAE. Astronomical Journal, 2009, 137, 347-353.		4.7	15
108	Stellar black holes: Cosmic history and feedback at the dawn of the universe. Proceedings of the International Astronomical Union, 2010, 6, 3-10.		0.0	0

	CITATION RE	CITATION REPORT		
# 109	ARTICLE A NEW CLASSIFICATION METHOD FOR GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 725, 1965-1970.	IF 4.5	CITATIONS	
109	A NEW CLASSIFICATION METHOD FOR GAIMMA-RAT BURSTS. Astrophysical Journal, 2010, 723, 1963-1970.	4.0	62	
110	FALLBACK SUPERNOVAE: A POSSIBLE ORIGIN OF PECULIAR SUPERNOVAE WITH EXTREMELY LOW EXPLOSION ENERGIES. Astrophysical Journal, 2010, 719, 1445-1453.	4.5	116	
111	Nucleosynthesis in Jet-induced Supernovae: Connection between Gamma-Ray Bursts and Extremely Metal-Poor Stars. , 2010, , .		0	
112	ON THE DISTRIBUTION OF STELLAR MASSES IN GAMMA-RAY BURST HOST GALAXIES. Astrophysical Journal, 2010, 721, 1919-1927.	4.5	59	
113	THE STELLAR AGES AND MASSES OF SHORT GAMMA-RAY BURST HOST GALAXIES: INVESTIGATING THE PROGENITOR DELAY TIME DISTRIBUTION AND THE ROLE OF MASS AND STAR FORMATION IN THE SHORT GAMMA-RAY BURST RATE. Astrophysical Journal, 2010, 725, 1202-1214.	4.5	115	
114	DISCOVERY OF SN 2009nz ASSOCIATED WITH GRB 091127. Astrophysical Journal Letters, 2010, 718, L150-L155.	8.3	55	
115	THE AFTERGLOWS OF <i>SWIFT</i> -ERA GAMMA-RAY BURSTS. I. COMPARING PRE- <i>SWIFT</i> AND <i>SWIFT</i> -ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS. Astrophysical Journal, 2010, 720, 1513-1558.	4.5	253	
116	UNDERLYING GLOBAL FEATURES OF THE X-RAY LIGHT CURVES OF <i>SWIFT</i> GAMMA-RAY BURSTS. Astrophysical Journal Letters, 2010, 719, L172-L176.	8.3	11	
117	On the pair-instability supernovae and gamma-ray burst phenomenon. Astrophysics and Space Science, 2010, 325, 153-161.	1.4	11	
118	Gamma-ray bursts in the Swift-Fermi era: Confronting data with theory. Science China: Physics, Mechanics and Astronomy, 2010, 53, 14-23.	5.1	3	
119	GRB 090423: Marking the death of a massive star at z=8.2. Science China: Physics, Mechanics and Astronomy, 2010, 53, 64-68.	5.1	3	
120	Redshift distribution and luminosity function of long gamma-ray bursts from cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1972-1980.	4.4	36	
121	Discovery of the afterglow and host galaxy of the low-redshift short GRB 080905Aâ~ Monthly Notices of the Royal Astronomical Society, 0, 408, 383-391.	4.4	78	
122	GRB 090426: the environment of a rest-frame 0.35-s gamma-ray burst at a redshift of 2.609. Monthly Notices of the Royal Astronomical Society, 2010, 401, 963-972.	4.4	86	
123	The host galaxies of core-collapse supernovae and gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	82	
124	SHORT-DURATION GAMMA-RAY BURSTS FROM OFF-AXIS COLLAPSARS. Astrophysical Journal, 2010, 717, 239-244.	4.5	44	
125	A NEW CLASS OF GAMMA-RAY BURSTS FROM STELLAR DISRUPTIONS BY INTERMEDIATE-MASS BLACK HOLES. Astrophysical Journal, 2010, 717, 268-276.	4.5	11	
126	GRB 071227: an additional case of a <i>disguised</i> short burst. Astronomy and Astrophysics, 2010, 521, A80.	5.1	22	

