A protein interaction network for pluripotency of embr

Nature 444, 364-368 DOI: 10.1038/nature05284

Citation Report

#	Article	IF	CITATIONS
4	Pluripotent stem cells and their niches. Stem Cell Reviews and Reports, 2006, 2, 185-201.	5.6	63
5	Proteomic Analysis of Pluripotent Stem Cells. , 2007, Chapter 1, Unit 1B.1.		2
6	A gene regulatory network in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16438-16443.	3.3	246
7	Developmental Pluripotency-associated 4 (DPPA4) Localized in Active Chromatin Inhibits Mouse Embryonic Stem Cell Differentiation into a Primitive Ectoderm Lineage. Journal of Biological Chemistry, 2007, 282, 33034-33042.	1.6	54
8	Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes and Development, 2007, 21, 2545-2557.	2.7	447
9	Site-directed, virus-free, and inducible RNAi in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20850-20855.	3.3	29
10	NAC-1 Controls Cell Growth and Survival by Repressing Transcription of Gadd45GIP1, a Candidate Tumor Suppressor. Cancer Research, 2007, 67, 8058-8064.	0.4	64
11	Nuclear Receptors in Regulation of Mouse ES Cell Pluripotency and Differentiation. PPAR Research, 2007, 2007, 1-10.	1.1	48
12	Gene Regulation Networks Related to Neural Differentiation of hESC. Gene Expression, 2007, 14, 23-34.	0.5	6
13	Oct4 Expression Is Not Required for Mouse Somatic Stem Cell Self-Renewal. Cell Stem Cell, 2007, 1, 403-415.	5.2	376
15	How is pluripotency determined and maintained?. Development (Cambridge), 2007, 134, 635-646.	1.2	695
16	Successful co-immunoprecipitation of Oct4 and Nanog using cross-linking. Biochemical and Biophysical Research Communications, 2007, 361, 611-614.	1.0	40
17	Zfx Controls the Self-Renewal of Embryonic and Hematopoietic Stem Cells. Cell, 2007, 129, 345-357.	13.5	219
18	TRIM28 Mediates Primer Binding Site-Targeted Silencing of Murine Leukemia Virus in Embryonic Cells. Cell, 2007, 131, 46-57.	13.5	302
19	Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 2007, 131, 861-872.	13.5	17,969
20	Epigenetic Regulation of Hematopoietic Differentiation by Gfi-1 and Gfi-1b Is Mediated by the Cofactors CoREST and LSD1. Molecular Cell, 2007, 27, 562-572.	4.5	340
21	GeneChip analysis of human embryonic stem cell differentiation into hemangioblasts: an in silico dissection of mixed phenotypes. Genome Biology, 2007, 8, R240.	13.9	23
22	Using protein complexes to predict phenotypic effects of gene mutation. Genome Biology, 2007, 8, R252.	13.9	101

ATION RE

#	Article	IF	CITATIONS
23	Proteomics in 2005/2006:Â Developments, Applications and Challenges. Analytical Chemistry, 2007, 79, 4325-4344.	3.2	57
24	Concise Review: Trends in Stem Cell Proteomics. Stem Cells, 2007, 25, 1888-1903.	1.4	82
25	A Heterogeneous Expression Pattern for Nanog in Embryonic Stem Cells. Stem Cells, 2007, 25, 2534-2542.	1.4	317
26	New and renewed perspectives on embryonic stem cell pluripotency. Frontiers in Bioscience - Landmark, 2007, 12, 3321.	3.0	16
27	Genomic and proteomic characterization of embryonic stem cells. Current Opinion in Chemical Biology, 2007, 11, 399-404.	2.8	17
28	Epigenetic signatures of stem-cell identity. Nature Reviews Genetics, 2007, 8, 263-271.	7.7	352
29	Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Research, 2007, 17, 42-49.	5.7	508
30	New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 2007, 448, 196-199.	13.7	1,975
31	Nanog safeguards pluripotency and mediates germline development. Nature, 2007, 450, 1230-1234.	13.7	1,354
32	Xist function: bridging chromatin and stem cells. Trends in Genetics, 2007, 23, 457-464.	2.9	57
33	Human embryonic stem cells: Problems and perspectives. Cell and Tissue Biology, 2007, 1, 375-383.	0.2	1
34	Retinoic acid, meiosis and germ cell fate in mammals. Development (Cambridge), 2007, 134, 3401-3411.	1.2	302
35	Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation. Cell and Tissue Research, 2008, 331, 23-29.	1.5	47
36	Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1. BMC Molecular Biology, 2008, 9, 61.	3.0	51
37	Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Developmental Biology, 2008, 8, 45.	2.1	110
38	Differential expression of SOX17 and SOX2 in germ cells and stem cells has biological and clinical implications. Journal of Pathology, 2008, 215, 21-30.	2.1	208
39	Autoregulatory loop and retinoic acid repression regulate <i>pou2/pou5f1</i> gene expression in the zebrafish embryonic brain. Developmental Dynamics, 2008, 237, 1373-1388.	0.8	26
40	Maintenance of undifferentiated mouse embryonic stem cells in suspension by the serum―and feederâ€free defined culture condition. Developmental Dynamics, 2008, 237, 2129-2138.	0.8	16

	CITATION I	Report	
#	Article	IF	CITATIONS
41	Stretching the limits: Stem cells in regeneration science. Developmental Dynamics, 2008, 237, 3648-3671.	0.8	65
42	Mechanisms that mediate stem cell selfâ€renewal and differentiation. Journal of Cellular Biochemistry, 2008, 103, 709-718.	1.2	57
43	From fibroblasts to iPS cells: Induced pluripotency by defined factors. Journal of Cellular Biochemistry, 2008, 105, 949-955.	1.2	106
44	Retroviral vector silencing during iPS cell induction: An epigenetic beacon that signals distinct pluripotent states. Journal of Cellular Biochemistry, 2008, 105, 940-948.	1.2	142
45	Differentiation therapy of hepatocellular carcinoma in mice with recombinant adenovirus carrying hepatocyte nuclear factor-41̂± gene. Hepatology, 2008, 48, 1528-1539.	3.6	172
46	Tel/PDGFRÎ ² inhibits self-renewal and directs myelomonocytic differentiation of ES cells. Leukemia Research, 2008, 32, 1554-1564.	0.4	7
47	Mapping multiprotein complexes by affinity purification and mass spectrometry. Current Opinion in Biotechnology, 2008, 19, 324-330.	3.3	118
48	Mass spectrometry for proteomics. Current Opinion in Chemical Biology, 2008, 12, 483-490.	2.8	603
49	A potential model for studying the plasticity and reprogramming of human epidermal stem cells through preimplantation blastocyst microinjection. Cell Biology International, 2008, 32, 1567-1573.	1.4	2
50	Neural Stem Cells in the Mammalian Brain. International Review of Cytology, 2008, 265, 55-109.	6.2	9
51	National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for Use of Tumor Markers in Testicular, Prostate, Colorectal, Breast, and Ovarian Cancers. Clinical Chemistry, 2008, 54, e11-e79.	1.5	539
52	Stem Cells Use Distinct Self-renewal Programs at Different Ages. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 539-553.	2.0	42
53	Insulin Redirects Differentiation from Cardiogenic Mesoderm and Endoderm to Neuroectoderm in Differentiating Human Embryonic Stem Cells. Stem Cells, 2008, 26, 724-733.	1.4	113
54	Nucleofection Mediates High-Efficiency Stable Gene Knockdown and Transgene Expression in Human Embryonic Stem Cells. Stem Cells, 2008, 26, 1436-1443.	1.4	57
55	Regulation of Self-Renewal and Pluripotency by Sox2 in Human Embryonic Stem Cells. Stem Cells, 2008, 26, 1931-1938.	1.4	275
56	Zfp143 RegulatesNanogThrough Modulation of Oct4 Binding. Stem Cells, 2008, 26, 2759-2767.	1.4	50
57	The Transcription Factor Zfp281 Controls Embryonic Stem Cell Pluripotency by Direct Activation and Repression of Target Genes. Stem Cells, 2008, 26, 2791-2799.	1.4	67
58	Genomic regulation of neural stem cells in mammals. Russian Journal of Genetics, 2008, 44, 247-256.	0.2	Ο

		CITATION REPORT		
#	Article		IF	CITATIONS
59	A skin microRNA promotes differentiation by repressing â€~stemness'. Nature, 200	8, 452, 225-229.	13.7	735
60	REST maintains self-renewal and pluripotency of embryonic stem cells. Nature, 2008, 4	53, 223-227.	13.7	299
61	Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFκB and c Stat3. Nature Cell Biology, 2008, 10, 194-201.	ooperating with	4.6	127
62	Nanog and Oct4 associate with unique transcriptional repression complexes in embryo Nature Cell Biology, 2008, 10, 731-739.	nic stem cells.	4.6	406
63	Molecular and biological properties of pluripotent embryonic stem cells. Gene Therapy,	2008, 15, 74-81.	2.3	91
64	Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal sten their expansion and differentiation capabilities. Experimental Cell Research, 2008, 314,	n cells maintains 1147-1154.	1.2	118
65	Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical co applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data. BMC Genomics, 2008, 9, 269.	nfidence by	1.2	144
66	Skin-derived human adult stem cells surprisingly share many features with human panc cells. European Journal of Cell Biology, 2008, 87, 39-46.	reatic stem	1.6	36
67	Transcriptional and epigenetic regulations of embryonic stem cells. Mutation Research and Molecular Mechanisms of Mutagenesis, 2008, 647, 52-58.	- Fundamental	0.4	20
68	Identification of Oxygen-Sensitive Transcriptional Programs in Human Embryonic Stem Cells and Development, 2008, 17, 869-882.	Cells. Stem	1.1	117
69	Oct-4 Is Critical for Survival/Antiapoptosis of Murine Embryonic Stem Cells Subjected to Effects Associated with Stat3/Survivin. Stem Cells, 2008, 26, 30-34.	o Stress:	1.4	91
70	In silico regulatory analysis for exploring human disease progression. Biology Direct, 20	08, 3, 24.	1.9	6
71	Stochasticity and the Molecular Mechanisms of Induced Pluripotency. PLoS ONE, 2008	, 3, e3086.	1.1	81
72	Histone deacetylase inhibition accelerates the early events of stem cell differentiation: transcriptomic and epigenetic analysis. Genome Biology, 2008, 9, R65.		13.9	86
73	Genomic chart guiding embryonic stem cell cardiopoiesis. Genome Biology, 2008, 9, R6	j.	13.9	66
74	Stem Cell Research and Therapeutics. , 2008, , .			3
75	Crystal Structure and DNA Binding of the Homeodomain of the Stem Cell Transcription Journal of Molecular Biology, 2008, 376, 758-770.	Factor Nanog.	2.0	76
76	EZH1 Mediates Methylation on Histone H3 Lysine 27 and Complements EZH2 in Maint Identity and Executing Pluripotency. Molecular Cell, 2008, 32, 491-502.	aining Stem Cell	4.5	838

#	Article	IF	CITATIONS
77	The interactions between brain microvascular endothelial cells and mesenchymal stem cells under hypoxic conditions. Microvascular Research, 2008, 75, 59-67.	1.1	30
78	Small RNAs in development and disease. Journal of the American Academy of Dermatology, 2008, 59, 725-737.	0.6	63
79	Sox2 is important for two crucial processes in lung development: Branching morphogenesis and epithelial cell differentiation. Developmental Biology, 2008, 317, 296-309.	0.9	236
80	Characterizing the mouse ES cell transcriptome with Illumina sequencing. Genomics, 2008, 92, 187-194.	1.3	79
81	Guided stem cell cardiopoiesis: Discovery and translation. Journal of Molecular and Cellular Cardiology, 2008, 45, 523-529.	0.9	79
82	Translational Control: A New Dimension in Embryonic Stem Cell Network Analysis. Cell Stem Cell, 2008, 2, 410-412.	5.2	16
83	Krüppel-like factor 5 Is Essential for Blastocyst Development and the Normal Self-Renewal of Mouse ESCs. Cell Stem Cell, 2008, 3, 555-567.	5.2	177
84	Toward Stem Cell Systems Biology: From Molecules to Networks and Landscapes. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 211-215.	2.0	28
85	Stem cell-specific expression of Dax1 is conferred by STAT3 and Oct3/4 in embryonic stem cells. Biochemical and Biophysical Research Communications, 2008, 372, 91-96.	1.0	37
86	Transcriptional regulatory networks in haematopoiesis. Current Opinion in Genetics and Development, 2008, 18, 530-535.	1.5	32
87	Toward a systems-level understanding of developmental regulatory networks. Current Opinion in Genetics and Development, 2008, 18, 521-529.	1.5	36
88	Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming. Cell, 2008, 132, 567-582.	13.5	1,251
89	An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells. Cell, 2008, 132, 1049-1061.	13.5	1,226
90	Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells. Cell, 2008, 133, 1106-1117.	13.5	2,279
91	An RNAi Screen of Chromatin Proteins Identifies Tip60-p400 as a Regulator of Embryonic Stem Cell Identity. Cell, 2008, 134, 162-174.	13.5	408
92	Regulatory networks define phenotypic classes of human stem cell lines. Nature, 2008, 455, 401-405.	13.7	321
93	Overexpression of NANOG in Gestational Trophoblastic Diseases. American Journal of Pathology, 2008, 173, 1165-1172.	1.9	74
94	The Tumorigenicity of Human Embryonic Stem Cells. Advances in Cancer Research, 2008, 100, 133-158.	1.9	390

#	Article	IF	CITATIONS
96	Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Research, 2008, 18, 1433-1445.	2.4	698
97	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Proteome Quantitation of Mouse Embryonic Stem Cells to a Depth of 5,111 Proteins. Molecular and Cellular Proteomics, 2008, 7, 672-683.	2.5	261
98	Quantitative Proteomics Analysis Demonstrates Post-transcriptional Regulation of Embryonic Stem Cell Differentiation to Hematopoiesis. Molecular and Cellular Proteomics, 2008, 7, 459-472.	2.5	67
99	Requirement of Nanog dimerization for stem cell self-renewal and pluripotency. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6326-6331.	3.3	124
100	Epigenetic regulation of stem cell fate. Human Molecular Genetics, 2008, 17, R28-R36.	1.4	136
101	A <i>BTB/POZ</i> Gene, <i>NAC-1</i> , a Tumor Recurrence–Associated Gene, as a Potential Target for Taxol Resistance in Ovarian Cancer. Clinical Cancer Research, 2008, 14, 3149-3155.	3.2	46
102	A Protein Roadmap to Pluripotency and Faithful Reprogramming. Cells Tissues Organs, 2008, 188, 23-30.	1.3	14
103	Linkage of Pluripotent Stem Cell- Associated Transcripts to Regulatory Gene Networks. Cells Tissues Organs, 2008, 188, 31-45.	1.3	9
104	Oct25 Represses Transcription of Nodal/Activin Target Genes by Interaction with Signal Transducers during Xenopus Gastrulation. Journal of Biological Chemistry, 2008, 283, 34168-34177.	1.6	36
105	Molecular framework underlying pluripotency. Cell Cycle, 2008, 7, 885-891.	1.3	55
105 106	Molecular framework underlying pluripotency. Cell Cycle, 2008, 7, 885-891. Stem Cells: What Can We Learn from Flies?. Fly, 2008, 2, 19-28.	1.3 0.9	55 6
106	Stem Cells: What Can We Learn from Flies?. Fly, 2008, 2, 19-28. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory	0.9	6
106 107	Stem Cells: What Can We Learn from Flies?. Fly, 2008, 2, 19-28. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development (Cambridge), 2008, 135, 1513-1524. Esrrb Activates Oct4 Transcription and Sustains Self-renewal and Pluripotency in Embryonic Stem	0.9 1.2	6 265
106 107 108	Stem Cells: What Can We Learn from Flies?. Fly, 2008, 2, 19-28. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development (Cambridge), 2008, 135, 1513-1524. Esrrb Activates Oct4 Transcription and Sustains Self-renewal and Pluripotency in Embryonic Stem Cells. Journal of Biological Chemistry, 2008, 283, 35825-35833. The structure of corepressor Dax-1 bound to its target nuclear receptor LRH-1. Proceedings of the	0.9 1.2 1.6	6 265 133
106 107 108 109	Stem Cells: What Can We Learn from Flies?. Fly, 2008, 2, 19-28. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development (Cambridge), 2008, 135, 1513-1524. Esrrb Activates Oct4 Transcription and Sustains Self-renewal and Pluripotency in Embryonic Stem Cells. Journal of Biological Chemistry, 2008, 283, 35825-35833. The structure of corepressor Dax-1 bound to its target nuclear receptor LRH-1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18390-18395. Expression of the Bric-a-Brac Tramtrack Broad Complex Protein NAC-1 in Cervical Carcinomas Seems to	0.9 1.2 1.6 3.3	6 265 133 88
106 107 108 109 110	Stem Cells: What Can We Learn from Flies?. Fly, 2008, 2, 19-28. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development (Cambridge), 2008, 135, 1513-1524. Esrrb Activates Oct4 Transcription and Sustains Self-renewal and Pluripotency in Embryonic Stem Cells. Journal of Biological Chemistry, 2008, 283, 35825-35833. The structure of corepressor Dax-1 bound to its target nuclear receptor LRH-1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18390-18395. Expression of the Bric-a-Brac Tramtrack Broad Complex Protein NAC-1 in Cervical Carcinomas Seems to Correlate with Poorer Prognosis. Clinical Cancer Research, 2008, 14, 1686-1691. Heterokaryon-Based Reprogramming of Human B Lymphocytes for Pluripotency Requires Oct4 but Not	0.9 1.2 1.6 3.3 3.2	6 265 133 88 38

# 114	ARTICLE Seminal discoveries in regenerative medicine: contributions of the male germ line to understanding pluripotency. Human Molecular Genetics, 2008, 17, R16-R22.	IF 1.4	CITATIONS
115	Gene profiling for determining pluripotent genes in a time course microarray experiment. Biostatistics, 2008, 10, 80-93.	0.9	9
116	Estrogen-Related Receptor Beta Interacts with Oct4 To Positively Regulate <i>Nanog</i> Gene Expression. Molecular and Cellular Biology, 2008, 28, 5986-5995.	1.1	145
117	Oct4 dependence of chromatin structure within the extended Nanog locus in ES cells. Genes and Development, 2008, 22, 575-580.	2.7	107
118	Multipotent Adult Progenitor Cells. , 2008, , 258-266.		0
119	Aromatic Residues in the C-terminal Domain 2 Are Required for Nanog to Mediate LIF-independent Self-renewal of Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2008, 283, 4480-4489.	1.6	14
120	Molecular basis of pluripotency. Human Molecular Genetics, 2008, 17, R23-R27.	1.4	108
121	The pluripotency rheostat Nanog functions as a dimer. Biochemical Journal, 2008, 411, 227-231.	1.7	89
122	Transcription factors that behave as master regulators during mammalian embryogenesis function as molecular rheostats. Biochemical Journal, 2008, 411, e5-e7.	1.7	14
123	Looking Into the Future of Cell-Based Therapy. Southern Medical Journal, 2008, 101, 79-82.	0.3	5
124	Computational Modeling Approaches for Studying of Synthetic Biological Networks. Current Bioinformatics, 2008, 3, 130-141.	0.7	4
126	Transcriptional Regulatory Networks in Embryonic Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 203-209.	2.0	70
127	Stem Cells Have Different Needs for REST. PLoS Biology, 2008, 6, e271.	2.6	14
128	Ubiquitin E3 Ligase Ring1b/Rnf2 of Polycomb Repressive Complex 1 Contributes to Stable Maintenance of Mouse Embryonic Stem Cells. PLoS ONE, 2008, 3, e2235.	1.1	97
129	Novel MicroRNA Candidates and miRNA-mRNA Pairs in Embryonic Stem (ES) Cells. PLoS ONE, 2008, 3, e2548.	1.1	48
130	Mechanisms of Stem Cell Self-renewal. , 2009, , 73-80.		1
131	Mbd3, a Component of NuRD/Mi-2 Complex, Helps Maintain Pluripotency of Mouse Embryonic Stem Cells by Repressing Trophectoderm Differentiation. PLoS ONE, 2009, 4, e7684.	1.1	45
132	A Biophysical Model for Analysis of Transcription Factor Interaction and Binding Site Arrangement from Genome-Wide Binding Data. PLoS ONE, 2009, 4, e8155.	1.1	47

