Self-cooling of a micromirror by radiation pressure

Nature 444, 67-70 DOI: 10.1038/nature05273

Citation Report

#	Article	IF	Citations
1	A cooling light breeze. Nature, 2006, 444, 41-42.	13.7	11
2	Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters, 2006, 97, 243905.	2.9	503
3	To work or not to work. Nature, 2006, 444, 42-43.	13.7	6
4	Nonlinear Opto-mechanics Using Radiation Pressure in High-Q Microcavities. , 2007, , .		0
5	Laser cooling of a microcantilever using a medium finesse optical cavity. , 2007, , .		0
6	Cooling of a micro-mechanical oscillator using radiation-pressure induced dynamical backaction. , 2007, , .		1
7	Cooling a micromechanical beam by coupling it to a transmission line. Physical Review B, 2007, 76, .	1.1	57
8	Two-mode squeezed states and entangled states of two mechanical resonators. Physical Review B, 2007, 76, .	1.1	83
9	Measurement of optical forces within a high-Q microcavity-waveguide system. , 2007, , .		0
10	Collective Excitations and Instability of an Optical Lattice due to Unbalanced Pumping. Physical Review Letters, 2007, 98, 203008.	2.9	17
11	Measurement of optical forces within a high-Q microcavity-waveguide system. , 2007, , .		0
12	Quantum analysis of a linear dc SQUID mechanical displacement detector. Physical Review B, 2007, 76, .	1.1	51
13	Bose-Einstein Condensate Coupled to a Nanomechanical Resonator on an Atom Chip. Physical Review Letters, 2007, 99, 140403.	2.9	185
14	Using a Laguerre-Gaussian Beam to Trap and Cool the Rotational Motion of a Mirror. Physical Review Letters, 2007, 99, 153603.	2.9	79
15	Noise spectrum of a tunnel junction coupled to a nanomechanical oscillator. Physical Review B, 2007, 75, .	1.1	9
16	The new high-Q physics: photonic clocks and back-action cooling on a chip. , 2007, , .		Ο
17	The New High-Q Physics: Photonic Clocks and Back-action Cooling on a Chip. , 2007, , .		0
18	Tuning the effective coupling of an AFM lever to a thermal bath. Nanotechnology, 2007, 18, 475502.	1.3	34

TION RE

#	Article	IF	CITATIONS
19	Observation of optical spring effect in a microtoroidal optomechanical resonator. Optics Letters, 2007, 32, 1611.	1.7	52
20	Radiation pressure driven mechanical oscillation in deformed silica microspheres via free-space evanescent excitation. Optics Express, 2007, 15, 16471.	1.7	26
21	Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion. Physical Review Letters, 2007, 99, 093902.	2.9	957
22	Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction. Physical Review Letters, 2007, 99, 093901.	2.9	820
23	Cooling in a Bistable Optical Cavity. Physical Review Letters, 2007, 99, 103002.	2.9	17
24	Passive Cooling of a Micromechanical Oscillator with a Resonant Electric Circuit. Physical Review Letters, 2007, 99, 137205.	2.9	80
25	Micromechanical resonators fabricated from lattice-matched and etch-selective GaAsâ^InGaPâ^GaAs heterostructures. Applied Physics Letters, 2007, 91, 133505.	1.5	19
26	An All-Optical Trap for a Gram-Scale Mirror. Physical Review Letters, 2007, 98, 150802.	2.9	318
27	Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9ÂmK. Physical Review Letters, 2007, 99, 160801.	2.9	193
28	Optomechanical Entanglement between a Movable Mirror and a Cavity Field. Physical Review Letters, 2007, 98, 030405.	2.9	888
29	Optical cooling of a micromirror of wavelength size. Applied Physics Letters, 2007, 90, 104101.	1.5	84
30	Stationary entanglement between two movable mirrors in a classically driven Fabry–Perot cavity. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 8055-8068.	0.7	87
31	Feedback Cooling of a Cantilever's Fundamental Mode below 5ÂmK. Physical Review Letters, 2007, 99, 017201.	2.9	298
32	Creating and Probing Multipartite Macroscopic Entanglement with Light. Physical Review Letters, 2007, 99, 250401.	2.9	267
33	Trapping and Cooling a Mirror to Its Quantum Mechanical Ground State. Physical Review Letters, 2007, 99, 073601.	2.9	148
35	Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photonics, 2007, 1, 416-422.	15.6	216
36	Noise suppression for micromechanical resonator via intrinsic dynamic feedback. Frontiers of Physics in China, 2008, 3, 294-305.	1.0	3
37	On the role of entanglement in Schrödinger's cat paradox. Open Physics, 2008, 6, 178-183.	0.8	4

		REPORT	
#	Article	IF	CITATIONS
38	Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 2008, 452, 72-75.	13.7	1,195
39	Ultralow-dissipation optomechanical resonators on a chip. Nature Photonics, 2008, 2, 627-633.	15.6	159
40	Science on all scales. Nature Physics, 2008, 4, 514-514.	6.5	0
41	Push towards the quantum limit. Nature Physics, 2008, 4, 513-514.	6.5	12
42	Resolved-sideband cooling of a micromechanical oscillator. Nature Physics, 2008, 4, 415-419.	6.5	533
43	Observation of quantum-measurement backaction with an ultracold atomic gas. Nature Physics, 2008, 4, 561-564.	6.5	376
44	Measuring nanomechanical motion with a microwave cavity interferometer. Nature Physics, 2008, 4, 555-560.	6.5	425
45	Optomechanical coupling in a one-dimensional optical lattice. Physical Review A, 2008, 77, .	1.0	41
46	Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror. Physical Review A, 2008, 77, .	1.0	43
47	Intrinsic dissipation in nanomechanical resonators due to phonon tunneling. Physical Review B, 2008, 77, .	1.1	119
48	Cooling of a Gram-Scale Cantilever Flexure to 70ÂmK with a Servo-Modified Optical Spring. Physical Review Letters, 2008, 100, 010801.	2.9	52
49	Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Physical Review A, 2008, 77, .	1.0	475
50	Quantum optical spring. Physical Review A, 2008, 78, .	1.0	21
51	Robust entanglement of a micromechanical resonator with output optical fields. Physical Review A, 2008, 78, .	1.0	283
52	Monocrystalline AlxGa1â^'xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime. Applied Physics Letters, 2008, 92, .	1.5	65
53	Parametric Normal-Mode Splitting in Cavity Optomechanics. Physical Review Letters, 2008, 101, 263602.	2.9	265
54	Cavity Optomechanics: Back-Action at the Mesoscale. Science, 2008, 321, 1172-1176.	6.0	1,638
55	Optomechanical trapping and cooling of partially reflective mirrors. Physical Review A, 2008, 77, .	1.0	166

#	Article	IF	CITATIONS
56	Multiple membrane cavity optomechanics. Physical Review A, 2008, 78, .	1.0	112
57	Emergence of atom-light-mirror entanglement inside an optical cavity. Physical Review A, 2008, 77, .	1.0	241
58	Cavity Optomechanics with a Bose-Einstein Condensate. Science, 2008, 322, 235-238.	6.0	502
59	Coupling Nanomechanical Cantilevers to Dipolar Molecules. Physical Review Letters, 2008, 101, 263603.	2.9	34
60	Nanomechanical Resonance Spectroscopy: A Novel Route to Ultrasensitive Label-Free Detection. Nano Letters, 2008, 8, 2648-2652.	4.5	8
61	Steady State Entanglement in the Mechanical Vibrations of Two Dielectric Membranes. Physical Review Letters, 2008, 101, 200503.	2.9	261
62	Cooling Torsional Nanomechanical Vibration by Spin-Orbit Interactions. Communications in Theoretical Physics, 2008, 50, 1457-1460.	1.1	3
63	The optomechanical instability in the quantum regime. New Journal of Physics, 2008, 10, 095013.	1.2	150
64	On the mechanism for optomechanical entanglement and its revelation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 155503.	0.6	5
65	Dispersive optomechanics: a membrane inside a cavity. New Journal of Physics, 2008, 10, 095008.	1.2	331
66	Optomechanical to mechanical entanglement transformation. New Journal of Physics, 2008, 10, 095014.	1.2	33
67	Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New Journal of Physics, 2008, 10, 095009.	1.2	102
68	Cavity-assisted backaction cooling of mechanical resonators. New Journal of Physics, 2008, 10, 095007.	1.2	114
69	Route to ponderomotive entanglement of light via optically trapped mirrors. New Journal of Physics, 2008, 10, 095017.	1.2	30
70	Ground-state cooling of a nanomechanical resonator via a Cooper-pair box qubit. New Journal of Physics, 2008, 10, 095019.	1.2	49
71	Creating and verifying a quantum superposition in a micro-optomechanical system. New Journal of Physics, 2008, 10, 095020.	1.2	116
72	Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New Journal of Physics, 2008, 10, 095010.	1.2	261
73	Quantum limits of photothermal and radiation pressure cooling of a movable mirror. New Journal of Physics, 2008, 10, 095012.	1.2	23

5

#	Article	IF	CITATIONS
74	Cooling of a micro-mechanical resonator by the back-action of Lorentz force. New Journal of Physics, 2008, 10, 043015.	1.2	28
75	Cavity cooling of a nanomechanical resonator by light scattering. New Journal of Physics, 2008, 10, 095006.	1.2	41
76	Radiation-pressure self-cooling of a micromirror in a cryogenic environment. Europhysics Letters, 2008, 81, 54003.	0.7	52
77	Experimental optomechanics with silicon micromirrors. New Journal of Physics, 2008, 10, 125021.	1.2	17
78	Optical self cooling of a deformable Fabry-Perot cavity in the classical limit. Physical Review B, 2008, 78, .	1.1	99
79	Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator. Physical Review B, 2008, 78, .	1.1	54
80	Quantum theory of optomechanical cooling. Journal of Modern Optics, 2008, 55, 3329-3338.	0.6	53
81	Entangling the rovibrational modes of a macroscopic mirror using radiation pressure. Physical Review A, 2008, 77, .	1.0	44
82	Noise thermometry and electron thermometry of a sample-on-cantilever system below 1Kelvin. Applied Physics Letters, 2008, 92, .	1.5	16
83	Self-cooling of a movable mirror to the ground state using radiation pressure. Physical Review A, 2008, 77, .	1.0	47
84	High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators. New Journal of Physics, 2008, 10, 095015.	1.2	123
85	Luminescence upconversion in GaAs quantum wells. Physical Review B, 2008, 77, .	1.1	27
86	Cavity optomechanical coupling assisted by an atomic gas. Physical Review A, 2008, 78, .	1.0	166
87	Three-mode optoacoustic parametric interactions with a coupled cavity. Physical Review A, 2008, 78, .	1.0	10
88	Back-action limit of linewidth in an optomechanical oscillator. Physical Review A, 2008, 78, .	1.0	52
89	Observation of three-mode parametric interactions in long optical cavities. Physical Review A, 2008, 78, .	1.0	33
90	Quantum analysis of a nonlinear microwave cavity-embedded dc SQUID displacement detector. Physical Review B, 2008, 78, .	1.1	34
91	Doppler Optomechanics of a Photonic Crystal. Physical Review Letters, 2008, 100, 240801.	2.9	36

#	Article	IF	CITATIONS
92	Feedback Cooling of the Normal Modes of a Massive Electromechanical System to Submillikelvin Temperature. Physical Review Letters, 2008, 101, 033601.	2.9	56
93	Dynamical Backaction of Microwave Fields on a Nanomechanical Oscillator. Physical Review Letters, 2008, 101, 197203.	2.9	190
94	Mechanical Mode Dependence of Bolometric Backaction in an Atomic Force Microscopy Microlever. Physical Review Letters, 2008, 101, 133904.	2.9	42
95	Lower limit on the achievable temperature in resonator-based sideband cooling. Physical Review B, 2008, 78, .	1.1	46
96	How to silence a one-ton bell. Physics Magazine, 2008, 1, .	0.1	1
97	Radiation-pressure effects upon a micromirror in a high-finesse optical cavity. Proceedings of SPIE, 2008, , .	0.8	1
99	Cavity Optomechanics. , 2009, , .		0
100	Controlling Quality Factor in Micromechanical Resonators by Carrier Excitation. Applied Physics Express, 2009, 2, 035001.	1.1	7
101	Cryogenic properties of optomechanical silica microcavities. Physical Review A, 2009, 80, .	1.0	61
102	Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Physical Review B, 2009, 79, .	1.1	329
103	Reduction and Possible Elimination of Coating Thermal Noise Using a Rigidly Controlled Cavity with a Quantum-Nondemolition Technique. Physical Review Letters, 2009, 102, 230801.	2.9	4
104	Fano-Like Antiresonances in Nanomechanical and Optomechanical Systems. Physical Review Letters, 2009, 102, 067202.	2.9	19
105	Radiation pressure excitation and cooling of a cryogenic micro-mechanical systems cavity. Journal of Applied Physics, 2009, 106, 013108.	1.1	6
106	Photonic Micro-Electromechanical Systems Vibrating at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>X</mml:mi>-band (11-GHz) Rates. Physical Review Letters, 2009, 102. 113601.</mml:math 	2.9	249
107	Cooling Carbon Nanotubes to the Phononic Ground State with a Constant Electron Current. Physical Review Letters, 2009, 102, 096804.	2.9	77
108	Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control. Physical Review A, 2009, 79, .	1.0	67
109	Cavity quantum optomechanics of ultracold atoms in an optical lattice: Normal-mode splitting. Physical Review A, 2009, 80, .	1.0	76
110	Observation of optical torsional stiffness in a high optical power cavity. Applied Physics Letters, 2009, 94, 081105.	1.5	7