#	Article	IF	Citations
127	THE ORIGIN AND PROPAGATION OF VARIABILITY IN THE OUTFLOWS OF LONG-DURATION GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 723, 267-276.	4.5	99
128	UNVEILING THE ORIGIN OF GRB 090709A: LACK OF PERIODICITY IN A REDDENED COSMOLOGICAL LONG-DURATION GAMMA-RAY BURST. Astronomical Journal, 2010, 140, 224-234.	4.7	37
129	THE HOST GALAXIES OF GAMMA-RAY BURSTS. II. A MASS-METALLICITY RELATION FOR LONG-DURATION GAMMA-RAY BURST HOST GALAXIES. Astronomical Journal, 2010, 140, 1557-1566.	4.7	142
130	Low radio-derived star formation rates in <i>z</i> < 0.5 gamma-ray burst host galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L74-L78.	3.3	20
131	METALLICITY IN THE GRB 100316D/SN 2010bh HOST COMPLEX. Astrophysical Journal, 2011, 739, 23.	4.5	57
132	IMPLICATIONS OF UNDERSTANDING SHORT GAMMA-RAY BURSTS DETECTED BY <i>SWIFT</i> . Astrophysical Journal, 2011, 738, 19.	4.5	16
133	GRB 091127/SN 2009nz and the VLT/X-shooter spectroscopy ofÂitsÂhost galaxy: probing the faint end o mass-metallicity relation. Astronomy and Astrophysics, 2011, 535, A127.	of the 5.1	40
134	Searching for differences in <i>Swift</i> 's intermediate GRBs. Astronomy and Astrophysics, 2011, 525, A109.	5.1	31
135	Electromagnetic priors for black hole spindown in searches for gravitational waves from supernovae and long GRBs. Astronomy and Astrophysics, 2011, 535, L6.	5.1	13
136	XRF 100316D/SN 2010bh AND THE NATURE OF GAMMA-RAY BURST SUPERNOVAE. Astrophysical Journal, 2011, 740, 41.	4.5	83
137	The extinction curves of star-forming regions from <i>z</i> Â=Â0.1 to 6.7 using GRB afterglow spectroscopy. Astronomy and Astrophysics, 2011, 532, A143.	5.1	110
138	Recent Observations of GRB-Supernovae. Proceedings of the International Astronomical Union, 2011, 7, 83-90.	0.0	0
139	GRB 101225A - a new class of GRBs?. Proceedings of the International Astronomical Union, 2011, 7, 91-94.	0.0	0
140	Constraining gamma-ray burst progenitors. Proceedings of the International Astronomical Union, 2011, 7, 95-101.	0.0	1
141	ARE ALL SHORT-HARD GAMMA-RAY BURSTS PRODUCED FROM MERGERS OF COMPACT STELLAR OBJECTS?. Astrophysical Journal, 2011, 727, 109.	4.5	66
142	DETAILED RADIO VIEW ON TWO STELLAR EXPLOSIONS AND THEIR HOST GALAXY: XRF 080109/SN 2008D AND SN 2007uy in NGC 2770. Astrophysical Journal, 2011, 726, 99.	4.5	20
143	PTF 10bzf (SN 2010ah): A BROAD-LINE Ic SUPERNOVA DISCOVERED BY THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2011, 741, 76.	4.5	33
144	THE AFTERGLOWS OF <i>SWIFT</i> -ERA GAMMA-RAY BURSTS. II. TYPE I GRB VERSUS TYPE II GRB OPTICAL AFTERGLOWS. Astrophysical Journal, 2011, 734, 96.	4.5	187

ARTICLE IF CITATIONS GRB 090426: Discovery of a jet break in a short burst afterglow. Astronomy and Astrophysics, 2011, 531, 145 5.1 52 L6. FORMATION OF BLACK HOLE AND ACCRETION DISK IN A MASSIVE HIGH-ENTROPY STELLAR CORE COLLAPSE. 146 4.5 Astrophysical Journal, 2011, 737, 6. The circumburst density profile around GRB progenitors: aÂstatistical study. Astronomy and 147 5.1 71 Astrophysics, 2011, 526, A23. Collapsars as the progenitors of Gamma-Ray Bursts., 2011, , . 148 Probing the nature of high-z short GRB 090426 with its early optical and X-ray afterglows. Monthly 149 4.4 44 Notices of the Royal Astronomical Society, 2011, 410, 27-32. Discovery of the nearby long, soft GRBâ $\in f100316D$ with an associated supernova. Monthly Notices of the Royal Astronomical Society, 2011, 411, 2792-2803. 4.4 170 A tale of two GRB-SNe at a common redshift of z=0.54. Monthly Notices of the Royal Astronomical 151 4.4 72 Society, 2011, 413, 669-685. The extinction properties of long gamma-ray burst host galaxies from H and He i recombination linesâ~.... 4.4 10 Monthly Notice's of the Royal Astronomical Society, 2011, 414, 2793-2802. Variable Lyl[±] sheds light on the environment surrounding GRB 090426. Monthly Notices of the Royal 153 4.4 53 Astronomical Society, 2011, 414, 479-488. GRB 090618: detection of thermal X-ray emission from a bright gamma-ray burst. Monthly Notices of 154 4.4 the Royal Astronomical Society, 2011, 416, 2078-2089. Metallicity properties of the simulated host galaxies of long gamma-ray bursts and the fundamental 155 4.4 30 metallicity relation. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1013-1021. Model of the extended emission of short gamma-ray bursts. Monthly Notices of the Royal 4.4 Astronomical Society, 2011, 417, 2161-2165. Stellar forensics with the supernovaâ€GRB connection – Ludwig Biermann Award Lecture 2010. 157 1.2 47 Astronomische Nachrichten, 2011, 332, 434-447. The INTEGRAL view of Gamma-Ray Bursts. Advances in Space Research, 2011, 47, 1374-1386. 2.6 159 Open questions in GRB physics. Comptes Rendus Physique, 2011, 12, 206-225. 0.9 100 Prospects for true calorimetry on Kerr black holes in core-collapse supernovae and mergers. Physical Review D, 2011, 83, . FUNDAMENTAL PHYSICS FROM BLACK HOLES, NEUTRON STARS AND GAMMA-RAY BURSTS. International 161 2.1 13 Journal of Modern Physics D, 2011, 20, 1797-1872. SUPERNOVAE AND GAMMA-RAY BURSTS: A DECADE OF OBSERVATIONS. International Journal of Modern 2.1 Physics D, 2011, 20, 1745-1754.

