Evolution of the continental crust

Nature

443, 811-817

DOI: 10.1038/nature05191

Citation Report

#	Article	IF	CITATIONS
2	The tectonomagmatic evolution of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2006, 97, 213-295.	0.7	30
3	Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 2007, 315, 980-983.	12.6	1,154
4	The origin of modern terrestrial life. HFSP Journal, 2007, 1, 156-168.	2.5	43
5	Global cooling forced increase in marine strontium isotopic ratios: Importance of mica weathering and a kinetic approach. Earth and Planetary Science Letters, 2007, 254, 303-312.	4.4	27
6	Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism. Earth and Planetary Science Letters, 2007, 263, 370-387.	4.4	266
7	Detrital Zircon Ages of Hanjiang River: Constraints on Evolution of Northern Yangtze Craton, South China. Journal of China University of Geosciences, 2007, 18, 210-222.	0.5	17
8	Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature, 2007, 448, 1033-1036.	27.8	335
9	Zircon U–Pb age and Hf isotope evidence for contrasting origin of bimodal protoliths for ultrahighâ€pressure metamorphic rocks from the Chinese Continental Scientific Drilling project. Journal of Metamorphic Geology, 2007, 25, 873-894.	3.4	85
10	Could Iceland be a modern analogue for the Earth's early continental crust?. Terra Nova, 2008, 20, 463-468.	2.1	33
11	Plate tectonics, flood basalts and the evolution of Earth's oceans. Terra Nova, 2008, 20, 419-439.	2.1	105
12	Neoproterozoic crustal growth: The solid Earth system during a critical episode of Earth history. Gondwana Research, 2008, 14, 33-50.	6.0	148
13	Defining the geochemical composition of the EPICA Dome C ice core dust during the last glacialâ€interglacial cycle. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	48
14	Secular evolution of the continental crust: Implications for crust evolution models. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	49
15	Neoproterozoic anatexis of Archean lithosphere: Geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research, 2008, 163, 210-238.	2.7	111
16	The evolution of He Isotopes in the convecting mantle and the preservation of high 3He/4He ratios. Earth and Planetary Science Letters, 2008, 269, 175-185.	4.4	71
17	The role of serpentine in preferential craton formation in the late Archean by lithosphere underthrusting. Earth and Planetary Science Letters, 2008, 269, 96-104.	4.4	15
18	A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth and Planetary Science Letters, 2008, 275, 326-336.	4.4	179
19	Episodic layering of the early mantle by the †basalt barrier' mechanism. Earth and Planetary Science Letters, 2008, 275, 382-392.	4.4	80

#	Article	IF	Citations
20	Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 2008, 247, 100-118.	3.3	829
21	Upper crustal abundances of trace elements: A revision and update. Chemical Geology, 2008, 253, 205-221.	3.3	482
22	Zircon U–Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chemical Geology, 2008, 253, 222-242.	3.3	152
23	Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Earth history: When did Earth first adopt a plate tectonics mode of behavior. , 2008, , 97-128.		56
24	Urey ratio and the structure and evolution of Earth's mantle. Reviews of Geophysics, 2008, 46, .	23.0	287
25	Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. Numerische Mathematik, 2008, 308, 421-468.	1.4	316
26	Intermittent Plate Tectonics?. Science, 2008, 319, 85-88.	12.6	180
27	Regulating continent growth and composition by chemical weathering. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4981-4986.	7.1	52
28	The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20652-20657.	7.1	112
29	Arc–continent collision and the formation of continental crust: a new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland. Journal of the Geological Society, 2009, 166, 485-500.	2.1	63
30	Arc-continent collisions, sediment recycling and the maintenance of the continental crust. Geological Society Special Publication, 2009, 318, 75-103.	1.3	38
31	A Major Clade of Prokaryotes with Ancient Adaptations to Life on Land. Molecular Biology and Evolution, 2009, 26, 335-343.	8.9	279
32	The discovery of the Earth's oldest rocks. Notes and Records of the Royal Society, 2009, 63, 381-392.	0.3	11
33	Worldwide distribution of ages of the continental lithosphere derived from a global seismic tomographic model. Lithos, 2009, 109, 125-130.	1.4	22
34	Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: Crustal growth in the Archean with modern analogues. Earth-Science Reviews, 2009, 93, 1-30.	9.1	196
35	Crustal growth at â^1⁄42.5 Ga in the North China Craton: evidence from whole-rock Nd and zircon Hf isotopes in the Huai'an gneiss terrane. Science Bulletin, 2009, 54, 4704-4713.	9.0	95
36	Delamination and destruction of the North China Craton. Science Bulletin, 2009, 54, 3367-3378.	9.0	126
37	Nitrogen-enhanced greenhouse warming on earlyÂEarth. Nature Geoscience, 2009, 2, 891-896.	12.9	247

#	ARTICLE	IF	CITATIONS
38	Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens. Geological Society Special Publication, 2009, 318, 105-125.	1.3	112
39	Tholeiitic vs Calc-alkalic Differentiation and Evolution of Arc Crust: Constraints from Melting Experiments on a Basalt from the Izu-Bonin-Mariana Arc. Journal of Petrology, 2009, 50, 1575-1603.	2.8	81
40	Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth and Planetary Science Letters, 2009, 279, 44-52.	4.4	135
41	Crustal growth along a non-collisional cratonic margin: A Lu–Hf isotopic survey of the Eastern Cordilleran granitoids of Peru. Earth and Planetary Science Letters, 2009, 279, 303-315.	4.4	99
42	Subduction erosion modes: Comparing finite element numerical models with the geological record. Earth and Planetary Science Letters, 2009, 287, 241-254.	4.4	52
43	Tracing the evolution of calc-alkaline magmas: In-situ Sm–Nd isotope studies of accessory minerals in the Bergell Igneous Complex, Italy. Chemical Geology, 2009, 260, 73-86.	3.3	56
44	The origin of geochemical trends and Eoarchean (ca. 3700 Ma) zircons in Mesoarchean (ca. 3075 Ma) ocelli-hosting pillow basalts, Ivisaartoq greenstone belt, SW Greenland: Evidence for crustal contamination versus crustal recycling. Chemical Geology, 2009, 268, 248-271.	3.3	32
45	Episodic crustal growth of North China as revealed by U–Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica Et Cosmochimica Acta, 2009, 73, 2660-2673.	3.9	169
46	Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 2009, 475, 327-358.	2.2	299
47	Geochronology – Aims and reminiscences. Applied Geochemistry, 2009, 24, 1087-1092.	3.0	0
48	Evaluating the evolution of the Red River system based on in situ Uâ€Pb dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	68
49	Coherent composition of glacial dust on opposite sides of the East Antarctic Plateau inferred from the deep EPICA ice cores. Geophysical Research Letters, 2009, 36, .	4.0	18
50	Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere. Geological Society Special Publication, 2009, 323, 1-26.	1.3	87
51	Accretionary orogens through Earth history. Geological Society Special Publication, 2009, 318, 1-36.	1.3	719
52	Permian-Triassic (260-220 Ma) crustal growth of Eastern Central Asian orogenic belt as revealed by detrital zircon studies. Numerische Mathematik, 2010, 310, 364-404.	1.4	29
53	Zircon U-Pb dating and geochemical study of the Xianggou granite in the Ma'anqiao gold deposit and its relationship with gold mineralization. Science China Earth Sciences, 2010, 53, 220-240.	5.2	24
54	Geological, petrologic, isotopic, and geochemical constraints of geodynamic models simulating formation of the archean tonalite-trondhjemite-granodiorite associations in ancient cratons. Geotectonics, 2010, 44, 305-320.	0.9	10
55	Intraplate Seamounts as a Window into Deep Earth Processes. Oceanography, 2010, 23, 42-57.	1.0	53

#	Article	IF	Citations
56	The Geology and Metallogeny of Volcanic-Hosted Massive Sulfide Deposits: Variations through Geologic Time and with Tectonic Setting. Economic Geology, 2010, 105, 571-591.	3.8	144
57	Potassium and uranium in the upper mantle controlled by Archean oceanic crust recycling. Geology, 2010, 38, 683-686.	4.4	14
58	Melting of the continental crust during orogenesis: the thermal, rheological, and compositional consequences of melt transport from lower to upper continental crustThis article is one of a selection of papers published in this Special Issue on the the theme ⟨i⟩Lithoprobeâ€"parameters, processes, and the evolution of a continent⟨ i⟩ Canadian Journal of Earth Sciences, 2010, 47, 655-694.	1.3	137
59	Melting Relations of MORB-Sediment Melanges in Underplated Mantle Wedge Plumes; Implications for the Origin of Cordilleran-type Batholiths. Journal of Petrology, 2010, 51, 1267-1295.	2.8	179
60	Foreâ€arc deformation and underplating at the northern Hikurangi margin, New Zealand. Journal of Geophysical Research, 2010, 115, .	3.3	26
61	Threeâ€dimensional velocity structure of the northern Hikurangi margin, Raukumara, New Zealand: Implications for the growth of continental crust by subduction erosion and tectonic underplating. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	48
62	The spatial and temporal patterning of the deep crust and implications for the process of melt extraction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 11-51.	3.4	69
63	Petrology and geochemistry of Mesozoic granitic rocks from the Nansha micro-block, the South China Sea: Constraints on the basement nature. Journal of Asian Earth Sciences, 2010, 37, 130-139.	2.3	74
64	Tungsten isotopes as tracers of core–mantle interactions: The influence of subducted sediments. Geochimica Et Cosmochimica Acta, 2010, 74, 751-762.	3.9	18
65	Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochimica Et Cosmochimica Acta, 2010, 74, 2450-2472.	3.9	159
66	Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites. Chemical Geology, 2010, 274, 94-107.	3.3	70
67	Formation of enriched mantle components by recycling of upper and lower continental crust. Chemical Geology, 2010, 276, 188-197.	3.3	239
68	Pitfalls of classifying ancient magmatic suites with tectonic discrimination diagrams: An example from the Paleoproterozoic Tunkillia Suite, southern Australia. Precambrian Research, 2010, 177, 227-240.	2.7	52
69	Archean crustal evolution of the northern Tarim craton, NW China: Zircon U–Pb and Hf isotopic constraints. Precambrian Research, 2010, 180, 272-284.	2.7	294
70	The anatomy and ontogeny of modern intra-oceanic arc systems. Geological Society Special Publication, 2010, 338, 7-34.	1.3	89
71	The generation and evolution of the continental crust. Journal of the Geological Society, 2010, 167, 229-248.	2.1	650
72	Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 ga granitoid gneisses. Numerische Mathematik, 2011, 311, 153-182.	1.4	374
73	Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. Journal of Geophysical Research, $2011,116,.$	3.3	100