#	Article	IF	CITATIONS
133	Molecular Bases of Pluripotency. , 2009, , 37-60.		2
134	The transcriptional foundation of pluripotency. Development (Cambridge), 2009, 136, 2311-2322.	1.2	393
135	A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. Journal of Cell Biology, 2009, 184, 67-82.	2.3	177
136	Translational Isoforms of FOG1 Regulate GATA1-interacting Complexes. Journal of Biological Chemistry, 2009, 284, 29310-29319.	1.6	22
137	A Positive Regulatory Role for the mSin3A-HDAC Complex in Pluripotency through Nanog and Sox2. Journal of Biological Chemistry, 2009, 284, 6998-7006.	1.6	62
138	Database for mRNA Half-Life of 19 977 Genes Obtained by DNA Microarray Analysis of Pluripotent and Differentiating Mouse Embryonic Stem Cells. DNA Research, 2009, 16, 45-58.	1.5	503
139	Nuclear receptor regulation of stemness and stem cell differentiation. Experimental and Molecular Medicine, 2009, 41, 525.	3.2	62
140	Role for Med12 in Regulation of Nanog and Nanog Target Genes. Journal of Biological Chemistry, 2009, 284, 3709-3718.	1.6	58
141	Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes and Development, 2009, 23, 2824-2838.	2.7	160
142	Targeted tandem affinity purification of PSDâ€95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. Molecular Systems Biology, 2009, 5, 269.	3.2	245
143	Building biomedical web communities using a semantically aware content management system. Briefings in Bioinformatics, 2009, 10, 129-138.	3.2	21
144	Dax1 Binds to Oct3/4 and Inhibits Its Transcriptional Activity in Embryonic Stem Cells. Molecular and Cellular Biology, 2009, 29, 4574-4583.	1.1	68
145	<i>In Vitro</i> –Cultured Human Islet Cell Monolayers: Stemness Markers and Insulin Recovery upon Streptozotocin Exposure. Tissue Engineering - Part A, 2009, 15, 3931-3942.	1.6	5
146	Developmental Engineering: A New Paradigm for the Design and Manufacturing of Cell-Based Products. Part II. From Genes to Networks: Tissue Engineering from the Viewpoint of Systems Biology and Network Science. Tissue Engineering - Part B: Reviews, 2009, 15, 395-422.	2.5	103
147	REST and the RESTless: in stem cells and beyond. Future Neurology, 2009, 4, 317-329.	0.9	55
148	Expression Profiling of Nuclear Receptors in Human and Mouse Embryonic Stem Cells. Molecular Endocrinology, 2009, 23, 724-733.	3.7	57
149	The C-terminal Pentapeptide of Nanog Tryptophan Repeat Domain Interacts with Nac1 and Regulates Stem Cell Proliferation but Not Pluripotency. Journal of Biological Chemistry, 2009, 284, 16071-16081.	1.6	25
150	<i>Helicobacter pylori</i> induces gastric mucosal intestinal metaplasia through the inhibition of interleukin-4-mediated HMG box protein Sox2 expression. American Journal of Physiology - Renal Physiology, 2009, 297, G312-G322	1.6	48

#	Article	IF	CITATIONS
151	Regulated Fluctuations in Nanog Expression Mediate Cell Fate Decisions in Embryonic Stem Cells. PLoS Biology, 2009, 7, e1000149.	2.6	498
152	SysPTM: A Systematic Resource for Proteomic Research on Post-translational Modifications. Molecular and Cellular Proteomics, 2009, 8, 1839-1849.	2.5	107
153	ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21521-21526.	3.3	312
154	Expression of a BTB/POZ Protein, NAC1, Is Essential for the Proliferation of Normal Cyclic Endometrial Glandular Cells and Is Up-regulated by Estrogen. Clinical Cancer Research, 2009, 15, 804-811.	3.2	22
155	A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes and Development, 2009, 23, 837-848.	2.7	354
156	Mammalian Rif1 contributes to replication stress survival and homology-directed repair. Journal of Cell Biology, 2009, 187, 385-398.	2.3	125
157	Zfp206, Oct4, and Sox2 Are Integrated Components of a Transcriptional Regulatory Network in Embryonic Stem Cells. Journal of Biological Chemistry, 2009, 284, 31327-31335.	1.6	65
158	Cdk2ap1 Is Required for Epigenetic Silencing of Oct4 during Murine Embryonic Stem Cell Differentiation. Journal of Biological Chemistry, 2009, 284, 6043-6047.	1.6	33
159	Pluripotency rush! Molecular cues for pluripotency, genetic reprogramming of adult stem cells, and widely multipotent adult cells. , 2009, 124, 23-30.		14
160	When Xâ€inactivation meets pluripotency: An intimate rendezvous. FEBS Letters, 2009, 583, 1721-1727.	1.3	39
160 161	When Xâ€inactivation meets pluripotency: An intimate rendezvous. FEBS Letters, 2009, 583, 1721-1727. Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell, 2009, 15, 501-513.	1.3 7.7	39 1,196
	Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell, 2009, 15,		
161	Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell, 2009, 15, 501-513. Glandular tissue from human pancreas and salivary gland yields similar stem cell populations.	7.7	1,196
161 162	 Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell, 2009, 15, 501-513. Glandular tissue from human pancreas and salivary gland yields similar stem cell populations. European Journal of Cell Biology, 2009, 88, 409-421. SALL4 is a novel sensitive and specific marker for metastatic germ cell tumors, with particular utility 	7.7 1.6	1,196 62
161 162 163	 Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell, 2009, 15, 501-513. Glandular tissue from human pancreas and salivary gland yields similar stem cell populations. European Journal of Cell Biology, 2009, 88, 409-421. SALL4 is a novel sensitive and specific marker for metastatic germ cell tumors, with particular utility in detection of metastatic yolk sac tumors. Cancer, 2009, 115, 2640-2651. Analysis of Rex1 (zfp42) function in embryonic stem cell differentiation. Developmental Dynamics, 	7.7 1.6 2.0	1,196 62 145
161 162 163 164	Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell, 2009, 15, 501-513. Glandular tissue from human pancreas and salivary gland yields similar stem cell populations. European Journal of Cell Biology, 2009, 88, 409-421. SALL4 is a novel sensitive and specific marker for metastatic germ cell tumors, with particular utility in detection of metastatic yolk sac tumors. Cancer, 2009, 115, 2640-2651. Analysis of Rex1 (zfp42) function in embryonic stem cell differentiation. Developmental Dynamics, 2009, 238, 1863-1877.	7.7 1.6 2.0 0.8	1,196 62 145 61
161 162 163 164 165	Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell, 2009, 15, 501-513. Clandular tissue from human pancreas and salivary gland yields similar stem cell populations. European Journal of Cell Biology, 2009, 88, 409-421. SALL4 is a novel sensitive and specific marker for metastatic germ cell tumors, with particular utility in detection of metastatic yolk sac tumors. Cancer, 2009, 115, 2640-2651. Analysis of Rex1 (zfp42) function in embryonic stem cell differentiation. Developmental Dynamics, 2009, 238, 1863-1877. Human embryonic stem cells and cardiac cell fate. Journal of Cellular Physiology, 2009, 218, 455-459. Pluripotency: Toward a gold standard for human ES and iPS cells. Journal of Cellular Physiology,	7.7 1.6 2.0 0.8 2.0	1,196 62 145 61 13

#	Article	IF	CITATIONS
169	The Molecular Mechanism of Induced Pluripotency: A Two-Stage Switch. Stem Cell Reviews and Reports, 2009, 5, 204-223.	5.6	46
170	Induced pluripotent stem cell (iPS) technology: promises and challenges. Science Bulletin, 2009, 54, 2-8.	1.7	6
171	Deciphering the stem cell machinery as a basis for understanding the molecular mechanism underlying reprogramming. Cellular and Molecular Life Sciences, 2009, 66, 3403-3420.	2.4	10
172	Nanog Regulates Proliferation During Early Fish Development. Stem Cells, 2009, 27, 2081-2091.	1.4	55
173	<i>Sall4</i> Is Essential for Stabilization, But Not for Pluripotency, of Embryonic Stem Cells by Repressing Aberrant Trophectoderm Gene Expression. Stem Cells, 2009, 27, 796-805.	1.4	89
174	A Human Stem Cell-Based Model for Identifying Adverse Effects of Organic and Inorganic Chemicals on the Developing Nervous System. Stem Cells, 2009, 27, 2591-2601.	1.4	116
175	Smarcc1/Baf155 Couples Self-Renewal Gene Repression with Changes in Chromatin Structure in Mouse Embryonic Stem Cells. Stem Cells, 2009, 27, 2979-2991.	1.4	127
176	Klf4 Interacts Directly with Oct4 and Sox2 to Promote Reprogramming. Stem Cells, 2009, 27, 2969-2978.	1.4	114
177	RNA Polymerase II Associated Factor 1/PD2 Maintains Self-Renewal by Its Interaction with Oct3/4 in Mouse Embryonic Stem Cells. Stem Cells, 2009, 27, 3001-3011.	1.4	48
178	Functional Evidence that the Self-Renewal Gene <i>NANOG</i> Regulates Human Tumor Development. Stem Cells, 2009, 27, 993-1005.	1.4	307
179	Characterization of the Phosphoinositide 3-Kinase-Dependent Transcriptome in Murine Embryonic Stem Cells: Identification of Novel Regulators of Pluripotency. Stem Cells, 2009, 27, 764-775.	1.4	66
180	Dax-1 Knockdown in Mouse Embryonic Stem Cells Induces Loss of Pluripotency and Multilineage Differentiation. Stem Cells, 2009, 27, 1529-1537.	1.4	70
181	Sox2 and Octâ€3/4: a versatile pair of master regulators that orchestrate the selfâ€renewal and pluripotency of embryonic stem cells. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, 1, 228-236.	6.6	136
182	Some statistics in bioinformatics: The fifth Armitage Lecture. Statistics in Medicine, 2009, 28, 2833-2856.	0.8	2
183	Structure of the human Nac1 POZ domain. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 445-449.	0.7	17
184	AICAR activates the pluripotency transcriptional network in embryonic stem cells and induces KLF4 and KLF2 expression in fibroblasts. BMC Pharmacology, 2009, 9, 2.	0.4	17
185	Purification of lowâ€abundance Arabidopsis plasmaâ€membrane protein complexes and identification of candidate components. Plant Journal, 2009, 57, 932-944.	2.8	85
186	OCT4: Less is more. Cell Research, 2009, 19, 527-528.	5.7	9

#	Article	IF	CITATIONS
187	Induced pluripotent stem cells and the stability of the differentiated state. EMBO Reports, 2009, 10, 714-721.	2.0	33
188	Diagnostic utility of SALL4 in primary germ cell tumors of the central nervous system: a study of 77 cases. Modern Pathology, 2009, 22, 1628-1636.	2.9	81
189	Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature, 2009, 462, 358-362.	13.7	277
190	Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biology, 2009, 11, 197-203.	4.6	428
191	Use of in vivo biotinylation to study protein–protein and protein–DNA interactions in mouse embryonic stem cells. Nature Protocols, 2009, 4, 506-517.	5.5	129
192	Systems biology of stem cell fate and cellular reprogramming. Nature Reviews Molecular Cell Biology, 2009, 10, 672-681.	16.1	330
193	NAC-1, a potential stem cell pluripotency factor, contributes to paclitaxel resistance in ovarian cancer through inactivating Gadd45 pathway. Oncogene, 2009, 28, 1941-1948.	2.6	81
194	Regulation of the Nanog gene by both positive and negative <i>cis</i> â€regulatory elements in embryonal carcinoma cells and embryonic stem cells. Molecular Reproduction and Development, 2009, 76, 173-182.	1.0	8
195	Molecular Characterization of the Human NANOG Protein. Stem Cells, 2009, 27, 812-821.	1.4	40
196	Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development (Cambridge), 2009, 136, 1063-1069.	1.2	669
197	EWS/FLI and Its Downstream Target NROB1 Interact Directly to Modulate Transcription and Oncogenesis in Ewing's Sarcoma. Cancer Research, 2009, 69, 9047-9055.	0.4	85
198	Nanog Is the Gateway to the Pluripotent Ground State. Cell, 2009, 138, 722-737.	13.5	904
199	Jumonji Modulates Polycomb Activity and Self-Renewal versus Differentiation of Stem Cells. Cell, 2009, 139, 1303-1314.	13.5	398
200	Molecules that Promote or Enhance Reprogramming of Somatic Cells to Induced Pluripotent Stem Cells. Cell Stem Cell, 2009, 4, 301-312.	5.2	357
201	Screening for Novel Regulators of Embryonic Stem Cell Identity. Cell Stem Cell, 2009, 4, 377-378.	5.2	9
202	Phosphoproteomic Analysis of Human Embryonic Stem Cells. Cell Stem Cell, 2009, 5, 204-213.	5.2	177
203	Uncovering Early Response of Gene Regulatory Networks in ESCs by Systematic Induction of Transcription Factors. Cell Stem Cell, 2009, 5, 420-433.	5.2	178
204	Regulatory circuits underlying pluripotency and reprogramming. Trends in Pharmacological Sciences, 2009, 30, 296-302.	4.0	61

#	Article	IF	Citations
π 205	Immortality and the base of multicellular life: Lessons from cnidarian stem cells. Seminars in Cell and	2.3	79
200	Developmental Biology, 2009, 20, 1114-1125.	2.0	19
206	Purification of human transcription factors Nanog and Sox2, each in complex with Skp, an Escherichia coli periplasmic chaperone. Protein Expression and Purification, 2009, 67, 164-168.	0.6	6
207	SOX2 is highly expressed in squamous cell carcinomas of the gastrointestinal tract. Human Pathology, 2009, 40, 1768-1773.	1.1	55
208	In vitro development of a hemangioblast from a human embryonic stem cell, SNUhES#3. Life Sciences, 2009, 85, 39-45.	2.0	4
209	Epigenetic reprogramming and induced pluripotency. Development (Cambridge), 2009, 136, 509-523.	1.2	478
210	Brain Tumor Stem Cell Markers. , 2009, , 713-728.		0
211	MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. Journal of Translational Medicine, 2009, 7, 20.	1.8	165
212	Mechanisms of Stem Cell Self-Renewal. Annual Review of Cell and Developmental Biology, 2009, 25, 377-406.	4.0	503
213	Regulation of Stem Cell Pluripotency and Differentiation Involves a Mutual Regulatory Circuit of the Nanog, OCT4, and SOX2 Pluripotency Transcription Factors With Polycomb Repressive Complexes and Stem Cell microRNAs. Stem Cells and Development, 2009, 18, 1093-1108.	1.1	375
214	Adipocyte Differentiation in Human Embryonic Stem Cells Transduced With Oct4 shRNA Lentivirus. Stem Cells and Development, 2009, 18, 653-660.	1.1	17
215	Post-Translational Regulation of Oct4 Transcriptional Activity. PLoS ONE, 2009, 4, e4467.	1.1	112
216	Protein Networks and Pathway Analysis. Methods in Molecular Biology, 2009, 563, v-vii.	0.4	33
217	Biology of Stem Cells and the Molecular Basis of the Stem State. , 2009, , .		18
218	From genes to cells to tissues—modelling the haematopoietic system. Molecular BioSystems, 2009, 5, 1413.	2.9	11
219	Regulation of Pluripotency and Reprogramming by Transcription Factors. Journal of Biological Chemistry, 2009, 284, 3365-3369.	1.6	83
220	Prioritizing Genes for Pathway Impact Using Network Analysis. Methods in Molecular Biology, 2009, 563, 141-156.	0.4	5
221	SALL4 Is a Novel Sensitive and Specific Marker of Ovarian Primitive Germ Cell Tumors and Is Particularly Useful in Distinguishing Yolk Sac Tumor From Clear Cell Carcinoma. American Journal of Surgical Pathology, 2009, 33, 894-904.	2.1	193
222	Diagnostic Utility of SALL4 in Extragonadal Yolk Sac Tumors. American Journal of Surgical Pathology, 2009, 33, 1529-1539.	2.1	115

#	Article	IF	CITATIONS
223	SALL4 Is a Novel Diagnostic Marker for Testicular Germ Cell Tumors. American Journal of Surgical Pathology, 2009, 33, 1065-1077.	2.1	212
224	The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development. Blood, 2009, 113, 5456-5465.	0.6	107
225	Enriching protein-protein and functional interaction networks in human embryonic stem cells. International Journal of Molecular Medicine, 2009, 23, 811-9.	1.8	5
226	Sox2 Expression in Pulmonary Non-small Cell and Neuroendocrine Carcinomas. Applied Immunohistochemistry and Molecular Morphology, 2010, 18, 55-61.	0.6	91
227	SALL4 Represents Fetal Gut Differentiation of Gastric Cancer, and is Diagnostically Useful in Distinguishing Hepatoid Gastric Carcinoma From Hepatocellular Carcinoma. American Journal of Surgical Pathology, 2010, 34, 533-540.	2.1	178
228	The Expanding Mi-2/NuRD Complexes: A Schematic Glance. Proteomics Insights, 2010, 3, PRI.S6329.	2.0	6
229	The Epigenome and Its Relevance to Somatic Cell Nuclear Transfer and Nuclear Reprogramming. , 2010, , 291-316.		0
230	Nuclear receptors in stem cells and their therapeutic potential. Advanced Drug Delivery Reviews, 2010, 62, 1299-1306.	6.6	12
231	Axolotl <i>Nanog</i> activity in mouse embryonic stem cells demonstrates that ground state pluripotency is conserved from urodele amphibians to mammals. Development (Cambridge), 2010, 137, 2973-2980.	1.2	51
232	Differential effects of recombinant fusion proteins TAT-OCT4 and TAT-NANOG on adult human fibroblasts. Frontiers in Biology, 2010, 5, 424-430.	0.7	1
233	Pluripotent Stem Cells: Origin, Maintenance and Induction. Stem Cell Reviews and Reports, 2010, 6, 633-649.	5.6	53
234	Pluripotency maintenance mechanism of embryonic stem cells and reprogramming. International Journal of Hematology, 2010, 91, 360-372.	0.7	8
235	Insights into the binding mode and mechanism of action of some atypical retinoids as ligands of the small heterodimer partner (SHP). Journal of Computer-Aided Molecular Design, 2010, 24, 943-956.	1.3	8
236	Lists2Networks: Integrated analysis of gene/protein lists. BMC Bioinformatics, 2010, 11, 87.	1.2	38
237	Biological role and prognostic significance of NAC1 in ovarian cancer. Gynecologic Oncology, 2010, 119, 469-478.	0.6	34
238	Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS. IUBMB Life, 2010, 62, 277-282.	1.5	14
239	Transcriptional repression in ES cells. Journal of Cellular Biochemistry, 2010, 110, 288-293.	1.2	7
240	Medaka Oct4 is expressed during early embryo development, and in primordial germ cells and adult gonads. Developmental Dynamics, 2010, 239, 672-679.	0.8	57