#	Article	IF	Citations
163	THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE. Astrophysical Journal, 2011, 738, 154.	4.5	198
164	Physical origin of multi-wavelength emission of GRB 100418A and implications for its progenitor. Research in Astronomy and Astrophysics, 2012, 12, 411-418.	1.7	2
165	GRB 100418A: a Long GRB without a Bright Supernova in a High-Metallicity Host Galaxy. Publication of the Astronomical Society of Japan, 2012, 64, .	2.5	19
166	THE LUMINOUS INFRARED HOST GALAXY OF SHORT-DURATION GRB 100206A. Astrophysical Journal, 2012, 758, 122.	4.5	37
167	The Swift era. , 0, , 73-90.		0
168	Discoveries enabled by multiwavelength afterglow observations of gamma-ray bursts. , 0, , 91-120.		1
169	The GRB–supernova connection. , 2012, , 169-190.		121
170	The fast evolution of SN 2010bh associated with XRF 100316D. Astronomy and Astrophysics, 2012, 539, A76.	5.1	51
171	THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VI. RADIO OBSERVATIONS AT <i>z</i> ≲ 1 AND CONSISTENCY WITH TYPICAL STAR-FORMING GALAXIES. Astrophysical Journal, 2012, 755, 85.	4.5	74
172	A search for thermal X-ray signatures in gamma-ray bursts - I. Swift bursts with optical supernovae. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2950-2964.	4.4	59
173	THE OPTICALLY UNBIASED GAMMA-RAY BURST HOST (TOUGH) SURVEY. I. SURVEY DESIGN AND CATALOGS. Astrophysical Journal, 2012, 756, 187.	4.5	156
174	RADIAL ANGULAR MOMENTUM TRANSFER AND MAGNETIC BARRIER FOR SHORT-TYPE GAMMA-RAY-BURST CENTRAL ENGINE ACTIVITY. Astrophysical Journal, 2012, 760, 63.	4.5	35
175	THE ARDUOUS JOURNEY TO BLACK HOLE FORMATION IN POTENTIAL GAMMA-RAY BURST PROGENITORS. Astrophysical Journal, 2012, 754, 76.	4.5	30
176	Timing properties of gamma-ray bursts detected by SPI-ACS detector onboard INTEGRAL. Astronomy and Astrophysics, 2012, 541, A122.	5.1	26
177	HOST GALAXY PROPERTIES OF THE SUBLUMINOUS GRB 120422A/SN 2012bz. Astrophysical Journal, 2012, 758, 92.	4.5	8
178	The optical SN 2012bz associated with the long GRB 120422A. Astronomy and Astrophysics, 2012, 547,	A32.	45
179	Multi-color observations of short GRB afterglows: 20 events observed between 2007 and 2010. Astronomy and Astrophysics, 2012, 548, A101.	5.1	43
180	REVISITING THE LONG/SOFT-SHORT/HARD CLASSIFICATION OF GAMMA-RAY BURSTS IN THE <i>FERMI</i> ERA. Astrophysical Journal, 2012, 750, 88.	4.5	81

	CITATION RE	PORT	
#	ARTICLE	IF	Citations
181	Short gamma-ray bursts with extended emission from magnetar birth: jet formation and collimation. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1537-1545.	4.4	212
182	On the environment of short gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2392-2399.	4.4	21
183	Gamma-ray bursts in the swift-Fermi era. Frontiers of Physics, 2013, 8, 661-678.	5.0	57
184	DISCOVERY OF THE BROAD-LINED TYPE IC SN 2013cq ASSOCIATED WITH THE VERY ENERGETIC GRB 130427A. Astrophysical Journal, 2013, 776, 98.	4.5	99
185	A redshift–observation time relation for gamma-ray bursts: evidence of a distinct subluminous population. Monthly Notices of the Royal Astronomical Society, 2013, 428, 167-181.	4.4	21
186	Statistical classification of gamma-ray bursts based on the Amati relation. Monthly Notices of the Royal Astronomical Society, 2013, 430, 163-173.	4.4	35
187	THE SIGNATURE OF THE CENTRAL ENGINE IN THE WEAKEST RELATIVISTIC EXPLOSIONS: GRB 100316D. Astrophysical Journal, 2013, 778, 18.	4.5	71
188	THE ELECTROMAGNETIC MODEL OF SHORT GRBs, THE NATURE OF PROMPT TAILS, SUPERNOVA-LESS LONG GRBs, AND HIGHLY EFFICIENT EPISODIC ACCRETION. Astrophysical Journal, 2013, 768, 63.	4.5	26
189	Gamma-ray bursts with extended emission observed with BATSE. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1623-1630.	4.4	26
190	A-STAR: The All-Sky Transient Astrophysics Reporter. EAS Publications Series, 2013, 61, 625-631.	0.3	3
191	High-energy transients. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120270.	3.4	6
192	The supernova–gamma-ray burst–jet connection. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120275.	3.4	40
193	Gamma-ray burst optical light-curve zoo: comparison with X-ray observations. Astronomy and Astrophysics, 2013, 557, A12.	5.1	45
194	On the origin of short GRBs with extended emission and long GRBs without associated SN. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 444, L58-L62.	3.3	26
195	GRB 080517: a local, low-luminosity gamma-ray burst in a dusty galaxy at z = 0.09. Monthly Notices of the Royal Astronomical Society, 2014, 446, 3911-3925.	4.4	40
196	A search for <i>Fermi</i> bursts associated with supernovae and their frequency of occurrence. Astronomy and Astrophysics, 2014, 569, A108.	5.1	11
197	ANOTHER SHORT-BURST HOST GALAXY WITH AN OPTICALLY OBSCURED HIGH STAR FORMATION RATE: THE CASE OF GRB 071227. Astrophysical Journal, 2014, 789, 45.	4.5	9
198	A comprehensive radio view of the extremely bright gamma-ray burst 130427A. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3151-3163.	4.4	58