#	Article	IF	CITATIONS
75	Storage and mobility of nitrogen in the continental crust: Evidence from partially melted metasedimentary rocks, Mt. Stafford, Australia. Chemical Geology, 2011, 281, 211-226.	3.3	46
76	Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from Greater Russian Rivers. Geochimica Et Cosmochimica Acta, 2011, 75, 1308-1345.	3.9	74
77	Understanding the roles of crustal growth and preservation in the detrital zircon record. Earth and Planetary Science Letters, 2011, 305, 405-412.	4.4	73
78	Arc–Continent Collision: The Making of an Orogen. Frontiers in Earth Sciences, 2011, , 477-493.	0.1	42
79	Building and Destroying Continental Mantle. Annual Review of Earth and Planetary Sciences, 2011, 39, 59-90.	11.0	393
80	Petrology and SHRIMP U–Pb zircon geochronology of Cordilleran granitoids of the Bariloche area, Argentina. Journal of South American Earth Sciences, 2011, 32, 508-530.	1.4	76
81	Clouds and the Faint Young Sun Paradox. Climate of the Past, 2011, 7, 203-220.	3.4	61
82	AN ALUMINUM/CALCIUM-RICH, IRON-POOR, WHITE DWARF STAR: EVIDENCE FOR AN EXTRASOLAR PLANETARY LITHOSPHERE?. Astrophysical Journal, 2011, 739, 101.	4.5	111
83	Geomechanical and Geochemical Evidence of Piezonuclear Fission Reactions in the Earth's Crust. Strain, 2011, 47, 267-281.	2.4	31
84	Direct Quantitative Determination of Trace Elements in Fineâ€Grained Whole Rocks by Laser Ablationâ€Inductively Coupled Plasmaâ€Mass Spectrometry. Geostandards and Geoanalytical Research, 2011, 35, 7-22.	3.1	10
85	Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics, 2011, 500, 20-33.	2.2	203
86	Hydrothermal calcium-carbonate veins reveal past ocean chemistry. TrAC - Trends in Analytical Chemistry, 2011, 30, 1252-1268.	11.4	21
87	Early Cretaceous volcanism of the Coastal Ranges, NW Syria: Magma genesis and regional dynamics. Lithos, 2011, 126, 290-306.	1.4	14
88	Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: Evidence from detrital zircon U–Pb ages and Hf isotopic composition. Gondwana Research, 2011, 20, 194-204.	6.0	158
89	Origin of High Electrical Conductivity in the Lower Continental Crust: A Review. Surveys in Geophysics, 2011, 32, 875-903.	4.6	60
90	The origin of high \hat{l} 180 zircons: marbles, megacrysts, and metamorphism. Contributions To Mineralogy and Petrology, 2011, 162, 961-974.	3.1	48
91	The discovery of the oldest rocks in the Kuluketage area and its geological implications. Science China Earth Sciences, 2011, 54, 342-348.	5.2	107
92	Character and origin of variably deformed granitoids in central southern Sweden: implications from geochemistry and Nd isotopes. Geological Journal, 2011, 46, 597-618.	1.3	15

#	Article	IF	CITATIONS
93	A Reappraisal of Redox Melting in the Earth's Mantle as a Function of Tectonic Setting and Time. Journal of Petrology, 2011, 52, 1363-1391.	2.8	242
94	Possible juvenile Palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton. Geological Magazine, 2011, 148, 340-347.	1.5	81
95	Archean lithospheric mantle beneath Arkansas: Continental growth by microcontinent accretion. Bulletin of the Geological Society of America, 2011, 123, 1763-1775.	3.3	31
96	Lithosphere-asthenosphere mixing in a transform-dominated late Paleozoic backarc basin: Implications for northern Cordilleran crustal growth and assembly. , 2012, 8, 716-739.		14
97	Isotopic constraints on stratigraphy in the central and eastern Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 2012, 59, 657-670.	1.0	65
99	Experimental constraints on the destruction mechanism of the North China Craton. Lithos, 2012, 149, 91-99.	1.4	28
100	Decoupling of U–Pb and Lu–Hf isotopes and trace elements in zircon from the UHP North Qaidam orogen, NE Tibet (China): Tracing the deep subduction of continental blocks. Lithos, 2012, 155, 125-145.	1.4	66
101	Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology, 2012, 328, 5-48.	3.3	488
102	Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology, 2012, 330-331, 274-299.	3.3	343
103	Thermal evolution of Earth with xenon degassing: A self-consistent approach. Earth and Planetary Science Letters, 2012, 341-344, 1-9.	4.4	17
104	Thematic Issue: Archean Evolution—Yilgarn Craton. Australian Journal of Earth Sciences, 2012, 59, 599-601.	1.0	2
105	Crustal growth at active continental margins: Numerical modeling. Physics of the Earth and Planetary Interiors, 2012, 192-193, 1-20.	1.9	131
106	Mafic granulite rheology: Implications for a weak continental lower crust. Earth and Planetary Science Letters, 2012, 353-354, 99-107.	4.4	54
107	Spatial and temporal evolution of Liassic to Paleocene arc activity in southern Peru unraveled by zircon U–Pb and Hf in-situ data on plutonic rocks. Lithos, 2012, 155, 183-200.	1.4	36
108	Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature, 2012, 485, 490-493.	27.8	287
110	An indirect evidence of piezonuclear fission reactions: Geomechanical and geochemical evolution in the Earth's crust. Physical Mesomechanics, 2012, 15, 37-46.	1.9	15
111	Heavy metal, sex and granites: Crustal differentiation and bioavailability in the mid-Proterozoic. Geology, 2012, 40, 751-754.	4.4	24
113	Crustal homogenization revealed by U–Pb zircon ages and Hf isotope evidence from the Late Cretaceous granitoids of the Agaçören intrusive suite (Central Anatolia/Turkey). Contributions To Mineralogy and Petrology, 2012, 163, 725-743.	3.1	29

#	Article	IF	Citations
114	Late Carboniferous high εNd(t)–εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth. Lithos, 2012, 140-141, 86-102.	1.4	111
115	Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW) Tj ETQq1	1 0.78431	4 rggT /Overl
116	Luâ€"Hf systematics of magmatic zircons reveal a Proterozoic crustal boundary under the Cretaceous Pioneer batholith, Montana. Lithos, 2012, 142-143, 216-225.	1.4	27
117	Crustal thickness controlled by plate tectonics: A review of crust–mantle interaction processes illustrated by European examples. Tectonophysics, 2012, 530-531, 18-49.	2.2	53
118	Dynamic role of the rheological contrast between cratonic and oceanic lithospheres in the longevity of cratonic lithosphere: A three-dimensional numerical study. Tectonophysics, 2012, 532-535, 156-166.	2.2	40
119	The geochemical composition of the terrestrial surface (without soils) and comparison with the upper continental crust. International Journal of Earth Sciences, 2012, 101, 365-376.	1.8	44
120	How many arcs can dance on the head of a plume?. Precambrian Research, 2013, 229, 189-197.	2.7	54
121	Moho depth and crustal composition in Southern Africa. Tectonophysics, 2013, 609, 267-287.	2.2	77
122	Zircon U–Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China. Chemical Geology, 2013, 360-361, 186-203.	3.3	92
123	Zircon U–Pb ages, trace elements and Nd–Hf isotopic geochemistry of Guyang sanukitoids and related rocks: Implications for the Archean crustal evolution of the Yinshan Block, North China Craton. Precambrian Research, 2013, 230, 61-78.	2.7	82
124	Fourâ€dimensional numerical modeling of crustal growth at active continental margins. Journal of Geophysical Research: Solid Earth, 2013, 118, 4682-4698.	3.4	18
125	The South India Precambrian crust and shallow lithospheric mantle: Initial results from the India Deep Earth Imaging Experiment (INDEX). Journal of Earth System Science, 2013, 122, 1435-1453.	1.3	25
126	Secular changes in sedimentation systems and sequence stratigraphy. Gondwana Research, 2013, 24, 468-489.	6.0	99
127	Comments on â€~Geomechanical and Geochemical Evidence of Piezonuclear Fission Reactions in the Earth's Crust' by A. Carpinteri and A. Manuello. Strain, 2013, 49, 544-547.	2.4	1
128	The continental record and the generation of continental crust. Bulletin of the Geological Society of America, 2013, 125, 14-32.	3.3	484
129	Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: Remnant ocean model. Earth-Science Reviews, 2013, 126, 178-205.	9.1	87
130	Early Paleozoic crustal anatexis in the intraplate Wuyi–Yunkai orogen, South China. Lithos, 2013, 175-176, 124-145.	1.4	65
131	Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers. Geochimica Et Cosmochimica Acta, 2013, 107, 96-120.	3.9	136

#	Article	IF	CITATIONS
132	Mirror symmetry of the crust in the oil/gas region of Shengli, China. Journal of Asian Earth Sciences, 2013, 78, 327-344.	2.3	12
133	Influence of chemical weathering on the composition of the continental crust: Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River Basalts. Geochimica Et Cosmochimica Acta, 2013, 115, 73-91.	3.9	95
134	Late Cretaceous crustal growth in the Gangdese area, southern Tibet: Petrological and Sr–Nd–Hf–O isotopic evidence from Zhengga diorite–gabbro. Chemical Geology, 2013, 349-350, 54-70.	3.3	132
135	Late Cretaceous (100–89Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos, 2013, 175-176, 315-332.	1.4	139
136	Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor's andesite model. Gondwana Research, 2013, 23, 1554-1566.	6.0	130
137	Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent–continent collision zone. Lithos, 2013, 168-169, 144-159.	1.4	162
138	Continental growth and the crustal record. Tectonophysics, 2013, 609, 651-660.	2.2	135
139	Crustal formation in the Nanling Range, South China Block: Hf isotope evidence of zircons from Phanerozoic granitoids. Journal of Asian Earth Sciences, 2013, 74, 210-224.	2.3	24
140	Cretaceous lower crust of the continental margins of the northern pacific: Petrological and geochronological data on lower to middle crustal xenoliths. Petrology, 2013, 21, 28-65.	0.9	31
141	A planetary perspective on Earth evolution: Lid Tectonics before Plate Tectonics. Tectonophysics, 2013, 589, 44-56.	2.2	63
142	Late Neoarchean potassic high Ba–Sr granites in the Taishan granite–greenstone terrane: Petrogenesis and implications for continental crustal evolution. Chemical Geology, 2013, 344, 23-41.	3.3	75
143	Numerical modeling of geochemical variations caused by crustal relamination. Geochemistry, Geophysics, Geosystems, 2013, 14, 470-487.	2.5	58
144	Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes. Earth-Science Reviews, 2013, 116, 57-84.	9.1	66
145	Tonalite–granodiorite suites as cotectic systems: A review of experimental studies with applications to granitoid petrogenesis. Earth-Science Reviews, 2013, 124, 68-95.	9.1	160
146	Granite: From genesis to emplacement. Bulletin of the Geological Society of America, 2013, 125, 1079-1113.	3.3	464
147	The hunting of the snArc. Precambrian Research, 2013, 229, 20-48.	2.7	197
148	Large-scale gold mineralization in eastern China induced by an Early Cretaceous clockwise change in Pacific plate motions. International Geology Review, 2013, 55, 311-321.	2.1	71
149	Geochemistry and zircon geochronology of the Archean granite suites of the Rio Maria granite-greenstone terrane, Carajás Province, Brazil. Journal of South American Earth Sciences, 2013, 42, 103-126.	1.4	69

#	Article	IF	CITATIONS
150	Continental velocity through Precambrian times: The link to magmatism, crustal accretion and episodes of global cooling. Geoscience Frontiers, 2013, 4, 7-36.	8.4	31
151	Antarctica and supercontinent evolution: historical perspectives, recent advances and unresolved issues. Geological Society Special Publication, 2013, 383, 1-34.	1.3	89
152	A post-collision slab-breakoff model for the orgin of the Middle Eocene magmatic rocks of the Armutluâ \in "Almacä \pm k belt, NW Turkey and its regional implications. Geological Society Special Publication, 2013, 372, 107-139.	1.3	30
154	Growth rate of continental crust in the northeast margin of the North China Craton: Constraints from the U-Pb dating and Lu-Hf isotopes of detrital zircons from the Laoha River. Geochemical Journal, 2013, 47, 547-565.	1.0	4
155	Triassic sedimentation and postaccretionary crustal evolution along the Solonker suture zone in Inner Mongolia, China. Tectonics, 2014, 33, 960-981.	2.8	84
156	Ancient Plate Tectonics. , 2014, , 1-12.		0
157	Tying catchment to basin in a giant sediment routing system: a source-to-sink study of the Neogene–Recent Amur River and its delta in the North Sakhalin Basin. Geological Society Special Publication, 2014, 386, 163-193.	1.3	5
158	Zircon xenocrysts in Tibetan ultrapotassic magmas: Imaging the deep crust through time. Geology, 2014, 42, 43-46.	4.4	85
159	Physics and Chemistry of Deep Continental Crust Recycling. , 2014, , 423-456.		50
160	Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Metasomatism and Segregation in the Mantle Wedge. Journal of Petrology, 2014, 55, 2347-2376.	2.8	48
161	Late Palaeozoic and early Mesozoic tectonic and palaeogeographic evolution of central China: evidence from U–Pb and Lu–Hf isotope systematics of detrital zircons from the western Qinling region. International Geology Review, 2014, 56, 351-392.	2.1	12
162	U–Th–Pb Geochronology. , 2014, , 341-378.		134
163	A synthesis of geochemistry and Sm–Nd isotopes of Archean granitoid gneisses in the Jiaodong Terrane: Constraints on petrogenesis and tectonic evolution of the Eastern Block, North China Craton. Precambrian Research, 2014, 255, 885-899.	2.7	28
164	Seismic imaging of crust beneath the Dharwar Craton, India, from ambient noise and teleseismic receiver function modelling. Geophysical Journal International, 2014, 197, 748-767.	2.4	40
165	Tectonics and geodynamics of granulite-gneiss complexes in the East European Craton. Geotectonics, 2014, 48, 496-522.	0.9	9
166	Petrology and zircon U-Pb dating combined with Hf isotope study of granitic rocks from the Kuluketage Block (Tarim Craton, NW China). Journal of Geosciences (Czech Republic), 2014, , 275-291.	0.6	3
167	The Meso-Neoarchaean Belomorian eclogite province: Tectonic position and geodynamic evolution. Gondwana Research, 2014, 25, 561-584.	6.0	60
168	Longâ€lived highâ€xi>T, lowâ€xi>P granulite facies metamorphism in the Arunta Region, central Australia. Journal of Metamorphic Geology, 2014, 32, 25-47.	3.4	58