#	Article	IF	CITATIONS
241	Transcriptional regulation of Rex1 (zfp42) in normal prostate epithelial cells and prostate cancer cells. Journal of Cellular Physiology, 2010, 224, 17-27.	2.0	15
242	Direct targets of Klf5 transcription factor contribute to the maintenance of mouse embryonic stem cell undifferentiated state. BMC Biology, 2010, 8, 128.	1.7	44
243	Regeneration and reprogramming compared. BMC Biology, 2010, 8, 5.	1.7	96
244	Expanding the mouse embryonic stem cell proteome: Combining three proteomic approaches. Proteomics, 2010, 10, 2728-2732.	1.3	17
245	Concise Review: Isoforms of <i>OCT4</i> Contribute to the Confusing Diversity in Stem Cell Biology. Stem Cells, 2010, 28, 885-893.	1.4	180
246	Decoded Calreticulin-Deficient Embryonic Stem Cell Transcriptome Resolves Latent Cardiophenotype. Stem Cells, 2010, 28, 1281-1291.	1.4	19
247	Loss of Bright/ARID3a Function Promotes Developmental Plasticity. Stem Cells, 2010, 28, 1560-1567.	1.4	45
248	Proteomic Analysis of Sox2-Associated Proteins During Early Stages of Mouse Embryonic Stem Cell Differentiation Identifies Sox21 as a Novel Regulator of Stem Cell Fate Â. Stem Cells, 2010, 28, 1715-1727.	1.4	107
249	Toward a complete <i>in silico</i> , multiâ€layered embryonic stem cell regulatory network. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 708-733.	6.6	21
250	Expression and role of Oct3/4, Nanog and Sox2 in regeneration of rat tracheal epithelium. Cell Proliferation, 2010, 43, 49-55.	2.4	16
251	Epiblast stem cells contribute new insight into pluripotency and gastrulation. Development Growth and Differentiation, 2010, 52, 293-301.	0.6	40
252	Diagnostic Utility of Novel Stem Cell Markers SALL4, OCT4, NANOG, SOX2, UTF1, and TCL1 in Primary Mediastinal Germ Cell Tumors. American Journal of Surgical Pathology, 2010, 34, 697-706.	2.1	128
253	Gene regulatory networks governing haematopoietic stem cell development and identity. International Journal of Developmental Biology, 2010, 54, 1201-1211.	0.3	51
254	Reinventing Diagnostics for Personalized Therapy in Oncology. Cancers, 2010, 2, 1066-1091.	1.7	4
255	Molecular Genetic Markers in Female Reproductive Cancers. Journal of Oncology, 2010, 2010, 1-2.	0.6	1
256	TLRs, Alcohol, HCV, and Tumorigenesis. Gastroenterology Research and Practice, 2010, 2010, 1-8.	0.7	18
257	Expression of Fatty Acid Synthase Depends on NAC1 and Is Associated with Recurrent Ovarian Serous Carcinomas. Journal of Oncology, 2010, 2010, 1-12.	0.6	57
258	Stem cell technology using bioceramics: hard tissue regeneration towards clinical application. Science and Technology of Advanced Materials, 2010, 11, 014110.	2.8	7

#	Article	IF	CITATIONS
259	NAC1, a potential stem cell pluripotency factor expression in normal endometrium, endometrial hyperplasia and endometrial carcinoma. International Journal of Oncology, 2010, 36, 1097-103.	1.4	20
260	Sox2 Protein Expression is an Independent Poor Prognostic Indicator in Stage I Lung Adenocarcinoma. American Journal of Surgical Pathology, 2010, 34, 1193-1198.	2.1	140
261	Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. Genes and Development, 2010, 24, 1659-1672.	2.7	122
262	The genetics of induced pluripotency. Reproduction, 2010, 139, 35-44.	1.1	59
263	Differential Roles of Sall4 Isoforms in Embryonic Stem Cell Pluripotency. Molecular and Cellular Biology, 2010, 30, 5364-5380.	1.1	157
264	In Vivo Biotinylation of Bacterial Magnetic Particles by a Truncated Form of Escherichia coli Biotin Ligase and Biotin Acceptor Peptide. Applied and Environmental Microbiology, 2010, 76, 5785-5790.	1.4	19
265	Efficient Gene Knockdowns in Mouse Embryonic Stem Cells Using MicroRNA-Based shRNAs. Methods in Molecular Biology, 2010, 650, 241-256.	0.4	4
266	Epigenetic control of embryonic stem cell fate. Journal of Experimental Medicine, 2010, 207, 2287-2295.	4.2	125
267	The Interface of MicroRNAs and Transcription Factor Networks. , 2010, , 109-137.		1
268	Targeting DAX-1 in embryonic stem cells and cancer. Expert Opinion on Therapeutic Targets, 2010, 14, 169-177.	1.5	25
269	Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13312-13317.	3.3	131
270	Induced pluripotent stem cells: what lies beyond the paradigm shift. Experimental Biology and Medicine, 2010, 235, 148-158.	1.1	53
271	Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-Depleted Murine Embryonic Stem Cells. PLoS Computational Biology, 2010, 6, e1001034.	1.5	23
272	Identification of epithelial label-retaining cells at the transition between the anal canal and the rectum in mice. Cell Cycle, 2010, 9, 3111-3117.	1.3	22
273	Nanog Is Highly Expressed in Ovarian Serous Cystadenocarcinoma and Correlated with Clinical Stage and Pathological Grade. Pathobiology, 2010, 77, 283-288.	1.9	43
274	Dax1 Up-Regulates Oct4 Expression in Mouse Embryonic Stem Cells via LRH-1 and SRA. Molecular Endocrinology, 2010, 24, 2281-2291.	3.7	52
275	Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regenerative Medicine, 2010, 5, 947-959.	0.8	49
276	Reprogramming of Somatic Cells to Pluripotency. Advances in Experimental Medicine and Biology, 2010, 695, 215-224.	0.8	20

#	Article	IF	CITATIONS
277	Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Research, 2010, 20, 804-815.	2.4	204
278	DNA-centered approaches to characterize regulatory protein–DNA interaction complexes. Molecular BioSystems, 2010, 6, 462-468.	2.9	21
279	A Myc Network Accounts for Similarities between Embryonic Stem and Cancer Cell Transcription Programs. Cell, 2010, 143, 313-324.	13.5	606
280	An Oct4-Centered Protein Interaction Network in Embryonic Stem Cells. Cell Stem Cell, 2010, 6, 369-381.	5.2	496
281	An Expanded Oct4 Interaction Network: Implications for Stem Cell Biology, Development, and Disease. Cell Stem Cell, 2010, 6, 382-395.	5.2	338
282	The Hair Follicle Bulge Stem Cell Niche Resists Transformation by the Hedgehog Pathway. Cell Stem Cell, 2010, 6, 292-294.	5.2	7
283	Hooking Up with Oct4. Cell Stem Cell, 2010, 6, 291-292.	5.2	16
284	Epigenetic Mechanisms that Regulate Cell Identity. Cell Stem Cell, 2010, 7, 565-570.	5.2	98
285	A Decade of Systems Biology. Annual Review of Cell and Developmental Biology, 2010, 26, 721-744.	4.0	277
286	Notch3 Overexpression Is Related to the Recurrence of Ovarian Cancer and Confers Resistance to Carboplatin. American Journal of Pathology, 2010, 177, 1087-1094.	1.9	162
287	Induced pluripotency: history, mechanisms, and applications. Genes and Development, 2010, 24, 2239-2263.	2.7	678
290	MicroRNAs: shortcuts in dealing with molecular complexity?. Breast Cancer Research, 2010, 12, 301.	2.2	7
291	The Cell Biology of Stem Cells. Advances in Experimental Medicine and Biology, 2010, , .	0.8	3
292	Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Research and Therapy, 2010, 1, 39.	2.4	206
293	A Real-Time Pluripotency Reporter for Human Stem Cells. Stem Cells and Development, 2010, 19, 47-52.	1.1	10
294	Embryonic stem cell-specific signatures in cancer: insights into genomic regulatory networks and implications for medicine. Genome Medicine, 2011, 3, 75.	3.6	112
295	Proteomics and pluripotency. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 493-506.	2.3	13
296	Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Research, 2011, 21, 486-501.	5.7	165

#	Article	IF	CITATIONS
297	Transcriptional Regulatory Networks in Embryonic Stem Cells. , 2011, 67, 239-252.		21
298	Genomic Approaches to Deconstruct Pluripotency. Annual Review of Genomics and Human Genetics, 2011, 12, 165-185.	2.5	33
299	Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nature Cell Biology, 2011, 13, 762-770.	4.6	274
300	Generation of Induced Pluripotent Stem Cells from Somatic Cells. , 2011, , 71-82.		0
301	The quantitative proteomes of humanâ€induced pluripotent stem cells and embryonic stem cells. Molecular Systems Biology, 2011, 7, 550.	3.2	125
302	In silico tandem affinity purification refines an Oct4 interaction list. Stem Cell Research and Therapy, 2011, 2, 26.	2.4	6
303	Pluripotency Factors in Embryonic Stem Cells Regulate Differentiation into Germ Layers. Cell, 2011, 145, 875-889.	13.5	487
304	Chromatin Connections to Pluripotency and Cellular Reprogramming. Cell, 2011, 145, 835-850.	13.5	356
305	A DNA Repair Complex Functions as an Oct4/Sox2 Coactivator in Embryonic Stem Cells. Cell, 2011, 147, 120-131.	13.5	145
306	Emerging actions of the nuclear receptor LRH-1 in the gut. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 947-955.	1.8	77
307	Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming. Antioxidants and Redox Signaling, 2011, 15, 1799-1820.	2.5	31
308	The Function of Nanog in Pluripotency. , 2011, , 99-112.		0
309	TIF1β association with HP1 is essential for post-gastrulation development, but not for Sertoli cell functions during spermatogenesis. Developmental Biology, 2011, 350, 548-558.	0.9	23
310	Isolation of Epiblast Stem Cells from Preimplantation Mouse Embryos. Cell Stem Cell, 2011, 8, 318-325.	5.2	161
311	Current Progress and Potential Practical Application for Human Pluripotent Stem Cells. International Review of Cell and Molecular Biology, 2011, 292, 153-196.	1.6	10
312	Multipotent Adult Progenitor Cells. , 2011, , 263-272.		0
313	The LIF/STAT3 Pathway in ES Cell Self-renewal. , 0, , .		0
314	Molecular Biomarkers of Embryonic Stem Cells. , 2011, , .		0

#	Article	IF	CITATIONS
315	Building a Pluripotency Protein Interaction Network for Embryonic Stem Cells. , 0, , .		1
316	Proteomic Analysis of Mouse ES Cells. , 2011, , .		0
317	Dr. Jekyll and Mr. Hyde: The Two Faces of the FUS/EWS/TAF15 Protein Family. Sarcoma, 2011, 2011, 1-13.	0.7	110
318	New Techniques in the Generation of Induced Pluripotent Stem Cells. , 0, , .		0
319	A Virus-Free Poly-Promoter Vector Induces Pluripotency in Quiescent Bovine Cells under Chemically Defined Conditions of Dual Kinase Inhibition. PLoS ONE, 2011, 6, e24501.	1.1	68
320	c-Myc Regulates Self-Renewal in Bronchoalveolar Stem Cells. PLoS ONE, 2011, 6, e23707.	1.1	16
321	The transcriptional and signalling networks of pluripotency. Nature Cell Biology, 2011, 13, 490-496.	4.6	284
322	LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nature Cell Biology, 2011, 13, 652-659.	4.6	281
323	Progress in understanding reprogramming to the induced pluripotent state. Nature Reviews Genetics, 2011, 12, 253-265.	7.7	257
324	Association of Rex-1 to target genes supports its interaction with Polycomb function. Stem Cell Research, 2011, 7, 1-16.	0.3	18
325	Sox2 nuclear expression is closely associated with poor prognosis in patients with histologically node-negative oral tongue squamous cell carcinoma. Oral Oncology, 2011, 47, 709-713.	0.8	73
326	Nanog Overcomes Reprogramming Barriers and Induces Pluripotency in Minimal Conditions. Current Biology, 2011, 21, 65-71.	1.8	154
327	Retinoblastoma-binding proteins 4 and 9 are important for human pluripotent stem cell maintenance. Experimental Hematology, 2011, 39, 866-879.e1.	0.2	30
328	Human adult retinal pigment epithelial cells as potential cell source for retina recovery. Cell and Tissue Biology, 2011, 5, 495-502.	0.2	10
329	Control of the Embryonic Stem Cell State. Cell, 2011, 144, 940-954.	13.5	1,050
330	Embryonic stem cells: protein interaction networks. Biomolecular Concepts, 2011, 2, 13-25.	1.0	12
331	Molecular marks for epigenetic identification of developmental and cancer stem cells. Clinical Epigenetics, 2011, 2, 27-53.	1.8	34
332	Mechanism and methods to induce pluripotency. Protein and Cell, 2011, 2, 792-799.	4.8	13

#	Article	IF	CITATIONS
333	Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer, 2011, 11, 42.	1.1	162
334	Enhanced self-renewal of hematopoietic stem/progenitor cells mediated by the stem cell gene Sall4. Journal of Hematology and Oncology, 2011, 4, 38.	6.9	53
335	Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC Cell Biology, 2011, 12, 44.	3.0	141
336	Krüppel-Like Family of Transcription Factor 9, a Differentiation-Associated Transcription Factor, Suppresses Notch1 Signaling and Inhibits Glioblastoma-Initiating Stem Cells. Stem Cells, 2011, 29, 20-31.	1.4	80
337	Zfp281 Functions as a Transcriptional Repressor for Pluripotency of Mouse Embryonic Stem Cells. Stem Cells, 2011, 29, 1705-1716.	1.4	79
338	Mechanistic insights into reprogramming to induced pluripotency. Journal of Cellular Physiology, 2011, 226, 868-878.	2.0	45
339	The requirement for proteomics to unravel stem cell regulatory mechanisms. Journal of Cellular Physiology, 2011, 226, 2478-2483.	2.0	13
340	Cdk1 is required for the selfâ€renewal of mouse embryonic stem cells. Journal of Cellular Biochemistry, 2011, 112, 942-948.	1.2	23
341	Self-organizing map of gene regulatory networks for cell phenotypes during reprogramming. Computational Biology and Chemistry, 2011, 35, 211-217.	1.1	7
342	Polycomb purification by in vivo biotinylation tagging reveals cohesin and Trithorax group proteins as interaction partners. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5572-5577.	3.3	92
343	Amplification of the ch19p13.2 NACC1 locus in ovarian high-grade serous carcinoma. Modern Pathology, 2011, 24, 638-645.	2.9	52
344	Mapping the networks for pluripotency. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2238-2246.	1.8	16
345	Defining pluripotent stem cells through quantitative proteomic analysis. Expert Review of Proteomics, 2011, 8, 29-42.	1.3	26
346	Nuclear Receptors TR2 and TR4 Recruit Multiple Epigenetic Transcriptional Corepressors That Associate Specifically with the Embryonic β-Type Globin Promoters in Differentiated Adult Erythroid Cells. Molecular and Cellular Biology, 2011, 31, 3298-3311.	1.1	98
347	Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Research, 2011, 21, 578-589.	2.4	175
348	Polycomb repressive complex 2 is necessary for the normal site-specific <i>O</i> -GlcNAc distribution in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9490-9495.	3.3	130
349	Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development (Cambridge), 2011, 138, 4853-4865.	1.2	69
350	A genome-wide RNAi screen in mouse embryonic stem cells identifies Mp1 as a key mediator of differentiation. Journal of Experimental Medicine, 2011, 208, 2675-2689.	4.2	24

		CITATION RE	PORT	
#	Article		IF	CITATIONS
351	Alternative Splicing Produces Nanog Protein Variants with Different Capacities for Self-re Pluripotency in Embryonic Stem Cells. Journal of Biological Chemistry, 2011, 286, 42690	newal and 1-42703.	1.6	62
352	Banf1 is required to maintain the self-renewal of both mouse and human embryonic ster of Cell Science, 2011, 124, 2654-2665.	n cells. Journal	1.2	48
353	The Molecular Basis of Sarcoma. Sarcoma, 2011, 2011, 1-3.		0.7	2
354	Sall1 Regulates Embryonic Stem Cell Differentiation in Association with Nanog. Journal c Chemistry, 2011, 286, 1037-1045.	f Biological	1.6	59
355	The labyrinth of nuclear reprogramming. Journal of Molecular Cell Biology, 2011, 3, 327-	329.	1.5	4
356	Temporal changes in Hox gene expression accompany endothelial cell differentiation of stem cells. Cell Adhesion and Migration, 2011, 5, 133-141.	embryonic	1.1	22
357	Dual Functions of T-Box 3 (Tbx3) in the Control of Self-renewal and Extraembryonic Endo Differentiation in Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2011, 28	oderm 36, 8425-8436.	1.6	69
358	Switching on pluripotency: a perspective on the biological requirement of Nanog. Philos Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2222-2229.	ophical	1.8	35
359	Rational optimization of reprogramming culture conditions for the generation of induce pluripotent stem cells with ultra-high efficiency and fast kinetics. Cell Research, 2011, 23	່ງ ເ, 884-894.	5.7	84
360	Towards an Evolutionary Model of Transcription Networks. PLoS Computational Biology e1002064.	2011, 7,	1.5	10
361	Chromatin regulation landscape of embryonic stem cell identity. Bioscience Reports, 202	1, 31, 77-86.	1.1	3
362	Recovering Protein-Protein and Domain-Domain Interactions from Aggregation of IP-MS Coregulator Complexes. PLoS Computational Biology, 2011, 7, e1002319.	Proteomics of	1.5	16
363	Biology of the Mi-2/NuRD Complex in SLAC (Stemness, Longevity/Ageing, and Cancer). C and Systems Biology, 2011, 5, GRSB.S6510.	Sene Regulation	2.3	19
364	<i>NANOGP8</i> : Evolution of a Human-Specific Retro-Oncogene. G3: Genes, Genomes, 1447-1457.	Genetics, 2012, 2,	0.8	24
365	Phosphorylation regulates human OCT4. Proceedings of the National Academy of Science United States of America, 2012, 109, 7162-7168.	es of the	3.3	87
366	Serine 111 Phosphorylation Regulates OCT4A Protein Subcellular Distribution and Degra Journal of Biological Chemistry, 2012, 287, 38279-38288.	idation.	1.6	36
367	Nuclear localization signal in a cancer-related transcriptional regulator protein NAC1. Carcinogenesis, 2012, 33, 1854-1862.		1.3	14
368	Multi-Parametric Profiling Network Based on Gene Expression and Phenotype Data: A No to Developmental Neurotoxicity Testing. International Journal of Molecular Sciences, 20		1.8	13