#	Article	IF	CITATIONS
199	An upper limit to the energy of gamma-ray bursts indicates that GRBs/SNe are powered by magnetars. Monthly Notices of the Royal Astronomical Society, 2014, 443, 67-71.	4.4	94
200	The â€~amplitude' parameter of gamma-ray bursts and its implications for GRB classification. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1922-1929.	4.4	44
201	A NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS. Astrophysical Journal, 2014, 781, 13.	4.5	207
202	HYPERACCRETION DURING TIDAL DISRUPTION EVENTS: WEAKLY BOUND DEBRIS ENVELOPES AND JETS. Astrophysical Journal, 2014, 781, 82.	4.5	115
203	LONG GAMMA-RAY BURSTS TRACE THE STAR FORMATION HISTORY. Astrophysical Journal, 2014, 785, 70.	4.5	9
204	PHENOMENOLOGY OF REVERSE-SHOCK EMISSION IN THE OPTICAL AFTERGLOWS OF GAMMA-RAY BURSTS. Astrophysical Journal, 2014, 785, 84.	4.5	51
205	Constraints on long-lived remnants of neutron star binary mergers from late-time radio observations of short duration gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1821-1827.	4.4	71
206	ABUNDANCE PROFILING OF EXTREMELY METAL-POOR STARS AND SUPERNOVA PROPERTIES IN THE EARLY UNIVERSE. Astrophysical Journal, 2014, 785, 98.	4.5	114
207	The Host Galaxies of Long-Duration Gamma-Ray Bursts. Publications of the Astronomical Society of the Pacific, 2014, 126, 1-14.	3.1	25
208	The host of the SN-less GRB 060505 in high resolution. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2034-2048.	4.4	37
209	Short-Duration Gamma-Ray Bursts. Annual Review of Astronomy and Astrophysics, 2014, 52, 43-105.	24.3	847
210	GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity gamma-ray bursts. Astronomy and Astrophysics, 2014, 566, A102.	5.1	87
211	Combustion of a hadronic star into a quark star: The turbulent and the diffusive regimes. Physical Review C, 2015, 92, .	2.9	36
212	THE LIGHT CURVE OF THE MACRONOVA ASSOCIATED WITH THE LONG–SHORT BURST GRB 060614. Astrophysical Journal Letters, 2015, 811, L22.	8.3	156
213	Supernovae and gamma-ray bursts connection. AIP Conference Proceedings, 2015, , .	0.4	0
214	How Swift is redefining time domain astronomy. Journal of High Energy Astrophysics, 2015, 7, 2-11.	6.7	11
215	Short gamma-ray bursts: A review. Journal of High Energy Astrophysics, 2015, 7, 73-80.	6.7	60
216	Radio rebrightening of the GRB afterglow by the accompanying supernova. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1711-1718.	4.4	15

#	Article	IF	CITATIONS
217	Quark-Novae in massive binaries: a model for double-humped, hydrogen-poor, superluminous Supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2353-2359.	4.4	7
218	GRB 140606B/iPTF14bfu: detection of shock-breakout emission from a cosmological Î ³ -ray burst?. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1535-1552.	4.4	28
219	Extreme luminosities in ejecta produced by intermittent outflows around rotating black holes. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 447, L11-L15.	3.3	8
220	GRB host galaxies with VLT/X-Shooter: properties at 0.8Â<Â <i>z</i> Â<Â1.3. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3293-3303.	4.4	16
221	Swift discoveries of new populations of extremely long duration high energy transient. Journal of High Energy Astrophysics, 2015, 7, 44-55.	6.7	17
222	THE MILLISECOND MAGNETAR CENTRAL ENGINE IN SHORT GRBs. Astrophysical Journal, 2015, 805, 89.	4.5	173
223	VISCOUS BOUNDARY LAYERS OF RADIATION-DOMINATED, RELATIVISTIC JETS. I. THE TWO-STREAM MODEL. Astrophysical Journal, 2015, 809, 1.	4.5	22
224	A possible macronova in the late afterglow of the long–short burst GRB 060614. Nature Communications, 2015, 6, 7323.	12.8	224
225	AN UNEXPECTEDLY LOW-REDSHIFT EXCESS OF <i>SWIFT</i> GAMMA-RAY BURST RATE. Astrophysical Journal, Supplement Series, 2015, 218, 13.	7.7	51
226	The physics of gamma-ray bursts & relativistic jets. Physics Reports, 2015, 561, 1-109.	25.6	682
227	CIRCUMSTELLAR AND EXPLOSION PROPERTIES OF TYPE Ibn SUPERNOVAE. Astrophysical Journal, 2016, 824, 100.	4.5	19
228	Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the <i>Swift</i> /BAT6 complete sample of bright LGRBs. Astronomy and Astrophysics, 2016, 590, A129.	5.1	57
229	Kilonova/Macronova Emission from Compact Binary Mergers. Advances in Astronomy, 2016, 2016, 1-12.	1.1	82
230	Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts. Astronomy and Astrophysics, 2016, 589, A97.	5.1	14
231	GRB Observational Properties. Space Science Reviews, 2016, 202, 3-32.	8.1	14
232	Gamma-Ray Burst Progenitors. Space Science Reviews, 2016, 202, 33-78.	8.1	65
233	Individual power density spectra of <i>Swift</i> gamma-ray bursts. Astronomy and Astrophysics, 2016, 589, A98.	5.1	30
234	Research Developments in Li-Paczyński Novae (II): Observational Aspect. Chinese Astronomy and Astrophysics, 2016, 40, 439-473.	0.3	1