#	Article	IF	CITATIONS
111	Cooling a mechanical resonator via coupling to a tunable double quantum dot. Physical Review B, 2009, 79, .	1.1	41
112	Ground state cooling of a nanomechanical resonator via parametric linear coupling. Physical Review B, 2009, 79, .	1.1	37
113	Dynamics of a SQUID ratchet coupled to a nanomechanical resonator. Physical Review B, 2009, 79, .	1.1	8
114	Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors. Physical Review A, 2009, 80, .	1.0	36
115	Transport properties of a superconducting single-electron transistor coupled to a nanomechanical oscillator. Physical Review B, 2009, 79, .	1.1	8
116	Scattering theory of cooling and heating in optomechanical systems. Physical Review A, 2009, 79, .	1.0	49
117	Improving the sensitivity of a torsion pendulum by using an optical spring method. Physical Review A, 2009, 80, .	1.0	8
118	Ground State Cooling of a Nanomechanical Resonator in the Nonresolved Regime via Quantum Interference. Physical Review Letters, 2009, 103, 227203.	2.9	59
119	Scheme to Probe Optomechanical Correlations between Two Optical Beams Down to the Quantum Level. Physical Review Letters, 2009, 102, 103601.	2.9	65
120	Chapter 2 Quantum Effects in Optomechanical Systems. Advances in Atomic, Molecular and Optical Physics, 2009, 57, 33-86.	2.3	159
121	Free-molecular heat transfer of vibrating cantilever and bridges. Physics of Fluids, 2009, 21, 017101.	1.6	10
122	Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light. New Journal of Physics, 2009, 11, 103044.	1.2	119
123	A Monte Carlo method for modeling thermal damping: Beyond the Brownian motion master equation. Europhysics Letters, 2009, 85, 40002.	0.7	3
124	Uncooled infrared and terahertz detectors based on micromechanical mirror as a radiation pressure sensor. Proceedings of SPIE, 2009, , .	0.8	2
125	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	1.2	123
126	Dynamical coupling between a Bose–Einstein condensate andÂaÂcavity optical lattice. Applied Physics B: Lasers and Optics, 2009, 95, 213-218.	1.1	90
127	How to extend quantum experiments. Fortschritte Der Physik, 2009, 57, 1153-1162.	1.5	7
128	A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature, 2009, 459, 550-555.	13.7	625

#	Article	IF	CITATIONS
129	Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature, 2009, 460, 724-727.	13.7	848
130	Coupled vibrations. Nature, 2009, 459, 923-924.	13.7	0
131	Static and dynamic wavelength routing via the gradient optical force. Nature Photonics, 2009, 3, 478-483.	15.6	169
132	Optomechanics of deformable optical cavities. Nature Photonics, 2009, 3, 201-205.	15.6	333
133	Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature Physics, 2009, 5, 485-488.	6.5	304
134	Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Physics, 2009, 5, 489-493.	6.5	263
135	Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Physics, 2009, 5, 509-514.	6.5	383
136	Room for one more. Nature Physics, 2009, 5, 460-461.	6.5	1
137	Photons refrigerating phonons. Nature Physics, 2009, 5, 458-460.	6.5	28
138	Near-field cavity optomechanics with nanomechanical oscillators. Nature Physics, 2009, 5, 909-914.	6.5	430
139	Fundamental metrology in the future: Measuring the single quantum. European Physical Journal: Special Topics, 2009, 172, 399-408.	1.2	3
140	Feedback-controlled nonresonant laser cooling. Laser Physics, 2009, 19, 752-761.	0.6	1
141	Establishing Einstein-Poldosky-Rosen Channels between Nanomechanics and Atomic Ensembles. Physical Review Letters, 2009, 102, 020501.	2.9	155
142	Optical and mechanical design of a "zipper―photonic crystal optomechanical cavity. Optics Express, 2009, 17, 3802.	1.7	141
143	Fluctuating nanomechanical system in a high finesse optical microcavity. Optics Express, 2009, 17, 12813.	1.7	64
144	Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity. Optics Express, 2009, 17, 15726.	1.7	27
145	Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals. Optics Express, 2009, 17, 20078.	1.7	81
146	High-Q double-disk microcavities for cavity optomechanics. Optics Express, 2009, 17, 20911.	1.7	77

#	Article	IF	CITATIONS
147	Enhancement of cavity cooling of a micromechanical mirror using parametric interactions. Physical Review A, 2009, 79, .	1.0	130
148	Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems. Physical Review A, 2009, 80, .	1.0	84
149	Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity. Physical Review A, 2009, 80, .	1.0	127
150	Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions. Physical Review A, 2009, 79, .	1.0	24
151	Cavity-assisted squeezing of a mechanical oscillator. Physical Review A, 2009, 79, .	1.0	178
152	Mechanical Oscillation and Cooling Actuated by the Optical Gradient Force. Physical Review Letters, 2009, 103, 103601.	2.9	158
153	Gently Modulating Optomechanical Systems. Physical Review Letters, 2009, 103, 213603.	2.9	271
155	Hybrid quantum devices and quantum engineering. Physica Scripta, 2009, T137, 014001.	1.2	243
156	kg-mass prototype demonstrator for dual gravitational wave detector: Optomechanical excitation and cooling. Physical Review D, 2009, 80, .	1.6	2
157	Coating thermal noise of a finite-size cylindrical mirror. Physical Review D, 2009, 79, .	1.6	19
158	Standard Quantum Limit for Probing Mechanical Energy Quantization. Physical Review Letters, 2009, 103, 100402.	2.9	88
159	Three-Mode Optoacoustic Parametric Amplifier: A Tool for Macroscopic Quantum Experiments. Physical Review Letters, 2009, 102, 243902.	2.9	41
160	Optomechanics. Physics Magazine, 0, 2, .	0.1	681
161	Optomechanical correlations and signal self-amplification in interferometric measurements. Journal of Physics: Conference Series, 2010, 228, 012024.	0.3	0
162	Feedback Cooling of a Strained GaAs Micromechanical Beam Resonator. Applied Physics Express, 2010, 3, 065201.	1.1	6
163	Optical Micromechanical Amplification and Damping in a Waveguide Microcavity. , 2010, , .		1
164	Optomechanical control of atoms and molecules. Laser Physics, 2010, 20, 57-67.	0.6	6
165	Spin optodynamics analog of cavity optomechanics. Physical Review A, 2010, 82, .	1.0	35

#	Article	IF	CITATIONS
166	Introduction to quantum noise, measurement, and amplification. Reviews of Modern Physics, 2010, 82, 1155-1208.	16.4	1,291
167	Ground-state-cooling vibrations of suspended carbon nanotubes with constant electron current. Physical Review B, 2010, 81, .	1.1	23
168	Strong optomechanical interaction in a bilayer photonic crystal. Physical Review B, 2010, 81, .	1.1	47
169	Laser chemical processing: an overview to the 30th anniversary. Applied Physics A: Materials Science and Processing, 2010, 101, 447-459.	1.1	20
170	An Optomechanical Oscillator on a Silicon Chip. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 276-287.	1.9	68
171	Control of micro-cantilever using passive optical feedback for force microscopy. Sensors and Actuators A: Physical, 2010, 163, 533-536.	2.0	4
172	Dynamics of a bistable Mott insulator to superfluid phase transition in cavity optomechanics. Optics Communications, 2010, 283, 665-670.	1.0	5
173	Physics at the FMQT'08 conference. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 207-227.	1.3	1
174	Quantum ground state and single-phonon control of a mechanical resonator. Nature, 2010, 464, 697-703.	13.7	1,677
175	Coherent mixing of mechanical excitations in nano-optomechanical structures. Nature Photonics, 2010, 4, 236-242.	15.6	237
176	Optomechanical device actuation through the optical gradient force. Nature Photonics, 2010, 4, 211-217.	15.6	295
177	Back-action-evading measurements of nanomechanical motion. Nature Physics, 2010, 6, 213-217.	6.5	197
178	A quantum spin transducer based on nanoelectromechanical resonator arrays. Nature Physics, 2010, 6, 602-608.	6.5	346
179	Mirror finish. Nature Materials, 2010, 9, S20-S20.	13.3	2
180	Optomechanical Cooling with Generalized Interferometers. Physical Review Letters, 2010, 105, 013602.	2.9	22
181	Achieving ground state and enhancing optomechanical entanglement by recovering information. New Journal of Physics, 2010, 12, 083032.	1.2	24
182	Femtosecond laser fabrication of high reflectivity micromirrors. Applied Physics Letters, 2010, 97, .	1.5	17
183	A micromechanical resonator to reach the quantum regime. , 2010, , .		4

#	Article	IF	CITATIONS
184	Optical lattices with micromechanical mirrors. Physical Review A, 2010, 82, .	1.0	57
185	Universal quantum entanglement between an oscillator and continuous fields. Physical Review A, 2010, 81, .	1.0	23
186	Atomic probe Wigner tomography of a nanomechanical system. Physical Review A, 2010, 81, .	1.0	31
187	Hamiltonian chaos in a coupled BEC–optomechanical-cavity system. Physical Review A, 2010, 81, .	1.0	83
188	Probing macroscopic quantum states with a sub-Heisenberg accuracy. Physical Review A, 2010, 81, .	1.0	38
189	Tunable Backaction of a DC SQUID on an Integrated Micromechanical Resonator. Physical Review Letters, 2010, 105, 207203.	2.9	28
190	Tunable Cavity Optomechanics with Ultracold Atoms. Physical Review Letters, 2010, 105, 133602.	2.9	213
191	Coherent Scattering of a Multiphoton Quantum Superposition by a Mirror BEC. Physical Review Letters, 2010, 104, 050403.	2.9	10
192	Amplitude Noise Suppression in Cavity-Driven Oscillations of a Mechanical Resonator. Physical Review Letters, 2010, 104, 053601.	2.9	57
193	Experimental Feedback Control of Quantum Systems Using Weak Measurements. Physical Review Letters, 2010, 104, 080503.	2.9	120
194	Observability of radiation-pressure shot noise in optomechanical systems. Physical Review A, 2010, 82, .	1.0	34
195	Cold-Atom-Induced Control of an Optomechanical Device. Physical Review Letters, 2010, 104, 243602.	2.9	56
196	Cavity nano-optomechanics: a nanomechanical system in a high finesse optical cavity. Proceedings of SPIE, 2010, , .	0.8	5
197	Optomechanics of ultracold atomic gases. Physica Scripta, 2010, 82, 038111.	1.2	32
198	Quantum noise reduction using a cavity with a Bose–Einstein condensate. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 205301.	0.6	29
199	Cavity quantum electro-optics. Physical Review A, 2010, 81, .	1.0	131
200	Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators. Physical Review A, 2010, 82, .	1.0	140
201	Strong Gate Coupling of High- <i>Q</i> Nanomechanical Resonators. Nano Letters, 2010, 10, 4884-4889.	4.5	44