#	Article	IF	CITATIONS
369	Epigenetic silencing of myogenic gene program by Myb-binding protein 1a suppresses myogenesis. EMBO Journal, 2012, 31, 1739-1751.	3.5	17
370	Transcription Factor-mediated Epigenetic Reprogramming. Journal of Biological Chemistry, 2012, 287, 30922-30931.	1.6	22
371	Expression of endogenous retroviruses is negatively regulated by the pluripotency marker Rex1/Zfp42. Nucleic Acids Research, 2012, 40, 8993-9007.	6.5	43
372	Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Research, 2012, 40, 6725-6740.	6.5	138
373	RYBP Represses Endogenous Retroviruses and Preimplantation- and Germ Line-Specific Genes in Mouse Embryonic Stem Cells. Molecular and Cellular Biology, 2012, 32, 1139-1149.	1.1	84
374	A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3832-3837.	3.3	71
375	DNA and Chromatin Modification Networks Distinguish Stem Cell Pluripotent Ground States. Molecular and Cellular Proteomics, 2012, 11, 1036-1047.	2.5	15
376	Pluripotency factor-mediated expression of the leptin receptor (OB-R) links obesity to oncogenesis through tumor-initiating stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 829-834.	3.3	85
377	Histone Deacetylase 1 Deficiency Impairs Differentiation and Electrophysiological Properties of Cardiomyocytes Derived from Induced Pluripotent Cells. Stem Cells, 2012, 30, 2412-2422.	1.4	15
378	Characterization of <i>Danio rerio Nanog</i> and Functional Comparison to <i>Xenopus Vents</i> . Stem Cells and Development, 2012, 21, 1225-1238.	1.1	42
379	Protein arginine methyltransferases (PRMTs) as therapeutic targets. Expert Opinion on Therapeutic Targets, 2012, 16, 651-664.	1.5	46
380	NAC1 modulates sensitivity of ovarian cancer cells to cisplatin by altering the HMGB1-mediated autophagic response. Oncogene, 2012, 31, 1055-1064.	2.6	106
381	Cited2 Gene Controls Pluripotency and Cardiomyocyte Differentiation of Murine Embryonic Stem Cells through Oct4 Gene. Journal of Biological Chemistry, 2012, 287, 29088-29100.	1.6	22
382	Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells. Nucleic Acids Research, 2012, 40, 3403-3418.	6.5	94
383	Increased Nanog Expression Promotes Tumor Development and Cisplatin Resistance in Human Esophageal Cancer Cells. Cellular Physiology and Biochemistry, 2012, 30, 943-952.	1.1	35
384	The Stability of the Induced Epigenetic Programs. Comparative and Functional Genomics, 2012, 2012, 1-9.	2.0	3
385	NAC1 Is an Actin-Binding Protein That Is Essential for Effective Cytokinesis in Cancer Cells. Cancer Research, 2012, 72, 4085-4096.	0.4	29
386	Role of Nuclear Receptor Coactivator 3 (Ncoa3) in Pluripotency Maintenance. Journal of Biological Chemistry, 2012, 287, 38295-38304.	1.6	43

ARTICLE IF CITATIONS High expression of ALDH1 and SOX2 diffuse staining pattern of oral squamous cell carcinomas 387 0.6 66 correlates to lymph node metastasis. Pathology International, 2012, 62, 684-689. Characterisation of dental pulp stem cells: A new horizon for tissue regeneration?. Archives of Oral 388 0.8 197 Biology, 2012, 57, 1439-1458. Nucleus Accumbens 1, a Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad protein binds to TAR 389 DNA-binding protein 43 and has a potential role in Amyotrophic Lateral Sclerosis. Neuroscience, 2012, 1.1 10 227, 44-54. Proteomic Analysis of Stem Cell Differentiation and Early Development. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008177-a008177. The Three-Dimensional Collagen Scaffold Improves the Stemness of Rat Bone Marrow Mesenchymal 391 1.7 59 Stem Cells. Journal of Genetics and Genomics, 2012, 39, 633-641. An effective statistical evaluation of ChIPseq dataset similarity. Bioinformatics, 2012, 28, 607-613. 1.8 The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome 393 13.9 92 during induced pluripotent stem cell generation. Genome Biology, 2012, 13, 251. Cdk1 interplays with Oct4 to repress differentiation of embryonic stem cells into trophectoderm. 394 1.3 28 FEBS Letters, 2012, 586, 4100-4107. Id1 Maintains Embryonic Stem Cell Self-Renewal by Up-Regulation of Nanog and Repression of 395 1.1 56 Brachyury Expression. Stem Cells and Development, 2012, 21, 384-393. Probiotics Can Induce Follicle Maturational Competence: The Danio rerioCase1. Biology of 1.2 Reproduction, 2012, 86, 65. Oct4 links multiple epigenetic pathways to the pluripotency network. Cell Research, 2012, 22, 155-167. 397 149 5.7Expanding the Boundaries of Embryonic Stem Cells. Cell Stem Cell, 2012, 10, 666-677. 5.2 58 Dissecting ensemble networks in ES cell populations reveals micro-heterogeneity underlying 399 2.9 52 pluripotency. Molecular BioSystems, 2012, 8, 744. Role of mass spectrometry-based proteomics in the study of cellular reprogramming and induced 1.3 pluripotent stem cells. Expert Review of Proteomics, 2012, 9, 379-399 Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic 401 cell reprogramming. Proceedings of the National Academy of Sciences of the United States of America, 3.3 109 2012, 109, 16202-16207. Reprogramming chromatin. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 464-482. 14 Dysfunction of Nucleus Accumbens-1 Activates Cellular Senescence and Inhibits Tumor Cell 403 0.4 27 Proliferation and Oncogenesis. Cancer Research, 2012, 72, 4262-4275. 404 Polycomb Protein Ezh1 Promotes RNA Polymerase II Elongation. Molecular Cell, 2012, 45, 255-262. 4.5 163

#	Article	IF	CITATIONS
405	Biological and clinical significance of NAC1 expression in cervical carcinomas: a comparative study between squamous cell carcinomas and adenocarcinomas/adenosquamous carcinomas. Human Pathology, 2012, 43, 506-519.	1.1	38
406	Ligand-independent actions of the orphan receptors/corepressors DAX-1 and SHP in metabolism, reproduction and disease. Journal of Steroid Biochemistry and Molecular Biology, 2012, 130, 169-179.	1.2	29
407	Therapeutic potential of Liver Receptor Homolog-1 modulators. Journal of Steroid Biochemistry and Molecular Biology, 2012, 130, 138-146.	1.2	49
408	Nanog-like Regulates Endoderm Formation through the Mxtx2-Nodal Pathway. Developmental Cell, 2012, 22, 625-638.	3.1	95
409	Controlling the Stem Cell Compartment and Regeneration In Vivo: The Role of Pluripotency Pathways. Physiological Reviews, 2012, 92, 75-99.	13.1	33
410	Stem cell bioengineering at the interface of systemsâ€based models and highâ€throughput platforms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 525-545.	6.6	2
411	DNp73 improves generation efficiency of human induced pluripotent stem cells. BMC Cell Biology, 2012, 13, 9.	3.0	20
412	A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells. BMC Neuroscience, 2012, 13, 118.	0.8	93
413	Pluripotency and its layers of complexity. Cell Regeneration, 2012, 1, 1:7.	1.1	5
414	Epigenetic Landscape of Pluripotent Stem Cells. Antioxidants and Redox Signaling, 2012, 17, 205-223.	2.5	35
415	Low expression of nucleus accumbensâ€associated protein 1 predicts poor prognosis for patients with pancreatic ductal adenocarcinoma. Pathology International, 2012, 62, 802-810.	0.6	7
416	Disorders of Sexual Development. , 2012, , 3649-3674.		1
417	Esrrb Is a Direct Nanog Target Gene that Can Substitute for Nanog Function in Pluripotent Cells. Cell Stem Cell, 2012, 11, 477-490.	5.2	304
418	Combining competition assays with genetic complementation strategies to dissect mouse embryonic stem cell self-renewal and pluripotency. Nature Protocols, 2012, 7, 729-748.	5.5	34
419	Fatty acid synthase expression associated with NAC1 is a potential therapeutic target in ovarian clear cell carcinomas. British Journal of Cancer, 2012, 107, 300-307.	2.9	29
420	Embryonic Stem Cell Interactomics: The Beginning of a Long Road to Biological Function. Stem Cell Reviews and Reports, 2012, 8, 1138-1154.	5.6	8
421	Nuclear Reprogramming and Stem Cells. , 2012, , .		1
422	Epigenetics. Epigenetics, 2012, 7, 823-840.	1.3	100

#	Article	IF	CITATIONS
423	Omics Era in Stem Cell Research: Data Integration of Multi-regulatory Layers. , 2012, , 119-137.		0
424	Dynamic Status of REST in the Mouse ESC Pluripotency Network. PLoS ONE, 2012, 7, e43659.	1.1	9
425	Elucidation of a Novel Pathway through Which HDAC1 Controls Cardiomyocyte Differentiation through Expression of SOX-17 and BMP2. PLoS ONE, 2012, 7, e45046.	1.1	14
426	Stem cell genomeâ€ŧoâ€systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 39-49.	6.6	4
427	Linking genome to epigenome. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 297-309.	6.6	26
428	Affinityâ€purification coupled to mass spectrometry: Basic principles and strategies. Proteomics, 2012, 12, 1576-1590.	1.3	292
429	Cnot1, Cnot2, and Cnot3 Maintain Mouse and Human ESC Identity and Inhibit Extraembryonic Differentiation. Stem Cells, 2012, 30, 910-922.	1.4	63
430	Sirt1, p53, and p38 ^{MAPK} Are Crucial Regulators of Detrimental Phenotypes of Embryonic Stem Cells with <i>Max</i> Expression Ablation. Stem Cells, 2012, 30, 1634-1644.	1.4	18
431	Function of Myc for Generation of Induced Pluripotent Stem Cells. , 2012, , 79-85.		2
432	Somatic Cell Reprogramming: Role of Homeodomain Protein Nanog. , 2012, , 377-384.		0
433	Proteomics in studying cancer stem cell biology. Expert Review of Proteomics, 2012, 9, 325-336.	1.3	7
434	Epigenetic Control of Embryonic Stem Cell Differentiation. Stem Cell Reviews and Reports, 2012, 8, 67-77.	5.6	20
435	Determination of Protein Interactome of Transcription Factor Sox2 in Embryonic Stem Cells Engineered for Inducible Expression of Four Reprogramming Factors. Journal of Biological Chemistry, 2012, 287, 11384-11397.	1.6	63
436	Pluripotency and Nuclear Reprogramming. Annual Review of Biochemistry, 2012, 81, 737-765.	5.0	37
437	Comparison of Gene-Specific DNA Methylation Patterns in Equine Induced Pluripotent Stem Cell Lines with Cells Derived From Equine Adult and Fetal Tissues. Stem Cells and Development, 2012, 21, 1803-1811.	1.1	17
438	Phosphoproteomic Analysis: An Emerging Role in Deciphering Cellular Signaling in Human Embryonic Stem Cells and Their Differentiated Derivatives. Stem Cell Reviews and Reports, 2012, 8, 16-31.	5.6	11
439	Yolk sac tumours revisited. A review of their many faces and names. Histopathology, 2012, 60, 1023-1033.	1.6	110
440	Transcriptional regulation of TRKC by SOX2 in human embryonic stem cells. Stem Cell Research, 2012, 8, 206-214.	0.3	3

#	Article	IF	CITATIONS
441	Transcriptional regulation by coactivators in embryonic stem cells. Trends in Cell Biology, 2012, 22, 292-298.	3.6	22
442	Refinement of Culture Conditions for Maintenance of Undifferentiated Equine Umbilical Cord Blood Stem Cells. Journal of Equine Veterinary Science, 2012, 32, 360-366.	0.4	6
443	Integration of the transcriptional networks regulating limb morphogenesis. Developmental Biology, 2012, 368, 165-180.	0.9	41
444	Recent Advances in Stem and Germ Cell Research: Implications for the Derivation of Pig Pluripotent Cells. Reproduction in Domestic Animals, 2012, 47, 98-106.	0.6	12
445	Cancer stem cells generated by alcohol, diabetes, and hepatitis C virus. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 19-22.	1.4	41
446	Systems biology provides new insights into the molecular mechanisms that control the fate of embryonic stem cells. Journal of Cellular Physiology, 2012, 227, 27-34.	2.0	21
447	Role of SFâ€1 and DAXâ€1 during differentiation of P19 cells by retinoic acid. Journal of Cellular Physiology, 2012, 227, 1501-1511.	2.0	1
448	Nuclear Î ² -catenin accumulation is associated with increased expression of Nanog protein and predicts poor prognosis of non-small cell lung cancer. Journal of Translational Medicine, 2013, 11, 114.	1.8	72
449	Tumor-initiating stem-like cells and drug resistance: carcinogenesis through Toll-like receptors, environmental factors, and virus. Drug Delivery and Translational Research, 2013, 3, 152-164.	3.0	6
450	Fibronectin extra domain A (EDA) sustains CD133+/CD44+ subpopulation of colorectal cancer cells. Stem Cell Research, 2013, 11, 820-833.	0.3	53
451	Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing. Trends in Genetics, 2013, 29, 449-460.	2.9	69
452	Transcriptional Regulatory Mechanisms That Govern Embryonic Stem Cell Fate. Methods in Molecular Biology, 2013, 1029, 191-203.	0.4	11
453	SALL4 is a useful marker in the diagnostic work-up of germ cell tumors in extra-testicular locations. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 462, 337-341.	1.4	38
454	Generation and Characterization of Yeast Two-Hybrid cDNA Libraries Derived From Two Distinct Mouse Pluripotent Cell Types. Molecular Biotechnology, 2013, 54, 228-237.	1.3	13
455	The role of pluripotency gene regulatory network components in mediating transitions between pluripotent cell states. Current Opinion in Genetics and Development, 2013, 23, 504-511.	1.5	48
456	Genome-scale proteome quantification by DEEP SEQ mass spectrometry. Nature Communications, 2013, 4, 2171.	5.8	90
457	Analysis of SOX2-Expressing Cell Populations Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2013, 1, 464-478.	2.3	33
458	Identification of KAP-1-associated complexes negatively regulating the Ey and β-major globin genes in the β-globin locus. Journal of Proteomics, 2013, 80, 132-144.	1.2	2

#	Article	IF	CITATIONS
459	A competitive protein interaction network buffers Oct4â€mediated differentiation to promote pluripotency in embryonic stem cells. Molecular Systems Biology, 2013, 9, 694.	3.2	41
460	SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO Journal, 2013, 32, 3079-3095.	3.5	149
461	The Not3/5 subunit of the Ccr4-Not complex: A central regulator of gene expression that integrates signals between the cytoplasm and the nucleus in eukaryotic cells. Cellular Signalling, 2013, 25, 743-751.	1.7	45
462	Quantitative Proteomics of Protein Complexes and Their Implications for Cell Reprograming and Pluripotency. Journal of Proteome Research, 2013, 12, 5878-5890.	1.8	6
463	Dual Kinase Inhibition Promotes Pluripotency in Finite Bovine Embryonic Cell Lines. Stem Cells and Development, 2013, 22, 1728-1742.	1.1	29
464	Activation by ACA Induces Pluripotency in Human Blood Progenitor Cells. Bulletin of Experimental Biology and Medicine, 2013, 155, 552-567.	0.3	1
465	Effect of bisphenol A on pluripotency of mouse embryonic stem cells and differentiation capacity in mouse embryoid bodies. Toxicology in Vitro, 2013, 27, 2249-2255.	1.1	39
466	Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches. Biotechnology Advances, 2013, 31, 1047-1062.	6.0	90
467	Gene regulation and priming by topoisomerase $Il\hat{I}\pm$ in embryonic stem cells. Nature Communications, 2013, 4, 2478.	5.8	84
468	Concise Review: Pursuing Self-Renewal and Pluripotency with the Stem Cell Factor Nanog. Stem Cells, 2013, 31, 1227-1236.	1.4	87
469	Mouse Primed Embryonic Stem Cells Could Be Maintained and Reprogrammed on Human Amnion Epithelial Cells. Stem Cells and Development, 2013, 22, 320-329.	1.1	10
470	The transcriptional regulation of pluripotency. Cell Research, 2013, 23, 20-32.	5.7	110
471	NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature, 2013, 495, 370-374.	13.7	376
472	Driving pluripotency and reprogramming: Nuclear receptors at the helm. Seminars in Cell and Developmental Biology, 2013, 24, 670-678.	2.3	6
473	MiR-429 is an independent prognostic factor in colorectal cancer and exerts its anti-apoptotic function by targeting SOX2. Cancer Letters, 2013, 329, 84-90.	3.2	114
474	Pluripotent genes in avian stem cells. Development Growth and Differentiation, 2013, 55, 41-51.	0.6	16
475	Minireview: The Diverse Roles of Nuclear Receptors in the Regulation of Embryonic Stem Cell Pluripotency. Molecular Endocrinology, 2013, 27, 864-878.	3.7	16
476	Stem Cells and Mitochondria. , 2013, , 183-201.		0

#	Article	IF	CITATIONS
477	Gene Regulatory Networks Mediating Canonical Wnt Signal-Directed Control of Pluripotency and Differentiation in Embryo Stem Cells. Stem Cells, 2013, 31, 2667-2679.	1.4	89
478	Tcf7l1 prepares epiblast cells in the gastrulating mouse embryo for lineage specification. Development (Cambridge), 2013, 140, 1665-1675.	1.2	62
479	Multipotent Adult Progenitor Cells. , 2013, , 503-511.		1
480	Anatomy of a blastocyst: Cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo. Genesis, 2013, 51, 219-233.	0.8	91
481	Epigenetic Regulation of Nanog by MiR-302 Cluster-MBD2 Completes Induced Pluripotent Stem Cell Reprogramming. Stem Cells, 2013, 31, 666-681.	1.4	85
482	Primordial Germ-Cell Development and Epigenetic Reprogramming in Mammals. Current Topics in Developmental Biology, 2013, 104, 149-187.	1.0	109
483	iTRAQ proteome analysis reflects a progressed differentiation state of epiblast derived versus inner cell mass derived murine embryonic stem cells. Journal of Proteomics, 2013, 90, 38-51.	1.2	10
484	Genome-wide Kinase-Chromatin Interactions Reveal the Regulatory Network of ERK Signaling in Human Embryonic Stem Cells. Molecular Cell, 2013, 50, 844-855.	4.5	88
485	Synthesis and biological evaluation of a targeted DNA-binding transcriptional activator with HDAC8 inhibitory activity. Bioorganic and Medicinal Chemistry, 2013, 21, 4201-4209.	1.4	41
486	Embryonic Stem Cell Immunobiology. Methods in Molecular Biology, 2013, , .	0.4	3
487	A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal. EMBO Journal, 2013, 32, 2231-2247.	3.5	111
488	Co-regulation in embryonic stem cells via context-dependent binding of transcription factors. Bioinformatics, 2013, 29, 2162-2168.	1.8	14
489	ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes and Development, 2013, 27, 683-698.	2.7	163
490	SOX2 Co-Occupies Distal Enhancer Elements with Distinct POU Factors in ESCs and NPCs to Specify Cell State. PLoS Genetics, 2013, 9, e1003288.	1.5	158
491	Dynamic Association of NUP98 with the Human Genome. PLoS Genetics, 2013, 9, e1003308.	1.5	148
492	Qualitative modeling identifies IL-11 as a novel regulator in maintaining self-renewal in human pluripotent stem cells. Frontiers in Physiology, 2013, 4, 303.	1.3	15
493	Time Scales in Epigenetic Dynamics and Phenotypic Heterogeneity of Embryonic Stem Cells. PLoS Computational Biology, 2013, 9, e1003380.	1.5	56
494	Targeting cancer stem cells: emerging role of Nanog transcription factor. OncoTargets and Therapy, 2013, 6, 1207.	1.0	108