#	Article	IF	Citations
235	IMPLICATIONS OF THE TENTATIVE ASSOCIATION BETWEEN GW150914 AND A FERMI-GBM TRANSIENT. Astrophysical Journal Letters, 2016, 827, L16.	8.3	39
236	GRB/GW ASSOCIATION: LONG–SHORT GRB CANDIDATES, TIME LAG, MEASURING GRAVITATIONAL WAVE VELOCITY, AND TESTING EINSTEIN'S EQUIVALENCE PRINCIPLE. Astrophysical Journal, 2016, 827, 75.	4.5	32
237	Detecting quasinormal modes of binary black hole mergers with second-generation gravitational-wave detectors. Physical Review D, 2016, 93, .	4.7	21
238	Research Developments in Li-Paczyński Novae (I): Theoretical Aspect. Chinese Astronomy and Astrophysics, 2016, 40, 141-175.	0.3	0
239	First stars, hypernovae, and superluminous supernovae. International Journal of Modern Physics D, 2016, 25, 1630025.	2.1	2
240	A COMPARATIVE STUDY OF LONG AND SHORT GRBS. I. OVERLAPPING PROPERTIES. Astrophysical Journal, Supplement Series, 2016, 227, 7.	7.7	57
241	An <i>r</i> â^'process macronova/kilonova in GRB 060614: evidence for the merger of a neutron star-black hole binary. EPJ Web of Conferences, 2016, 109, 08002.	0.3	3
242	The Macronova in GRB 050709 and the GRB-macronova connection. Nature Communications, 2016, 7, 12898.	12.8	157
243	OPTICAL AND NEAR-INFRARED OBSERVATIONS OF SN 2013DX ASSOCIATED WITH GRB 130702A. Astrophysical Journal, 2016, 818, 79.	4.5	40
244	Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 457, 328-350.	4.4	226
245	THE SWIFT GAMMA-RAY BURST HOST GALAXY LEGACY SURVEY. I. SAMPLE SELECTION AND REDSHIFT DISTRIBUTION. Astrophysical Journal, 2016, 817, 7.	4.5	103
246	The scenario of two families of compact stars. European Physical Journal A, 2016, 52, 1.	2.5	56
247	Update on the GRB universal scaling EX,iso–Eγ,iso–Epk with 10Âyears of Swift data. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1375-1384.	4.4	11
248	The search for failed supernovae with the Large Binocular Telescope: constraints from 7Âyr of data. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1445-1455.	4.4	89
249	Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena. Astrophysical Journal, 2017, 846, 163.	4.5	19
250	Possible Correlations between the Emission Properties of SGRBs and Their Offsets from the Host Galaxies. Astrophysical Journal, 2017, 844, 55.	4.5	5
251	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
252	Neutrino-dominated accretion flows as the central engine of gamma-ray bursts. New Astronomy Reviews, 2017, 79, 1-25.	12.8	93

#	Article	IF	CITATIONS
253	The redshift-selected sample of long gamma-ray burst host galaxies: The overall metallicity distribution at <i>z</i> Â<Â0.4. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	14
254	The Konus-Wind Catalog of Gamma-Ray Bursts with Known Redshifts. I. Bursts Detected in the Triggered Mode. Astrophysical Journal, 2017, 850, 161.	4.5	74
255	The MUSE view of the host galaxy of GRB 100316D. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4480-4496.	4.4	27
256	Nucleosynthesis in Hypernovae Associated with Gamma-Ray Bursts. , 2017, , 1931-1954.		5
257	GRB 111005A at <i>z</i> = 0.0133 and the Prospect of Establishing Long–Short GRB/GW Association. Astrophysical Journal Letters, 2017, 851, L20.	8.3	7
258	GRB 161219B/SN 2016jca: A low-redshift gamma-ray burst supernova powered by radioactive heating. Astronomy and Astrophysics, 2017, 605, A107.	5.1	44
259	The Observer's Guide to the Gamma-Ray Burst Supernova Connection. Advances in Astronomy, 2017, 2017, 1-41.	1.1	188
260	A study of gamma ray bursts with afterglow plateau phases associated with supernovae. Astronomy and Astrophysics, 2017, 600, A98.	5.1	52
261	The diversity of GRBs and their SNe: Observations from the 10.4m GTC. Proceedings of the International Astronomical Union, 2017, 12, 39-44.	0.0	1
262	The host galaxies and explosion sites of long-duration gamma ray bursts: <i>Hubble Space Telescope</i> near-infrared imaging. Monthly Notices of the Royal Astronomical Society, 0, , stx220.	4.4	50
263	Gamma-ray bursts and their use as cosmic probes. Royal Society Open Science, 2017, 4, 170304.	2.4	23
264	Gamma-ray Burst Prompt Correlations: Selection and Instrumental Effects. Publications of the Astronomical Society of the Pacific, 2018, 130, 051001.	3.1	58
265	Investigating the diversity of supernovae type lax: a MUSE and NOT spectroscopic study of their environments. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1359-1387.	4.4	40
266	The host galaxies of long gamma-ray bursts through cosmic time. International Journal of Modern Physics D, 2018, 27, 1842001.	2.1	1
267	Outflows from black hole hyperaccretion systems: short and long-short gamma-ray bursts and â€~quasi-supernovae'. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2173-2182.	4.4	24
268	Infrared molecular hydrogen lines in GRB host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1126-1132.	4.4	4
269	On the Magnetar Origin of the GRBs Presenting X-Ray Afterglow Plateaus. Astrophysical Journal, 2018, 869, 155.	4.5	62
270	GRB 171205A/SN 2017iuk: A local low-luminosity gamma-ray burst. Astronomy and Astrophysics, 2018, 619, A66.	5.1	36