#	Article	IF	CITATIONS
202	Dynamics of a movable micromirror in a nonlinear optical cavity. Physical Review A, 2010, 81, .	1.0	71
203	Optomechanically Induced Transparency. Science, 2010, 330, 1520-1523.	6.0	1,350
204	Strong nonlinear coupling between an ultracold atomic ensemble and a nanomechanical oscillator. Optics Express, 2010, 18, 23016.	1.7	4
205	Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Optics Express, 2010, 18, 23236.	1.7	137
206	Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities. Optics Express, 2010, 18, 23844.	1.7	53
207	Coupling-rate determination based on radiation-pressure-induced normal mode splitting in cavity optomechanical systems. Optics Letters, 2010, 35, 339.	1.7	34
208	Quantum optomechanics—throwing a glance [Invited]. Journal of the Optical Society of America B: Optical Physics, 2010, 27, A189.	0.9	247
209	Classical dynamics of the optomechanical modes of a Bose-Einstein condensate in a ring cavity. Physical Review A, 2010, 81, .	1.0	25
210	Classical Signature of Ponderomotive Squeezing in a Suspended Mirror Resonator. Physical Review Letters, 2010, 104, 073601.	2.9	39
211	Backaction Amplification and Quantum Limits in Optomechanical Measurements. Physical Review Letters, 2010, 104, 133602.	2.9	88
212	Cavity Optomechanics with Whispering-Gallery Mode Optical Micro-Resonators. Advances in Atomic, Molecular and Optical Physics, 2010, 58, 207-323.	2.3	84
213	Megahertz monocrystalline optomechanical resonators with minimal dissipation. , 2010, , .		9
214	Current status of the dynamical Casimir effect. Physica Scripta, 2010, 82, 038105.	1.2	230
215	A micro-resonator for fundamental physics experiments and its possible interest for time and frequency applications. , 2011, , .		4
216	Entanglement generated in a nanomechanical oscillator system. Journal of Modern Optics, 2011, 58, 839-844.	0.6	2
217	Quantum dynamics of an optical cavity coupled to a thin semitransparent membrane: Effect of membrane absorption. Physical Review A, 2011, 84, .	1.0	46
218	Partitioning of the Linear Photon Momentum in Multiphoton Ionization. Physical Review Letters, 2011, 106, 193002.	2.9	150
219	Storing Optical Information as a Mechanical Excitation in a Silica Optomechanical Resonator. Physical Review Letters, 2011, 107, 133601.	2.9	301

#	ARTICLE	IF	CITATIONS
220	Cooling of a mirror in cavity optomechanics with a chirped pulse. Physical Review A, 2011, 84, .	1.0	53
221	Slowing and stopping light using an optomechanical crystal array. New Journal of Physics, 2011, 13, 023003.	1.2	247
222	Single-Photon Optomechanics. Physical Review Letters, 2011, 107, 063602.	2.9	408
223	Probing mechanical quantum coherence with an ultracold-atom meter. Physical Review A, 2011, 84, .	1.0	3
224	Optomechanical Cavity Cooling of an Atomic Ensemble. Physical Review Letters, 2011, 107, 143005.	2.9	78
225	Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nature Communications, 2011, 2, 403.	5.8	171
226	Multicolor quadripartite entanglement from an optomechanical cavity. Physical Review A, 2011, 84, .	1.0	25
227	Hybrid methods for witnessing entanglement in a microscopic-macroscopic system. Physical Review A, 2011, 84, .	1.0	23
228	Dynamics of coupled multimode and hybrid optomechanical systems. Comptes Rendus Physique, 2011, 12, 837-847.	0.3	17
229	Towards the experimental demonstration of quantum radiation pressure noise. Comptes Rendus Physique, 2011, 12, 826-836.	0.3	11
230	Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling. Comptes Rendus Physique, 2011, 12, 800-816.	0.3	23
231	Nanosecond-Laser Ablation. , 2011, , 237-278.		5
232	Bonding, antibonding and tunable optical forces in asymmetric membranes. Optics Express, 2011, 19, 2225.	1.7	24
233	Electrostatic actuation of silicon optomechanical resonators. Optics Express, 2011, 19, 9020.	1.7	43
234	Integrated waveguide-DBR microcavity opto-mechanical system. Optics Express, 2011, 19, 21904.	1.7	32
235	A chip-scale integrated cavity-electro-optomechanics platform. Optics Express, 2011, 19, 24905.	1.7	93
236	The gentle cooling touch of light. Nature, 2011, 478, 47-48.	13.7	4
237	Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478, 89-92.	13.7	1,866

TION

#	Article	IF	CITATIONS
238	An Introduction to Quantum Optomechanics. Acta Physica Slovaca, 2011, 61, .	1.4	56
239	Efficient optomechanical cooling in one-dimensional interferometers. Proceedings of SPIE, 2011, , .	0.8	0
240	IR photodetector based on an optically cooled micromirror as a light pressure sensor. Proceedings of SPIE, 2011, , .	0.8	0
241	Mechanically Compliant High Contrast Grating Mirrors for Radiation Pressure Cooling. , 2011, , .		0
242	Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Physics, 2011, 7, 527-530.	6.5	456
243	A theoretical multi-reflection method for analysis of optomechanical behavior of the Fabry–Perot cavity with moving boundary condition. Optics Communications, 2011, 284, 4789-4794.	1.0	4
244	Macroscopic quantum tunneling in nanoelectromechanical systems. Physical Review B, 2011, 84, .	1.1	13
245	Fast ground-state cooling of mechanical resonators with time-dependent optical cavities. Physical Review A, 2011, 83, .	1.0	113
246	Optomechanical systems and quantum computing. Russian Microelectronics, 2011, 40, 333-342.	0.1	7
247	Optically-driven cooling for collective atomic excitations. European Physical Journal D, 2011, 61, 215-220.	0.6	8
248	Entangling Macroscopic Diamonds at Room Temperature. Science, 2011, 334, 1253-1256.	6.0	299
249	Cavity optomechanics with cold atomic gas. Frontiers of Physics, 2011, 6, 237-250.	2.4	11
250	Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors. Laser and Photonics Reviews, 2011, 5, 677-696.	4.4	67
251	Effects of tensile stress on the resonant response of Al thin-film and Al-CNT nanolaminate nanomechanical beam resonators. Current Applied Physics, 2011, 11, 746-749.	1.1	6
252	Effect of higher-order waves in parametric oscillatory instability in optical cavities. Physica Scripta, 2011, 83, 045401.	1.2	3
253	Phonon-phonon entanglement in a coupled optomechanical system. , 2011, , .		0
254	Directly Estimating Nonclassicality. Physical Review Letters, 2011, 106, 010403.	2.9	75
255	Forced and self-excited oscillations of an optomechanical cavity. Physical Review E, 2011, 84, 046605.	0.8	67

		CITATION REPORT		
#	Article		IF	CITATIONS
256	Optomechanical entanglement in the presence of laser phase noise. Physical Review A	, 2011, 84, .	1.0	27
257	Quantum-mechanical theory of optomechanical Brillouin cooling. Physical Review A, 20	011, 84, .	1.0	21
258	Quantum optomechanics in the bistable regime. Physical Review A, 2011, 84, .		1.0	79
259	Effect of phase noise on the generation of stationary entanglement in cavity optomecl Review A, 2011, 84, .	nanics. Physical	1.0	62
260	Back-action ground-state cooling of a micromechanical membrane via intensity-depend Physical Review A, 2011, 84, .	lent interaction.	1.0	29
261	Active feedback cooling of massive electromechanical quartz resonators. Physical Revi	ew A, 2011, 84, .	1.0	9
262	Optomechanical sideband cooling of a micromechanical oscillator close to the quantus state. Physical Review A, 2011, 83, .	m ground	1.0	148
263	Distributing fully optomechanical quantum correlations. Physical Review A, 2011, 83, .		1.0	56
264	Parametric generation of quadrature squeezing of mirrors in cavity optomechanics. Ph A, 2011, 83, .	ysical Review	1.0	124
265	Quantum noise in photothermal cooling. Physical Review A, 2011, 83, .		1.0	48
266	Multistability in an optomechanical system with a two-component Bose-Einstein conde Review A, 2011, 83, .	ensate. Physical	1.0	34
267	Three-dimensional cooling and detection of a nanosphere with a single cavity. Physical 83, .	Review A, 2011,	1.0	55
268	A micropillar for cavity optomechanics. Applied Physics Letters, 2011, 99, 121103.		1.5	23
269	Carrier-mediated optomechanical coupling in GaAs cantilevers. Physical Review B, 201	1, 84, .	1.1	7
270	Nondeterministic ultrafast ground-state cooling of a mechanical resonator. Physical Re 84, .	view B, 2011,	1.1	55
271	Macrorealism inequality for optoelectromechanical systems. Physical Review B, 2011, a	84, .	1.1	42
272	Electromagnetically induced transparency with quantized fields in optocavity mechani Review A, 2011, 83, .	cs. Physical	1.0	74
273	Ultraefficient Cooling of Resonators: Beating Sideband Cooling with Quantum Control Review Letters, 2011, 107, 177204.	. Physical	2.9	98

#	Article	IF	CITATIONS
274	Proposal for Entangling Remote Micromechanical Oscillators via Optical Measurements. Physical Review Letters, 2011, 107, 123601.	2.9	92
275	Vibration Amplification, Damping, and Self-Oscillations in Micromechanical Resonators Induced by Optomechanical Coupling through Carrier Excitation. Physical Review Letters, 2011, 106, 036801.	2.9	51
276	Cavity cooling of a mechanical resonator in the presence of a two-level-system defect. Physical Review B, 2011, 84, .	1.1	25
277	Q-factor control of a microcantilever by mechanical sideband excitation. Applied Physics Letters, 2011, 99, .	1.5	59
278	"Negative―Backaction Noise in Interferometric Detection of a Microlever. Physical Review Letters, 2011, 107, 050801.	2.9	4
279	Cooling a nanomechanical resonator by a triple quantum dot. Europhysics Letters, 2011, 95, 40003.	0.7	19
280	Quantum nondemolition measurements of a flux qubit coupled to a noisy detector. Chinese Physics B, 2011, 20, 080307.	0.7	2
281	Electromagnetically Induced Transparency in an Optomechanical System. Chinese Physics Letters, 2011, 28, 104203.	1.3	8
282	Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator. Chinese Physics B, 2011, 20, 124203.	0.7	4
283	Optoelectronic cooling of mechanical modes in a semiconductor nanomembrane. , 2011, , .		0
284	Generation of motional nonlinear coherent states and their superpositions via an intensity-dependent coupling of a cavity field to a micromechanical membrane. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 105504.	0.6	13
285	Remote actuation of a mechanical resonator. Applied Physics Letters, 2011, 99, 103105.	1.5	1
286	Acoustic whispering-gallery modes in optomechanical shells. New Journal of Physics, 2012, 14, 115026.	1.2	21
287	Driven optomechanical systems for mechanical entanglement distribution. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 154010.	0.6	9
288	Optomechanical quantum-state transfer beyond one-to-one interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 185503.	0.6	1
289	Continuous mode cooling and phonon routers for phononic quantum networks. New Journal of Physics, 2012, 14, 115004.	1.2	143
290	Optically pumped coherent mechanical oscillators: the laser rate equation theory and experimental verification. New Journal of Physics, 2012, 14, 105022.	1.2	14
291	Simultaneous radiation pressure induced heating and cooling of an opto-mechanical resonator. Applied Physics Letters, 2012, 100, 111115.	1.5	6

#	ARTICLE Casimir force measurements in Au-Au and Au-Si cavities at low temperature. Physical Review B, 2012, 85,	IF	CITATIONS
292 293	Advantages of Coherent Feedback for Cooling Quantum Oscillators. Physical Review Letters, 2012, 109,	1.1 2.9	31
	173602. Optomechanical effects in self-organization of a Bose–Einstein condensate in an optical cavity.		
294	Canadian Journal of Physics, 2012, 90, 1223-1231.	0.4	4
295	Improving the optomechanical entanglement and cooling by photothermal force. Physical Review A, 2012, 85, .	1.0	8
296	Feedback-enhanced sensitivity in optomechanics: Surpassing the parametric instability barrier. Physical Review A, 2012, 85, .	1.0	24
297	Controllable nonlinear effects in an optomechanical resonator containing a quantum well. Physical Review A, 2012, 85, .	1.0	98
298	Quantum theory of longitudinal momentum transfer in above-threshold ionization. Physical Review A, 2012, 85, .	1.0	50
299	Two-particle dark-state cooling of a nanomechanical resonator. Physical Review A, 2012, 85, .	1.0	11
300	Optomechanical cooling of levitated spheres with doubly resonant fields. Physical Review A, 2012, 85, .	1.0	40
301	Linear amplifier model for optomechanical systems. Physical Review A, 2012, 85, .	1.0	33
302	Quantum Magnetomechanics: Ultrahigh- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi>-Levitated Mechanical Oscillators. Physical Review Letters, 2012, 109, 147206.</mml:math 	2.9	49
303	Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating. Journal of Applied Physics, 2012, 111, .	1.1	13
304	Optomechanical Quantum Information Processing with Photons and Phonons. Physical Review Letters, 2012, 109, 013603.	2.9	374
305	Optomechanical photoabsorption spectroscopy of exciton states in GaAs. Applied Physics Letters, 2012, 101, 082107.	1.5	10
306	All-Electrical Control of the Photon-Charge-Qubit Interfaces for Quantum Networks. Journal of the Physical Society of Japan, 2012, 81, 104001.	0.7	1
307	Optomechanical entanglement in a whispering-gallery cavity. Chinese Physics B, 2012, 21, 030303.	0.7	6
308	Optomechanical sideband cooling of a thin membrane within a cavity. New Journal of Physics, 2012, 14, 095015.	1.2	49
309	Feedback Control in Quantum Optics: An Overview of Experimental Breakthroughs and Areas of Application. , 2012, 2012, 1-15.		30