	C	CITATION REPORT	
#	Article	IF	CITATIONS
495	Oct4 Is Required â ¹ /4E7.5 for Proliferation in the Primitive Streak. PLoS Genetics, 2013, 9, e1003957	. 1.5	72
496	The transcription factor Vox represses endoderm development by interacting with Casanova and Pou2. Development (Cambridge), 2013, 140, 1090-1099.	1.2	14
497	The orphan nuclear receptors at their 25-year reunion. Journal of Molecular Endocrinology, 2013, 51, T115-T140.	1.1	90
498	Enhancer transcribed RNAs arise from hypomethylated, Tet-occupied genomic regions. Epigenetics, 2013, 8, 1303-1320.	1.3	55
499	Wnt3a-dependent and -independent Protein Interaction Networks of Chromatin-bound β-catenin in Mouse Embryonic Stem Cells. Molecular and Cellular Proteomics, 2013, 12, 1980-1994.	2.5	19
500	Dax1 Associates with Esrrb and Regulates Its Function in Embryonic Stem Cells. Molecular and Cellular Biology, 2013, 33, 2056-2066.	1.1	35
501	Distinct transcriptional regulatory modules underlie STAT3's cell type-independent and cell type-specific functions. Nucleic Acids Research, 2013, 41, 2155-2170.	6.5	72
502	Concise Review: The Sox2-Oct4 Connection: Critical Players in a Much Larger Interdependent Networ Integrated at Multiple Levels. Stem Cells, 2013, 31, 1033-1039.	k 1.4	96
503	Oct4 Interaction with Hmgb2 Regulates Akt Signaling and Pluripotency. Stem Cells, 2013, 31, 1107-	1120. 1.4	41
504	Breaking through an epigenetic wall. Epigenetics, 2013, 8, 164-176.	1.3	20
505	ZNF281 Knockdown Induced Osteogenic Differentiation of Human Multipotent Stem Cells in Vivo an in Vitro. Cell Transplantation, 2013, 22, 29-40.	ıd 1.2	18
506	Molecular Mechanisms of Embryonic Stem Cell Pluripotency. , 2013, , .		1
507	The SOX2-Interactome in Brain Cancer Cells Identifies the Requirement of MSI2 and USP9X for the Growth of Brain Tumor Cells. PLoS ONE, 2013, 8, e62857.	1.1	89
508	Silencing BRE Expression in Human Umbilical Cord Perivascular (HUCPV) Progenitor Cells Accelerates Osteogenic and Chondrogenic Differentiation. PLoS ONE, 2013, 8, e67896.	1.1	18
509	Decoding the Pluripotency Network: The Emergence of New Transcription Factors. Biomedicines, 201 1, 49-78.	3, 1.4	16
510	Oct4 Mediates Tumor Initiating Properties in Oral Squamous Cell Carcinomas through the Regulatior of Epithelial-Mesenchymal Transition. PLoS ONE, 2014, 9, e87207.	۱.1	64
511	SOX2 Enhances the Migration and Invasion of Ovarian Cancer Cells via Src Kinase. PLoS ONE, 2014, 9 e99594.	9, 1.1	41
512	Role of Orphan Nuclear Receptor DAX-1/NROB1 in Development, Physiology, and Disease. Advances i Biology, 2014, 2014, 1-19.	n 1.2	11

#	Article	IF	CITATIONS
513	Polycomb- and REST-associated histone deacetylases are independent pathways toward a mature neuronal phenotype. ELife, 2014, 3, e04235.	2.8	43
514	The Role of an NFκB-STAT3 Signaling Axis in Regulating the Induction and Maintenance of the Pluripotent State. , 2014, , .		2
516	The Death-inducer Obliterator 1 (Dido1) Gene Regulates Embryonic Stem Cell Self-renewal. Journal of Biological Chemistry, 2014, 289, 4778-4786.	1.6	20
517	Enhanced Chemosensitivity by Targeting Nanog in Head and Neck Squamous Cell Carcinomas. International Journal of Molecular Sciences, 2014, 15, 14935-14948.	1.8	27
518	Concurrent Expression of Oct4 and Nanog Maintains Mesenchymal Stem-Like Property of Human Dental Pulp Cells. International Journal of Molecular Sciences, 2014, 15, 18623-18639.	1.8	50
519	SANTA: Quantifying the Functional Content of Molecular Networks. PLoS Computational Biology, 2014, 10, e1003808.	1.5	66
520	Nac1 interacts with the POZ-domain transcription factor, Miz1. Bioscience Reports, 2014, 34, .	1.1	13
521	Inducing pluripotency for disease modeling, drug development and craniofacial applications. Expert Opinion on Biological Therapy, 2014, 14, 1233-1240.	1.4	12
522	Arid3a is essential to execution of the first cell fate decision via direct embryonic and extraembryonic transcriptional regulation. Genes and Development, 2014, 28, 2219-2232.	2.7	44
523	Nanog induces hyperplasia without initiating tumors. Stem Cell Research, 2014, 13, 300-315.	0.3	21
524	Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. Nature Communications, 2014, 5, 4719.	5.8	80
525	SNF5/INI1 Deficiency Redefines Chromatin Remodeling Complex Composition during Tumor Development. Molecular Cancer Research, 2014, 12, 1574-1585.	1.5	31
526	Kruppel-like Factor-9 (KLF9) Inhibits Glioblastoma Stemness through Global Transcription Repression and Integrin α6 Inhibition. Journal of Biological Chemistry, 2014, 289, 32742-32756.	1.6	67
527	E-Cadherin is Critical for SC1-Induced Colony Growth of F9 Embryonic Carcinoma Cells. Cellular Physiology and Biochemistry, 2014, 33, 501-512.	1.1	5
528	A penalized Bayesian approach to predicting sparse protein–DNA binding landscapes. Bioinformatics, 2014, 30, 636-643.	1.8	4
529	Regulation of Mouse Retroelement MuERV-L/MERVL Expression by REX1 and Epigenetic Control of Stem Cell Potency. Frontiers in Oncology, 2014, 4, 14.	1.3	53
530	Mapping the route from naive pluripotency to lineage specification. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130540.	1.8	183
531	Current state of the opportunities for derivation of germ-like cells from pluripotent stem cells: are you a man, or a mouse?. Biotechnology and Biotechnological Equipment, 2014, 28, 184-191.	0.5	5

#	Article	IF	CITATIONS
532	Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT). Development (Cambridge), 2014, 141, 962-973.	1.2	45
533	<scp>SALL4</scp> positive fetal gutâ€like adenocarcinoma of the duodenum. Pathology International, 2014, 64, 581-584.	0.6	6
534	Critical Components of the Pluripotency Network Are Targets for the p300/CBP Interacting Protein (p/CIP) in Embryonic Stem Cells. Stem Cells, 2014, 32, 204-215.	1.4	16
535	Bright/Arid3A Acts as a Barrier to Somatic Cell Reprogramming through Direct Regulation of Oct4, Sox2, and Nanog. Stem Cell Reports, 2014, 2, 26-35.	2.3	47
536	CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features. Biochimie, 2014, 97, 210-218.	1.3	66
537	SALL4, a novel marker for human gastric carcinogenesis and metastasis. Oncogene, 2014, 33, 5491-5500.	2.6	105
538	OCT4: Dynamic DNA binding pioneers stem cell pluripotency. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 138-154.	0.9	123
539	Making connections: Insulators organize eukaryotic chromosomes into independent cis <i>â€</i> regulatory networks. BioEssays, 2014, 36, 163-172.	1.2	87
540	SOX2 expression in hypopharyngeal, laryngeal, and sinonasal squamous cell carcinoma. Human Pathology, 2014, 45, 851-857.	1.1	21
541	ZNF281/ZBP-99: a new player in epithelial–mesenchymal transition, stemness, and cancer. Journal of Molecular Medicine, 2014, 92, 571-581.	1.7	36
542	Chromatin and Transcription Transitions of Mammalian Adult Germline Stem Cells and Spermatogenesis. Cell Stem Cell, 2014, 15, 239-253.	5.2	280
543	Selective neuronal differentiation of neural stem cells induced by nanosecond microplasma agitation. Stem Cell Research, 2014, 12, 387-399.	0.3	70
544	Molecular cloning, sequence characterization and recombinant expression of Nanog gene in goat fibroblast cells using lentiviral based expression system. Molecular Biology Reports, 2014, 41, 1907-1915.	1.0	0
545	How Cell Division Facilitates Nuclear Reprogramming. , 2014, , 393-406.		0
546	From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130542.	1.8	28
547	A nontranscriptional role for Oct4 in the regulation of mitotic entry. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15768-15773.	3.3	35
548	Significant association of combination of OCT4, NANOG, and SOX2 gene polymorphisms in susceptibility and response to treatment in North Indian breast cancer patients. Cancer Chemotherapy and Pharmacology, 2014, 74, 1065-1078.	1.1	13
549	Protein Affinity Tags. Methods in Molecular Biology, 2014, , .	0.4	2

#	Article	IF	CITATIONS
550	Phenotypical and ultrastructural features of Oct4â€positive cells in the adult mouse lung. Journal of Cellular and Molecular Medicine, 2014, 18, 1321-1333.	1.6	39
551	Dax1 and Nanog act in parallel to stabilize mouse embryonic stem cells and induced pluripotency. Nature Communications, 2014, 5, 5042.	5.8	55
552	SOX2 as prognostic factor in head and neck cancer: a systematic review and meta-analysis. Acta Oto-Laryngologica, 2014, 134, 1101-1108.	0.3	16
553	The SOX Transcription Factors as Key Players in Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 2687-2699.	1.1	59
554	The extended pluripotency protein interactome and its links to reprogramming. Current Opinion in Genetics and Development, 2014, 28, 16-24.	1.5	19
555	Dynamic Heterogeneity and DNA Methylation in Embryonic Stem Cells. Molecular Cell, 2014, 55, 319-331.	4.5	271
556	Endometrial stem cells in regenerative medicine. Journal of Biological Engineering, 2014, 8, 20.	2.0	60
557	Enhancer Activation Requires trans-Recruitment of a Mega Transcription Factor Complex. Cell, 2014, 159, 358-373.	13.5	179
558	Role of Oct4 in the early embryo development. Cell Regeneration, 2014, 3, 3:7.	1.1	144
559	Systematic identification of transcriptional regulatory modules from protein–protein interaction networks. Nucleic Acids Research, 2014, 42, e6-e6.	6.5	27
560	Rif1 Maintains Telomere Length Homeostasis of ESCs by Mediating Heterochromatin Silencing. Developmental Cell, 2014, 29, 7-19.	3.1	102
561	Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nature Communications, 2014, 5, 4226.	5.8	45
562	Oncogenic signaling pathways and origins of tumor-initiating stem-like cells of hepatocellular carcinomas induced by hepatitis C virus, alcohol and/or obesity. Hepatology International, 2014, 8, 330-338.	1.9	8
563	Identification of the NAC1-Regulated Genes in Ovarian Cancer. American Journal of Pathology, 2014, 184, 133-140.	1.9	21
564	Differential expression of ARID3B in normal adult tissue and carcinomas. Gene, 2014, 543, 174-180.	1.0	18
565	Aberrant expression of SALL4 in acute B cell lymphoblastic leukemia: Mechanism, function, and implication for a potential novel therapeutic target. Experimental Hematology, 2014, 42, 307-316.e8.	0.2	29
566	Molecular Control of Induced Pluripotency. Cell Stem Cell, 2014, 14, 720-734.	5.2	121
567	Identification of hematopoietic-specific regulatory elements from the CD45 gene and use for lentiviral tracking of transplanted cells. Experimental Hematology, 2014, 42, 761-772.e10.	0.2	3

#	Article	IF	Citations
	Clinical significance of OCT4 and SOX2 protein expression in cervical cancer. BMC Cancer, 2015, 15,		
569	1015.	1.1	83
570	Evaluation of regulatory genetic variants in POU5F1 and risk of congenital heart disease in Han Chinese. Scientific Reports, 2015, 5, 15860.	1.6	5
571	Co-existence of intact stemness and priming of neural differentiation programs in mES cells lacking Trim71. Scientific Reports, 2015, 5, 11126.	1.6	39
572	NaNog: A pluripotency homeobox (master) molecule. Global Cardiology Science & Practice, 2015, 2015, 36.	0.3	7
573	The L1TD1 Protein Interactome Reveals the Importance of Post-transcriptional Regulation in Human Pluripotency. Stem Cell Reports, 2015, 4, 519-528.	2.3	25
574	Drosophila Rif1 is an essential gene and controls late developmental events by direct interaction with PP1-87B. Scientific Reports, 2015, 5, 10679.	1.6	32
575	Data in support of DPF2 regulates OCT4 protein level and nuclear distribution. Data in Brief, 2015, 5, 599-604.	0.5	2
576	Tbx3 Controls Dppa3 Levels and Exit from Pluripotency toward Mesoderm. Stem Cell Reports, 2015, 5, 97-110.	2.3	52
577	Geminin is Essential to Prevent DNA Re-Replication-Dependent Apoptosis in Pluripotent Cells, but not in Differentiated Cells. Stem Cells, 2015, 33, 3239-3253.	1.4	18
578	TACC3 promotes stemness and is a potential therapeutic target in hepatocellular carcinoma. Oncotarget, 2015, 6, 24163-24177.	0.8	54
579	Review Molecular mechanisms of induced pluripotency. Wspolczesna Onkologia, 2015, 1A, 22-29.	0.7	10
580	High cytoplasmic expression of SALL4 predicts aÂmalignant phenotype and poor prognosis of breast invasive ductal carcinoma. Neoplasma, 2015, 62, 980-988.	0.7	31
581	Nucleus Accumbens-Associated Protein 1 Expression Has Potential as a Marker for Distinguishing Oral Epithelial Dysplasia and Squamous Cell Carcinoma. PLoS ONE, 2015, 10, e0131752.	1.1	7
582	Inhibition of mesothelioma cancer stemâ€like cells with adenovirusâ€mediated <scp>NK</scp> 4 gene therapy. International Journal of Cancer, 2015, 137, 481-490.	2.3	13
583	Pluripotency and Epigenetic Factors in Mouse Embryonic Stem Cell Fate Regulation. Molecular and Cellular Biology, 2015, 35, 2716-2728.	1.1	74
584	The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Scientific Reports, 2015, 5, 10205.	1.6	32
585	Proteins that bind regulatory regions identified by histone modification chromatin immunoprecipitations and mass spectrometry. Nature Communications, 2015, 6, 7155.	5.8	86
586	Puerarin Suppresses the Self-Renewal of Murine Embryonic Stem Cells by Inhibition of REST-MiR-21 Regulatory Pathway. Cellular Physiology and Biochemistry, 2015, 37, 527-536.	1.1	16

#	Article	IF	CITATIONS
587	DPF2 regulates OCT4 protein level and nuclear distribution. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3279-3293.	1.9	22
588	Expression profile of FGF receptors in preimplantation ovine embryos and the effect of FGF2 and PD173074. Growth Factors, 2015, 33, 393-400.	0.5	11
589	Ex Uno Plures: Molecular Designs for Embryonic Pluripotency. Physiological Reviews, 2015, 95, 245-295.	13.1	30
590	Unravelling plant molecular machineries through affinity purification coupled to mass spectrometry. Current Opinion in Plant Biology, 2015, 24, 1-9.	3.5	39
591	Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cellular and Molecular Life Sciences, 2015, 72, 1741-1757.	2.4	121
592	A tight control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic stem cell stability. Cell Death and Disease, 2015, 6, e1588-e1588.	2.7	18
593	Identification of molecular signature of head and neck cancer stem-like cells. Scientific Reports, 2015, 5, 7819.	1.6	55
594	Multi-layered global gene regulation in mouse embryonic stem cells. Cellular and Molecular Life Sciences, 2015, 72, 199-216.	2.4	6
595	REST–miR-21–SOX2 axis maintains pluripotency in E14Tg2a.4 embryonic stem cells. Stem Cell Research, 2015, 15, 305-311.	0.3	19
596	Computational modelling of embryonic stem-cell fate control. Development (Cambridge), 2015, 142, 2250-2260.	1.2	52
597	Enzyme-mediated hyaluronic acid–tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Acta Biomaterialia, 2015, 24, 159-171.	4.1	65
598	OCT4 mediates FSH-induced epithelial–mesenchymal transition and invasion through the ERK1/2 signaling pathway in epithelial ovarian cancer. Biochemical and Biophysical Research Communications, 2015, 461, 525-532.	1.0	22
599	Tex10 Coordinates Epigenetic Control of Super-Enhancer Activity in Pluripotency and Reprogramming. Cell Stem Cell, 2015, 16, 653-668.	5.2	80
600	DAX1, an unusual member of the nuclear receptor superfamily with diverse functions. Molecular Biology, 2015, 49, 65-76.	0.4	6
601	Next Generation Sequencing in Cancer Research, Volume 2. , 2015, , .		4
602	Pluripotency Activity of Nanog Requires Biochemical Stabilization by Variant Histone Protein H2A.Z. Stem Cells, 2015, 33, 2126-2134.	1.4	10
603	Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3841-3846.	3.3	123
604	Rif1 binds to G quadruplexes and suppresses replication over long distances. Nature Structural and Molecular Biology, 2015, 22, 889-897.	3.6	137