#	Article	IF	CITATIONS
169	Origin of andesitic rocks: Geochemical constraints from Mesozoic volcanics in the Luzong basin, South China. Lithos, 2014, 190-191, 220-239.	1.4	99
170	The off-crust origin of granite batholiths. Geoscience Frontiers, 2014, 5, 63-75.	8.4	91
171	The late Mesozoic–Cenozoic tectonic evolution of the South China Sea: A petrologic perspective. Journal of Asian Earth Sciences, 2014, 85, 178-201.	2.3	181
172	Where have all the craters gone? Earth's bombardment history and the expected terrestrial cratering record. Geology, 2014, 42, 587-590.	4.4	22
173	U–Pb, Lu–Hf and REE in zircon from 3.2 to 2.6Ga Archean gneisses of the Repulse Bay block, Melville Peninsula, Nunavut. Precambrian Research, 2014, 252, 223-239.	2.7	7
174	Mineral inclusions in sapphire from the basalt-related deposit in Bo Phloi, Kanchanaburi, western Thailand: indication of their genesis. Russian Geology and Geophysics, 2014, 55, 1087-1102.	0.7	21
175	U–Pb and Lu–Hf isotope systematics of detrital zircons from the Songpan–Ganzi Triassic flysch, NE Tibetan Plateau: implications for provenance and crustal growth. International Geology Review, 2014, 56, 29-56.	2.1	42
176	Crustal growth and reworking during Lapland–Kola orogeny in northern Fennoscandia: U–Pb and Lu–Hf data from the Nattanen and Litsa–Aragub-type granites. Lithos, 2014, 205, 112-126.	1.4	18
177	The Biophysics of Photosynthesis. , 2014, , .		21
178	Heat-producing crust regulation of subsurface temperatures: A stochastic model re-evaluation of the geothermal potential in southwestern Queensland, Australia. Geothermics, 2014, 51, 182-200.	3.4	6
179	Petrogenesis and tectonic implications of Late-Triassic high $\acute{\rm E}$ Nd(t)- $\acute{\rm E}$ Hf(t) granites in the Ailaoshan tectonic zone (SW China). Science China Earth Sciences, 2014, 57, 2181-2194.	5. 2	40
180	Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research, 2014, 242, 154-171.	2.7	261
181	Carbonado: Physical and chemical properties, a critical evaluation of proposed origins, and a revised genetic model. Earth-Science Reviews, 2014, 130, 49-72.	9.1	20
182	Constraints from loess on the Hf–Nd isotopic composition of the upper continental crust. Earth and Planetary Science Letters, 2014, 388, 48-58.	4.4	145
183	Preserved and modified mid-Archean crustal blocks in Dharwar craton: Seismological evidence. Precambrian Research, 2014, 246, 16-34.	2.7	54
184	Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust. Contributions To Mineralogy and Petrology, 2014, 167, 1.	3.1	32
185	Zircon U–Pb–Lu–Hf–O isotopic evidence for ≥3.5Ga crustal growth, reworking and differentiation in the northern Tarim Craton. Precambrian Research, 2014, 249, 115-128.	2.7	36
186	A Record of Paleoproterozoic Subduction Preserved in the Northern Slave Cratonic Mantle: Sr–Pb–O Isotope and Trace-element Investigations of Eclogite Xenoliths from the Jericho and Muskox Kimberlites. Journal of Petrology, 2014, 55, 549-583.	2.8	35

#	Article	IF	CITATIONS
187	Evolution processes of <scp>O</scp> rdovicianâ€" <scp>D</scp> evonian arc system in the <scp>S</scp> outhâ€ <scp>K</scp> itakami <scp>M</scp> assif and its relevance to the <scp>O</scp> rdovician ophiolite pulse. Island Arc, 2015, 24, 73-118.	1.1	14
189	Geochemistry and 40Ar/39Ar geochronology of lavas from Tunupa volcano, Bolivia: Implications for plateau volcanism in the central Andean Plateau. Lithosphere, 2015, 7, 95-107.	1.4	5
190	Pan-African adakitic rocks of the north Arabian–Nubian Shield: petrological and geochemical constraints on the evolution of the Dokhan volcanics in the north Eastern Desert of Egypt. International Journal of Earth Sciences, 2015, 104, 541-563.	1.8	15
192	Formation and evolution of a Proterozoic magmatic arc: geochemical and geochronological constraints from meta-igneous rocks of the Ongole domain, Eastern Ghats Belt, India. Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	27
193	Episodic refertilization and metasomatism of Archean mantle: evidence from an orogenic peridotite in North Qaidam (NE Tibet, China). Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	33
194	Mantle Geochemical Geodynamics. , 2015, , 521-585.		23
195	Mechanism of Continental Crustal Growth. , 2015, , 173-199.		3
196	Transition to an oxygen-rich atmosphere with an extensive overshoot triggered by the Paleoproterozoic snowball Earth. Earth and Planetary Science Letters, 2015, 419, 178-186.	4.4	17
197	The Archean-Paleoproterozoic crustal evolution in the Dunhuang region, NW China: Constraints from zircon U–Pb geochronology and in situ Hf isotopes. Precambrian Research, 2015, 271, 83-97.	2.7	56
198	Magnetic signatures of the orogenic crust of the Patagonian Andes with implication for planetary exploration. Physics of the Earth and Planetary Interiors, 2015, 248, 35-54.	1.9	6
199	Mesoproterozoic continental arc magmatism and crustal growth in the eastern Central Tianshan Arc Terrane of the southern Central Asian Orogenic Belt: Geochronological and geochemical evidence. Lithos, 2015, 236-237, 74-89.	1.4	118
200	The nature of xenoliths in the Novaya Melovatka intrusion, Voronezh Crystalline Massif. Geochemistry International, 2015, 53, 1028-1051.	0.7	4
201	Towards an improved understanding of the mechanical properties and rheology of the lithosphere: an introductory article to †Rock Deformation from Field, Experiments and Theory: A Volume in Honour of Ernie Rutter'. Geological Society Special Publication, 2015, 409, 1-18.	1.3	0
202	Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms, living rooms and offices in Ogun State, Nigeria. Journal of African Earth Sciences, 2015, 101, 396-404.	2.0	67
204	Temporal relations between mineral deposits and global tectonic cycles. Geological Society Special Publication, 2015, 393, 9-21.	1.3	56
205	Crustal evolution, intra-cratonic architecture and the metallogeny of an Archaean craton. Geological Society Special Publication, 2015, 393, 23-80.	1.3	68
206	The inception of a Paleotethyan magmatic arc in Iberia. Geoscience Frontiers, 2015, 6, 297-306.	8.4	32
207	The Precambrian supercontinent Palaeopangaea: two billion years of quasi-integrity and an appraisal of geological evidence. International Geology Review, 2015, 57, 1389-1417.	2.1	10

#	ARTICLE	IF	CITATIONS
208	Lithological, structural, and geochemical characteristics of the Mesoarchean Târtoq greenstone belt, southern West Greenland, and the Chugach – Prince William accretionary complex, southern Alaska: evidence for uniformitarian plate-tectonic processes. Canadian Journal of Earth Sciences, 2016, 53, 1336-1371.	1.3	38
209	Recognition of mantle input and its tectonic implication for the nature of â ¹ /4815 Ma magmatism in the Yangtze continental interior, South China. Precambrian Research, 2016, 279, 17-36.	2.7	8
210	Rb-Sr isotopic composition of granites in the Western Krušné hory/Erzgebirge pluton, Central Europe: record of variations in source lithologies, mafic magma input and postmagmatic hydrothermal events. Mineralogy and Petrology, 2016, 110, 601-622.	1,1	4
211	Geochemistry, zircon U–Pb age and Hf isotopes of the North Muya block granitoids (Central Asian) Tj ETQq1 1 Precambrian Research, 2016, 280, 14-30.	0.784314 2.7	rgBT /Overl 7
212	U–Pb age and Hf isotopes of detrital zircons from the Southeastern North China Craton: Meso- to Neoarchean episodic crustal growth in a shifting tectonic regime. Gondwana Research, 2016, 35, 1-14.	6.0	19
213	Archean Continental Crustal Accretion and Banded Iron Formations, Southeastern North China Craton. Springer Geology, 2016, , 105-151.	0.3	0
214	Neodymium Isotopes. Encyclopedia of Earth Sciences Series, 2016, , 1-6.	0.1	0
215	Advent of Continents: A New Hypothesis. Scientific Reports, 2016, 6, 33517.	3.3	33
216	Slab–Mantle Interaction in the Petrogenesis of Andesitic Magmas: Geochemical Evidence from Postcollisional Intermediate Volcanic Rocks in the Dabie Orogen, China. Journal of Petrology, 2016, 57, 1109-1134.	2.8	29
217	Multiple Mixing and Hybridization from Magma Source to Final Emplacement in the Permian Yamatu Pluton, the Northern Alxa Block, China. Journal of Petrology, 2016, 57, 933-980.	2.8	46
218	Crustal evolution of the Eastern Block in the North China Craton: Constraints from zircon U–Pb geochronology and Lu–Hf isotopes of the Northern Liaoning Complex. Precambrian Research, 2016, 275, 35-47.	2.7	58
219	Arc magmatic evolution and the construction of continental crust at the Central American Volcanic Arc system. International Geology Review, 2016, 58, 653-686.	2.1	21
220	Continental growth through accreted oceanic arc: Zircon Hf–O isotope evidence for granitoids from the Qinling orogen. Geochimica Et Cosmochimica Acta, 2016, 182, 109-130.	3.9	51
221	Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach. Journal of Geodynamics, 2016, 100, 198-214.	1.6	128
222	Implications of U–Pb and Lu–Hf isotopic analysis of detrital zircons for the depositional age, provenance and tectonic setting of the Permian–Triassic Palaeotethyan Karakaya Complex, NW Turkey. International Journal of Earth Sciences, 2016, 105, 7-38.	1.8	62
223	U–Pb and Hf isotope records in detrital and magmatic zircon from eastern and western Dharwar craton, southern India: Evidence for coeval Archaean crustal evolution. Precambrian Research, 2016, 275, 496-512.	2.7	58
224	Detrital zircon geochronology and geochemistry of metasediments from the Vorontsovka terrane: implications for microcontinent tectonics. International Geology Review, 2016, 58, 1108-1126.	2.1	15
225	Anomalous supply of bioessential molybdenum in mid-Proterozoic surface environments. Precambrian Research, 2016, 275, 100-104.	2.7	3