#	Article	IF	Citations
310	Physics at the FQMT'11 conference. Physica Scripta, 2012, T151, 014001.	1.2	1
311	Opto-Mechanical Effects in Superradiant Light Scattering by Bose—Einstein Condensate in an Optical Cavity. Communications in Theoretical Physics, 2012, 58, 840-846.	1.1	2
312	Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature. Nature Communications, 2012, 3, 728.	5.8	71
313	Cavity optomechanics with low-noise crystalline mirrors. , 2012, , .		32
314	Exploring the Cooling Limit of Quantum Mechanical Oscillators via Optimization. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 236-241.	0.4	0
315	Photonic crystals, resonators, and cavity optomechanics. , 0, , 338-368.		1
316	Subkelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle. Physical Review Letters, 2012, 109, 103603.	2.9	461
317	Theory of control of optomechanical transducers for quantum networks. Physical Review A, 2012, 85,	1.0	5
318	Optical multistability and cooling of a micromechanical mirror induced by radiation pressure in optomechanical cavity. Optik, 2012, 123, 1965-1970.	1.4	1
319	Cavity optomechanics with a Bose–Einstein condensate: normal mode splitting. Journal of Modern Optics, 2012, 59, 917-922.	0.6	13
320	Electromechanically induced absorption in a circuit nano-electromechanical system. New Journal of Physics, 2012, 14, 123037.	1.2	60
321	Macroscopic quantum resonators (MAQRO). Experimental Astronomy, 2012, 34, 123-164.	1.6	74
322	Opto- and electro-mechanical entanglement improved by modulation. New Journal of Physics, 2012, 14, 075014.	1.2	56
323	Engineering entanglement mechanically. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2608-2612.	0.9	19
324	Qubit-assisted thermometry of a quantum harmonic oscillator. Physical Review A, 2012, 86, .	1.0	64
325	Quantum optomechanics of a multimode system coupled via a photothermal and a radiation pressure force. Physical Review A, 2012, 86, .	1.0	14
326	Photon-phonon entanglement in coupled optomechanical arrays. Physical Review A, 2012, 86, .	1.0	66
327	Multichannel cavity optomechanics for all-optical amplification of radio frequency signals. Nature Communications, 2012, 3, 1091.	5.8	46

#	Article	IF	Citations
328	Enhanced entanglement between a movable mirror and a cavity field assisted by two-level atoms. Journal of Applied Physics, 2012, 111, .	1.1	21
329	Optical cavity cooling of mechanical modes of a semiconductor nanomembrane. Nature Physics, 2012, 8, 168-172.	6.5	79
330	Cavity-Assisted Quantum Bath Engineering. Physical Review Letters, 2012, 109, 183602.	2.9	180
331	Decoherence suppression by cavity optomechanical cooling. Comptes Rendus Physique, 2012, 13, 454-469.	0.3	4
332	Cavity-mediated stationary atom–mirror entanglement in the presence of photothermal effects. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2955-2961.	0.9	3
333	A scheme for detecting the atom-field coupling constant in the Dicke superradiation regime using hybrid cavity optomechanical system. Optics Express, 2012, 20, 10106.	1.7	5
334	Near threshold all-optical backaction amplifier. Applied Physics Letters, 2012, 100, 201101.	1.5	8
335	Photothermal Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems. Nano Letters, 2012, 12, 4681-4686.	4.5	166
336	Observation of spontaneous Brillouin cooling. Nature Physics, 2012, 8, 203-207.	6.5	193
337	Photon and acoustic phonon coupling in phoxonic crystals. Proceedings of SPIE, 2012, , .	0.8	2
338	Cooling by Heating: Very Hot Thermal Light Can Significantly Cool Quantum Systems. Physical Review Letters, 2012, 108, 120602.	2.9	115
339	Observation of Brillouin Cooling. , 2012, , .		0
340	Macroscopic mechanical correlations using single-photon spatial compass state and operational Wigner distribution. Physical Review A, 2012, 85, .	1.0	0
341	Master-equation approach to optomechanics with arbitrary dielectrics. Physical Review A, 2012, 86, .	1.0	40
342	Laser-Rate-Equation Description of Optomechanical Oscillators. Physical Review Letters, 2012, 108, 223904.	2.9	52
343	Nonlinear dynamics of a microelectromechanical mirror in an optical resonance cavity. Nonlinear Dynamics, 2012, 69, 1589-1610.	2.7	35
344	Optomechanical coupling between two optical cavities: Cooling of a micro-mirror and parametric normal mode splitting. Optics Communications, 2012, 285, 300-306.	1.0	7
345	Optomechanical dynamics in detuned whispering-gallery modes cavity. Optics Communications, 2012, 285, 673-679.	1.0	1

# 346	ARTICLE Mechanical systems in the quantum regime. Physics Reports, 2012, 511, 273-335.	IF 10.3	Citations 398
347	Phase-space behavior and conditional dynamics of an optomechanical system. Physical Review A, 2013, 88, .	1.0	1
348	Generation of macroscopic quantum superpositions of optomechanical oscillators by dissipation. Physical Review A, 2013, 88, .	1.0	62
349	Nonclassicality of optomechanical devices in experimentally realistic operating regimes. Physical Review A, 2013, 88, .	1.0	19
350	Achieving the quantum ground state of a mechanical oscillator using a Bose–Einstein condensate with back-action and cold damping feedback schemes. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 085301.	0.6	25
351	Robust entanglement between a movable mirror and a cavity field system with an optical parametric amplifier. European Physical Journal D, 2013, 67, 1.	0.6	14
352	Generation of Three-Partite Macroscopic Entanglement in a Ring Cavity. International Journal of Theoretical Physics, 2013, 52, 2607-2614.	0.5	0
353	Entangled-state engineering of vibrational modes in a multimembrane optomechanical system. Physical Review A, 2013, 88, .	1.0	68
354	Parametric Down-Conversion and Polariton Pair Generation in Optomechanical Systems. Physical Review Letters, 2013, 111, 083601.	2.9	69
355	New quantum optomechanical scheme. JETP Letters, 2013, 97, 307-310.	0.4	0
356	Threshold behavior and operating regimes of an optically driven phonon laser: Semiclassical theory. Physical Review B, 2013, 88, .	1.1	17
357	Controllability of optical bistability, cooling and entanglement in hybrid cavity optomechanical systems by nonlinear atom–atom interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 235502.	0.6	41
358	Analysis of laser power threshold for self oscillation in thermo-optically excited doubly supported MEMS beams. International Journal of Non-Linear Mechanics, 2013, 57, 10-15.	1.4	7
359	Scattering-Free Optical Levitation of a Cavity Mirror. Physical Review Letters, 2013, 111, 183001.	2.9	39
360	Squeezed light from a silicon micromechanical resonator. Nature, 2013, 500, 185-189.	13.7	458
361	On the developments and applications of optical microcavities: an overview. Science China Information Sciences, 2013, 56, 1-15.	2.7	3
362	Genuine quadripartite macroscopic entanglement generated in two-mode optomechanical systems. Applied Physics B: Lasers and Optics, 2013, 112, 485-489.	1.1	4
363	Macroscopic quantum mechanics: theory and experimental concepts of optomechanics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 104001.	0.6	195

#	Article	IF	CITATIONS
364	Mapping out tractor beams: topological angular momentum and reduced axial flux; gradient versus non-conservative forces. , 2013, , .		0
365	Electromagnetically induced transparency and quadripartite macroscopic entanglement generated in a ring cavity. Chinese Physics B, 2013, 22, 024204.	0.7	10
366	Phase noise measurement of external cavity diode lasers and implications for optomechanical sideband cooling of GHz mechanical modes. New Journal of Physics, 2013, 15, 015019.	1.2	23
367	Ground-state cooling of a mechanical oscillator and detection of a weak force using a Bose-Einstein condensate. Physical Review A, 2013, 87, .	1.0	41
368	Coherent controllers for optical-feedback cooling of quantum oscillators. Physical Review A, 2013, 87, .	1.0	42
369	Millikelvin Cooling of an Optically Trapped Microsphere in Vacuum. Springer Theses, 2013, , 81-110.	0.0	10
370	MIRROR-MEDIATED COOLING: A PARADIGM FOR PARTICLE COOLING VIA THE RETARDED DIPOLE FORCE. Annual Review of Cold Atoms and Molecules, 2013, , 351-376.	2.8	1
371	Dicke–Hepp–Lieb superradiant phase transition and independent modes model in quantum optomechanics. Optik, 2013, 124, 5267-5270.	1.4	1
372	A general procedure for thermomechanical calibration of nano/micro-mechanical resonators. Annals of Physics, 2013, 339, 181-207.	1.0	121
373	Optomechanical effects in superfluid properties of BEC in an optical lattice. Open Physics, 2013, 11, .	0.8	0
374	Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nature Physics, 2013, 9, 179-184.	6.5	150
375	Selectable linear or quadratic coupling in an optomechanical system. Physical Review A, 2013, 87, .	1.0	35
376	Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Physical Review A, 2013, 87, .	1.0	60
377	Photon-induced tunneling in optomechanical systems. Physical Review A, 2013, 87, .	1.0	91
378	Single-photon nonlinearities in two-mode optomechanics. Physical Review A, 2013, 87, .	1.0	146
379	Dissipation-driven two-mode mechanical squeezed states in optomechanical systems. Physical Review A, 2013, 87, .	1.0	151
380	Models of wave-function collapse, underlying theories, and experimental tests. Reviews of Modern Physics, 2013, 85, 471-527.	16.4	775
381	Cold atoms in cavity-generated dynamical optical potentials. Reviews of Modern Physics, 2013, 85, 553-601.	16.4	664

#	Article	IF	CITATIONS
382	Microwave probe for intrinsic parameters in a hybrid spin-nanoresonator system. Journal of Applied Physics, 2013, 113, 124306.	1.1	1
383	Achieving steady-state entanglement of remote micromechanical oscillators by cascaded cavity coupling. Physical Review A, 2013, 87, .	1.0	44
384	A short walk through quantum optomechanics. Annalen Der Physik, 2013, 525, 215-233.	0.9	349
385	Coulomb effects in photon-momentum partitioning during atomic ionization by intense linearly polarized light. Physical Review A, 2013, 87, .	1.0	29
386	Entanglement in a Tripartite Cavity-Optomechanical System. International Journal of Theoretical Physics, 2013, 52, 706-715.	0.5	23
387	Effect of Phase Noise on the Stationary Entanglement of an Optomechanical System with Kerr Medium. Chinese Physics Letters, 2013, 30, 024213.	1.3	10
388	Gain-tunable optomechanical cooling in a laser cavity. Physical Review A, 2013, 87, .	1.0	14
389	Optomechanical Cavity With a Buckled Mirror. Journal of Microelectromechanical Systems, 2013, 22, 430-437.	1.7	16
390	Optomechanical effect on the Dicke quantum phase transition and quasi-particle damping in a Bose–Einstein condensate: a new tool to measure weak force. Journal of Modern Optics, 2013, 60, 1263-1272.	0.6	8
391	Entrainment of Micromechanical Limit Cycle Oscillators in the Presence of Frequency Instability. Journal of Microelectromechanical Systems, 2013, 22, 835-845.	1.7	13
392	Multiple limit cycles in laser interference transduced resonators. International Journal of Non-Linear Mechanics, 2013, 52, 119-126.	1.4	10
393	Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment. Journal of Optics (United Kingdom), 2013, 15, 025704.	1.0	47
394	Review of cavity optomechanical cooling. Chinese Physics B, 2013, 22, 114213.	0.7	104
395	Cryogenic measurements of mechanical loss of high-reflectivity coating and estimation of thermal noise. Optics Letters, 2013, 38, 5268.	1.7	31
396	Effects of optical parametric amplifier pump phase noise on the cooling of optomechanical resonators. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1898.	0.9	21
397	Dynamics of levitated nanospheres: towards the strong coupling regime. New Journal of Physics, 2013, 15, 015001.	1.2	45
398	Laser noise in cavity-optomechanical cooling and thermometry. New Journal of Physics, 2013, 15, 035007.	1.2	76
399	Driving a mechanical resonator into coherent states via random measurements. Journal of Physics A:	0.7	1