ARTICLE IF CITATIONS # Modeling the Multiband Afterglows of GRB 060614 and GRB 060908: Further Evidence for a Double 271 4.5 0 Power-law Hard Electron Energy Spectrum. Astrophysical Journal, 2018, 857, 140. The host galaxy of the short GRB 111117A at $\langle i \rangle z \langle i \rangle = 2.211$. Astronomy and Astrophysics, 2018, 616, A48. 5.1 Spectroscopy of the Type Ic Supernova SN 2017iuk Associated with Low-redshift GRB 171205A. 273 4.5 22 Astrophysical Journal, 2018, 867, 147. Toward an inner connection of SNe Ic, SLSNe Ic, XRF connected SNe, SNe Ic-BL, and GRB connected SNe. 274 Publications of the Astronomical Society of Australia, 2018, 35, . Mechanical Feedback from Black Hole Accretion as an Energy Source of Core-collapse Supernova 275 4.5 12 Explosions. Astrophysical Journal, 2018, 867, 130. The luminous host galaxy, faint supernova and rapid afterglow rebrightening of GRB 100418A. Astronomy and Astrophysics, 2018, 620, A190. 5.1 The second-closest gamma-ray burst: sub-luminous GRB 111005A with no supernova in a super-solar 277 5.1 36 metallicity environment. Astronomy and Astrophysics, 2018, 616, A169. Host galaxies of SNe Ic-BL with and without long gamma-ray bursts. Astronomy and Astrophysics, 2018, 617, A105. 278 5.1 279 On The Origin of Supernova-less Long Gamma-Ray Bursts. Astrophysical Journal, 2018, 855, 88. 4.5 6 THESEUS: A key space mission concept for Multi-Messenger Astrophysics. Advances in Space Research, 2.6 2018, 62, 662-682. Gamma-Ray Burst Prompt Correlations. Advances in Astronomy, 2018, 2018, 1-31. 281 1.1 45 A lower occurrence rate of bright X-ray flares in SN-GRBs than zÂ<Â1 GRBs: evidence of energy 4.4 partitions?. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3605-3613. Characteristics of Two-episode Emission Patterns in Fermi Long Gamma-Ray Bursts. Astrophysical 283 4.5 15 Journal, 2018, 862, 155. Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae. Astrophysical Journal, 2018, 858, 115. 284 4.5 63 The environment of the SN-less GRB 111005A at $\langle i \rangle z \langle i \rangle = 0.0133$. Astronomy and Astrophysics, 2018, 615, 285 22 5.1A136. Universal afterglow of supernovaless gamma-ray bursts. Physical Review D, 2019, 99, . 287 Four GRB supernovae at redshifts between 0.4 and 0.8. Astronomy and Astrophysics, 2019, 622, A138. 5.120 Prospects for multi-messenger extended emission from core-collapse supernovae in the Local 288 Universe. European Physical Journal Plus, 2019, 134, 1.