#	Article	IF	CITATIONS
226	Is plate tectonics needed to evolve technological species on exoplanets?. Geoscience Frontiers, 2016, 7, 573-580.	8.4	62
227	Root zone of a continental rift: the Neoproterozoic Kebnekaise Intrusive Complex, northern Swedish Caledonides. Gff, 2016, 138, 31-53.	1.2	12
228	Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos, 2016, 245, 223-242.	1.4	120
229	A major dyke swarm in the Ogaden region south of Afar and the early evolution of the Afar triple junction. Geological Society Special Publication, 2016, 420, 221-248.	1.3	14
230	Zircon geochronology of the Koraput alkaline complex: Insights from combined geochemical and U–Pb–Hf isotope analyses, and implications for the timing of alkaline magmatism in the Eastern Ghats Belt, India. Gondwana Research, 2016, 34, 205-220.	6.0	11
231	Microblock amalgamation in the North China Craton: Evidence from Neoarchaean magmatic suite in the western margin of the Jiaoliao Block. Gondwana Research, 2016, 31, 96-123.	6.0	127
232	Assessing the role of submarine groundwater discharge as a source of Sr to the Mediterranean Sea. Geochimica Et Cosmochimica Acta, 2017, 200, 42-54.	3.9	32
233	Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology, 2017, 45, 235-238.	4.4	80
234	Nb/Ta Fractionation by Amphibole in Hydrous Basaltic Systems: Implications for Arc Magma Evolution and Continental Crust Formation. Journal of Petrology, 0, , egw070.	2.8	10
235	What Hf isotopes in zircon tell us about crust–mantle evolution. Lithos, 2017, 274-275, 304-327.	1.4	78
236	Earlyâ€Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens. Journal of Geophysical Research: Solid Earth, 2017, 122, 2291-2309.	3.4	89
237	Paleozoic intrusive rocks from the Dunhuang tectonic belt, NW China: Constraints on the tectonic evolution of the southernmost Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2017, 138, 562-587.	2.3	39
238	Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China. Journal of Asian Earth Sciences, 2017, 145, 260-277.	2.3	96
239	The origin and tectonic significance of the volcanic rocks of the Yeba Formation in the Gangdese magmatic belt, South Tibet. Journal of Earth Science (Wuhan, China), 2017, 28, 265-282.	3.2	30
240	Continental growth seen through the sedimentary record. Sedimentary Geology, 2017, 357, 16-32.	2.1	81
241	Proterozoic reworking of Archean (Yilgarn) basement in the Bunger Hills, East Antarctica. Precambrian Research, 2017, 298, 16-38.	2.7	33
242	Phanerozoic magma underplating and crustal growth beneath the North China Craton. Terra Nova, 2017, 29, 211-217.	2.1	11
243	Intra-oceanic arcs of the Paleo-Asian Ocean. Gondwana Research, 2017, 50, 167-194.	6.0	131

#	Article	IF	Citations
244	Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: A Sr–Nd–Hf–O isotopic study from the Paleozoic Tongbai orogen, central China. Lithos, 2017, 282-283, 298-315.	1.4	27
245	Geochemical constraints on the nature of magma sources for Triassic granitoids from South Qinling in central China. Lithos, 2017, 284-285, 30-49.	1.4	16
246	Precambrian continental crust evolution of Hainan Island in South China: Constraints from detrital zircon Hf isotopes of metaclastic-sedimentary rocks in the Shilu Fe-Co-Cu ore district. Precambrian Research, 2017, 296, 195-207.	2.7	17
247	Tectonic significance and geodynamic processes of largeâ€scale Early Cretaceous granitoid magmatic events in the southern Great Xing'an Range, North China. Tectonics, 2017, 36, 615-633.	2.8	52
248	Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments. International Journal of Astrobiology, 2017, 16, 271-279.	1.6	3
249	The composite North American Craton, Superior Province: Deep crustal structure and mantle-plume model of Neoarchaean evolution. Precambrian Research, 2017, 302, 94-121.	2.7	16
250	Late Neoarchean magmatism and tectonic evolution recorded in the Dengfeng Complex in the southern segment of the Trans-North China Orogen. Precambrian Research, 2017, 302, 180-197.	2.7	24
251	Magmatic evolution of a Cordilleran flare-up and its role in the creation of silicic crust. Scientific Reports, 2017, 7, 9047.	3.3	54
252	Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. Astrobiology, 2017, 17, 471-510.	3.0	371
253	Heat production in granitic rocks: Global analysis based on a new data compilation GRANITE2017. Earth-Science Reviews, 2017, 172, 1-26.	9.1	77
254	Geochemical Analysis of Massif Armoricain (France) Sources for Neolithic Dolerite Axes. Archaeometry, 2017, 59, 593-611.	1.3	2
255	Enhanced provenance interpretation using combined U–Pb and (U–Th)/He double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America. Earth and Planetary Science Letters, 2017, 475, 44-57.	4.4	40
256	An essential role for continental rifts and lithosphere in the deep carbon cycle. Nature Geoscience, 2017, 10, 897-902.	12.9	150
257	Metallogeny linked to mantle dynamics in the Sanjiang Tethys region as inferred from P-wave teleseismic tomographic study. Ore Geology Reviews, 2017, 90, 1032-1041.	2.7	2
258	Widespread Neoarchean (~ 2.7–2.6 Ga) magmatism of the Yangtze craton, South China, as revealed by modern river detrital zircons. Gondwana Research, 2017, 42, 1-12.	6.0	36
259	Tectonic Setting of the Kadiri Schist Belt, Andhra Pradesh, India. Acta Geologica Sinica, 2017, 91, 1992-2006.	1.4	13
260	Spatially and Temporally Associated Porphyry Deposits with Distinct Cu/Au/Mo Ratios, Woodjam District, Central British Columbia. Economic Geology, 2017, 112, 1673-1717.	3.8	5
262	Geochemistry and chronology of a diorite pluton in the Yinshan Block, implications for crustal growth and evolution of North China Craton. Geological Journal, 2018, 53, 2849-2862.	1.3	6

#	Article	IF	Citations
263	Across-arc geochemical and Sr–Nd–Hf isotopic variations of mafic intrusive rocks at the southern Central Qilian block, China. Gondwana Research, 2018, 59, 108-125.	6.0	16
264	Geochronological and geochemical constraints on the petrogenesis of the 2.6–2.5 Ga amphibolites, low- and high-Al TTGs in the Wangwushan area, southern North China Craton: Implications for the Neoarchean crustal evolution. Precambrian Research, 2018, 307, 93-114.	2.7	19
265	Peridotite weathering is the missing ingredient of Earth's continental crust composition. Nature Communications, 2018, 9, 634.	12.8	36
266	Tellurium and selenium in Mesoproterozoic red beds. Precambrian Research, 2018, 305, 145-150.	2.7	14
267	Geochemical, Sr-Nd isotopic investigations and U-Pb zircon chronology of the Takht granodiorite, west Iran: Evidence for post-collisional magmatism in the northern part of the Urumieh-Dokhtar magmatic assemblage. Journal of African Earth Sciences, 2018, 139, 354-366.	2.0	7
268	Detrital Zircon Record of a Mesozoic Collisional Forearc Basin in South Central Alaska: The Tectonic Transition From an Oceanic to Continental Arc. Tectonics, 2018, 37, 529-557.	2.8	20
269	Magma Mixing in a Granite and Related Rock Association: Insight From Its Mineralogical, Petrochemical, and "Reversed Isotope―Features. Journal of Geophysical Research: Solid Earth, 2018, 123, 2262-2285.	3.4	38
270	Variability of orogenic magmatism during Mediterranean-style continental collisions: A numerical modelling approach. Gondwana Research, 2018, 56, 119-134.	6.0	27
271	Early cretaceous lower crustal reworking in NE China: insights from geochronology and geochemistry of felsic igneous rocks from the Great Xing'an range. International Journal of Earth Sciences, 2018, 107, 1955-1974.	1.8	13
272	Recurrent Local Melting of Metasomatised Lithospheric Mantle in Response to Continental Rifting: Constraints from Basanites and Nephelinites/Melilitites from SE Germany. Journal of Petrology, 2018, 59, 667-694.	2.8	26
273	Multi-stage modification of Paleoarchean crust beneath the Anabar tectonic province (Siberian) Tj ETQq0 0 0 rgE	BT <u> O</u> yerloo	ck <u>1</u> 0 Tf 50 3
274	Petrogenesis of the Zheduoshan Cenozoic granites in the eastern margin of Tibet: Constraints on the initial activity of the Xianshuihe Fault. Journal of Geodynamics, 2018, 117, 49-59.	1.6	9
275	Oyster transcriptome response to Alexandrium exposure is related to saxitoxin load and characterized by disrupted digestion, energy balance, and calcium and sodium signaling. Aquatic Toxicology, 2018, 199, 127-137.	4.0	19
276	Geochemical characterization of the loess-paleosol sequence in northeast China. Geoderma, 2018, 321, 127-140.	5.1	15
277	Early crustal evolution of the eastern Yangtze Block: Evidence from detrital zircon U-Pb ages and Hf isotopic composition of the Neoproterozoic Huashan Group in the Dahongshan area. Precambrian Research, 2018, 309, 248-270.	2.7	29
278	Seismic evidence for secular evolution and alteration of Archaean crust in Indian shield. Precambrian Research, 2018, 304, 12-20.	2.7	11
279	On the increasing size of the orogens moving from the Alps to the Himalayas in the frame of the net rotation of the lithosphere. Gondwana Research, 2018, 62, 2-13.	6.0	12
280	Quantifying lithophilicity, chalcophilicity and siderophilicity. European Journal of Mineralogy, 2018, 30, 193-204.	1.3	11

#	Article	IF	CITATIONS
281	Dominant Lid Tectonics behaviour of continental lithosphere inÂPrecambrian times: Palaeomagnetism confirms prolonged quasi-integrity and absence of supercontinent cycles. Geoscience Frontiers, 2018, 9, 61-89.	8.4	20
282	Genesis of late Early Cretaceous high-silica rhyolites in eastern Zhejiang Province, southeast China: A crystal mush origin with mantle input. Lithos, 2018, 296-299, 482-495.	1.4	32
283	Petrogenesis of the Late Triassic diorites in the Hoh Xil area, northern Tibet: Insights into the origin of the high-Mg# andesitic signature of continental crust. Lithos, 2018, 300-301, 348-360.	1.4	11
284	Gravitational Potential Energy per Unit Area as a Constraint on Archean Sea Level. Geochemistry, Geophysics, Geosystems, 2018, 19, 4063-4095.	2.5	3
285	A Colorimetric Method for Measuring Iron Content in Plants. Journal of Visualized Experiments, 2018,	0.3	1
286	Regionalization of the Atmospheric Dust Cycle on the Periphery of the East Antarctic Ice Sheet Since the Last Glacial Maximum. Geochemistry, Geophysics, Geosystems, 2018, 19, 3540-3554.	2.5	14
287	Step-like growth of the continental crust in South China: evidence from detrital zircons in Yangtze River sediments. Lithos, 2018, 320-321, 155-171.	1.4	10
288	The Contribution of Synchrotron Light for the Characterization of Atmospheric Mineral Dust in Deep Ice Cores: Preliminary Results from the Talos Dome Ice Core (East Antarctica). Condensed Matter, 2018, 3, 25.	1.8	19
289	Triggers for the generation of post–collisional porphyry Cu systems in the Kerman magmatic copper belt, Iran: New constraints from elemental and isotopic (Sr–Nd–Hf–O) data. Gondwana Research, 2018, 64, 97-121.	6.0	32
290	2.85†Ga and 2.73†Ga A-type granites and 2.75†Ga trondhjemite from the Zhongxiang Terrain: Implications for early crustal evolution of the Yangtze Craton, South China. Gondwana Research, 2018, 61, 1-19.	6.0	48
291	Paleoarchean bedrock lithologies across the Makhonjwa Mountains of South Africa and Swaziland linked to geochemical, magnetic and tectonic data reveal early plate tectonic genes flanking subduction margins. Geoscience Frontiers, 2018, 9, 603-665.	8.4	44
292	Early crustal evolution of the Yangtze Craton, South China: New constraints from zircon U-Pb-Hf isotopes and geochemistry of ca. 2.9–2.6 Ga granitic rocks in the Zhongxiang Complex. Precambrian Research, 2018, 314, 325-352.	2.7	79
293	Tracking Deep Lithospheric Events with Garnet-Websterite Xenoliths from Southeastern Australia. Journal of Petrology, 2018, 59, 901-930.	2.8	16
294	Earth's Atmosphere. Encyclopedia of Earth Sciences Series, 2018, , 383-392.	0.1	O
295	Native Minerals. Encyclopedia of Earth Sciences Series, 2018, , 957-961.	0.1	0
296	Genesis of ultra-high pressure garnet pyroxenites in orogenic peridotites and its bearing on the compositional heterogeneity of the Earth's mantle. Geochimica Et Cosmochimica Acta, 2018, 232, 303-328.	3.9	21
297	Overview of Crust and Introduction to Seismic Observations on Indian Plate., 2018,, 1-18.		0
299	From incipient island arc to doublyâ€vergent orogen: A review of geodynamic models and sedimentary basinâ€fills of southern Central America. Island Arc, 2018, 27, e12255.	1,1	10