#	Article	IF	CITATIONS
400	Antibunching photons in a cavity coupled to an optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 035502.	0.6	91
401	SINGLE PHOTON REFLECTION AND TRANSMISSION IN OPTOMECHANICAL SYSTEM. International Journal of Quantum Information, 2013, 11, 1350017.	0.6	4
402	Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics. Physical Review Letters, 2013, 110, 153606.	2.9	203
403	Tunable Coupling to a Mechanical Oscillator Circuit Using a Coherent Feedback Network. Physical Review X, 2013, 3, .	2.8	40
404	Anomalous dynamic backaction in interferometers. Physical Review A, 2013, 88, .	1.0	35
405	Dynamics of a levitated nanosphere by optomechanical coupling and Casimir interaction. Physical Review A, 2013, 88, .	1.0	23
407	Enhanced cooling of micromechanical oscillator in the atom-assisted optomechanical cavity. International Journal of Quantum Information, 2014, 12, 1450005.	0.6	3
408	Dynamical Casimir effect in superradiant light scattering by Bose—Einstein condensate in an optomechanical cavity. Chinese Physics B, 2014, 23, 020315.	0.7	7
409	Selective entanglement in a two-mode optomechanical system. International Journal of Quantum Information, 2014, 12, 1450024.	0.6	12
410	Electromagnetically induced transparency in a three-mode optomechanical system. Chinese Physics B, 2014, 23, 114201.	0.7	8
411	Temperature dependence of the photothermal laser cooling efficiency for a micro-cantilever. Chinese Physics B, 2014, 23, 107801.	0.7	4
412	Cavity optomechanics. Reviews of Modern Physics, 2014, 86, 1391-1452.	16.4	4,064
413	Introduction to Microwave Cavity Optomechanics. , 2014, , 233-252.		2
414	Nonclassical States of Light and Mechanics. , 2014, , 25-56.		8
415	Suspended Mirrors: From Test Masses to Micromechanics. , 2014, , 57-81.		0
416	Brillouin Optomechanics. , 2014, , 157-168.		0
417	Cavity Optomechanics with Cold Atoms. , 2014, , 283-325.		8
418	Cooling the centre-of-mass motion of a silica microsphere. , 2014, , .		3

#	Article	IF	CITATIONS
419	Heat transfer between micro- and nano-mechanical systems through optical channels. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1525.	0.9	3
420	Aerostatically tunable optomechanical oscillators. Optics Express, 2014, 22, 1267.	1.7	36
421	Superradiance and collective gain in multimode optomechanics. Physical Review A, 2014, 90, .	1.0	30
422	Optomechanics with Cavity Polaritons: Dissipative Coupling and Unconventional Bistability. Physical Review Letters, 2014, 112, 076402.	2.9	77
423	Detection of weak stochastic forces in a parametrically stabilized micro-optomechanical system. Physical Review A, 2014, 89, .	1.0	28
424	Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation. Physical Review A, 2014, 90, .	1.0	11
425	Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Physical Review A, 2014, 90, .	1.0	149
426	Applications of cavity optomechanics. Applied Physics Reviews, 2014, 1, 031105.	5.5	192
427	Steady-state entanglement of spatially separated qubits via quantum bath engineering. Physical Review A, 2014, 90, .	1.0	56
428	Phase Space Distribution Near the Self-Excited Oscillation Threshold. Physical Review Letters, 2014, 112, .	2.9	7
429	Thermodynamic cycle in a cavity optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 135502.	0.6	6
430	Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators. Applied Optics, 2014, 53, 841.	0.9	3
431	Cavity Optomechanics with Whispering-Gallery-Mode Microresonators. , 2014, , 121-148.		6
432	Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 2014, 3, 413-440.	2.9	82
433	Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1087.	0.9	44
434	Coherence properties of coupled optomechanical cavities. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1232.	0.9	6
435	Optimal limits of cavity optomechanical cooling in the strong-coupling regime. Physical Review A, 2014, 89, .	1.0	38
436	Bidimensional nano-optomechanics and topological backaction in a non-conservative radiation force field. Nature Nanotechnology, 2014, 9, 920-926.	15.6	77

#	Article	IF	CITATIONS
437	Multifunctional all-TiO ₂ Bragg stacks based on blocking layer-assisted spin coating. Journal of Materials Chemistry C, 2014, 2, 3260-3269.	2.7	10
438	Optically Induced Self-Excited Oscillations in an On-Fiber Optomechanical Cavity. Journal of Microelectromechanical Systems, 2014, 23, 563-569.	1.7	6
439	Excitations of optomechanically driven Bose—Einstein condensates in a cavity: Photodetection measurements. Chinese Physics B, 2014, 23, 100305.	0.7	0
440	Opto-nanomechanics strongly coupled to a Rydberg superatom: coherent versus incoherent dynamics. New Journal of Physics, 2014, 16, 063042.	1.2	37
441	Optical driving of macroscopic mechanical motion by a single two-level system. Physical Review A, 2014, 90, .	1.0	11
442	Strong THz and Infrared Optical Forces on a Suspended Single-Layer Graphene Sheet. ACS Photonics, 2014, 1, 1107-1115.	3.2	24
443	Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system. Optics Express, 2014, 22, 4886.	1.7	68
444	Optomechanical photon shuttling between photonic cavities. Nature Nanotechnology, 2014, 9, 913-919.	15.6	26
445	Design of silicon micro-resonators with low mechanical and optical losses for quantum optics experiments. Microsystem Technologies, 2014, 20, 907-917.	1.2	8
446	Analysis of chaotic behavior in an optical microresonator. Optics Communications, 2014, 332, 31-35.	1.0	5
447	Triply resonant cavity electro-optomechanics at X-band. New Journal of Physics, 2014, 16, 063060.	1.2	16
448	Dynamic range of atomically thin vibrating nanomechanical resonators. Applied Physics Letters, 2014, 104, .	1.5	33
449	Heralded Single-Phonon Preparation, Storage, and Readout in Cavity Optomechanics. Physical Review Letters, 2014, 112, 143602.	2.9	109
450	Graphene Optomechanics Realized at Microwave Frequencies. Physical Review Letters, 2014, 113, 027404.	2.9	78
451	Optical switching of optomechanically induced transparency and normal mode splitting in a double-cavity system. European Physical Journal D, 2014, 68, 1.	0.6	15
452	Dynamics and transmission of single two-level atom in an optomechanical system. European Physical Journal Plus, 2014, 129, 1.	1.2	6
453	Enhancement of entanglement in distant mechanical vibrations via modulation in a coupled optomechanical system. Physical Review A, 2014, 89, .	1.0	62
454	Circuit electromechanics with a non-metallized nanobeam. Applied Physics Letters, 2014, 105, .	1.5	5

#	Article	IF	CITATIONS
455	Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters. Optics Express, 2015, 23, 30970.	1.7	28
456	Mechanical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi </mml:math> symmetry in coupled optomechanical systems. Physical Review A, 2015, 92, .	1.0	120
457	Tunable fast and slow light in a hybrid optomechanical system. Physical Review A, 2015, 92, .	1.0	105
458	Electromagnetic force on structured metallic surfaces. Physical Review B, 2015, 92, .	1.1	11
459	Squeezing of Quantum Noise of Motion in a Micromechanical Resonator. Physical Review Letters, 2015, 115, 243601.	2.9	306
460	Laser optomechanics. Scientific Reports, 2015, 5, 13700.	1.6	31
461	Dynamical backaction cooling with free electrons. Nature Communications, 2015, 6, 8104.	5.8	23
462	Dynamical backâ€action effects in low loss optomechanical oscillators. Annalen Der Physik, 2015, 527, 89-99.	0.9	4
463	Kühlen von großen Objekten mit Laserlicht. Physik in Unserer Zeit, 2015, 46, 162-163.	0.0	0
464	Diamond as a material for monolithically integrated optical and optomechanical devices. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2385-2399.	0.8	47
467	Raman cooling of solids through photonic density of states engineering. Optica, 2015, 2, 893.	4.8	25
468	Synchronization in an optomechanical cavity. Physical Review E, 2015, 91, 032910.	0.8	34
469	Time-resolved phase-space tomography of an optomechanical cavity. Physical Review A, 2015, 91, .	1.0	6
470	Coherent-feedback-induced controllable optical bistability and photon blockade. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 105501.	0.6	12
471	Exciton-Polariton Gas as a Nonequilibrium Coolant. Physical Review Letters, 2015, 114, 186403.	2.9	25
472	Cooling of a nanomechanical resonator in presence of a single diatomic molecule. Annals of Physics, 2015, 355, 130-142.	1.0	1
473	Nonlinear coherent optical responses of tunable optomechanical system based on a bilayer graphene. Optics Communications, 2015, 342, 199-203.	1.0	5
474	Route to Chaos in Optomechanics. Physical Review Letters, 2015, 114, 013601.	2.9	104

#	Article	IF	CITATIONS
475	Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-8.	2.0	9
476	Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-6.	2.0	20
477	Cooling mechanical resonators to the quantum ground state from room temperature. Physical Review A, 2015, 91, .	1.0	24
478	Transition of entanglement dynamics in an oscillator system with weak time-dependent coupling. Physical Review A, 2015, 91, .	1.0	6
479	Optomechanically induced amplification and perfect transparency in double-cavity optomechanics. Frontiers of Physics, 2015, 10, 351-357.	2.4	32
480	Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 065502.	0.6	68
481	Optomechanically induced transparency in the presence of an external time-harmonic-driving force. Scientific Reports, 2015, 5, 11278.	1.6	58
482	Einstein-Podolsky-Rosen–entangled motion of two massive objects. Physical Review A, 2015, 92, .	1.0	32
483	Macroscopic quantum oscillator based on a flux qubit. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2001-2006.	0.9	3
484	Optomechanics of random media. Physical Review A, 2015, 91, .	1.0	3
485	Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Physical Review A, 2015, 91, .	1.0	91
486	Heat transport in harmonic oscillator systems with thermal baths: application to optomechanical arrays. New Journal of Physics, 2015, 17, 055013.	1.2	39
487	Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode. New Journal of Physics, 2015, 17, 053040.	1.2	153
488	Comparing resolved-sideband cooling and measurement-based feedback cooling on an equal footing: Analytical results in the regime of ground-state cooling. Physical Review A, 2015, 91, .	1.0	17
489	Nonlinear analysis of sub-millikelvin optomechanical cooling for extremely low noise quantum measurement. Applied Physics Express, 2015, 8, 032801.	1.1	4
490	2D photonic-crystal optomechanical nanoresonator. Optics Letters, 2015, 40, 174.	1.7	22
491	Fast cooling in dispersively and dissipatively coupled optomechanics. Scientific Reports, 2015, 5, 7745.		
		1.6	5

#	ARTICLE	IF	CITATIONS
493	Effect of laser phase noise on the fidelity of optomechanical quantum memory. Physical Review A, 2015, 91, .	1.0	6
494	Self-sustained oscillation and dynamical multistability of optomechanical systems in the extremely-large-amplitude regime. Physical Review A, 2015, 91, .	1.0	24
495	Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. Nature Communications, 2015, 6, 7022.	5.8	65
496	Open-system dynamics of entanglement:a key issues review. Reports on Progress in Physics, 2015, 78, 042001.	8.1	234
497	Dynamics of an optomechanical resonator containing a quantum well induced by periodic modulation of cavity field and external laser beam. Canadian Journal of Physics, 2015, 93, 716-724.	0.4	6
498	Engineering optomechanical normal modes for single-phonon transfer and entanglement preparation. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 588.	0.9	7
499	Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures. Nature Communications, 2015, 6, 8478.	5.8	24
500	Entanglement versus Gaussian quantum discord in a double-cavity opto-mechanical system. International Journal of Quantum Information, 2015, 13, 1550041.	0.6	14
501	Quantitative measurement of radiation pressure on a microcantilever in ambient environment. Applied Physics Letters, 2015, 106, 091107.	1.5	36
502	Quantum Langevin equations for optomechanical systems. New Journal of Physics, 2015, 17, 083004.	1.2	23
503	Dynamics and transmissivity of optomechanical system in squeezed environment. International Journal of Modern Physics B, 2015, 29, 1550201.	1.0	2
504	Non-equilibrium Dynamics of an Optomechanical Dicke Model. Communications in Theoretical Physics, 2015, 64, 39-46.	1.1	5
505	Quantum opto-mechanical coupling model for fiber micro-cantilever beam damping noise reduction. , 2015, , .		0
506	Frozen motion. Nature Physics, 2015, 11, 710-711.	6.5	0
507	Hybrid spin-microcantilever sensor for environmental, chemical, and biological detection. Nanotechnology, 2015, 26, 015501.	1.3	9
508	Normal-mode splitting and output-field squeezing in a Kerr-down conversion optomechanical system. Journal of Modern Optics, 2015, 62, 114-124.	0.6	16
509	Macroscopic Entanglement of Remote Optomechanical Systems Assisted by Parametric Interactions. International Journal of Theoretical Physics, 2015, 54, 1334-1341.	0.5	3
510	An Optomechanical Elevator: Transport of a Bloch Oscillating Bose–Einstein Condensate up and down an Optical Lattice by Cavity Sideband Amplification and Cooling. Atoms, 2016, 4, 2.	0.7	5