#	Article	IF	CITATIONS
289	Late Afterglow Emission Statistics: A Clear Link between GW170817 and Bright Short Gamma-Ray Bursts. Astrophysical Journal Letters, 2019, 876, L28.	8.3	5
290	Analysis of the Duration–Hardness Ratio Plane of Gamma-Ray Bursts Using Skewed Distributions. Astrophysical Journal, 2019, 870, 105.	4.5	34
291	The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1031-1049.	4.4	136
292	A detailed radio study of the energetic, nearby, and puzzling GRB 171010A. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2721-2729.	4.4	15
293	The host galaxy of GRB 980425/SN1998bw: a collisional ring galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5411-5422.	4.4	17
294	The Double-peaked Radio Light Curve of Supernova PTF11qcj. Astrophysical Journal, 2019, 872, 201.	4.5	17
295	Multivariate Analysis of BATSE Gamma-Ray Burst Properties Using Skewed Distributions. Astrophysical Journal, 2019, 887, 97.	4.5	17
296	A Comparative Study of Long and Short GRBs. II. A Multiwavelength Method to Distinguish Type II (Massive Star) and Type I (Compact Star) GRBs. Astrophysical Journal, 2020, 897, 154.	4.5	14
297	The evolution of gamma-ray burst jet opening angle through cosmic time. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4371-4381.	4.4	12
298	An Unambiguous Separation of Gamma-Ray Bursts into Two Classes from Prompt Emission Alone. Astrophysical Journal Letters, 2020, 896, L20.	8.3	29
299	A quark nova in the wake of a core-collapse supernova: a unifying model for long duration gamma-ray bursts and fast radio bursts. Research in Astronomy and Astrophysics, 2020, 20, 027.	1.7	7
300	The properties of prompt emission in short gamma-ray bursts with extended emission observed by Fermi/CBM. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3622-3630.	4.4	7
301	Ontological Categorizations and Selection Biases in Cosmology: The Case of Extra Galactic Objects. Foundations of Science, 2021, 26, 515-529.	0.7	1
302	Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: the importance of dwarf and starbursting galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3931-3952.	4.4	31
303	A deep study of the high–energy transient sky. Experimental Astronomy, 2021, 51, 1203-1223.	3.7	5
304	GRB 180418A: A Possibly Short Gamma-Ray Burst with a Wide-angle Outflow in a Faint Host Galaxy. Astrophysical Journal, 2021, 912, 95.	4.5	8
305	Discovery and confirmation of the shortest gamma-ray burst from a collapsar. Nature Astronomy, 2021, 5, 917-927.	10.1	69
306	Gravo-thermal catastrophe in gravitational collapse and energy progenitor of Gamma-Ray Bursts. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 044.	5.4	2

#	Article	IF	CITATIONS
307	Collapsar R-process Yields Can Reproduce [Eu/Fe] Abundance Scatter in Metal-poor Stars. Astrophysical Journal, 2021, 915, 81.	4.5	20
308	The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae. Astrophysical Journal, Supplement Series, 2021, 255, 29.	7.7	56
309	Comparison of the characteristics of magnetars born in death of massive stars and merger of compact objects with <i>swift</i> gamma-ray burst data. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2505-2514.	4.4	6
311	The Broadband Counterpart of the Short GRB 200522A at zÂ=Â0.5536: A Luminous Kilonova or a Collimated Outflow with a Reverse Shock?. Astrophysical Journal, 2021, 906, 127.	4.5	48
313	Nucleosynthesis in Hypernovae Associated with Gamma Ray Bursts. , 2017, , 1-24.		2
314	Progenitors. , 2009, , 385-476.		1
315	GRB060614: a "fake―short GRB from a merging binary system. Astronomy and Astrophysics, 2009, 498, 501-507.	5.1	42
316	The Wolf-Rayet features and mass–metallicity relation of long-duration gamma-ray burst host galaxies. Astronomy and Astrophysics, 2010, 514, A24.	5.1	62
317	On the consistency of peculiar GRBs 060218 and 060614 withÂtheÂ\$E_mathsf{p,i}\$ – \$E_mathsf{iso}\$ correlation. Astronomy and Astrophysics, 2007, 463, 913-919.	5.1	85
318	AreSwiftgamma-ray bursts consistent with the Ghirlanda relation?. Astronomy and Astrophysics, 2007, 472, 395-401.	5.1	25
319	Swift observations of GRBÂ060614: an anomalous burst with a well behaved afterglow. Astronomy and Astrophysics, 2007, 470, 105-118.	5.1	94
320	Reconciling the Metallicity Distributions of Gammaâ€Ray Burst, Damped Lyα, and Lyman Break Galaxies at <i>z</i> â‰^ 3. Astrophysical Journal, 2008, 683, 321-328.	4.5	136
321	Progenitors of Long-Duration Gamma-ray Bursts. Galaxies, 2021, 9, 79.	3.0	5
322	HETE-2 and Swift. , 2009, , 135-218.		0
323	Short Gamma Ray Bursts: Marking the Birth of Black Holes from Coalescing Compact Binaries. Astrophysics and Space Science Library, 2009, , 245-263.	2.7	0
324	GRB Observational Properties. Space Sciences Series of ISSI, 2016, , 5-34.	0.0	0
325	Gamma-Ray Burst Progenitors. Space Sciences Series of ISSI, 2016, , 35-80.	0.0	0
326	Detection of short high-energy transients in the local universe with SVOM/ECLAIRs. Astrophysics and Space Science, 2020, 365, 1.	1.4	4