#	Article	IF	CITATIONS
300	Geochemistry and zircon U–Pb–Hf isotopes of the 780ÂMa I-type granites in the western Yangtze Block: petrogenesis and crustal evolution. International Geology Review, 2019, 61, 1222-1243.	2.1	31
301	Fingerprinting Proterozoic Bedrock in Interior Wilkes Land, East Antarctica. Scientific Reports, 2019, 9, 10192.	3.3	19
302	An appraisal of geochemical signatures of komatiites from the greenstone belts of Dharwar Craton, India: Implications for temporal transition and Archean upper mantle hydration. Geological Journal, 2019, 54, 3088.	1.3	6
303	Variscan Magmatism. Regional Geology Reviews, 2019, , 497-526.	1.2	8
304	Onset of the supercontinent cycle: Evidence for multiple oceanic arc accretion events in the Paleoproterozoic Sefwi Greenstone Belt of the West African Craton. Precambrian Research, 2019, 335, 105450.	2.7	13
305	Circa 900†Ma low l´180 A-type rhyolite in the northern Yangtze Block: Genesis and geological significance. Precambrian Research, 2019, 324, 155-169.	2.7	11
306	Sediment contribution in post-collisional high Ba-Sr magmatism: Evidence from the Xijing pluton in the Alxa block, NW China. Gondwana Research, 2019, 69, 177-192.	6.0	14
307	Contributions of basaltic underplating to crustal growth in island arc and extensional tectonic settings in the Chinese Tianshan Orogenic Belt, NW China. Gondwana Research, 2019, 69, 106-121.	6.0	4
308	Fragments of the late Paleozoic accretionary complex in central and northern Chile: Similarities and differences as a key to decipher the complexity of the late Paleozoic to Triassic early Andean events., 2019,, 509-530.		2
309	Atmospheric dust dynamics in southern Central Asia: Implications for buildup of Tajikistan loess sediments. Atmospheric Research, 2019, 229, 74-85.	4.1	46
310	Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans. Earth and Planetary Science Letters, 2019, 521, 150-157.	4.4	61
311	Nature and Evolution of Crust in Southern Lhasa, Tibet: Transformation From Microcontinent to Juvenile Terrane. Journal of Geophysical Research: Solid Earth, 2019, 124, 6452-6474.	3.4	36
312	Granulite-grade garnet pyroxenite from the Kolli-massif, southern India: Implications for Archean crustal evolution. Lithos, 2019, 342-343, 499-512.	1.4	12
313	Geochemical variations of the Late Mesozoic granitoids in the southern margin of North China Craton: A possible link to the tectonic transformation from compression to extension. Gondwana Research, 2019, 75, 118-133.	6.0	27
314	Accessory mineral chemistry as a monitor of petrogenetic and metallogenetic processes: A comparative study of zircon and apatite from Wushan Cu- and Zhuxiling W(Mo)-mineralization-related granitoids. Ore Geology Reviews, 2019, 111, 102940.	2.7	18
315	Reappraisal of the Sum $ ilde{A}$ © Complex: geochemistry and geochronology of metaigneous rocks and implications for Paleoproteorozoic subduction-accretion events in the Borborema Province, NE Brazil. Brazilian Journal of Geology, 2019, 49, .	0.7	6
316	Growing primordial continental crust self-consistently in global mantle convection models. Gondwana Research, 2019, 73, 96-122.	6.0	31
317	The Record of the Transition From an Oceanic Arc to a Young Continent in the Talamanca Cordillera. Geochemistry, Geophysics, Geosystems, 2019, 20, 2733-2752.	2.5	11

#	Article	IF	CITATIONS
318	Geochronological and geochemical insights into the tectonic evolution of the Paleoproterozoic Jiao-Liao-Ji Belt, Sino-Korean Craton. Earth-Science Reviews, 2019, 193, 162-198.	9.1	100
319	A new practical isobaric interference correction model for the <i>in situ</i> Hf isotopic analysis using laser ablation-multi-collector-ICP-mass spectrometry of zircons with high Yb/Hf ratios. Journal of Analytical Atomic Spectrometry, 2019, 34, 1223-1232.	3.0	39
320	Protracted evolution of the Mara $\tilde{A}\pm\tilde{A}^3$ n Valley Au Belt magmatic complex in the Peruvian Andes using zircon oxygen isotopes, Lu-Hf and U-Pb analyses. Lithos, 2019, 338-339, 34-57.	1.4	3
321	Crust and shallow mantle structure of south India by inverting interpolated receiver function with surface wave dispersion. Journal of Asian Earth Sciences, 2019, 176, 157-167.	2.3	7
322	Early Neoproterozoic gneissic granitoids in the southern Yili Block (NW China): Constraints on microcontinent provenance and assembly in the SW Central Asian Orogenic Belt. Precambrian Research, 2019, 325, 111-131.	2.7	36
323	Crustal reworking at convergent margins traced by Fe isotopes in I-type intrusions from the Gangdese arc, Tibetan Plateau. Chemical Geology, 2019, 510, 47-55.	3.3	8
324	Quantifying the Correlation Between Mobile Continents and Elevated Temperatures in the Subcontinental Mantle. Geochemistry, Geophysics, Geosystems, 2019, 20, 1358-1386.	2.5	4
325	Middle Permian high Sr/Y monzogranites in central Inner Mongolia: reworking of the juvenile lower crust of Bainaimiao arc belt during slab break-off of the Palaeo-Asian oceanic lithosphere. International Geology Review, 2019, 61, 2083-2099.	2.1	6
326	Making and altering the crust: A global perspective on crustal structure and evolution. Earth and Planetary Science Letters, 2019, 512, 8-16.	4.4	21
327	Eoarchaean tectonics: New constraints from high pressure-temperature experiments and mass balance modelling. Precambrian Research, 2019, 325, 20-38.	2.7	39
328	Correlation between the Fluctuations in Worldwide Seismicity and Atmospheric Carbon Pollution. Sci, 2019, 1, 17.	3.0	0
329	Correlation between the Fluctuations in Worldwide Seismicity and Atmospheric Carbon Pollution. Sci, 2019, 1, 2.	3.0	2
331	Crustal growth and reworking: A case study from the Erguna Massif, eastern Central Asian Orogenic Belt. Scientific Reports, 2019, 9, 17671.	3.3	17
332	The significance of U–Pb zircon ages in zoned plutons: the case of the Flamenco pluton, Coastal Range batholith, northern Chile. Geoscience Frontiers, 2019, 10, 1073-1099.	8.4	10
333	Petrogenesis and source rocks of the high-K calc-alkaline and shoshonitic I-type granitoids in the northwestern part of East Junggar, NW China. Lithos, 2019, 326-327, 298-312.	1.4	20
334	Composite basement along the southern margin of the North Australian Craton: Evidence from in-situ zircon U-Pb-O-Hf and whole-rock Nd isotopic compositions. Lithos, 2019, 324-325, 733-746.	1.4	3
335	Nishinoshima volcano in the Ogasawara Arc: New continent from the ocean?. Island Arc, 2019, 28, e12285.	1.1	20
336	Global-ocean redox variations across the Smithian-Spathian boundary linked to concurrent climatic and biotic changes. Earth-Science Reviews, 2019, 195, 147-168.	9.1	37

#	Article	IF	Citations
337	Amalgamation of South China into Rodinia during the Grenvillian accretionary orogeny: Geochemical evidence from Early Neoproterozoic igneous rocks in the northern margin of the South China Block. Precambrian Research, 2019, 321, 221-243.	2.7	35
338	Geochronology and geochemistry of <scp><i>ca</i></scp> . 2.48ÂGa granitoid gneisses from the <scp>Yudongzi Complex</scp> in the northâ€western <scp>Yangtze Block</scp> , <scp>China</scp> . Geological Journal, 2019, 54, 879-896.	1.3	19
340	Integrated heavy mineral study of Jurassic to Paleogene sandstones in the Mandawa Basin, Tanzania: Sediment provenance and source-to-sink relations. Journal of African Earth Sciences, 2019, 150, 546-565.	2.0	25
341	Distribution and Geochemistry of Komatiites and Basalts Through the Archean. , 2019, , 103-132.		17
342	Petrogenesis of highly fractionated rhyolites in the southwestern Okinawa Trough: Constraints from wholeâ€rock geochemistry data and Sr–Nd–Pb–O isotopes. Geological Journal, 2019, 54, 316-332.	1.3	21
343	U-Pb geochronology and coupled Hf-Nd-Sr isotopic-chemical constraints of the Cassiterita Orthogneiss (2.47倓2.41-Ga) in the Mineiro belt, São Francisco craton: Geodynamic fingerprints beyond the Archean-Paleoproterozoic Transition. Precambrian Research, 2019, 326, 399-416.	2.7	44
344	Petrogenesis of the Neoarchean diorite-granite association in the Wangwushan area, southern North China Craton: Implications for continental crust evolution. Precambrian Research, 2019, 326, 84-104.	2.7	16
345	The dual origin of I-type granites: the contribution from experiments. Geological Society Special Publication, 2020, 491, 101-145.	1.3	36
346	Latest Permian–early Triassic arc amalgamation of the Eastern Tianshan (NW China): Constraints from detrital zircons and Hf isotopes of Devonian–Triassic sediments. Geological Journal, 2020, 55, 1708-1727.	1.3	21
347	Circa 2.5 Ga granitoids in the eastern North China craton: Melting from ca. 2.7 Ga accretionary crust. Bulletin of the Geological Society of America, 2020, 132, 817-834.	3.3	5
348	U-Pb-Hf isotopic data from detrital zircons in late Carboniferous and Mid-Late Triassic sandstones, and also Carboniferous granites from the Tauride and Anatolide continental units in S Turkey: implications for Tethyan palaeogeography. International Geology Review, 2020, 62, 1159-1186.	2.1	21
349	Porphyry Cu fertility of the Loch Lilly-Kars Belt, Western New South Wales, Australia. Australian Journal of Earth Sciences, 2020, 67, 75-87.	1.0	2
350	Transition of subduction-related magmatism from slab melting to dehydration at 2.5†Ga. Precambrian Research, 2020, 337, 105524.	2.7	6
351	High-Temperature Fe Isotope Geochemistry. Advances in Isotope Geochemistry, 2020, , 85-147.	1.4	6
352	Orosirian magmatism in the Tapaj \tilde{A}^3 s Mineral Province (Amazonian Craton): The missing link to understand the onset of Paleoproterozoic tectonics. Lithos, 2020, 356-357, 105350.	1.4	7
353	Olivine chemistry from Cameroon: evidence of carbonate metasomatism along the ocean-continental boundary of the Cameroon volcanic line. Mineralogy and Petrology, 2020, 114, 57-70.	1.1	3
354	Chemical geodynamics of mafic magmatism above subduction zones. Journal of Asian Earth Sciences, 2020, 194, 104185.	2.3	92
355	Long-lived localized magmatism in central-eastern part of the Pernambuco-Alagoas Domain, Borborema Province (NE Brazil): Implications for tectonic setting, heat sources, and lithospheric reworking. Precambrian Research, 2020, 337, 105559.	2.7	19