#	Article	IF	CITATIONS
511	Stationary entanglement between two nanomechanical oscillators induced by Coulomb interaction. Chinese Physics B, 2016, 25, 014203.	0.7	2
512	Effect of optomechanical coupling on squeezed-spin states. Journal of Physics: Conference Series, 2016, 672, 012006.	0.3	2
513	Quantum teleportation from light beams to vibrational states of a macroscopic diamond. Nature Communications, 2016, 7, 11736.	5.8	35
514	Force sensitivity of multilayer graphene optomechanical devices. Nature Communications, 2016, 7, 12496.	5.8	118
515	Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nature Photonics, 2016, 10, 399-405.	15.6	185
516	Characteristics of light transfer in the connected conical waveguides with the same symmetry axis. Applied Optics, 2016, 55, 3854.	2.1	0
517	Acoustic confinement in superlattice cavities. Physical Review A, 2016, 94, .	1.0	12
518	Sensing dispersive and dissipative forces by an optomechanical cavity. Europhysics Letters, 2016, 115, 14001.	0.7	4
519	Raman cooling in a semiconductor. Nature Photonics, 2016, 10, 566-567.	15.6	4
500			
520	Bright future for upconversion. Nature Photonics, 2016, 10, 567-569.	15.6	11
520	Bright future for upconversion. Nature Photonics, 2016, 10, 567-569. Optical gradient force assist maneuver. Optics Letters, 2016, 41, 4142.	15.6 1.7	3
521	Optical gradient force assist maneuver. Optics Letters, 2016, 41, 4142.	1.7	3
521 522	Optical gradient force assist maneuver. Optics Letters, 2016, 41, 4142. Alq ₃ coated silicon nanomembranes for cavity optomechanics. Proceedings of SPIE, 2016, ,	1.7 0.8	3
521 522 523	Optical gradient force assist maneuver. Optics Letters, 2016, 41, 4142. Alq ₃ coated silicon nanomembranes for cavity optomechanics. Proceedings of SPIE, 2016, , Degenerate parametric oscillation in quantum membrane optomechanics. Physical Review A, 2016, 93, . Collapse of the superradiant phase and multiple quantum phase transitions for Bose-Einstein	1.7 0.8 1.0	3 1 21
521 522 523 524	Optical gradient force assist maneuver. Optics Letters, 2016, 41, 4142. Alq ₃ coated silicon nanomembranes for cavity optomechanics. Proceedings of SPIE, 2016, , Degenerate parametric oscillation in quantum membrane optomechanics. Physical Review A, 2016, 93, . Collapse of the superradiant phase and multiple quantum phase transitions for Bose-Einstein condensates in an optomechanical cavity. Physical Review A, 2016, 93, . Nonclassical non-Gaussian state of a mechanical resonator via selectively incoherent damping in a	1.7 0.8 1.0 1.0	3 1 21 10
521 522 523 524 525	Optical gradient force assist maneuver. Optics Letters, 2016, 41, 4142. Alq ₃ coated silicon nanomembranes for cavity optomechanics. Proceedings of SPIE, 2016, , Degenerate parametric oscillation in quantum membrane optomechanics. Physical Review A, 2016, 93, . Collapse of the superradiant phase and multiple quantum phase transitions for Bose-Einstein condensates in an optomechanical cavity. Physical Review A, 2016, 93, . Nonclassical non-Gaussian state of a mechanical resonator via selectively incoherent damping in a three-mode optomechanical system. Physical Review A, 2016, 93, . Classical and quantum-linearized descriptions of degenerate optomechanical parametric oscillators.	1.7 0.8 1.0 1.0	3 1 21 10 3

#	Article	IF	Citations
529	Devil's staircase in an optomechanical cavity. Physical Review E, 2016, 93, 023007.	0.8	9
530	Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature. Physical Review Letters, 2016, 116, 147202.	2.9	240
531	Optical-response properties in levitated optomechanical systems beyond the low-excitation limit. Physical Review A, 2016, 93, .	1.0	20
532	Ultrafast Optimal Sideband Cooling under Non-Markovian Evolution. Physical Review Letters, 2016, 116, 183602.	2.9	33
533	Isolation, switching and memory based on optomechanical metamaterials. , 2016, , .		0
534	Stable Optical Trap from a Single Optical Field Utilizing Birefringence. Physical Review Letters, 2016, 117, 213604.	2.9	20
535	A simple and tunable switch between slow- and fast-light in two signal modes with an optomechanical system. Laser Physics Letters, 2016, 13, 125301.	0.6	11
536	Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system. Scientific Reports, 2016, 6, 33404.	1.6	41
537	Sympathetic laser cooling of graphene with Casimir-Polder forces. Physical Review A, 2016, 94, .	1.0	5
538	Parametric amplification of light in a cavity with a moving dielectric membrane: Landau-Zener problem for the Maxwell field. Physical Review A, 2016, 94, .	1.0	3
539	Cavity magnomechanics. Science Advances, 2016, 2, e1501286.	4.7	395
540	Transparency and tunable slow and fast light in a nonlinear optomechanical cavity. Scientific Reports, 2016, 6, 35090.	1.6	35
541	An electromechanical displacement transducer. Applied Physics Express, 2016, 9, 086701.	1.1	2
542	Brillouin cooling in a linear waveguide. New Journal of Physics, 2016, 18, 115004.	1.2	15
543	Nanophononics: state of the art and perspectives. European Physical Journal B, 2016, 89, 1.	0.6	149
544	Droplet optomechanics. Optica, 2016, 3, 175.	4.8	52
545	Raman cooling in silicon photonic crystals. , 2016, , .		0
546	Enhancing steady-state entanglement via vacuum-induced emitter–mirror coupling in a hybrid optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 025501.	0.6	9

#	Article	IF	CITATIONS
547	Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction. Nature Communications, 2017, 8, 14358.	5.8	47
548	Interactive optomechanical coupling with nonlinear polaritonic systems. Physical Review B, 2017, 95, .	1.1	11
549	Quantum feedback: Theory, experiments, and applications. Physics Reports, 2017, 679, 1-60.	10.3	181
550	Enhanced Entanglement Between Two Mechanical Resonators in Two Optomechanical Cavities with an Atomic Medium. International Journal of Theoretical Physics, 2017, 56, 1665-1672.	0.5	3
551	Integrated On-Chip Nano-Optomechanical Systems. International Journal of High Speed Electronics and Systems, 2017, 26, 1740005.	0.3	4
552	Effects of cross-Kerr coupling and parametric nonlinearity on normal mode splitting, cooling, and entanglement in optomechanical systems. Quantum Information Processing, 2017, 16, 1.	1.0	16
553	Optical-response properties in an atom-assisted optomechanical system with a mechanical pump. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 105503.	0.6	7
554	Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction. Scientific Reports, 2017, 7, 2545.	1.6	36
555	All-Optical Switch Based on a Fiber-Chip-Fiber Opto-Mechanical System With Ultrahigh Extinction Ratio. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	4
556	Low-Power Photothermal Self-Oscillation of Bimetallic Nanowires. Nano Letters, 2017, 17, 3995-4002.	4.5	11
557	Integrated On-Chip Nano-Optomechanical Systems. Selected Topics in Electornics and Systems, 2017, , 119-140.	0.2	0
558	Enhanced entanglement of two optical modes in optomechanical systems via an optical parametric amplifier. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 085502.	0.6	14
559	Electromagnetically induced transparency in optical microcavities. Nanophotonics, 2017, 6, 789-811.	2.9	162
560	Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate. Physical Review A, 2017, 95, .	1.0	20
561	Measuring and imaging nanomechanical motion with laser light. Applied Physics B: Lasers and Optics, 2017, 123, 8.	1.1	16
562	Transfer and preservation of entanglement in a hybrid optomechanical system. Physical Review A, 2017, 96, .	1.0	14
563	Optomechanical entanglement via non-degenerate parametric interactions. Physica Scripta, 2017, 92, 105101.	1.2	13
564	Optical wireless information transfer with nonlinear micromechanical resonators. Microsystems and Nanoengineering, 2017, 3, 17026.	3.4	8

#	Article	IF	CITATIONS
565	Non-conservative optical forces. Reports on Progress in Physics, 2017, 80, 112001.	8.1	78
566	Dynamically induced robust phonon transport and chiral cooling in an optomechanical system. Nature Communications, 2017, 8, 205.	5.8	28
567	Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity. Physical Review A, 2017, 96, .	1.0	36
568	Bistability in a Hybrid Optomechanical System under the Effect of a Nonlinear Medium. Chinese Physics Letters, 2017, 34, 084205.	1.3	6
569	Effect of an auxiliary mode on bipartite entanglement in a dissipative three-mode optomechanical system. European Physical Journal D, 2017, 71, 1.	0.6	2
570	Enhanced output entanglement with reservoir engineering. Physical Review A, 2017, 96, .	1.0	28
571	Cavity Cooling of Many Atoms. Physical Review Letters, 2017, 118, 183601.	2.9	26
572	Cavity-Assisted Measurement and Coherent Control of Collective Atomic Spin Oscillators. Physical Review Letters, 2017, 118, 063604.	2.9	19
573	Optomechanically induced absorption in parity-time-symmetric optomechanical systems. Physical Review A, 2017, 95, .	1.0	37
574	Optomechanically induced spontaneous symmetry breaking. Physical Review A, 2017, 95, .	1.0	17
575	Model and phase-diagram analysis of photothermal instabilities in an optomechanical resonator. New Journal of Physics, 2017, 19, 103008.	1.2	0
576	Optomechanical measurement of a millimeter-sized mechanical oscillator approaching the quantum ground state. New Journal of Physics, 2017, 19, 103014.	1.2	12
577	Tunable two-phonon higher-order sideband amplification in a quadratically coupled optomechanical system. Scientific Reports, 2017, 7, 17637.	1.6	21
578	A robust single-beam optical trap for a gram-scale mechanical oscillator. Scientific Reports, 2017, 7, 14546.	1.6	12
579	Role of optical density of states in Brillouin optomechanical cooling. Optics Express, 2017, 25, 776.	1.7	9
580	Integrated optical force sensors using focusing photonic crystal arrays. Optics Express, 2017, 25, 9196.	1.7	18
581	Coupling mechanical motion of a single atom to a micromechanical cantilever. Optics Express, 2017, 25, 32931.	1.7	10
582	Nanomechanical Motion Transducers for Miniaturized Mechanical Systems. Micromachines, 2017, 8, 108.	1.4	32

	CITATIO	on Report	
#	Article	IF	CITATIONS
583	The vacuum friction paradox and related puzzles. Contemporary Physics, 2018, 59, 145-154.	0.8	4
584	High-Precision Displacement Sensing of Monolithic Piezoelectric Disk Resonators Using a Single-Electron Transistor. Journal of Low Temperature Physics, 2018, 191, 316-329.	0.6	3
585	Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 075505.	0.6	9
586	Absorption, Transmission and Amplification in a Double-Cavity Optomechanical System with Coulomb-Interaction. International Journal of Theoretical Physics, 2018, 57, 2151-2166.	0.5	0
587	Steady-state mechanical squeezing and ground-state cooling of a Duffing anharmonic oscillator in an optomechanical cavity assisted by a nonlinear medium. Laser Physics, 2018, 28, 055201.	0.6	4
588	Measuring and Imaging Nanomechanical Motion with Laser Light. , 2018, , 71-85.		2
589	Radiation-pressure-mediated control of an optomechanical cavity. Physical Review A, 2018, 97, .	1.0	22
590	Multi-functional quantum router using hybrid opto-electromechanics. Laser Physics Letters, 2018, 15, 035201.	0.6	5
591	Negative-Mass Instability of the Spin and Motion of an Atomic Gas Driven by Optical Cavity Backaction. Physical Review Letters, 2018, 120, 013601.	2.9	33
592	Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling. Chinese Physics B, 2018, 27, 024204.	0.7	38
593	An optically-driven macroscopic cantilever. European Journal of Physics, 2018, 39, 045302.	0.3	1
594	Qubit assisted enhancement of quantum correlations in an optomechanical system. Annals of Physics, 2018, 392, 39-48.	1.0	11
595	A maser based on dynamical backaction on microwave light. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2233-2237.	0.9	6
596	Enhanced Entanglement in Optomechanical Cavity with a Nonlinear Material χ (3). International Journal of Theoretical Physics, 2018, 57, 219-225.	0.5	1
597	Photon-Phonon Coupling: Cavity Optomechanics. Springer Theses, 2018, , 83-101.	0.0	0
598	Measurement of wavelength-dependent radiation pressure from photon reflection and absorption due to thin film interference. Scientific Reports, 2018, 8, 15930.	1.6	8
599	Effective quality factor tuning mechanisms in micromechanical resonators. Applied Physics Reviews, 2018, 5, .	5.5	91
600	Micro Fabry-Pérot Interferometer at Rayleigh Range. Scientific Reports, 2018, 8, 15193.	1.6	4