#	Article	IF	CITATIONS
327	Metallicity-suppressed collapsars cannot be the dominant r-process source in the milky way. Monthly Notices of the Royal Astronomical Society, 2021, 509, 6008-6027.	4.4	6
328	Identifying gravitational wave emission signature in electromagnetic observations of short gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0
329	The SVOM mission. International Journal of Modern Physics D, 2022, 31, .	2.1	19
330	The Interstellar Medium in the Environment of the Supernova-less Long-duration GRB 111005A. Astrophysical Journal, Supplement Series, 2022, 259, 67.	7.7	5
331	GRB 211227A as a Peculiar Long Gamma-Ray Burst from a Compact Star Merger. Astrophysical Journal Letters, 2022, 931, L23.	8.3	20
332	The Peculiar Short-duration GRB 200826A and Its Supernova*. Astrophysical Journal, 2022, 932, 1.	4.5	37
333	Critical Tests of Leading Gamma Ray Burst Theories. Universe, 2022, 8, 350.	2.5	5
334	Two Classes of Gamma-ray Bursts Distinguished within the First Second of Their Prompt Emission. Galaxies, 2022, 10, 78.	3.0	4
335	The Optical Two- and Three-dimensional Fundamental Plane Correlations for Nearly 180 Gamma-Ray Burst Afterglows with Swift/UVOT, RATIR, and the Subaru Telescope. Astrophysical Journal, Supplement Series, 2022, 261, 25.	7.7	19
336	The Quest for New Correlations in the Realm of the Gamma-Ray Burst—Supernova Connection. Astrophysical Journal, 2022, 938, 41.	4.5	5
337	The Diverse Properties of Type Icn Supernovae Point to Multiple Progenitor Channels. Astrophysical Journal, 2022, 938, 73.	4.5	14
338	Prompt Emission of γ-Ray Bursts in the High-density Environment of Active Galactic Nucleus Accretion Disks. Astrophysical Journal Letters, 2022, 938, L18.	8.3	8
340	Short GRB Host Galaxies. I. Photometric and Spectroscopic Catalogs, Host Associations, and Galactocentric Offsets. Astrophysical Journal, 2022, 940, 56.	4.5	34
341	A long-duration gamma-ray burst with a peculiar origin. Nature, 2022, 612, 232-235.	27.8	76
342	"Super-kilonovae―from Massive Collapsars as Signatures of Black Hole Birth in the Pair-instability Mass Gap. Astrophysical Journal, 2022, 941, 100.	4.5	8
343	Outliers in the <i>Ep,z</i> – <i>Eγ</i> relation of <i>Fermi</i> -GBM long-duration gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2022, 518, 6243-6252.	4.4	0
344	GRB minimum variability timescale with Insight-HXMT and <i>Swift</i> . Astronomy and Astrophysics, 2023, 671, A112.	5.1	7
345	Swift/UVOT: 18 Years of Long GRB Discoveries and Advances. Universe, 2023, 9, 113.	2.5	2

#	Article	IF	CITATIONS
346	The Optical Light Curve of GRB 221009A: The Afterglow and the Emerging Supernova. Astrophysical Journal Letters, 2023, 946, L22.	8.3	9
347	Limit on Supernova Emission in the Brightest Gamma-Ray Burst, GRB 221009A. Astrophysical Journal Letters, 2023, 946, L25.	8.3	8
348	The First JWST Spectrum of a GRB Afterglow: No Bright Supernova in Observations of the Brightest GRB of all Time, GRB 221009A. Astrophysical Journal Letters, 2023, 946, L28.	8.3	16
349	A Collapsar Origin for GRB 211211A Is (Just Barely) Possible. Astrophysical Journal, 2023, 947, 55.	4.5	9
350	GRB 211211A: A Neutron Star–White Dwarf Merger?. Astrophysical Journal Letters, 2023, 947, L21.	8.3	13
351	Evidence for Two Distinct Populations of Kilonova-associated Gamma-Ray Bursts. Astrophysical Journal Letters, 2023, 949, L22.	8.3	5
352	The Central Engine of GRB170817A and the Energy Budget Issue: Kerr Black Hole versus Neutron Star in a Multi-Messenger Analysis. Universe, 2023, 9, 279.	2.5	1
353	A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy. Nature Astronomy, 2023, 7, 976-985.	10.1	8
354	GRB 191019A: A Short Gamma-Ray Burst in Disguise from the Disk of an Active Galactic Nucleus. Astrophysical Journal Letters, 2023, 950, L20.	8.3	4
355	The ultra-long GRB 220627A at z=3:08. Astronomy and Astrophysics, 0, , .	5.1	Ο
356	GRB optical and X-ray plateau properties classifier using unsupervised machine learning. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0
357	A multimessenger model for neutron star–black hole mergers. Monthly Notices of the Royal Astronomical Society, 2023, 526, 4585-4598.	4.4	1
358	XMM-Newton and INTEGRAL Observations of the Bright GRB 230307A: Vanishing of the Local Absorption and Limits on the Dust in the Magellanic Bridge. Astrophysical Journal, 2023, 956, 97.	4.5	3
359	Identifying the Physical Origin of Gamma-Ray Bursts with Supervised Machine Learning. Astrophysical Journal, 2023, 959, 44.	4.5	Ο
360	Optical and Near-infrared Observations of the Distant but Bright "New Year's Burst―GRB 220101A. Astrophysical Journal, 2023, 959, 118.	4.5	0
361	Characterizing the Ordinary Broad-line Type Ic SN 2023pel from the Energetic GRB 230812B. Astrophysical Journal Letters, 2024, 960, L18.	8.3	Ο
362	Science with a Small Two-Band UV-Photometry Mission I: Mission Description and Follow-up Observations of Stellar Transients. Space Science Reviews, 2024, 220, .	8.1	3
363	Collapsars as Sites of r-process Nucleosynthesis: Systematic Photometric Near-infrared Follow-up of Type Ic-BL Supernovae. Astrophysical Journal, 2024, 962, 68.	4.5	0

#	Article	IF	CITATIONS
364	The Very Early Soft X-Ray Plateau of GRB 230307A: Signature of an Evolving Radiative Efficiency in Magnetar Wind Dissipation?. Astrophysical Journal Letters, 2024, 963, L26.	8.3	0
365	Ejecta–Circumstellar Medium Interaction in High-density Environment Contribution to Kilonova Emission: Application to GRB 191019A. Astrophysical Journal, 2024, 963, 156.	4.5	0