#	Article	lF	Citations
356	Evolution of cratons through the ages: A time-dependent study. Earth and Planetary Science Letters, 2020, 531, 115962.	4.4	6
357	Sulfide-bearing cumulates in deep continental arcs: The missing copper reservoir. Earth and Planetary Science Letters, 2020, 531, 115971.	4.4	57
358	Petrogenesis of Early Cretaceous adakites in Tongguanshan Cu–Au polymetallic deposit, Tongling region, Eastern China. Ore Geology Reviews, 2020, 126, 103717.	2.7	7
359	Multi-stage Jurassic magmatism in the Liaodong Peninsula: Constraints on crustal evolution beneath the eastern North China Craton. Lithos, 2020, 402-403, 105897.	1.4	4
361	Crustal growth and reworking of Archean crust within the Rhyacian domains of the southeastern Guiana Shield, Brazil: Evidence from zircon U–Pb–Hf and whole-rock Sm–Nd geochronology. Journal of South American Earth Sciences, 2020, 103, 102740.	1.4	9
362	Neoarchaean crustal reworking in the Aravalli Craton: Petrogenesis and tectonometamorphic history of the Malola granite, Bhilwara area, northwestern India. Geological Journal, 2020, 55, 8186-8210.	1.3	8
363	The Evolution of the Continental Crust and the Onset of Plate Tectonics. Frontiers in Earth Science, 2020, 8, .	1.8	95
364	Do Supercontinent-Superplume Cycles Control the Growth and Evolution of Continental Crust?. Journal of Earth Science (Wuhan, China), 2020, 31, 1142-1169.	3.2	11
365	Detrital zircon ages of the Mesoproterozoic metasedimentary rocks in the southern Yili Block: Implications for tectonic affinities of the microcontinents in SW Central Asian Orogenic Belt. Precambrian Research, 2020, 350, 105926.	2.7	16
366	Early Neoproterozoic tectonic evolution of the Erguna Terrane (NE China) and its paleogeographic location in Rodinia supercontinent: Insights from magmatic and sedimentary record. Gondwana Research, 2020, 88, 185-200.	6.0	16
367	A precise geochemical volcano-stratigraphy of the Deccan traps. Lithos, 2020, 376-377, 105754.	1.4	16
368	Origin of the Heping granodiorite pluton: Implications for syn-convergent extension and asthenosphere upwelling accompanying the early Paleozoic orogeny in South China. Gondwana Research, 2020, 85, 149-168.	6.0	13
369	Growth of primordial continents by cycles of oceanic lithosphere subductions: Evidence from tilted seismic anisotropy supported by geochemical and petrological findings. Solid Earth Sciences, 2020, 5, 50-68.	1.7	2
370	Zircon U-Pb age and Hf isotopic composition of the Carboniferous Gönen granitoid in the western Sakarya Zone of Turkey. Turkish Journal of Earth Sciences, 2020, 49, 617-628.	1.0	7
371	Significance of age periodicity in the continental crust record: The $S\tilde{A}$ £o Francisco Craton and adjacent Neoproterozoic orogens as a case study. Gondwana Research, 2020, 86, 144-163.	6.0	7
372	Major Element Composition of Sediments in Terms of Weathering and Provenance: Implications for Crustal Recycling. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008758.	2.5	21
373	Zircon U–Pb ages and Hf isotope compositions of Açucena Granite (Borrachudos Suite): Implications for Statherian-Cambrian tectono-magmatic evolution of the southern border of the São Francisco Craton, Brazil. Journal of South American Earth Sciences, 2020, 100, 102543.	1.4	11
374	A review of Hadean to Neoarchean crust generation in the Singhbhum Craton, India and possible connection with Pilbara Craton, Australia: The geochronological perspective. Earth-Science Reviews, 2020, 202, 103085.	9.1	36

#	Article	IF	CITATIONS
375	Cycling phosphorus on the Archean Earth: Part I. Continental weathering and riverine transport of phosphorus. Geochimica Et Cosmochimica Acta, 2020, 273, 70-84.	3.9	36
376	Petrogenesis of highly differentiated lâ€type volcanic rocks: Reinjection of highâ€temperature magma—An example from Suolun silicic volcanic rocks, central Great Xing'an Range, China. Geological Journal, 2020, 55, 6677-6695.	1.3	5
377	Archean basement components and metamorphic overprints of the Rangnim Massif in the northern part of the Korean Peninsula and tectonic implications for the Sino-Korean Craton. Precambrian Research, 2020, 344, 105735.	2.7	18
378	Geochronology and geochemistry of granodiorite at Jinwozi Au deposit: Tectonomagmatic evolution for Palaeozoic Beishan Orogen (Central Asian Orogenic Belt) in <scp>NW</scp> China. Geological Journal, 2020, 55, 6779-6798.	1.3	2
379	Mesozoic crustal thickness variations and related hydrothermal Cu mineralization in eastern Heilongjiang and Jilin Provinces, China. International Geology Review, 2021, 63, 1331-1341.	2.1	3
380	Evidence for Early Tonian (Ca. 1000-940 Ma) continental rifting in southern Borborema Province (NE) Tj ETQq1 International Geology Review, 2021, 63, 851-865.	0.78431 2.1	4 rgBT /Oved 20
381	Late Paleozoic tectonic evolution of the Kangguer Shear Zone and Yamansu Arc Belt, Eastern Tianshan (NW China): Constraints from structure, petrogenesis and geochronology of granitoids. Lithos, 2021, 380-381, 105821.	1.4	8
382	Temporal-spatial analysis of alkaline rocks based on GEOROC. Applied Geochemistry, 2021, 124, 104853.	3.0	1
383	Global zircon analysis records a gradual rise of continental crust throughout the Neoarchean. Earth and Planetary Science Letters, 2021, 554, 116654.	4.4	29
384	The accretion history of the South China Block at its northwest margin in the Neoproterozoic: Records from the Changba complex in the Mianlue zone. Precambrian Research, 2021, 352, 106006.	2.7	9
385	Petrogenesis of mafic microgranular enclaves (MMEs) in the oligocene-miocene granitoid plutons from northwest Anatolia, Turkey. Chemie Der Erde, 2021, 81, 125713.	2.0	8
386	A non-basaltic experimental cotectic array for calc-alkaline batholiths. Lithos, 2021, 382-383, 105929.	1.4	8
387	Gold, uranium, thorium, and rare earth mineralization in the Kadiri Volcanic Province of Eastern Dharwar Craton, India: An evaluation of mineralogical, textural, and geochemical attributes. Geological Journal, 2021, 56, 359-381.	1.3	1
388	Petrogenesis of an Early Permian bimodal intermediateâ€felsic suite in the East Junggar in Central Asian Orogenic Belt and tectonic implications. Geological Journal, 2021, 56, 547-571.	1.3	1
389	Net growth of the continental crust during the process of accretionary orogeny: Constraints from igneous rocks, southern margin of the middle section of the Central Asian Orogenic Belt. Acta Petrologica Sinica, 2021, 37, 1044-1060.	0.8	1
390	Late Jurassic high silica granites from the border area between Liaoning and Inner Mongolia: Petrogenesis and tectonic implication. Acta Petrologica Sinica, 2021, 37, 1061-1081.	0.8	0
391	Petrogenesis of Middle Jurassic granitoids in Houdaomu, Central Jilin Province: Implications for the growth of Proterozoic continental crust in the eastern CAOB. Acta Petrologica Sinica, 2021, 37, 2051-2072.	0.8	2
392	Geochemical and Ndâ€Hf Isotopic Constraints on the Petrogenesis of an Archean Granitoid in the Erguna Massif (NE China). Acta Geologica Sinica, 0, , .	1.4	2

#	Article	IF	CITATIONS
393	A Paleoproterozoic complex in the Hong'an orogenic belt, central China: New evidence for a Paleoproterozoic collisional orogenic belt in the Yangtze Block. Acta Petrologica Sinica, 2021, 37, 2123-2152.	0.8	2
394	Magmatic flare-up causes crustal thickening at the transition from subduction to continental collision. Communications Earth & Environment, 2021, 2, .	6.8	19
395	U–Pb–Hf–O–Nd isotopic and geochemical constraints on the origin of Archean TTG gneisses from the North China Craton: Implications for crustal growth. Precambrian Research, 2021, 354, 106078.	2.7	8
396	Tonalite-trondjemite-granodiorite formation of the Archaean. Special features of composition and conditions of formation, Ukrainian Shield as an example. Geofizicheskiy Zhurnal, 2021, 43, 38-68.	0.2	3
397	Lithostratigraphy and geochemistry of Aojiki volcano and Sumiyoshiike and Yonemaru maars, Kamo Volcanic Field (Southern Kyushu), Japan. Journal of Volcanology and Geothermal Research, 2021, 412, 107170.	2.1	3
398	The Generation of Arc Andesites and Dacites in the Lower Crust of a Cordilleran Arc, Fiordland, New Zealand. Journal of Petrology, 2021, 62, .	2.8	8
399	Geochronology and geochemistry of the Xiaoqinling Taihua Complex in the southern Trans-North China Orogen: Implications for magmatism during the early Paleoproterozoic global tectono-magmatic shutdown. Lithos, 2021, 402-403, 106248.	1.4	5
400	Recent Developments in Instrumentation and its Application in Absolute Dating: Historical Perspective and Overview. Journal of Asian Earth Sciences, 2021, 211, 104690.	2.3	7
401	The production of granitic magmas through crustal anatexis at convergent plate boundaries. Lithos, 2021, 402-403, 106232.	1.4	43
402	New geochemical, U–Pb SIMS geochronology and Lu–Hf isotopic data in zircon from Tandilia basement rocks, RÃo de la Plata craton, Argentina: Evidence of a sanukitoid precursor for some Paleoproterozoic granitoids. Journal of South American Earth Sciences, 2021, 108, 103199.	1.4	12
403	Geochronology, geochemistry, and isotope compositions of "Grenvillian―S-type granites in the North Qinling unit, central China: Petrogenesis and tectonic significance. Precambrian Research, 2021, 360, 106247.	2.7	6
404	Genesis of the Donggushan tungsten polymetallic deposit, central Anhui Province: A clue of diagenetic and metallogenic system of a crustal source. Ore Geology Reviews, 2021, 134, 104163.	2.7	0
405	Exploring the relationships between shear zones and granites: field and microstructural data for contrasting case studies of the Borborema Province (NE Brazil). Geologia USP - Serie Cientifica, 2021, 21, 3-18.	0.3	2
406	Paired U and Mo isotope evidence for pervasive anoxia in the Cryogenian early interglacial ocean. Precambrian Research, 2021, 361, 106244.	2.7	10
407	Collisionâ€related porphyry Cu deposits formed by input of ultrapotassic melts into the sulfideâ€rich lower crust. Terra Nova, 2021, 33, 582-589.	2.1	13
408	Tectonic switches recorded in a Paleoproterozoic accretionary orogen in the Alta Floresta Mineral Province, southern Amazonian Craton. Precambrian Research, 2021, 364, 106324.	2.7	9
409	Zircon U Pb Hf and geochemical analyses of paragneiss and granitic gneiss from Oki-Dogo Island, Southwest Japan and its tectonic implications. Lithos, 2021, 396-397, 106217.	1.4	6
410	Evaluating the geochemistry and paired silicon and oxygen isotope record of quartz in siliceous rocks from the ~3 Ga Buhwa Greenstone Belt, Zimbabwe, a critical link to deciphering the Mesoarchean silica cycle. Chemical Geology, 2021, 577, 120300.	3.3	3