#	Article	IF	CITATIONS
605	Tgif1 Counterbalances the Activity of Core Pluripotency Factors in Mouse Embryonic Stem Cells. Cell Reports, 2015, 13, 52-60.	2.9	26
606	Genome-editing tools for stem cell biology. Cell Death and Disease, 2015, 6, e1831-e1831.	2.7	15
607	ETS-related Transcription Factors ETV4 and ETV5 Are Involved in Proliferation and Induction of Differentiation-associated Genes in Embryonic Stem (ES) Cells. Journal of Biological Chemistry, 2015, 290, 22460-22473.	1.6	58
608	SOX2 as a Novel Marker to Predict Neoplastic Progression in Barrett's Esophagus. American Journal of Gastroenterology, 2015, 110, 1420-1428.	0.2	24
609	Induced Pluripotency and Epigenetic Reprogramming. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019448.	2.3	84
610	Analysis of POU5F1, c-Kit, PLAP, AP2Î ³ and SALL4 in gonocytes of patients with cryptorchidism. Acta Histochemica, 2015, 117, 752-761.	0.9	16
611	piggyBac Insertional Mutagenesis Screen Identifies a Role for Nuclear RHOA in Human ES Cell Differentiation. Stem Cell Reports, 2015, 4, 926-938.	2.3	10
612	Epigenetic Mechanisms in Cellular Reprogramming. Epigenetics and Human Health, 2015, , .	0.2	2
613	Cancer cell metabolism and developmental homeodomain/POU domain transcription factors: A connecting link. Cancer Letters, 2015, 356, 315-319.	3.2	14
614	Systems-Based Technologies in Profiling the Stem Cell Molecular Framework for Cardioregenerative Medicine. Stem Cell Reviews and Reports, 2015, 11, 501-510.	5.6	4
615	Sall4 Is Essential for Mouse Primordial Germ Cell Specification by Suppressing Somatic Cell Program Genes. Stem Cells, 2015, 33, 289-300.	1.4	32
616	The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish. Archives of Toxicology, 2015, 89, 635-646.	1.9	33
617	SOX2-Dependent Regulation of Pluripotent Stem Cells. , 2016, , 163-185.		4
618	Liver receptor homolog 1 influences blastocyst hatching in pigs. Journal of Reproduction and Development, 2016, 62, 297-303.	0.5	10
619	The Role of SOX2-Interacting Proteins in Gene Regulation by SOX2. , 2016, , 73-86.		0
620	Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology. International Journal of Molecular Sciences, 2016, 17, 432.	1.8	4
621	Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation. Cell Reports, 2016, 14, 1181-1194.	2.9	29
622	Identifying gene expression modules that define human cell fates. Stem Cell Research, 2016, 16, 712-724.	0.3	2

#	Article	IF	CITATIONS
623	Expression of SOX2 in oral squamous cell carcinoma and the association with lymph node metastasis. Oncology Letters, 2016, 11, 1973-1979.	0.8	44
624	Leukemic survival factor SALL4 contributes to defective DNA damage repair. Oncogene, 2016, 35, 6087-6095.	2.6	15
625	The pluripotency factor <i>Nanog</i> regulates pericentromeric heterochromatin organization in mouse embryonic stem cells. Genes and Development, 2016, 30, 1101-1115.	2.7	50
626	Esrrb directly binds to Gata6 promoter and regulates its expression with Dax1 and Ncoa3. Biochemical and Biophysical Research Communications, 2016, 478, 1720-1725.	1.0	7
627	miR-612 suppresses stem cell-like property of hepatocellular carcinoma cells by modulating Sp1/Nanog signaling. Cell Death and Disease, 2016, 7, e2377-e2377.	2.7	46
628	TALEN-induced disruption of Nanog expression results in reduced proliferation, invasiveness and migration, increased chemosensitivity and reversal of EMT in HepG2 cells. Oncology Reports, 2016, 35, 1657-1663.	1.2	15
629	Protein complex formation and intranuclear dynamics of NAC1 in cancer cells. Archives of Biochemistry and Biophysics, 2016, 606, 10-15.	1.4	9
630	Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency. Epigenomics, 2016, 8, 1131-1149.	1.0	21
631	Cooperative Action between SALL4A and TET Proteins in Stepwise Oxidation of 5-Methylcytosine. Molecular Cell, 2016, 64, 913-925.	4.5	111
632	Polycomb Group Protein Pcgf6 Acts as a Master Regulator to Maintain Embryonic Stem Cell Identity. Scientific Reports, 2016, 6, 26899.	1.6	28
633	Single-cell pluripotency regulatory networks. Proteomics, 2016, 16, 2303-2312.	1.3	8
634	Nitric Oxide Prevents Mouse Embryonic Stem Cell Differentiation Through Regulation of Gene Expression, Cell Signaling, and Control of Cell Proliferation. Journal of Cellular Biochemistry, 2016, 117, 2078-2088.	1.2	15
635	Zfp281 Coordinates Opposing Functions of Tet1 and Tet2 in Pluripotent States. Cell Stem Cell, 2016, 19, 355-369.	5.2	89
636	Sox2: regulation of expression and contribution to brain tumors. CNS Oncology, 2016, 5, 159-173.	1.2	29
637	The cohesin-associated protein Wapal is required for proper Polycomb-mediated gene silencing. Epigenetics and Chromatin, 2016, 9, 14.	1.8	10
638	The impact of patient co-morbidities on the regenerative capacity of cardiac explant-derived stem cells. Stem Cell Research and Therapy, 2016, 7, 60.	2.4	25
639	Ectopic overexpression of Nanog induces tumorigenesis in non-tumorous fibroblasts. Biological Chemistry, 2016, 397, 249-255.	1.2	5
640	NANOG regulates epithelial-mesenchymal transition and chemoresistance through activation of the STAT3 pathway in epithelial ovarian cancer. Tumor Biology, 2016, 37, 9671-9680.	0.8	62

#	Article	IF	CITATIONS
641	The Pluripotency Factor NANOG Binds to GLI Proteins and Represses Hedgehog-mediated Transcription. Journal of Biological Chemistry, 2016, 291, 7171-7182.	1.6	22
642	Stem cell transcription factor NANOG in cancers – is eternal youth a curse?. Expert Opinion on Therapeutic Targets, 2016, 20, 407-417.	1.5	11
643	Understanding transcriptional regulatory networks using computational models. Current Opinion in Genetics and Development, 2016, 37, 101-108.	1.5	34
644	An integrated systems biology approach identifies positive cofactor 4 as a factor that increases reprogramming efficiency. Nucleic Acids Research, 2016, 44, 1203-1215.	6.5	20
645	Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 780-791.	0.9	104
646	Characterizing Protein–Protein Interactions Using Mass Spectrometry: Challenges and Opportunities. Trends in Biotechnology, 2016, 34, 825-834.	4.9	131
647	SALL4, the missing link between stem cells, development and cancer. Gene, 2016, 584, 111-119.	1.0	101
648	The Cardiac TBX5 Interactome Reveals a Chromatin Remodeling Network Essential for Cardiac Septation. Developmental Cell, 2016, 36, 262-275.	3.1	71
649	Bioinformatic and Genomic Analyses of Cellular Reprogramming and Direct Lineage Conversion. Current Pharmacology Reports, 2016, 2, 103-112.	1.5	0
650	Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis. Journal of Steroid Biochemistry and Molecular Biology, 2016, 157, 27-40.	1.2	9
651	Zfp553 Is Essential for Maintenance and Acquisition of Pluripotency. Stem Cells and Development, 2016, 25, 55-67.	1.1	5
652	The maternal control in the embryonic development of zebrafish. General and Comparative Endocrinology, 2017, 245, 55-68.	0.8	30
653	Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomaterialia, 2017, 57, 1-25.	4.1	490
654	Targeted tumor detection: guidelines for developing biotinylated diagnostics. Chemical Communications, 2017, 53, 2154-2157.	2.2	13
655	The SIN3A/HDAC Corepressor Complex Functionally Cooperates with NANOG to Promote Pluripotency. Cell Reports, 2017, 18, 1713-1726.	2.9	74
656	Prognostic factors of palatal mucoepidermoid carcinoma: a retrospective analysis based on a double-center study. Scientific Reports, 2017, 7, 43907.	1.6	13
657	Epithelial–mesenchymal transition promotes SOX2 and NANOG expression in bladder cancer. Laboratory Investigation, 2017, 97, 567-576.	1.7	40
658	CCCTC-Binding Factor Transcriptionally Targets Wdr5 to Mediate Somatic Cell Reprogramming. Stem Cells and Development, 2017, 26, 743-750.	1.1	10

		CITATION REPORT		
#	Article		IF	CITATIONS
659	New factors in mammalian DNA repair—the chromatin connection. Oncogene, 2017,	36, 4673-4681.	2.6	16
660	NF45 and NF90/NF110 coordinately regulate ESC pluripotency and differentiation. Rna 1270-1284.	a, 2017, 23,	1.6	19
661	Structural Insights into BAF47 and BAF155 Complex Formation. Journal of Molecular B 1650-1660.	iology, 2017, 429,	2.0	27
662	Histone modifications on the promoters of human OCT4 and NANOG genes at the ons differentiation of NT2/D1 cells. Biochemistry (Moscow), 2017, 82, 715-722.	set of neural	0.7	7
663	ZNF281 Promotes Growth and Invasion of Pancreatic Cancer Cells by Activating Wnt/\hat{l} Signaling. Digestive Diseases and Sciences, 2017, 62, 2011-2020.	² -Catenin	1.1	21
664	Nanog Fluctuations in Embryonic Stem Cells Highlight the Problem of Measurement in Biophysical Journal, 2017, 112, 2641-2652.	Cell Biology.	0.2	20
665	Dynamic regulation of small RNAome during the early stage of cardiac differentiation f pluripotent embryonic stem cells. Genomics Data, 2017, 12, 136-145.	rom	1.3	12
666	The meaning of PIWI proteins in cancer development. Oncology Letters, 2017, 13, 335	54-3362.	0.8	36
667	Nucleus accumbens-1/GADD45CIP1 axis mediates cisplatin resistance through cellular ovarian cancer. Oncology Letters, 2017, 13, 4713-4719.	senescence in	0.8	6
668	Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mo 2017, 66, 22-37.e9.	blecular Cell,	4.5	1,672
669	Kisspeptin-10 treatment generated specific GnRH expression in cells differentiated from derived Lyon NSCs. Neuroscience, 2017, 349, 318-329.	n rhesus monkey	1.1	4
670	Nucleus accumbens-associated protein-1 promotes glycolysis and survival of hypoxic t the HDAC4-HIF-1α axis. Oncogene, 2017, 36, 4171-4181.	umor cells via	2.6	41
671	Epigenetic Modifiers Facilitate Induction and Pluripotency of Porcine iPSCs. Stem Cell 11-20.	Reports, 2017, 8,	2.3	26
672	New Insights into Early Human Development: Lessons for Stem Cell Derivation and Dif Cell Stem Cell, 2017, 20, 18-28.	ferentiation.	5.2	210
673	<i>Nanog</i> Expression in Embryonic Stem Cells – An Ideal Model System to Dissed Function. BioEssays, 2017, 39, 1700086.	ct Enhancer	1.2	16
674	Maternal inheritance of <i>Nanog</i> ortholog in bluntâ€snout bream. Journal of Expe Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 749-759.	rimental	0.6	6
675	Cancer Stem Cell–Related Marker NANOG Expression in Ovarian Serous Tumors: A C Study of 159 Cases. International Journal of Gynecological Cancer, 2017, 27, 2006-20	linicopathological 13.	1.2	15
676	Pluripotency Surveillance by Myc-Driven Competitive Elimination of Differentiating Cel Developmental Cell, 2017, 42, 585-599.e4.	s.	3.1	78

#	Article	IF	CITATIONS
677	A Novel Role For Nanog As An Early Cancer Risk Marker In Patients With Laryngeal Precancerous Lesions. Scientific Reports, 2017, 7, 11110.	1.6	27
678	Networks of Transcription Factors for <i>Oct4</i> Expression in Mice. DNA and Cell Biology, 2017, 36, 725-736.	0.9	8
679	Evaluating of OCT-4 and NANOG was differentially regulated by a new derivative indole in leukemia cell line. Immunology Letters, 2017, 190, 7-14.	1.1	18
680	Mechanisms of transcription factor-mediated direct reprogramming of mouse embryonic stem cells to trophoblast stem-like cells. Nucleic Acids Research, 2017, 45, 10103-10114.	6.5	25
681	NAC1 Regulates Somatic Cell Reprogramming by Controlling Zeb1 and E-cadherin Expression. Stem Cell Reports, 2017, 9, 913-926.	2.3	14
682	Ronin Governs Early Heart Development by Controlling Core Gene Expression Programs. Cell Reports, 2017, 21, 1562-1573.	2.9	16
683	Positome: A method for improving protein-protein interaction quality and prediction accuracy. , 2017, , \cdot		8
684	Efficient Gene Knockdowns in Mouse Embryonic Stem Cells Using MicroRNA-Based shRNAs. Methods in Molecular Biology, 2017, 1622, 241-254.	0.4	1
685	Putative stem cells and epithelial-mesenchymal transition revealed in sections of ovarian tumor in patients with serous ovarian carcinoma using immunohistochemistry for vimentin and pluripotency-related markers. Journal of Ovarian Research, 2017, 10, 11.	1.3	27
686	Linking Telomere Regulation to Stem Cell Pluripotency. Trends in Genetics, 2017, 33, 16-33.	2.9	50
687	CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency. Cell Death and Differentiation, 2017, 24, 38-48.	5.0	88
688	NAC1 promotes the migration of prostate cancer cells and participates in osteoclastogenesis by negatively regulating IFNÎ ² . Oncology Letters, 2017, 15, 2921-2928.	0.8	5
689	Mechanisms of gene regulation in human embryos and pluripotent stem cells. Development (Cambridge), 2017, 144, 4496-4509.	1.2	63
690	Silencing of NAC1 Expression Induces Cancer Cells Oxidative Stress in Hypoxia and Potentiates the Therapeutic Activity of Elesclomol. Frontiers in Pharmacology, 2017, 8, 804.	1.6	17
691	Histone Modifications and Histone Variants in Pluripotency and Differentiation. , 2017, , 35-64.		0
692	The Importance of REST for Development and Function of Beta Cells. Frontiers in Cell and Developmental Biology, 2017, 5, 12.	1.8	22
693	NANOG Plays a Hierarchical Role in the Transcription Network Regulating the Pluripotency and Plasticity of Adipose Tissue-Derived Stem Cells. International Journal of Molecular Sciences, 2017, 18, 1107.	1.8	22
694	Cancer Stem Cells in Oral Cavity Squamous Cell Carcinoma: A Review. Frontiers in Oncology, 2017, 7, 112.	1.3	106

#	Article	IF	CITATIONS
695	Nanog Dynamics in Mouse Embryonic Stem Cells: Results from Systems Biology Approaches. Stem Cells International, 2017, 2017, 1-14.	1.2	27
696	Transcription Factors That Regulate Trophoblast Development and Function. Progress in Molecular Biology and Translational Science, 2017, 145, 39-88.	0.9	50
697	Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy. International Journal of Nanomedicine, 2017, Volume 12, 7529-7549.	3.3	31
698	The endometrium as a source of mesenchymal stem cells in domestic animals and possible applications in veterinary medicine. Veterinaria México OA, 2017, 4, .	0.2	4
699	YY1 Positively Regulates Transcription by Targeting Promoters and Super-Enhancers through the BAF Complex in Embryonic Stem Cells. Stem Cell Reports, 2018, 10, 1324-1339.	2.3	50
700	RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nature Genetics, 2018, 50, 443-451.	9.4	122
701	Tousled-like kinase 1 is a negative regulator of core transcription factors in murine embryonic stem cells. Scientific Reports, 2018, 8, 334.	1.6	10
702	Prognostic implications of CD44, NANOG, OCT4, and BMI1 expression in tongue squamous cell carcinoma. Head and Neck, 2018, 40, 1759-1773.	0.9	29
703	Roles of the CSE1L-mediated nuclear import pathway in epigenetic silencing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4013-E4022.	3.3	21
704	HER2 is frequently overexpressed in hepatoid adenocarcinoma and gastric carcinoma with enteroblastic differentiation: a comparison of 35 cases to 334 gastric carcinomas of other histological types. Journal of Clinical Pathology, 2018, 71, 600-607.	1.0	27
705	Activity of non-canonical pluripotency-associated transcription factors in goat cumulus-oocyte complexes. Livestock Science, 2018, 212, 52-56.	0.6	6
706	Synthesis and Biological Evaluation of Targeted Transcriptional Activator with HDAC8 Inhibitory Activity. Springer Theses, 2018, , 31-48.	0.0	0
707	Molecular Recognition of DNA Double Helix. Springer Theses, 2018, , .	0.0	0
708	Estrogen regulates stemness and senescence of bone marrow stromal cells to prevent osteoporosis via ERI²â€ S ATB2 pathway. Journal of Cellular Physiology, 2018, 233, 4194-4204.	2.0	47
709	Two-Step Coimmunoprecipitation (TIP) Enables Efficient and Highly Selective Isolation of Native Protein Complexes. Molecular and Cellular Proteomics, 2018, 17, 993-1009.	2.5	8
710	Eugenol enhances proliferation and migration of mouse bone marrow-derived mesenchymal stem cells in vitro. Environmental Toxicology and Pharmacology, 2018, 57, 166-174.	2.0	17
711	Peptide mediated facile fabrication of silver nanoparticles over living diatom surface and its application. Journal of Molecular Liquids, 2018, 249, 600-608.	2.3	34
712	Regulatory role of sphingosine kinase and sphingosine-1-phosphate receptor signaling in progenitor/stem cells. World Journal of Stem Cells, 2018, 10, 119-133.	1.3	30

	CITATION	Report	
#	Article	IF	CITATIONS
713	Transfection of T-Box Transcription Factor BRACHYURY and SOX2 Synergistically Promote Self-Renewal and Invasive Phenotype in Oral Cancer Cells. International Journal of Molecular Sciences, 2018, 19, 3620.	1.8	10
714	RIF1 promotes tumor growth and cancer stem cell-like traits in NSCLC by protein phosphatase 1-mediated activation of Wnt/ \hat{l}^2 -catenin signaling. Cell Death and Disease, 2018, 9, 942.	2.7	26
715	Integrative Omics for Interactomes. , 2018, , 39-49.		3
716	Synthetic Biology. , 2018, , .		2
717	A distinct isoform of ZNF207 controls self-renewal and pluripotency of human embryonic stem cells. Nature Communications, 2018, 9, 4384.	5.8	25
718	Tracing the transitions from pluripotency to germ cell fate with CRISPR screening. Nature Communications, 2018, 9, 4292.	5.8	65
719	Targeting SOX2 in anticancer therapy. Expert Opinion on Therapeutic Targets, 2018, 22, 983-991.	1.5	60
720	coTRaCTE predicts co-occurring transcription factors within cell-type specific enhancers. PLoS Computational Biology, 2018, 14, e1006372.	1.5	8
721	Role of HNF1β in the differential diagnosis of yolk sac tumor from other germ cell tumors. Human Pathology, 2018, 81, 26-36.	1.1	18
722	A protein activity assay to measure global transcription factor activity reveals determinants of chromatin accessibility. Nature Biotechnology, 2018, 36, 521-529.	9.4	28
723	Prognostic value of association of OCT4 with LEF1 expression in esophageal squamous cell carcinoma and their impact on epithelialâ€nesenchymal transition, invasion, and migration. Cancer Medicine, 2018, 7, 3977-3987.	1.3	22
724	Adult Neural Stem Cells: Basic Research and Production Strategies for Neurorestorative Therapy. Stem Cells International, 2018, 2018, 1-18.	1.2	16
725	Uhrf1 regulates active transcriptional marks at bivalent domains in pluripotent stem cells through Setd1a. Nature Communications, 2018, 9, 2583.	5.8	35
726	Temporal expression of pluripotency-associated transcription factors in sheep and cattle preimplantation embryos. Zygote, 2018, 26, 270-278.	0.5	10
727	RIF1 promotes human epithelial ovarian cancer growth and progression via activating human telomerase reverse transcriptase expression. Journal of Experimental and Clinical Cancer Research, 2018, 37, 182.	3.5	18
728	The IGF2/IGF1R/Nanog Signaling Pathway Regulates the Proliferation of Acute Myeloid Leukemia Stem Cells. Frontiers in Pharmacology, 2018, 9, 687.	1.6	17
729	Can Stemness and Chemoresistance Be Therapeutically Targeted via Signaling Pathways in Ovarian Cancer?. Cancers, 2018, 10, 241.	1.7	55
730	Expression of RNA-binding protein LIN28 in classic gastric hepatoid carcinomas, gastric fetal type gastrointestinal adenocarcinomas, and hepatocellular carcinomas: An immunohistochemical study with comparison to SALL4, alpha-fetoprotein, glypican-3, and Hep Par1. Pathology Research and Practice, 2018, 214, 1707-1712.	1.0	24