#	Article	IF	CITATIONS
601	Optomechanical effects in a macroscopic hybrid system. Physical Review A, 2018, 98, .	1.0	11
602	Double optomechanically induced transparency and absorption in parity-time-symmetric optomechanical systems. Physical Review A, 2018, 98, .	1.0	33
603	Electrooptomechanical Equivalent Circuits for Quantum Transduction. Physical Review Applied, 2018, 10, .	1.5	11
604	Tunable phonon blockade in weakly nonlinear coupled mechanical resonators via Coulomb interaction. Scientific Reports, 2018, 8, 14583.	1.6	14
605	Optomechanically induced transparency in optomechanics with both linear and quadratic coupling. Physical Review A, 2018, 98, .	1.0	23
606	Normalâ€Mode Splitting and Optomechanically Induced Absorption, Amplification, and Transparency in a Hybrid Optomechanical System. Annalen Der Physik, 2018, 530, 1800228.	0.9	21
607	Hybrid Systems for the Generation of Nonclassical Mechanical States via Quadratic Interactions. Physical Review Letters, 2018, 121, 123604.	2.9	50
608	Quadrature squeezing of a higher-order sideband spectrum in cavity optomechanics. Optics Letters, 2018, 43, 9.	1.7	43
609	Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Frontiers of Physics, 2018, 13, 1.	2.4	17
610	Squeezed cooling of mechanical motion beyond the resolved-sideband limit. Europhysics Letters, 2018, 122, 14001.	0.7	2
611	Highly-coherent stimulated phonon oscillations in a multi-core optical fiber. Scientific Reports, 2018, 8, 9514.	1.6	20
612	Electro-mechano-optical detection of nuclear magnetic resonance. Optica, 2018, 5, 152.	4.8	22
613	Twofold mechanical squeezing in a cavity optomechanical system. Physical Review A, 2018, 98, .	1.0	32
614	Unconventional photon blockade in three-mode optomechanics. Physical Review A, 2018, 98, .	1.0	60
615	â€~Mechano-optics': an optomechanical quantum simulator. New Journal of Physics, 2018, 20, 065004.	1.2	18
616	Controllable optical bistability and Fano line shape in a hybrid optomechanical system assisted by kerr medium: possibility of all optical switching. Journal of Modern Optics, 2018, 65, 1688-1697.	0.6	15
617	Creation of bipartite steering correlations by a fast damped auxiliary mode. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 185501.	0.6	1
618	Optomechanical cooling beyond the quantum backaction limit with frequency modulation. Physical Review A, 2018, 98, .	1.0	47

#	Article	IF	CITATIONS
619	Opto-electromechanically induced transparency in a hybrid opto-electromechanical system*. Chinese Physics B, 2019, 28, 108502.	0.7	5
620	Bose-condensed optomechanical-like system and a Fabry–Perot cavity with one movable mirror: quantum correlations from the perspectives of quantum optics. European Physical Journal D, 2019, 73, 1.	0.6	7
621	Tests of quantum gravity-induced non-locality: Hamiltonian formulation of a non-local harmonic oscillator. Classical and Quantum Gravity, 2019, 36, 155006.	1.5	6
622	Coupled mechanical resonators with broken Lorentz reciprocity for sensor applications. Mechanical Systems and Signal Processing, 2019, 134, 106329.	4.4	0
623	Intracavityâ€Squeezed Optomechanical Cooling. Laser and Photonics Reviews, 2019, 13, 1900120.	4.4	37
624	Probing the State of a Mechanical Oscillator with an Ultrastrongly Coupled Quantum Emitter. Physical Review Letters, 2019, 122, 013602.	2.9	1
625	Self-excited oscillation and synchronization of an on-fiber optomechanical cavity. Physical Review E, 2019, 100, 032202.	0.8	9
626	Transmissivity of optomechanical system containing a two-level system. International Journal of Modern Physics B, 2019, 33, 1950252.	1.0	2
627	Enhanced optical pressure with asymmetric cavities. Physical Review B, 2019, 99, .	1.1	5
628	Atom-assisted second-order sideband generation in an optomechanical system with atom-cavity-resonator coupling. Physical Review A, 2019, 99, .	1.0	21
629	Carrier-mediated cavity optomechanics in a semiconductor laser. Physical Review A, 2019, 99, .	1.0	4
630	Dueling dynamical backaction in a cryogenic optomechanical cavity. Physical Review A, 2019, 99, .	1.0	7
631	Modulationâ€Based Atomâ€Mirror Entanglement and Mechanical Squeezing in an Unresolvedâ€Sideband Optomechanical System. Annalen Der Physik, 2019, 531, 1800271.	0.9	28
632	Optical-mechanical cooling of a charged resonator. Physical Review A, 2019, 99, .	1.0	8
633	Cavity Cooling of a Levitated Nanosphere by Coherent Scattering. Physical Review Letters, 2019, 122, 123602.	2.9	111
634	Calibrated quantum thermometry in cavity optomechanics. Quantum Science and Technology, 2019, 4, 024007.	2.6	10
635	Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical system. Physical Review A, 2019, 99, .	1.0	36
636	Effects of laser phase noise on optomechanical entanglement in the presence of a nonlinear Kerr downconverter. Physica Scripta, 2019, 94, 085102.	1.2	2

#	Article	IF	CITATIONS
637	Distinguishing photon blockade in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="script">PT -symmetric optomechanical system. Physical Review A, 2019, 99, .</mml:mi </mml:math 	1.0	57
638	Demonstration of Enhanced Optical Pressure on a Structured Surface. Physical Review Letters, 2019, 122, 083901.	2.9	10
639	Partial Optomechanical Refrigeration via Multimode Cold-Damping Feedback. Physical Review Letters, 2019, 123, 203605.	2.9	39
640	Dynamics of ground-state cooling and quantum entanglement in a modulated optomechanical system. Physical Review A, 2019, 100, .	1.0	13
641	Sub-cycle time resolution of multi-photon momentum transfer in strong-field ionization. Nature Communications, 2019, 10, 5548.	5.8	40
642	Force-dependent induced transparency in an atom-assisted optomechanical system. Optics Communications, 2019, 437, 153-159.	1.0	3
643	Lie algebraic approach to quantum driven optomechanics. Physica Scripta, 2020, 95, 035103.	1.2	4
644	Tunable slow and fast light in an atom-assisted optomechanical system with a mechanical pump. Optics Communications, 2020, 456, 124605.	1.0	6
645	Tunable optical response of an optomechanical system with two mechanically driven resonators. Physica Scripta, 2020, 95, 045105.	1.2	11
646	Dynamic Cooling of a Micromechanical Membrane in a Double-cavity Optomechanical System. International Journal of Theoretical Physics, 2020, 59, 454-464.	0.5	2
647	Dynamics of optomechanically coupled suspended silicon waveguides. Sensors and Actuators A: Physical, 2020, 301, 111714.	2.0	0
648	Microwave and optical photons entanglement in a hybrid electro-optomechanical system: effect of a mechanical plasmonic waveguide at high temperatures. European Physical Journal Plus, 2020, 135, 1.	1.2	1
649	Coupling of Integrated Waveguide and Optomechanic Cavity for Microwave Phonon Excitation in Si Nanobeams. Photonics, 2020, 7, 67.	0.9	2
650	Quantum Thermodynamics and Optomechanics. Springer Theses, 2020, , .	0.0	1
651	Widely Tunable Coupling between a Mechanical Mode and Cavity Photons via a Superconductor. Journal of the Korean Physical Society, 2020, 77, 927-930.	0.3	0
652	Radiation pressure measurement using a macroscopic oscillator in an ambient environment. Scientific Reports, 2020, 10, 20419.	1.6	10
653	Approximate Evolution for A Hybrid System—An Optomechanical Jaynes-Cummings Model. Entropy, 2020, 22, 1373.	1.1	2
654	Quantum entanglement and reflection coefficient for coupled harmonic oscillators. Physical Review E, 2020, 102, 052213.	0.8	22

#	Article	IF	Citations
655	Magnon Blockade in a PTâ€Symmetric‣ike Cavity Magnomechanical System. Annalen Der Physik, 2020, 532, 2000028.	0.9	45
657	Controllable transparency and slow light in a hybrid optomechanical system with quantum dot molecules. Optical and Quantum Electronics, 2020, 52, 1.	1.5	9
658	Generation of quadripartite continuous-variable entanglement in two coupled opto-mechanical systems. Laser Physics, 2020, 30, 065205.	0.6	4
659	Thermal decoherence and laser cooling of Kerr microresonator solitons. Nature Photonics, 2020, 14, 480-485.	15.6	56
660	Spin-cooling of the motion of a trapped diamond. Nature, 2020, 580, 56-59.	13.7	66
661	Advances on studying optical forces: optical manipulation, optical cooling and light induced dynamics. Journal Physics D: Applied Physics, 2020, 53, 283001.	1.3	15
662	Generation of two-mode squeezing of mechanical oscillators in the multi-mode optomechanical systems. Quantum Information Processing, 2020, 19, 1.	1.0	5
663	Mode locking in an optomechanical cavity. Europhysics Letters, 2020, 129, 24005.	0.7	1
664	Complementarity between micro-micro and micro-macro entanglement in a Bose–Einstein condensate with two Rydberg impurities. Communications in Theoretical Physics, 2020, 72, 025101.	1.1	4
665	Quadratic optomechanical coupling in an active-passive-cavity system. Physical Review A, 2020, 101, .	1.0	7
666	Photothermally induced transparency. Science Advances, 2020, 6, eaax8256.	4.7	24
667	High sensitivity sensing system theoretical research base on waveguide-nano DBRs one dimensional photonic crystal microstructure. Optics Communications, 2020, 470, 125392.	1.0	9
668	Prospects of reinforcement learning for the simultaneous damping of many mechanical modes. Scientific Reports, 2020, 10, 2623.	1.6	3
669	Simultaneous retrodiction of multimode optomechanical systems using matched filters. Physical Review A, 2020, 101, .	1.0	3
670	Bipartite Entanglement in Optomechanical Cavities Driven by Squeezed Light. International Journal of Theoretical Physics, 2020, 59, 1699-1716.	0.5	6
671	Optomechanically induced transparency and gain. Physical Review A, 2020, 101, .	1.0	30
672	Quantum Optomechanics. Graduate Texts in Physics, 2021, , 325-364.	0.1	0
673	Switchable and Enhanced Absorption via Qubit-Mechanical Nonlinear Interaction in a Hybrid Optomechanical System. International Journal of Theoretical Physics, 2021, 60, 739-753.	0.5	9

#	Article	IF	CITATIONS
674	Fluctuation-enhanced Kerr nonlinearity in an atom-assisted optomechanical system with atom-cavity interactions. Optics Express, 2021, 29, 5367.	1.7	4
675	Gain-type optomechanically induced absorption and precise mass sensor in a hybrid optomechanical system. Journal of Applied Physics, 2021, 129, 084504.	1.1	4
676	The Dynamic of a Quantum Optomechanical Cavity Cascaded with a Two-level Atom. , 2021, , .		5
677	Cavity optomechanics with photonic bound states in the continuum. Physical Review Research, 2021, 3,	1.3	19
678	Continuous variable quantum entanglement in optomechanical systems: A short review. AVS Quantum Science, 2021, 3, .	1.8	8
679	External control of qubit-photon interaction and multi-qubit reset in a dissipative quantum network. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	4
680	Optical response based on Stokes and anti-Stokes scattering processes in cavity optomechanical system. Quantum Information Processing, 2021, 20, 1.	1.0	3
681	Phonon blockade and strong anti-correlation between phonons and phonons in the optomechanical system with an auxiliary mechanical oscillator. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 055401.	0.6	2
682	Generation of Strong Mechanical–Mechanical Entanglement by Pump Modulation. Advanced Quantum Technologies, 2021, 4, 2000149.	1.8	9
683	Enhancement of Upper Second-Order Sidebands Based on Optomechanically Induced Absorption in a Double-Cavity Optomechanical System. IEEE Photonics Journal, 2021, 13, 1-11.	1.0	1
684	Simultaneous cooling of double oscillators in an optomechanical system with an optical parametric amplifier. Laser Physics, 2021, 31, 065203.	0.6	2
685	Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium*. Chinese Physics B, 2021, 30, 124201.	0.7	2
686	Heat transfer mediated by the dynamical Casimir effect in an optomechanical system. Physical Review A, 2021, 103, .	1.0	0
687	Controlled bistable dynamics of a four-mirror cavity-optomechanics with two movable mirrors. Optics Communications, 2021, 488, 126820.	1.0	5
688	Optical response of a dual membrane active–passive optomechanical cavity. Annals of Physics, 2021, 429, 168465.	1.0	10
689	Optomechanically induced Faraday and splitting effects in a double-cavity optomechanical system. Physical Review A, 2021, 104, .	1.0	5
690	Out-of-equilibrium optomechanical resonance self-excitation. Journal of Applied Physics, 2021, 130, 035303.	1.1	1
691	Polariton multistability in a nonlinear optomechanical cavity. Journal of Physics Condensed Matter, 2021, 33, 365302.	0.7	4