#	Article	IF	Citations
411	Building a continental arc section: Constraints from Paleozoic granulite-facies metamorphism, anatexis, and magmatism in the northern margin of the Qilian Block, northern Tibet Plateau. Bulletin of the Geological Society of America, 2022, 134, 1301-1318.	3.3	7
412	Deep entrapment of buoyant magmas by orogenic tectonic stress: Its role in producing continental crust, adakites, and porphyry copper deposits. Earth-Science Reviews, 2021, 220, 103744.	9.1	44
413	Early Mesozoic crustal evolution in the NW segment of West Qinling, China: Evidence from diverse intermediate–felsic igneous rocks. Lithos, 2021, 396-397, 106187.	1.4	5
414	Early Paleozoic and Late Mesozoic crustal reworking of the South China Block: Insights from Early Silurian biotite granodiorites and Late Jurassic biotite granites in the Guangzhou area of the south-east Wuyi-Yunkai orogeny. Journal of Asian Earth Sciences, 2021, 219, 104890.	2.3	6
415	Crustal melting and suprasolidus phase equilibria: From first principles to the state-of-the-art. Earth-Science Reviews, 2021, 221, 103778.	9.1	21
416	A plume - mantle interaction model for the petrogenesis of komatiite - komatiitic basalt - basalt - basaltic andesite volcanism from the Paleoarchean (3.57–3.31ÂGa) Iron Ore Group greenstone belts, Singhbhum craton, India: Constraints from trace element geochemistry and Sm Nd geochronology. Lithos. 2021. 398-399. 106315.	1.4	9
417	Cyclic tectono-magmatic evolution of TTG source regions in plume-lid tectonics. Gondwana Research, 2021, 99, 93-109.	6.0	7
418	Earth's Continental Crust. Encyclopedia of Earth Sciences Series, 2018, , 392-418.	0.1	6
419	Crustal Evolution and Deformation in a Non-Plate-Tectonic Archaean Earth: Comparisons with Venus. Modern Approaches in Solid Earth Sciences, 2014, , 215-291.	0.3	39
420	Uranium isotopes in marine carbonates as a global ocean paleoredox proxy: A critical review. Geochimica Et Cosmochimica Acta, 2020, 287, 27-49.	3.9	63
421	Future climates: Markov blankets and active inference in the biosphere. Journal of the Royal Society Interface, 2020, 17, 20200503.	3.4	33
422	Thermomechanical modeling of the Altiplano-Puna deformation anomaly: Multiparameter insights into magma mush reorganization., 0,, GES01420.1.		15
423	Petrogenesis of igneous rocks and ore-forming material source of the Nating porphyry Cu (Au) deposit in the western section of the Bangong Co-Nujiang metallogenic belt, Tibet. Acta Petrologica Sinica, 2019, 35, 1717-1737.	0.8	4
424	Geochronology and Hf isotopes of detrital zircons from Lower Proterozoic magnetite quartzites, NE Tarim, NW China: Constraints on the Precambrian evolution of central Asia. Geochemical Journal, 2015, 49, 425-442.	1.0	3
425	Provenance of Cretaceous and Paleocene sandstones in the West Greenland basins based on detrital zircon dating. Geological Survey of Denmark and Greenland Bulletin, 0, 13, 29-32.	2.0	10
426	A well-preserved bimodal Archaean volcanic succession in the Tasiusarsuaq terrane, South-West Greenland. Geological Survey of Denmark and Greenland Bulletin, 0, 13, 53-56.	2.0	5
428	Reconstruction of the structure of Ordovician-Devonian arc system and its evolution processes: Hayachine - Miyamori ophiolite and Motai high-pressure metamorphic rocks in Iwate Prefecture. Journal of the Geological Society of Japan, 2013, 119, S134-S153.	0.6	6
429	Heavy Metals Speciation and Human Health Risk Assessment at an Illegal Gold Mining Site in Igun, Osun State, Nigeria. Journal of Health and Pollution, 2015, 5, 19-32.	1.8	39

#	Article	IF	CITATIONS
430	Atmospheric oxygenation of the early earth and earth-like planets driven by competition between land and seafloor weathering. Earth, Planets and Space, 2021, 73, .	2.5	3
431	The role of continental fragments in the formation of intra-oceanic arcs: Constraints from Sr-Nd-Hf-O isotopes of gabbro from the Jiamusi Block, NE China. Gondwana Research, 2022, 103, 297-313.	6.0	8
432	Title is missing!. Estudios Geologicos, 2006, 62, .	0.2	0
433	From Ionizing Radiation to Photosynthesis. , 2014, , 383-432.		1
434	Composition of the Crust and the Mantle. , 2015, , 3-28.		0
435	Use of Magnesium Stable Isotope Signatures for the Petrogenetic Interpretation of Granitic Rocks. The Journal of the Petrological Society of Korea, 2014, 23, 221-227.	0.2	2
438	Evolution and Fate of Chemical Elements in the Earth's Crust, Ocean, and Atmosphere. , 2015, , 163-181.		1
439	A Very Solid Fuel: Ferrous Iron Oxide as a Geochemical Energy Source. Natural Resources, 2015, 06, 115-122.	0.4	0
440	Earth's Continental Crust. Encyclopedia of Earth Sciences Series, 2017, , 1-27.	0.1	1
441	Neodymium Isotopes. Encyclopedia of Earth Sciences Series, 2018, , 967-973.	0.1	1
442	Early Jurassic high $\hat{l}\mu Nd(t)-\hat{l}\mu Hf(t)$ granites in the Southeastern South China Block: Early Jurassic crustal growth or crustal reworking?. Journal of Asian Earth Sciences, 2022, 223, 104995.	2.3	7
443	Origin of highâ€∢scp>Mg arc volcanism and fate of subducted sedimentary carbonates in the western Pacific: Evidence from partial melting experiments on mixed sediment and peridotite. Geological Journal, 2022, 57, 425-439.	1.3	1
445	The Mesozoic magmatic, metamorphic, and tectonic evolution of the eastern Gangdese magmatic arc, southern Tibet. Bulletin of the Geological Society of America, 2022, 134, 1721-1740.	3.3	9
446	Provenance and depositional history of the Mesozoic Sanjiang Basin (northeastern China): implications for the uplift history of the northeastern Asian continental margin. Geological Magazine, 0, , 1-18.	1.5	1
447	Revisit of thorium-based dust fluxes and their implications for the iron fertilization hypothesis. Journal of Oceanography, 2022, 78, 49-62.	1.7	1
448	A Geochemical Review of Amphibolite, Granulite, and Eclogite Facies Lithologies: Perspectives on the Deep Continental Crust. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022791.	3.4	10
449	Neoarchean basement, mantle enrichment and crustal extraction in central Asia: petrogenesis of 2.5 Ga amphibolite and metadiorite in NE China. Numerische Mathematik, 2021, 321, 1350-1379.	1.4	2
450	Mobilisation of deep crustal sulfide melts as a first order control on upper lithospheric metallogeny. Nature Communications, 2022, 13, 573.	12.8	23

#	Article	IF	CITATIONS
451	Recycling of supra-crustal materials in the rhyolites from north Sonid Youqi: implications for the crustal evolution in the southeast Central Asian Orogenic Belt. International Journal of Earth Sciences, 2022, 111, 703.	1.8	1
452	The formation of tonalitic and granodioritic melt from Venusian basalt. Scientific Reports, 2022, 12, 1652.	3.3	0
453	Genesis and tectonic setting of Late Jurassic-Early Cretaceous granites in Nachatang area, Central Lhasa Terrane: Constraints from geochemistry, chronology and Hf isotopes. Acta Petrologica Sinica, 2022, 38, 209-229.	0.8	0
454	Multiple Melting of a Heterogeneous Mantle and Episodic Accretion of Oceanic Crust in a Spreading Zone: Zircon U-Pb Age and Hf-O Isotope Evidence from an Oceanic Core Complex of the Mid-Atlantic Ridge. Petrology, 2022, 30, 1-24.	0.9	5
455	Archean crustal growth and reworking revealed by combined U-Pb-Hf-O isotope and trace element data of detrital zircons from ancient and modern river sediments of the eastern Kaapvaal Craton. Geochimica Et Cosmochimica Acta, 2022, 320, 79-104.	3.9	9
456	Composition, Age, and Origin of Ordovician-Devonian Tanjianshan granitoids in the North Qaidam Orogenic Belt of northern Tibet: Implications for Tectonic Evolution. International Geology Review, 0, , 1-28.	2.1	1
457	Maturation of East Junggar oceanic arc related to supracrustal recycling driven by arc–arc collision: perspectives from zircon Hf–O isotopes. International Journal of Earth Sciences, 2022, 111, 2519-2533.	1.8	2
458	Late Mesozoic Huangbeiling S-type granite in the East Qinling Orogen, China: Geochronology, petrogenesis and implications for tectonic evolution. Chemie Der Erde, 2022, 82, 125857.	2.0	10
459	Geochemistry, geochronology, and Hf isotope of diorites in the Marzheng area: Implications for the Early Palaeozoic tectonic evolution of the East Kunlun Orogenic Belt. Geological Journal, 2022, 57, 2284-2301.	1.3	2
461	Multistage evolution of subcontinental lithospheric mantle of northwestern Deccan volcanic province, India: Constraints from the ultramafic xenoliths in alkali magma. Journal of Earth System Science, 2022, 131, 1.	1.3	2
462	An overview on the Rhyacian–Orosirian (ca. 2.1–2.0ÂGa) granitic magmatism of the Alto Moxotó Terrane and its implications for the crustal evolution of the Borborema Province, NE Brazil. Journal of Iberian Geology, 2022, 48, 225-239.	1.3	6
463	Late Cretaceous Metamorphism and Anatexis of the Gangdese Magmatic Arc, South Tibet: Implications for Thickening and Differentiation of Juvenile Crust. Journal of Petrology, 2022, 63, .	2.8	7
464	A crustal growth model for the eastern Central Asian Orogenic Belt: Constraints from granitoids in the Songnen Massif and Duobaoshan terrane. Gondwana Research, 2022, 107, 325-338.	6.0	6
465	Pre-collisional crustal evolution of the European Variscan periphery: Constraints from detrital zircon U–Pb ages and Hf isotopic record in the Precambrian metasedimentary basement of the Brunovistulian Domain. Precambrian Research, 2022, 372, 106606.	2.7	7
466	Late Neoarchean high-grade regional metamorphism in the eastern North China Craton: New constraints from monazite dating in northern Liaoning. Precambrian Research, 2022, 373, 106625.	2.7	6
467	Crustal evolution of Western Europe: Constraints from detrital zircon U-Pb-Hf-O isotopes. Gondwana Research, 2022, 106, 379-396.	6.0	5
468	Igneous Rock Associations 28. Construction of a Venusian Greenstone Belt: A Petrological Perspective. Geoscience Canada, 2021, 48, .	0.8	0
469	Insights from Lu-Hf zircon isotopic data on the crustal evolution of Avalonia and Ganderia in the northern Appalachian orogen. , 2022, , 173-207.		6