#	Article	IF	CITATIONS
731	SALL4 as a transcriptional and epigenetic regulator in normal and leukemic hematopoiesis. Biomarker Research, 2018, 6, 1.	2.8	31
732	Putative cancer stem cells may be the key target to inhibit cancer cell repopulation between the intervals of chemoradiation in murine mesothelioma. BMC Cancer, 2018, 18, 471.	1.1	19
733	miR-16 targets SALL4 to repress the proliferation and migration of gastric cancer. Oncology Letters, 2018, 16, 3005-3012.	0.8	20
734	Tet2 Regulates Osteoclast Differentiation by Interacting with Runx1 and Maintaining Genomic 5-Hydroxymethylcytosine (5hmC). Genomics, Proteomics and Bioinformatics, 2018, 16, 172-186.	3.0	22
735	Cyclin-dependent kinase 1 activity coordinates the chromatin associated state of Oct4 during cell cycle in embryonic stem cells. Nucleic Acids Research, 2018, 46, 6544-6560.	6.5	25
736	Amino acid impact factor. PLoS ONE, 2018, 13, e0198645.	1.1	7
737	53BP1 Supports Immunoglobulin Class Switch Recombination Independently of Its DNA Double-Strand Break End Protection Function. Cell Reports, 2019, 28, 1389-1399.e6.	2.9	23
738	Decoding pluripotency: Genetic screens to interrogate the acquisition, maintenance, and exit of pluripotency. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1464.	6.6	11
739	Cell Biology of Intracellular Adaptation of <i>Mycobacterium leprae</i> in the Peripheral Nervous System. Microbiology Spectrum, 2019, 7, .	1.2	20
740	Pioneer Factor-Nucleosome Binding Events during Differentiation Are Motif Encoded. Molecular Cell, 2019, 75, 562-575.e5.	4.5	98
741	NAC1 Potentiates Cellular Antiviral Signaling by Bridging MAVS and TBK1. Journal of Immunology, 2019, 203, 1001-1011.	0.4	16
742	Excluding Oct4 from Yamanaka Cocktail Unleashes the Developmental Potential of iPSCs. Cell Stem Cell, 2019, 25, 737-753.e4.	5.2	92
743	Oct-4: a prognostic biomarker of urinary bladder cancer in North India. Therapeutic Advances in Urology, 2019, 11, 175628721987557.	0.9	2
744	Sin3a regulates the developmental progression through morulaâ€ŧoâ€blastocyst transition <i>via</i> Hdacl. FASEB Journal, 2019, 33, 12541-12553.	0.2	13
745	Nac1 facilitates pluripotency gene activation for establishing somatic cell reprogramming. Biochemical and Biophysical Research Communications, 2019, 518, 253-258.	1.0	4
746	Chaperones and Beyond as Key Players in Pluripotency Maintenance. Frontiers in Cell and Developmental Biology, 2019, 7, 150.	1.8	16
747	Targeted gene silencing in human embryonic stem cells using cell-penetrating peptide PepFect 14. Stem Cell Research and Therapy, 2019, 10, 43.	2.4	18
748	Mediator complex interaction partners organize the transcriptional network that defines neural stem cells. Nature Communications, 2019, 10, 2669.	5.8	53

#	Article	IF	CITATIONS
749	Advances of injectable hydrogel-based scaffolds for cartilage regeneration. International Journal of Energy Production and Management, 2019, 6, 129-140.	1.9	120
750	Association of Single-Nucleotide Polymorphism REX1 rs6815391, OCT4 rs13409 or rs3130932, and CTBP2 rs3740535 with Primary Lung Cancer Susceptibility: A Case-Control Study in a Chinese Population. Disease Markers, 2019, 2019, 1-23.	0.6	0
751	Interaction of Sox2 with RNA binding proteins in mouse embryonic stem cells. Experimental Cell Research, 2019, 381, 129-138.	1.2	10
752	Inhibition of RNA-Binding Protein Musashi-1 Suppresses Malignant Properties and Reverses Paclitaxel Resistance in Ovarian Carcinoma. Journal of Cancer, 2019, 10, 1580-1592.	1.2	38
753	Inducible expression of immediate early genes is regulated through dynamic chromatin association by NF45/ILF2 and NF90/NF110/ILF3. PLoS ONE, 2019, 14, e0216042.	1.1	11
754	Structural mechanism of DNA-mediated Nanog–Sox2 cooperative interaction. RSC Advances, 2019, 9, 8121-8130.	1.7	1
755	New insight into NANOG: A novel therapeutic target for ovarian cancer (OC). European Journal of Pharmacology, 2019, 852, 51-57.	1.7	31
756	The Novel Role of SOX2 as an Early Predictor of Cancer Risk in Patients with Laryngeal Precancerous Lesions. Cancers, 2019, 11, 286.	1.7	8
757	The Role of RNA Polymerase II Contiguity and Long-Range Interactions in the Regulation of Gene Expression in Human Pluripotent Stem Cells. Stem Cells International, 2019, 2019, 1-12.	1.2	0
758	Crucial Role of Increased Arid3a at the Pre-B and Immature B Cell Stages for B1a Cell Generation. Frontiers in Immunology, 2019, 10, 457.	2.2	16
759	Wnt/βâ€catenin signaling induces the myomiRs miRâ€133b and miRâ€206 to suppress Pax7 and induce the myogenic differentiation program. Journal of Cellular Biochemistry, 2019, 120, 12740-12751.	1.2	22
760	Zfp281 (ZBP-99) plays a functionally redundant role with Zfp148 (ZBP-89) during erythroid development. Blood Advances, 2019, 3, 2499-2511.	2.5	7
761	Direct differentiation of insulin-producing cells from human urine-derived stem cells. International Journal of Medical Sciences, 2019, 16, 1668-1676.	1.1	18
762	Statistical characteristics of amino acid covariance as possible descriptors of viral genomic complexity. Scientific Reports, 2019, 9, 18410.	1.6	7
763	Anchor: trans-cell type prediction of transcription factor binding sites. Genome Research, 2019, 29, 281-292.	2.4	58
764	OCT4 maintains self-renewal and reverses senescence in human hair follicle mesenchymal stem cells through the downregulation of p21 by DNA methyltransferases. Stem Cell Research and Therapy, 2019, 10, 28.	2.4	40
765	High expression of LASS2 is associated with unfavorable prognosis in patients with ovarian cancer. Journal of Cellular Physiology, 2019, 234, 13001-13013.	2.0	9
766	Essential roles of HDAC1 and 2 in lineage development and genome-wide DNA methylation during mouse preimplantation development. Epigenetics, 2020, 15, 369-385.	1.3	21

#	Article	IF	CITATIONS
767	ZNF281 is recruited on DNA breaks to facilitate DNA repair by non-homologous end joining. Oncogene, 2020, 39, 754-766.	2.6	23
768	Identification and Characterization of Tumor-Initiating Cells in Multiple Myeloma. Journal of the National Cancer Institute, 2020, 112, 507-515.	3.0	33
769	The transcription factor Zfp281 sustains CD4+ T lymphocyte activation through directly repressing Ctla-4 transcription. Cellular and Molecular Immunology, 2020, 17, 1222-1232.	4.8	12
770	Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Reviews and Reports, 2020, 16, 3-32.	1.7	292
771	microRNA: The Impact on Cancer Stemness and Therapeutic Resistance. Cells, 2020, 9, 8.	1.8	46
772	KLF3 promotes the 8â€cellâ€ŀike transcriptional state in pluripotent stem cells. Cell Proliferation, 2020, 53, e12914.	2.4	4
773	Dynamic 3D Chromatin Reorganization during Establishment and Maintenance of Pluripotency. Stem Cell Reports, 2020, 15, 1176-1195.	2.3	25
774	Induced pluripotent stem cells and hematological malignancies: A powerful tool for disease modeling and drug development. Stem Cell Research, 2020, 49, 102060.	0.3	4
775	Effects of Dimethyl Sulfoxide on the Pluripotency and Differentiation Capacity of Mouse Embryonic Stem Cells. Cellular Reprogramming, 2020, 22, 244-253.	0.5	7
776	Nucleus Accumbens-Associated Protein 1 Binds DNA Directly through the BEN Domain in a Sequence-Specific Manner. Biomedicines, 2020, 8, 608.	1.4	8
777	Cell Biology of Intracellular Adaptation ofMycobacterium lepraein the Peripheral Nervous System. , 2020, , 227-245.		0
778	Reawakening the Developmental Origins of Cancer Through Transposable Elements. Frontiers in Oncology, 2020, 10, 468.	1.3	21
779	The Chromatin Regulator ZMYM2 Restricts Human Pluripotent Stem Cell Growth and Is Essential for Teratoma Formation. Stem Cell Reports, 2020, 15, 1275-1286.	2.3	13
780	Targeting Cancer Stem Cells to Overcome Therapy Resistance in Ovarian Cancer. Cells, 2020, 9, 1402.	1.8	46
781	ARID3A and ARID3B induce stem promoting pathways in ovarian cancer cells. Gene, 2020, 738, 144458.	1.0	15
782	The roles of TET family proteins in development and stem cells. Development (Cambridge), 2020, 147, .	1.2	48
783	Epigenetic memory in development and disease: Unraveling the mechanism. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188349.	3.3	25
784	In Vivo Quantitative Estimation of DNA-Dependent Interaction of Sox2 and Oct4 Using BirA-Catalyzed Site-Specific Biotinylation. Biomolecules, 2020, 10, 142.	1.8	6

#	Article	IF	CITATIONS
785	Carbohydrate (Chondroitin 4) Sulfotransferase-11-Mediated Induction of Epithelial-Mesenchymal Transition and Generation of Cancer Stem Cells. Pharmacology, 2020, 105, 246-259.	0.9	7
786	SALL4 is a useful marker for pediatric yolk sac tumors. Pediatric Surgery International, 2020, 36, 727-734.	0.6	2
787	G-quadruplex binding protein Rif1, a key regulator of replication timing. Journal of Biochemistry, 2021, 169, 1-14.	0.9	17
788	Transcriptome analysis of the circadian clock gene BMAL1 deletion with opposite carcinogenic effects. Functional and Integrative Genomics, 2021, 21, 1-16.	1.4	11
789	Human Umbilical Cord Mesenchymal Stem Cell-induced Osterix, Bone Morphogenetic Protein-2, and Tartrate-resistant Acid Phosphatase Expression in Osteoporotic Mandibular Bone. European Journal of Dentistry, 2021, 15, 084-089.	0.8	4
790	Organization of the Pluripotent Genome. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040204.	2.3	13
791	A mathematical model exhibiting the effect of DNA methylation on the stability boundary in cell-fate networks. Epigenetics, 2021, 16, 436-457.	1.3	13
792	Self-renewal in induced pluripotent stem cells. , 2021, , 179-207.		0
793	MicroRNAs regulating SOX2 in cancer progression and therapy response. Expert Reviews in Molecular Medicine, 2021, 23, e13.	1.6	17
794	Regulation of the protein stability and transcriptional activity of OCT4 in stem cells. Advances in Biological Regulation, 2021, 79, 100777.	1.4	11
795	Differential transcriptional regulation of the NANOG gene in chicken primordial germ cells and embryonic stem cells. Journal of Animal Science and Biotechnology, 2021, 12, 40.	2.1	6
796	Transcription Factor Reprogramming in the Inner Ear: Turning on Cell Fate Switches to Regenerate Sensory Hair Cells. Frontiers in Cellular Neuroscience, 2021, 15, 660748.	1.8	26
797	An Esrrb and Nanog Cell Fate Regulatory Module Controlled by Feed Forward Loop Interactions. Frontiers in Cell and Developmental Biology, 2021, 9, 630067.	1.8	8
798	Genetic causes of preimplantation embryo developmental failure. Molecular Reproduction and Development, 2021, 88, 338-348.	1.0	17
799	The cell cycle and differentiation as integrated processes: Cyclins and CDKs reciprocally regulate Sox and Notch to balance stem cell maintenance. BioEssays, 2021, 43, e2000285.	1.2	8
800	PHC1 maintains pluripotency by organizing genome-wide chromatin interactions of the Nanog locus. Nature Communications, 2021, 12, 2829.	5.8	14
801	Stem Cells as a Source of Pancreatic Cells for Production of 3D Bioprinted Bionic Pancreas in the Treatment of Type 1 Diabetes. Cells, 2021, 10, 1544.	1.8	11
802	Orphan CpG islands amplify poised enhancer regulatory activity and determine target gene responsiveness. Nature Genetics, 2021, 53, 1036-1049.	9.4	56

#	ARTICLE	IF	CITATIONS
803	Integrating High-Throughput Approaches and in vitro Human Trophoblast Models to Decipher Mechanisms Underlying Early Human Placenta Development. Frontiers in Cell and Developmental Biology, 2021, 9, 673065.	1.8	6
804	Minor Allele Frequencies and Molecular Pathways Differences for SNPs Associated with Amyotrophic Lateral Sclerosis in Subjects Participating in the UKBB and 1000 Genomes Project. Journal of Clinical Medicine, 2021, 10, 3394.	1.0	2
805	Reporter gene systems for the identification and characterization of cancer stem cells. World Journal of Stem Cells, 2021, 13, 861-876.	1.3	5
806	Expression of SOX2 and OCT4 in odontogenic cysts and tumors. Head & Face Medicine, 2021, 17, 29.	0.8	6
807	Pluripotency-State-Dependent Role of Dax1 in Embryonic Stem Cells Self-Renewal. Stem Cells International, 2021, 2021, 1-11.	1.2	3
808	High Expression of Stem Cell-Related Genes in Polyps with Villous Features and High-Grade Dysplasia Support Malignant Phenotype and Colorectal Carcinogenesis. Asian Pacific Journal of Cancer Prevention, 2021, 22, 2429-2435.	0.5	3
809	OCT4 cooperates with distinct ATP-dependent chromatin remodelers in naÃ ⁻ ve and primed pluripotent states in human. Nature Communications, 2021, 12, 5123.	5.8	17
810	The Embryonic Key Pluripotent Factor NANOG Mediates Glioblastoma Cell Migration via the SDF1/CXCR4 Pathway. International Journal of Molecular Sciences, 2021, 22, 10620.	1.8	7
811	nrOb1 (DAX1) loss of function in zebrafish causes hypothalamic defects via abnormal progenitor proliferation and differentiation. Journal of Genetics and Genomics, 2021, , .	1.7	3
812	Nanog in iPS cells and during reprogramming. , 2022, , 319-348.		1
813	Insights into the adipose stem cell niche in health and disease. , 2022, , 57-80.		2
814	Induced pluripotency and intrinsic reprogramming factors. , 2022, , 117-145.		0
815	Auxiliary pluripotency-associated genes and their contributions in the generation of induced pluripotent stem cells. , 2022, , 29-94.		6
816	Epigenetic regulation in stem cells. , 2021, , 69-79.		1
817	Current reprogramming methods to generate high-quality iPSCs. , 2021, , 1-36.		0
818	The Role of E3s in Regulating Pluripotency of Embryonic Stem Cells and Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2021, 22, 1168.	1.8	2
820	Tandem Affinity Purification of Protein Complexes in Mouse Embryonic Stem Cells Using In Vivo Biotinylation. , 2009, Chapter 1, Unit1B.5.		10
821	Epigenetic Regulation of Pluripotency. Advances in Experimental Medicine and Biology, 2010, 695, 26-40.	0.8	8

#	ARTICLE	IF	CITATIONS
822	Transcriptional Regulation in Embryonic Stem Cells. Advances in Experimental Medicine and Biology, 2010, 695, 76-91.	0.8	16
823	An Improved In Vivo Biotinylation Strategy Combined with FLAG and Antibody Based Approaches for Affinity Purification of Protein Complexes in Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2014, 1177, 135-149.	0.4	1
824	Differentiation Analysis of Pluripotent Mouse Embryonic Stem (ES) Cells In Vitro. Methods in Molecular Biology, 2009, 530, 219-250.	0.4	10
825	The Molecular Basis of Embryonic Stem Cell Self-Renewal. , 2009, , 3-12.		1
826	Determinants of Pluripotency in Mouse and Human Embryonic Stem Cells. , 2009, , 27-36.		1
827	Lentiviral Fluorescent Protein Expression Vectors for Biotinylation Proteomics. Methods in Molecular Biology, 2011, 699, 431-447.	0.4	4
828	Navigating the Global Protein–Protein Interaction Landscape Using iRefWeb. Methods in Molecular Biology, 2014, 1091, 315-331.	0.4	19
829	Rif1, a Conserved Chromatin Factor Regulating DNA Replication, DNA Repair, and Transcription. , 2016, , 143-158.		2
830	PRC1-Mediated Gene Silencing in Pluripotent ES Cells: Function and Evolution. Epigenetics and Human Health, 2015, , 141-166.	0.2	1
831	Alternative Embryonic Stem Cell Sources. , 2009, , 101-143.		1
832	The Role of Nuclear Receptors in Embryonic Stem Cells. Advances in Experimental Medicine and Biology, 2013, 786, 287-306.	0.8	6
836	The Transcriptional Network Controlling Pluripotency in ES Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 195-202.	2.0	84
837	Computational Modeling of Biochemical Processes and Cell Differentiation. , 2011, , 3-29.		1
838	SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas. Journal of Clinical Investigation, 2014, 124, 1636-1645.	3.9	151
839	Of numbers and movement $\hat{a} \in ``$ understanding transcription factor pathogenesis by advanced microscopy. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	8
840	ZMYM2 inhibits NANOG-mediated reprogramming. Wellcome Open Research, 2019, 4, 88.	0.9	8
841	Effects of Feeder Cell Types on Culture of Mouse Embryonic Stem Cell In Vitro. Development & Reproduction, 2015, 19, 119-126.	0.5	12
842	High-Efficiency Stem Cell Fusion-Mediated Assay Reveals Sall4 as an Enhancer of Reprogramming. PLoS ONE, 2008, 3, e1955.	1.1	61