#	ARTICLE	IF	CITATIONS
692	Ground-state cooling of a mechanical oscillator via a hybrid electro-optomechanical system. Physical Review A, 2021, 104, .	1.0	7
693	Photon blockade in a coupled double quantum dot—nonlinear optomechanical system. Physica Scripta, 2021, 96, 125108.	1.2	0
694	Quantitative in situ measurement of optical force along a strand of cleaved silica optical fiber induced by the light guided therewithin. Photonics Research, 2021, 9, 2016.	3.4	5
695	Photothermally induced transparency in coupled-cavity system. Physica Scripta, 2021, 96, 125109.	1.2	5
697	Optomechanically induced optical responses with non-rotating wave approximation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 035401.	0.6	10
699	Quantum Opto-Mechanics with Micromirrors. Springer Theses, 2012, , .	0.0	3
700	Material Removal and Deposition by Pulsed Laser Ablation and Associated Phenomena. Springer Series in Surface Sciences, 2014, , 143-214.	0.3	1
701	Astronomy at the Frontiers of Science. Issues in Agroecology, 2011, , .	0.1	1
702	Tunable optical second-order sideband effects in a parity-time symmetric optomechanical system. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	17
703	Quantum optics with micromirrors. Annales De Physique, 2007, 32, 33-38.	0.2	1
704	Spatial localization and pattern formation in discrete optomechanical cavities and arrays. New Journal of Physics, 2020, 22, 093076.	1.2	2
705	Optomechanical cooling by STIRAP-assisted energy transfer: an alternative route towards the mechanical ground state. New Journal of Physics, 2020, 22, 103043.	1.2	4
706	Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction. Physical Review Letters, 2008, 101, 133903.	2.9	184
707	Four-wave mixing response in a hybrid atom-optomechanical system. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 162.	0.9	14
708	Atomic quadrature squeezing and quantum state transfer in a hybrid atom–optomechanical cavity with two Duffing mechanical oscillators. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 775.	0.9	4
709	Polarization gradient cooling and trapping of charged and neutral microspheres. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 60.	0.9	3
710	Temperature-resistant generation of robust entanglement with blue-detuning driving and mechanical gain. Optics Express, 2019, 27, 29581.	1.7	10
711	Radiation-pressure-induced photoluminescence enhancement of all-inorganic perovskite CsPbBr ₃ quantum dots. Photonics Research, 2019, 7, 837.	3.4	17

#	Article	IF	CITATIONS
712	Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving. Photonics Research, 2019, 7, 1229.	3.4	31
714	Cooling photon-pressure circuits into the quantum regime. Science Advances, 2021, 7, eabg6653.	4.7	8
715	Nonlinear Opto-mechanics Using Radiation Pressure in High-Q Microcavities. , 2007, , .		0
716	Cooling of a Micro-Mechanical Oscillator Using Radiation-Pressure Induced Dynamical Backaction. , 2007, , .		Ο
717	Radiation-Pressure Cooling of a Micro-Mechanical Oscillator Using Dynamical Backaction. , 2007, , .		0
718	Quantum theory of cavity-assisted cantilever cooling. , 2007, , .		0
719	Quantum-Optical Control of Micromechanics. , 2008, , .		0
720	Cavity Optomechanics on a Silicon Chip. , 2008, , .		0
721	Measuring and Cooling the Motion of a Nanomechanical Oscillator with a Microwave Cavity Interferometer. , 2008, , .		0
722	Optomechanics. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 153-164.	0.2	1
723	Cavity Optomechanics with lons. , 2009, , .		0
724	Resolved-Sideband Cooling of a Silica Optomechanical Microresonator in a Cryogenic Environment. , 2009, , .		0
725	Opto-mechanical oscillations in a double-disk microcavity. , 2009, , .		0
726	Cavity-Optomechanics with Microresonators at Helium-3 Temperatures. , 2010, , .		1
727	Cavity Optomechanics: Mechanical Cooling to Phonon Lasers. , 2010, , .		0
728	NanomechanicsNanomechanics – Nanophotonicsnanophotonics – Nanofluidicsnanofluidics. , 2010, , 315-364.		Ο
729	Normal mode splitting and cooling in strong coupling optomechanical cavity. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 124206.	0.2	10
730	Gravitational Wave Astronomy. Issues in Agroecology, 2011, , 87-106.	0.1	0

IF ARTICLE CITATIONS # Observation of Brillouin Cooling., 2011,,. 731 0 Achieving the Ground State and Enhancing Optomechanical Entanglement., 2012, , 107-125. 734 Universal Entanglement Between an Oscillator and Continuous Fields., 2012, , 127-139. 0 Mechanical Laser Cooling in Cryogenic Cavities. Springer Theses, 2012, , 101-121. High-Reflectivity, High-Q Mechanical Resonators. Springer Theses, 2012, , 81-99. 736 0.0 0 Introduction and Basic Theory. Springer Theses, 2012, , 3-34. MQM With Three-Mode Optomechanical Interactions., 2012,, 85-106. 739 0 Probing Macroscopic Quantum States., 2012, , 165-202. 740 741 Applications of Transfer Matrices. Springer Theses, 2012, , 115-135. 0.0 0 Opto-Mechanics in the Strong Coupling Regime. Springer Theses, 2012, , 123-132. 742 Towards Quantum Ground-State Cooling. Springer Theses, 2013, , 111-122. 743 0.0 0 Brillouin actuation of whispering-gallery modes on microfluidic optomechanical oscillators. , 2013, , 744 Brillouin actuation of whispering-gallery modes on microfluidic optomechanical oscillators., 2013,, 745 0 Partition of the Linear Photon Momentum in Atomic Tunneling Ionization. SpringerBriefs in Physics, 746 0.2 2014, , 59-66. Quantum optomechanics., 2014,, 321-350. 748 0 Recent Trends in Nano-Optomechanical Systems. , 2014, , 207-249. 749 Raman Cooling of Solids through Density of States Engineering., 2015,,. 750 2 Nano-Optomechanical Systems (NOMS)., 2015, , 1-8.

# 752	ARTICLE Arrays of optomechanical systems. , 2015, , 296-317.	IF	Citations
753	Single-photon optomechanics. , 2015, , 212-249.		0
754	Coherent control of whispering-gallery-mode optomechanical microresonators and perfect transparency. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 214204.	0.2	1
755	Nano-optomechanical Systems (NOMS). , 2016, , 2539-2546.		0
756	Optomechanical cooling without added damping. , 2017, , .		0
757	Radiation pressure in finite Fabry–Pérot cavities. OSA Continuum, 2019, 2, 175.	1.8	0
758	Interference filter based beam confinement for increased mechanical phase modulation. OSA Continuum, 2019, 2, 1502.	1.8	4
759	Quantum dynamics of an impurity-doped Bose–Einstein condensate system. Communications in Theoretical Physics, 2020, 72, 095102.	1.1	3
760	Radiation-Pressure-Mediated Control ofÂanÂOptomechanical Cavity. Springer Theses, 2020, , 67-79.	0.0	1
761	Optomechanical atomic force microscope. Nanotechnology, 2021, 32, 085505.	1.3	6
762	Quantum coherence in a coupled optomechanical system with atomic ensemble. Physica A: Statistical Mechanics and Its Applications, 2022, 587, 126523.	1.2	2
763	Average Thermodynamics of Hybrid Optomechanical Systems. Springer Theses, 2020, , 29-44.	0.0	0
764	Quantum optical response of a hybrid optomechanical device embedded with a qubit. Journal of Optics (United Kingdom), 2020, 22, 115401.	1.0	7
765	Steady-state quantum correlation measurement in hybrid optomechanical systems. International Journal of Quantum Information, 2020, 18, 2050046.	0.6	2
766	Reversing Lindblad Dynamics via Continuous Petz Recovery Map. Physical Review Letters, 2022, 128, 020403.	2.9	8
767	Quality factor control of mechanical resonators using variable phononic bandgap on periodic microstructures. Scientific Reports, 2022, 12, 392.	1.6	9
768	Topologically protected optomechanically induced transparency in a one-dimensional optomechanical array. Physical Review A, 2022, 105, .	1.0	3
769	Optomechanical ratchet resonators. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	9

#	Article	IF	CITATIONS
770	An electro-mechano-optical NMR probe for ¹ H– ¹³ C double resonance in a superconducting magnet. Analyst, The, 2022, , .	1.7	0
771	Suppression of Stokes heating processes and improved optomechanical cooling with frequency modulation. Communications in Theoretical Physics, 2022, 74, 045102.	1.1	1
772	Vibrational Strong Light–Matter Coupling in an Open Microcavity Based on Reflective Germanium Coatings. Journal of Physical Chemistry A, 2022, 126, 1282-1288.	1.1	2
773	Multiphonon quantum dynamics in cavity optomechanical systems. Physical Review A, 2022, 105, .	1.0	3
774	Measurement of sub-fm/Hz ^{1/2} displacement spectral densities in ultrahigh-Q single-crystal microcavities with hertz-level lasers. Photonics Research, 2022, 10, 1202.	3.4	4
775	Force Sensing in an Optomechanical System with Feedback-Controlled In-Loop Light. Physical Review Applied, 2022, 17, .	1.5	10
776	Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system. Chinese Physics B, O, , .	0.7	2
777	Robustness of quantum correlations in driven cavity optomechanical system interacted with squeezed light. Optik, 2022, 258, 168812.	1.4	3
778	Magnomechanics in suspended magnetic beams. Physical Review B, 2021, 104, .	1.1	7
780	Nonlinearity-mediated digitization and amplification in electromechanical phonon-cavity systems. Nature Communications, 2022, 13, 2352.	5.8	12
781	Electrically controlled optical nonlinear effects in the hybrid opto-electromechanical system with the cross-Kerr effect. Journal of Applied Physics, 2022, 131, .	1.1	6
782	Entanglement Between Two Mechanical Oscillators in a Dual-Coupling Optomechanical System. Frontiers in Physics, 0, 10, .	1.0	1
783	Micro–micro and micro–macro entanglement witnessing via the geometric phase in an impurity-doped Bose–Einstein condensate. Quantum Information Processing, 2022, 21, .	1.0	1
784	Laser Cooling of a Lattice Vibration in van der Waals Semiconductor. Nano Letters, 2022, 22, 7129-7135.	4.5	9
785	Unidirectional Coherent Phonon Emission in an Optomechanic Nanobeam Containing Coupled Cavities. Photonics, 2022, 9, 610.	0.9	1
786	Sub-femto-Newton sensing torsion pendulum for detection of light force. Optics Letters, 2022, 47, 4997.	1.7	0
787	Approximate Evolution for a Open Hybrid System: An Optomechanical Jaynes-Cummings Model. International Journal of Theoretical Physics, 2022, 61, .	0.5	1
788	Optimizing measurement-based cooling by reinforcement learning. Physical Review A, 2022, 106, .	1.0	1

#	Article	IF	CITATIONS
789	Generation of Schrödinger Cat States in a Hybrid Cavity Optomechanical System. Entropy, 2022, 24, 1554.	1.1	1
790	Photothermal effect in macroscopic optomechanical systems with an intracavity nonlinear optical crystal. Optics Express, 2022, 30, 42579.	1.7	0
791	Robust mechanical entanglement in an atom-assisted hybrid optomechanical system. Quantum Information Processing, 2022, 21, .	1.0	2
792	Effect of the Ensemble of Cold Atoms Position in the Brillouin Zone on the Optical Bistability and Entanglement Dynamics. International Journal of Theoretical Physics, 2023, 62, .	0.5	1
793	Unconventional photon blockade in four mode coupled optomechanical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2023, 462, 128653.	0.9	1
794	Recent advances toward mesoscopic quantum optomechanics. AVS Quantum Science, 2023, 5, 014403.	1.8	1
795	Nonlinear effects in a Floquet-driven optomechanical system. Physical Review A, 2023, 107, .	1.0	0
796	Perfect optomechanically induced transparency in two-cavity optomechanics. Frontiers of Physics, 2023. 18	2.4	2