#	Article	IF	Citations
470	Mantle noble gas abundance ratios inferred from oceanic basalts and model estimates. Physics of the Earth and Planetary Interiors, 2022, 327, 106875.	1.9	2
471	Evolution of the Continental Crust in the Northern Tibetan Plateau: Constraints From Geochronology and Hf Isotopes of Detrital Zircons. Frontiers in Earth Science, 2022, 10, .	1.8	0
472	Nd-Hf isotopic systematics of the arc mantle and their implication for continental crust growth. Chemical Geology, 2022, 602, 120897.	3.3	5
473	Zircon U–Pb age, whole-rock geochemistry and Nd–Sr–Pb isotope constraints on petrogenesis of the Eocene Zajkan gabbro–monzogranite intrusion, Tarom-Hashtjin magmatic belt, NW Iran. Australian Journal of Earth Sciences, 0, , 1-18.	1.0	1
474	Oldest Basement (ca. 462 Ma) in Indonesian Borneo and its Implication for Early Paleozoic Tectonic Evolution of SE Asia. Acta Geologica Sinica, 2022, 96, 2093-2104.	1.4	3
475	U-Pb geochronology of the Silurian-Devonian Bega Batholith, south-eastern Australia: Insights into the origin and development of I-type granites. Gondwana Research, 2022, 111, 1-19.	6.0	3
476	Macrostratigraphy of the Ediacaran System in North America., 2022,,.		2
477	In-run measuring 177Hf16O/177Hf as a routine technique for in-situ Hf isotopic compositions analysis in zirconium-bearing minerals by laser ablation MC-ICP-MS. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 194, 106486.	2.9	1
478	Composition and evolution of the continental crust: Retrospect and prospect. Geoscience Frontiers, 2022, 13, 101428.	8.4	5
479	Petrogenesis of newly identified Neoarchean granitoids in the Qingyuan of NE China: Implications on crustal growth and reworking of the North China Craton. Journal of Asian Earth Sciences, 2022, 236, 105333.	2.3	2
480	Growth of continental crust in intra-oceanic and continental-margin arc systems: Analogs for Archean systems. Science China Earth Sciences, 2022, 65, 1615-1645.	5.2	22
481	洋内幼§å'Œé™†ç¹¼¯å¼§ä¹½"ç³»ä¸çš"å∰陆地壳生长 <bold>: </bold> 与å≰	å‱ ®₃™ä1∕2"	['] çð»çš,,ç±»æ
482	The subduction-related Saindak porphyry Cu-Au deposit formed by remelting of a thickened juvenile lower crust underneath the Chagai belt, Pakistan. Ore Geology Reviews, 2022, 149, 105062.	2.7	2
483	Global tectonics and oxygenation events drove the Earth-scale phosphorus cycle. Earth-Science Reviews, 2022, 233, 104166.	9.1	5
484	<scp>Subâ€Micrometre</scp> Resolution <scp>FIBâ€6EM</scp> â€based <scp>ToFâ€6IMS</scp> Used to Map Geochemical Zoning in Four Zircon Reference Materials. Geostandards and Geoanalytical Research, 2023, 47, 125-142.	3.1	1
485	Geochemical studies of hybrid granite from Madugulapalli area, Eastern Dharwar Craton, Southern India: Implications for crustal mixing. Acta Geochimica, 2023, 42, 9-23.	1.7	1
486	Archean to Paleoproterozoic crustal evolution in the Sassandra-Cavally domain (Côte d'lvoire, West) Tj ETQq0	0 0 0 rgBT 2.7	/Overlock 1
487	Geochronological constraints of high-grade metasedimentary rocks of the Italva and Costeiro basins: Reconstructing the Outer Magmatic Arc System of the ribeira belt, SE Brazil. Precambrian Research, 2022, 382, 106879.	2.7	1

#	Article	IF	CITATIONS
488	Water-Rock Interaction in Oceanic Subduction Zone: Serpentinization. Journal of Engineering Studies, 2016, 08, 258-268.	0.0	3
489	Detrital zircons from high-pressure trench sediments (Qilian Orogen): Constraints on continental-arc accretion, subduction initiation and polarity of the Proto-Tethys Ocean. Gondwana Research, 2023, 113, 194-209.	6.0	5
490	Metal pollution in marine environment: sources and impact assessment., 2023, , 175-193.		1
491	Trace element and Nd isotope analyses of apatite in granitoids and metamorphosed granitoids from the eastern Central Asian Orogenic Belt: Implications for petrogenesis and post-magmatic alteration. Geoscience Frontiers, 2023, 14, 101517.	8.4	4
492	å¦,何从岩æμ†ä¾μå¥ä½"探究ç«å±±å→呿œºåˆ¶ï¼Ÿ. Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/E Geosciences, 2022, 47, 3800.	Earth Scier	ice - Journal c
493	Voluminous continental growth of the Altaids and its control on metallogeny. National Science Review, 2023, 10, .	9.5	10
494	Composition and Evolution of Continental Crust at Orogenic Belts: Constraints From a 3â€D Crustal Model of Southeast China. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	0
495	Secular Evolution of Continents and the Earth System. Reviews of Geophysics, 2022, 60, .	23.0	40
496	Growth of the continental crust induced by slab rollback in subduction zones: Evidence from Middle Jurassic arc andesites in central Tibet. Gondwana Research, 2023, 117, 8-22.	6.0	2
497	Pulse-like ruptures, seismic swarms, and tremorgenic slow-slip events with thermally activated friction. Earth and Planetary Science Letters, 2023, 603, 117983.	4.4	8
498	Sediment recycling by continental subduction indicated by B-Hf-Pb-Nd isotopes from Miocene–Quaternary lavas in the northern margin of Tibet. Lithos, 2023, 444-445, 107109.	1.4	0
499	Zircon U–Pb geochronology and Sm–Nd and Rb–Sr isotope systematics of Neoproterozoic granitods from Bou Azzer (Anti-Atlas - Morocco): The obduction trigger of the central Anti-Atlas terrane. Journal of African Earth Sciences, 2023, 202, 104900.	2.0	5
500	Mobilization of Cu in the continental lower crust: A perspective from Cu isotopes. Geoscience Frontiers, 2023, 14, 101590.	8.4	5
501	Evolution of the preserved European continental crust, constrained by U-Pb, O and Hf isotopic analyses of river detrital zircons. Geochimica Et Cosmochimica Acta, 2023, 346, 133-148.	3.9	0
502	Phosphorus deficit in continental crust induced by recycling of apatite-bearing cumulates. Geology, 2023, 51, 500-504.	4.4	0
503	å;"里木ç>†åœ°ä,œåŒ—éƒ¨ç£æ€§åŸºå°•æ·±å°¦åŠæž"é€å±žæ€§. Diqiu Kexue - Zhongguo Dizhi Daxue Xueba Geosciences, 2023, 48, 1351.	o/Earth Sc 0.5	ience - Journa
504	Transcrustal and source processes affecting the chemical characteristics of magmas in a hyperactive volcanic zone. Geochimica Et Cosmochimica Acta, 2023, 352, 86-106.	3.9	2
505	A database of detrital zircon U–Pb geochronology and Hf isotopes from the Songpan–Ganzi and Western Qinling terranes. Geoscience Data Journal, 0, , .	4.4	1

#	Article	IF	CITATIONS
506	Multistage Formation of Neoarchean Potassic Meta-Granites and Evidence for Crustal Growth on the North Margin of the North China Craton. Journal of Earth Science (Wuhan, China), 2023, 34, 658-673.	3.2	1
507	Petrogenesis of Mesozoic granitoids in the northeastern North China Craton: Constraints from apatite trace elements and in-situ Nd isotopic data. Lithos, 2023, 450-451, 107190.	1.4	1
508	The role of continental subduction in mantle metasomatism and carbon recycling revealed by melt inclusions in UHP eclogites. Science Advances, 2023, 9, .	10.3	11
509	Earth Crustal Model 1 (ECM1): A $1\hat{A}^{\circ}$ x $1\hat{A}^{\circ}$ Global Seismic and Density Model. Earth-Science Reviews, 2023, 243, 104493.	9.1	2
510	Rare earth elements in sediments from a representative Chinese mariculture bay: Characterization, DGT-based bioaccessibility, and probabilistic ecological risk. Environmental Pollution, 2023, 335, 122338.	7.5	4
511	Organic carbon cycling and black shale deposition: an Earth System Science perspective. National Science Review, 0, , .	9.5	1
512	An evolutionary history of $\langle i \rangle F12 \langle i \rangle$ gene: Emergence, loss, and vulnerability with the environment as a driver. BioEssays, 2023, 45, .	2.5	0
513	Basement differences control granitoid compositions: insights from zircon Hf isotopic mapping of Paleozoic granitoids in the northern Beishan orogenic collage, NW China. International Geology Review, 0, , 1-27.	2.1	1
514	A database of detrital zircon geochronology ages of Cambrian to Paleogene deposits in South China. Geoscience Data Journal, 0, , .	4.4	0
515	Zircon U–Pb, Hf, and O isotopic constraints on the tectonic affinity of the basement of the Himalayan orogenic belt: Insights from metasedimentary rocks, orthogneisses, and leucogranites in Garhwal, NW India. Precambrian Research, 2023, 397, 107183.	2.7	1
516	Frozen Clay Minerals as a Potential Source of Bioavailable Iron and Magnetite. Environmental Science & Environmental &	10.0	0
517	Short-term effects of ambient PM1, PM2.5, and PM10 on internal metal/metalloid profiles in older adults: A distributed lag analysis in China. Environment International, 2023, 182, 108341.	10.0	0
518	Late Neoarchean and Paleoproterozoic tectonothermal and metamorphic evolution recorded in high-pressure granulites: Evidence from the Xuanhua Complex, northern North China Craton. Precambrian Research, 2023, 399, 107246.	2.7	0
519	Zircon and cassiterite U-Pb geochronology and petrochemical characteristics of early Tertiary tin mineralization at Mayo DarlÁ©, Cameroon Volcanic Line. Journal of Geochemical Exploration, 2024, 257, 107369.	3.2	0
520	Mantle-like to low oxygen isotopes in zircon from the mid-Cretaceous high-silica granites reveal unweathered basement recycling along the present coastal area of SE China. Lithos, 2024, 466-467, 107465.	1.4	0
522	Paleoarchean to Neoproterozoic crust formation and migmatization events in the Borborema Province, NE Brazil: Implications for the growth and reworking of the continental crust. Gondwana Research, 2024, 129, 75-90.	6.0	0
523	Crustal Structures From Receiver Functions and Gravity Modeling in Central Mongolia. Journal of Geophysical Research: Solid Earth, 2024, 129, .	3.4	0
524	Compositionally variable basement and tectonic affinity of the Bainaimiao arc belt: Implications for crustal growth of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2024, 263, 106009.	2.3	0

#	Article	IF	CITATIONS
525	Indosinian anatexis of <scp>Paleoproterozoic</scp> granites in the east <scp>Cathaysia Block, South China</scp> . Island Arc, 2024, 33, .	1.1	O
526	A zircon LA-ICPMS reverse depth profiling analysis method and its geological application. Journal of Analytical Atomic Spectrometry, 2024, 39, 829-840.	3.0	0
527	Diverse volcanism and crustal recycling on early Mars. Nature Astronomy, 2024, 8, 456-462.	10.1	0
528	From 3.4ÂGa TTG generation to 2.9ÂGa crustal anatexis: The Archean crustal evolution of Porteirinha Complex (SE, Brazil). Journal of South American Earth Sciences, 2024, 137, 104822.	1.4	0
529	The pristine precursor of Andean-type magmatism preserved in magma mingling zones. Scientific Reports, 2024, 14 , .	3.3	0
530	CHAPTER 6: GRANITES, MIGMATITES AND RESIDUAL GRANULITES: RELATIONSHIPS AND PROCESSES. , 2008, , 97-144.		0
531	Detrital zircon U-Pb ages and Hf isotopes of quartzites from Southern Granulite Terrane, India: Implications for the Precambrian crustal evolution and paleogeography. Precambrian Research, 2024, 404, 107348.	2.7	0
532	Reworking and maturation of continental crust in collision zones: Insights from Early Cretaceous compositionally diverse magmatic rocks in central Tibet. Lithos, 2024, 472-473, 107562.	1.4	0
533	Formation and prolonged preservation of dense arc root cumulates: insights from retrograded eclogite xenoliths in the western Yangtze craton. Contributions To Mineralogy and Petrology, 2024, 179, .	3.1	0