ARTICLE IF CITATIONS Transcriptional Network of p63 in Human Keratinocytes. PLoS ONE, 2009, 4, e5008. 843 1.1 39 The FunGenES Database: A Genomics Resource for Mouse Embryonic Stem Cell Differentiation. PLoS 844 1.1 54 ONE, 2009, 4, e6804. Characterization of Trophoblast and Extraembryonic Endoderm Cell Lineages Derived from Rat 845 1.1 18 Preimplantation Embryos. PLoS ONE, 2010, 5, e9794. REX-1 Expression and p38 MAPK Activation Status Can Determine Proliferation/Differentiation Fates in 846 1.1 Human Mesenchymal Stem Cells. PLoS ONE, 2010, 5, e10493. A Novel SALL4/OCT4 Transcriptional Feedback Network for Pluripotency of Embryonic Stem Cells. PLoS 847 1.1 140 ONE, 2010, 5, e10766. A Distinct Expression Pattern in Mammalian Testes Indicates a Conserved Role for NANOG in Spermatogenesis. PLoS ONE, 2010, 5, e10987. 848 1.1 The PluriNetWork: An Electronic Representation of the Network Underlying Pluripotency in Mouse, 849 1.1 67 and Its Applications. PLoS ONE, 2010, 5, e15165. Sox2 Uses Multiple Domains to Associate with Proteins Present in Sox2-Protein Complexes. PLoS ONE, 850 1.1 2010, 5, e15486. Prion Protein Expression Regulates Embryonic Stem Cell Pluripotency and Differentiation. PLoS ONE, 851 1.1 37 2011, 6, e18422. Growth Factor-Activated Stem Cell Circuits and Stromal Signals Cooperatively Accelerate 1.1 Non-Integrated iPSC Reprogramming of Human Myeloid Progenitors. PLoS ONE, 2012, 7, e42838. Cell-Type-Specific Predictive Network Yields Novel Insights into Mouse Embryonic Stem Cell 853 1.1 11 Self-Renewal and Cell Fate. PLoS ONE, 2013, 8, e56810. An Efficient Weighted Graph Strategy to Identify Differentiation Associated Genes in Embryonic Stem 1.1 Cells. PLoS ONE, 2013, 8, e62716. Loss of NAC1 Expression Is Associated with Defective Bony Patterning in the Murine Vertebral Axis. 855 1.1 19 PLoS ONE, 2013, 8, e69099. Striking Similarity in the Gene Expression Levels of Individual Myc Module Members among ESCs, EpiSCs, and Partial iPSCs. PLoS ONE, 2013, 8, e83769. 1.1 Lhx8 interacts with a novel germ cell-specific nuclear factor containing an Nbl1 domain in rainbow 857 1.1 8 trout (Oncorhynchus mykiss). PLoS ONE, 2017, 12, e0170760. Transcriptional regulation of the Oct4 gene, a master gene for pluripotency. Histology and Histopathology, 2010, 25, 405-12. Effect of Recombinant Human Erythropoietin On the Stemness of Bone Marrow-derived Mesenchymal 859 0.8 4 Stem Cells in vitro. International Journal of Stem Cells, 2010, 3, 175-182. The Nuclear Matrix Protein, NRP/B, Acts as a Transcriptional Repressor of E2F-mediated Transcriptional Activity. Journal of Cancer Prevention, 2014, 19, 187-198.

		Report	
#	Article	IF	CITATIONS
861	The Role of Stem Cell Factor SALL4 in Leukemogenesis. Critical Reviews in Oncogenesis, 2011, 16, 117-127.	0.2	29
862	NAC1 attenuates BCL6 negative autoregulation and functions as a BCL6 coactivator of FOXQ1 transcription in cancer cells. Aging, 2020, 12, 9275-9291.	1.4	6
863	Changes in the methylation status of the Oct3/4, Nanog, and Sox2 promoters in stem cells during regeneration of rat tracheal epithelium after injury. Oncotarget, 2017, 8, 2984-2994.	0.8	8
864	Oncofetal gene SALL4 and prognosis in cancer: A systematic review with meta-analysis. Oncotarget, 2017, 8, 22968-22979.	0.8	28
865	Nac1 promotes self-renewal of embryonic stem cells through direct transcriptional regulation of c-Myc. Oncotarget, 2017, 8, 47607-47618.	0.8	15
866	Silencing RIF1 decreases cell growth, migration and increases cisplatin sensitivity of human cervical cancer cells. Oncotarget, 2017, 8, 107044-107051.	0.8	20
867	ARID3B increases ovarian tumor burden and is associated with a cancer stem cell gene signature. Oncotarget, 2014, 5, 8355-8366.	0.8	20
868	Cancer-related transcription regulator protein NAC1 forms a protein complex with CARM1 for ovarian cancer progression. Oncotarget, 2018, 9, 28408-28420.	0.8	15
869	Distinguishing epigenetic features of preneoplastic testis tissues adjacent to seminomas and nonseminomas. Oncotarget, 2016, 7, 22439-22447.	0.8	11
870	Protein Kinases and Associated Pathways in Pluripotent State and Lineage Differentiation. Current Stem Cell Research and Therapy, 2014, 9, 366-387.	0.6	9
871	Analysis of the Methylation Pattern of SOX2 and OCT4 Genes in Astrocytomas. Journal of Genetics and Genome Research, 2015, 2, .	0.3	1
872	Expression of RONIN and NANOC-associated proteins in goat parthenogenetic embryos. Medicina Veterinaria (Brazil), 2017, 11, 145.	0.1	1
873	Relative Expression of SOX2 and OCT4 in Oral Squamous Cell Carcinoma and Oral Epithelial Dysplasia. Reports of Biochemistry and Molecular Biology, 2020, 9, 171-179.	0.5	12
874	Arid3a regulates mesoderm differentiation in mouse embryonic stem cells. , 2017, 1, 052-062.		4
875	Stem cell systems informatics for advanced clinical biodiagnostics: tracing molecular signatures from bench to bedside. Croatian Medical Journal, 2013, 54, 319-329.	0.2	4
876	NANOG: A promising target for digestive malignant tumors. World Journal of Gastroenterology, 2014, 20, 13071.	1.4	11
877	Genome-wide transcription factor localization and function in stem cells. Stembook, 2008, , .	0.3	3
879	Pleiotropic effects of Erythropoietin. Influence of Erythropoietin on processes of mesenchymal stem cells differentiation. Research Results in Pharmacology, 2019, 5, 53-66.	0.1	5

ARTICLE IF CITATIONS # Analysis of octamer-binding transcription factor-4 expression in oral leukoplakia. Journal of Oral and 880 0.3 5 Maxillofacial Pathology, 2020, 24, 400. Transcriptional Regulation of Human NANOG by Alternate Promoters in Embryonic Stem Cells. Journal 0.3 of Stem Cell Research & Therapy, 2012, 01, 009. 882 Repressors of reprogramming. World Journal of Stem Cells, 2015, 7, 541. 2 1.3 NANOG (Nanog homeobox). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2012, , . 883 0.1 Epigenetic modification of retinoic acid-treated human embryonic stem cells. BMB Reports, 2010, 43, 884 1.1 24 830-835. Using the theory of coevolution to predict protein-protein interactions in non-small cell lung cancer. Chinese Journal of Cancer, 2013, 32, 91-98. 885 Elba, a novel developmentally regulated chromatin boundary factor is a hetero-tripartite DNA binding 886 2.8 44 complex. ELife, 2012, 1, e00171. Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm 887 2.8 34 patterning in zebrafish. ELife, 2016, 5, . Miniaturized droplet microarray platform enables maintenance of human induced pluripotent stem 888 2.6 6 cell pluripotency. Materials Today Bio, 2021, 12, 100153. Human Papilloma Virus and Cancer Stem Cell markers in Oral Epithelial Dysplasiaâ€"An 0.4 Immunohistochemical Study. Rambam Maimonides Medical Journal, 2021, 12, e0028. Temporal proteomics during neurogenesis reveals large-scale proteome and organelle remodeling via 890 4.552 selective autophagy. Molecular Cell, 2021, 81, 5082-5098.e11. The Prospect of Adult Spermatogonial Stem Cells for Therapeutic Cardiac Regeneration., 2007, , 13-24. Negative Regulation of Endogenous Stem Cells in Sensory Neuroepithelia: Implications for 892 0 Neurotherapeutics., 2008,, 45-68. The Human Embryonic Stem Cells Transcriptome: How Much Do We Know?. Open Biotechnology 894 Journal, 2008, 2, 56-62. 895 DNA Methylation and the Epigenetic Program in Stem Cells., 2009, , 277-284. 1 Stem Cells with No Tissue Specificity., 2009, , 57-108. 896 Bone tissue engineering using patient's mesenchymal cells: From cellular engineering to gene 897 1.51 manipulation. Inflammation and Regeneration, 2009, 29, 178-185. Molecular Regulation of the State of Embryonic Stem Cells., 2009, , 33-60.

ARTICLE IF CITATIONS 10.1007/s11177-008-3001-3., 2010, 44, 247. 899 0 Dynamic Changes in Gene Expression during Early Trophoblast Differentiation from Human Embryonic Stem Cells Treated with BMP4. , 0, , . Progress and Future Challenges of Human Induced Pluripotents Stem Cell in Regenerative Medicine. 902 0.2 0 Indonesian Biomedical Journal, 2011, 3, 76. Differentiation Programs in Development and Cancer., 2012, , 281-292. 903 With or Without them: Essential Roles of Cofactors in ES Cells. Journal of Stem Cell Research & 904 0.3 0 Therapy, 2012, 01, . LINE-1 Based Insertional Mutagenesis Screens to Identify Genes Involved in Embryonic Stem Cell Differentiation. Journal of Stem Cell Research & Therapy, 2012, 02, . 0.3 Deciphering Protein Complexes and Protein Interaction Networks for Stem Cell Pluripotency., 2012,, 906 2 97-118. A Review on EZH2 and its Epigenetic Association with Breast Cancer. Journal of Cancer Research 907 0.3 Updates, 0, , . 908 Adult Stem Cells in Teeth. Pancreatic Islet Biology, 2014, , 199-216. 0.1 0 909 Advances in Stem Cell Research for Parkinson Disease., 2014, , 653-690. Evaluation of in vitro Efficacy of Vitamin D3 on the Osteogenic Differentiation and Mineralization 910 Capabilities of Fetal and Adult Osteoblasts of Rabbit Reflects Therapeutic Potential. International 0.1 1 Journal of Pharmacology, 2014, 10, 440-450. Estudio de la inactivaciÃ³n filogenética de los genes Nanog postembrionario en comparaciÃ³n con el Ambystoma mexicanum. Revista Biociencias, 2015, 10, 17-25. 0.2 Disorders of Sexual Development., 2016, , 650-655. 913 0 Diagnostic Immunopathology of Germ Cell Tumors., 2017, , 131-179. Induced Pluripotent Stem Cells (iPSCs) and Nuclear Reprogramming., 2017, , 71-91. 917 0 Atividade dos genes relacionados à pluripotência em ovinos. Medicina Veterinaria (Brazil), 2017, 11, 127. 0.1 Stu Orkin is a superhero. Journal of Clinical Investigation, 2018, 128, 4213-4217. 924 3.9 0 Sex determining region Y-box 2 is a prognostic factor for head and neck squamous cell carcinoma. Journal of Cancer Research and Therapeutics, 2020, 16, 434-439.

#	Article	IF	CITATIONS
929	Novel Approaches to Profile Functional Long Noncoding RNAs Associated with Stem Cell Pluripotency. Current Genomics, 2020, 21, 37-45.	0.7	2
930	Stem cell markers in oral and oropharyngeal squamous cell carcinomas in relation to the site of origin and HPV infection: clinical implications. Acta Otorhinolaryngologica Italica, 2020, 40, 90-98.	0.7	2
931	Expression and clinical value of SALL4 in renal cell carcinomas. Molecular Medicine Reports, 2020, 22, 819-827.	1.1	6
932	Loss of full-length DNA replication regulator Rif1 in two-cell embryos is associated with zygotic transcriptional activation. Journal of Biological Chemistry, 2021, 297, 101367.	1.6	4
933	Narrative review of the choices of stem cell sources and hydrogels for cartilage tissue engineering. Annals of Translational Medicine, 2020, 8, 1598-1598.	0.7	19
934	Recurrent Attention Walk for Semi-supervised Classification. , 2020, , .		3
935	Roles and regulation of endogenous retroviruses in pluripotency and early development. , 2020, , 155-186.		2
936	Cell division- and DNA replication-free reprogramming of somatic nuclei for embryonic transcription. IScience, 2021, 24, 103290.	1.9	6
937	Tandem Affinity Purification of Protein Complexes in Mouse Embryonic Stem Cells Using In Vivo Biotinylation. Current Protocols in Stem Cell Biology, 2009, 11, .	3.0	1
939	Molecular basis of Mammalian embryonic stem cell pluripotency and self-renewal. Acta Naturae, 2010, 2, 30-46.	1.7	6
940	Epigenetics of pluripotent cells. Acta Naturae, 2012, 4, 28-46.	1.7	7
942	The overexpression of MYST4 in human solid tumors is associated with increased aggressiveness and decreased overall survival. International Journal of Clinical and Experimental Pathology, 2019, 12, 431-442.	0.5	4
943	MSX2 inhibits the growth and migration of osteosarcoma cells by repressing SOX2. American Journal of Translational Research (discontinued), 2021, 13, 5851-5865.	0.0	2
944	Expression levels and activation status of Yap splicing isoforms determine self-renewal and differentiation potential of embryonic stem cells. Stem Cells, 2021, 39, 1178-1191.	1.4	9
945	LSD1: Expanding Functions in Stem Cells and Differentiation. Cells, 2021, 10, 3252.	1.8	27
946	Application of Skyline for Analysis of Protein–Protein Interactions In Vivo. Molecules, 2021, 26, 7170.	1.7	3
947	Deciphering the generating rules and functionalities of complex networks. Scientific Reports, 2021, 11, 22964.	1.6	24
948	<i>Rif1</i> and <i>Hmgn3</i> Regulate Conversion of Murine Trophoblast Stem Cells. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
949	Role, molecular mechanism and the potential target of breast cancer stem cells in breast cancer development. Biomedicine and Pharmacotherapy, 2022, 147, 112616.	2.5	20
950	The application of iPSC-derived kidney organoids and genome editing in kidney disease modeling. , 2022, , 111-136.		2
953	Generation of Peptides for Highly Efficient Proximity Utilizing Site-Specific Biotinylation in Cells. Life, 2022, 12, 300.	1.1	3
955	Rif1 and Hmgn3 regulate the conversion of murine trophoblast stem cells. Cell Reports, 2022, 38, 110570.	2.9	12
956	Effect of <i>NANOG</i> overexpression on porcine embryonic development and pluripotent embryonic stem cell formation <i>in vitro</i> . Zygote, 2022, 30, 324-329.	0.5	3
963	NANOG prion-like assembly mediates DNA bridging to facilitate chromatin reorganization and activation of pluripotency. Nature Cell Biology, 2022, 24, 737-747.	4.6	19
964	A TRIM66/DAX1/Dux axis suppresses the totipotent 2-cell-like state in murine embryonic stem cells. Cell Stem Cell, 2022, 29, 948-961.e6.	5.2	15
965	NAC1 modulates autoimmunity by suppressing regulatory T cell–mediated tolerance. Science Advances, 2022, 8, .	4.7	13
966	Determinants of Dental Pulp Stem Cell Heterogeneity. Journal of Endodontics, 2022, 48, 1232-1240.	1.4	4
967	A regulatory network of Sox and Six transcription factors initiate a cell fate transformation during hearing regeneration in adult zebrafish. Cell Genomics, 2022, 2, 100170.	3.0	13
968	The Divergent and Conserved Expression Profile of Turtle Nanog Gene Comparing with Fish and Mammals. Biology, 2022, 11, 1342.	1.3	1
969	The transcriptional coactivator Eya1 exerts transcriptional repressive activity by interacting with REST corepressors and REST-binding sequences to maintain nephron progenitor identity. Nucleic Acids Research, 2022, 50, 10343-10359.	6.5	2
970	HCV and tumor-initiating stem-like cells. Frontiers in Physiology, 0, 13, .	1.3	1
971	Serum SALL4 as a predictive biomarker for the prognosis of patients with hepatocellular carcinoma who underwent nonsurgical treatment. Medicine (United States), 2022, 101, e31200.	0.4	1
972	Transcription factor antagonism regulates heterogeneity in embryonic stem cell states. Molecular Cell, 2022, 82, 4410-4427.e12.	4.5	5
975	Structural Plasticity of Pioneer Factor Sox2 and DNA Bendability Modulate Nucleosome Engagement and Sox2-Oct4 Synergism. Journal of Molecular Biology, 2023, 435, 167916.	2.0	3
976	Multi-SUMOylation of NAC1 is essential for the growth of prostate cancer cells. Biochemical and Biophysical Research Communications, 2023, 641, 148-154.	1.0	1
977	Mechanisms of Drug Resistance in Ovarian Cancer and Associated Gene Targets. Cancers, 2022, 14, 6246.	1.7	17

#	Article	IF	CITATIONS
978	circ_rac GTPase–Activating Protein 1 Facilitates Stemness and Metastasis of Non–Small Cell Lung Cancer via Polypyrimidine Tract–Binding Protein 1 Recruitment to Promote Sirtuin-3–Mediated Replication Timing Regulatory Factor 1 Deacetylation. Laboratory Investigation, 2023, 103, 100010.	1.7	5
979	Transcription factor binding sites are frequently under accelerated evolution in primates. Nature Communications, 2023, 14, .	5.8	6
980	CRISPR/Cas9 screen uncovers functional translation of cryptic lncRNA-encoded open reading frames in human cancer. Journal of Clinical Investigation, 2023, 133, .	3.9	10
981	A Simplified and Effective Approach for the Isolation of Small Pluripotent Stem Cells Derived from Human Peripheral Blood. Biomedicines, 2023, 11, 787.	1.4	1
982	A single-cell census of mouse limb development identifies complex spatiotemporal dynamics of skeleton formation. Developmental Cell, 2023, 58, 565-581.e4.	3.1	10
983	Rif1 Regulates Self-Renewal and Impedes Mesendodermal Differentiation of Mouse Embryonic Stem Cells. Stem Cell Reviews and Reports, 0, , .	1.7	2
984	Notch and Wnt Signaling Modulation to Enhance DPSC Stemness and Therapeutic Potential. International Journal of Molecular Sciences, 2023, 24, 7389.	1.8	3
985	Over-Expression of ARID3B Suppresses Tumor Progression and Predicts Better Prognosis in Patients With Gastric Cancer. Cancer Control, 2023, 30, .	0.7	0
991	Soluble Expression and Purification of Biologically Active Human NANOG from Escherichia coli. , 2023, , 99-118.		1
1001	Deciphering Stem Cell Pluripotency Using a Machine Learning Clustering Approach. Lecture Notes in Networks and Systems, 2024, , 375-388.	0.5	0
1002	Unravelling the genomics and proteomics aspects of the stemness phenotype in stem cells. , 2024, , 129-147.		0