Half-metallic graphene nanoribbons

Nature 444, 347-349

DOI: 10.1038/nature05180

Citation Report

#	Article	IF	CITATIONS
2	Energy Gaps in Graphene Nanoribbons. Physical Review Letters, 2006, 97, 216803.	2.9	4,396
3	Quasiparticle and Excitonic Effects in the Optical Response of Nanotubes and Nanoribbons. Topics in Applied Physics, 2007, , 195-227.	0.4	22
4	Quantum Dot Based on Z-shaped Graphene Nanoribbon: First-principles Study. Chinese Journal of Chemical Physics, 2007, 20, 489-494.	0.6	8
5	Transport in multiterminal graphene nanodevices. Nanotechnology, 2007, 18, 424033.	1.3	77
6	Half-metallic ferromagnetism in hexagonalMAl7N8and cubicMAl3N4(M=Crand Mn) from first principles. Physical Review B, 2007, 76, .	1,1	25
7	Electronic Bisection of a Single-Wall Carbon Nanotube by Controlled Chemisorption. Physical Review Letters, 2007, 99, 026802.	2.9	18
8	Strong dependence of transport properties of metal-semiconductor-metal graphene ribbons on their geometrical features. Applied Physics Letters, 2007, 91, 152105.	1.5	25
9	From graphene to graphite: A general tight-binding approach for nanoribbon carrier transport. Physical Review B, 2007, 76, .	1.1	52
10	Impurity scattering and Mott's formula in graphene. Physical Review B, 2007, 76, .	1.1	76
11	Half-Metallic Silicon Nanowires: First-Principles Calculations. Physical Review Letters, 2007, 99, 256806.	2.9	70
12	Z-shaped graphene nanoribbon quantum dot device. Applied Physics Letters, 2007, 91, .	1.5	109
13	Tight-binding investigation of the metallic proximity effect of semiconductor-metal double-wall carbon nanotubes. Physical Review B, 2007, 76, .	1.1	10
14	A Tight-Binding Hamiltonian for Band Structure and Carrier Transport in Graphene Nanoribbons. Materials Research Society Symposia Proceedings, 2007, 1057, 1.	0.1	1
15	Quasiparticle Energies and Band Gaps in Graphene Nanoribbons. Physical Review Letters, 2007, 99, 186801.	2.9	1,092
16	Electronic and transport properties of nanotubes. Reviews of Modern Physics, 2007, 79, 677-732.	16.4	1,234
17	Edge effects in finite elongated graphene nanoribbons. Physical Review B, 2007, 76, .	1.1	148
18	Zero modes and edge states of the honeycomb lattice. Physical Review B, 2007, 76, .	1,1	94
19	Spin field effect transistor with a graphene channel. Applied Physics Letters, 2007, 91, 153105.	1.5	169

#	Article	IF	Citations
20	Energy gaps in zero-dimensional graphene nanoribbons. Applied Physics Letters, 2007, 91, .	1.5	133
21	Magnetism in Graphene Nanoislands. Physical Review Letters, 2007, 99, 177204.	2.9	696
22	Conductance Modeling for Graphene Nanoribbon (GNR) Interconnects. IEEE Electron Device Letters, 2007, 28, 428-431.	2.2	229
23	Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes. Topics in Applied Physics, 2007, , 673-709.	0.4	131
24	Vibrational property and Raman spectrum of carbon nanoribbon. Applied Physics Letters, 2007, 91, 173108.	1.5	92
25	Simulation Investigation of Double-Gate CNR-MOSFETs with a Fully Self-Consistent NEGF and TB Method. , 2007, , .		10
26	Transverse Field Effect in Graphene Ribbons. Physical Review Letters, 2007, 99, 056802.	2.9	86
27	Selection rule for the optical absorption of graphene nanoribbons. Physical Review B, 2007, 76, .	1.1	93
28	Unique chemical reactivity of a graphene nanoribbon's zigzag edge. Journal of Chemical Physics, 2007, 126, 134701.	1.2	423
29	Gate-tunable graphene spin valve. Applied Physics Letters, 2007, 91, .	1.5	259
30	Metallic graphene nanodisks: Electronic and magnetic properties. Physical Review B, 2007, 76, .	1.1	276
31	Quantized Transport in Graphene p-n Junctions in a Magnetic Field. Science, 2007, 317, 641-643.	6.0	260
32	Perfectly Conducting Channel and Universality Crossover in Disordered Graphene Nanoribbons. Physical Review Letters, 2007, 99, 036601.	2.9	191
33	Electric Field Effects on Spin Transport in Defective Metallic Carbon Nanotubes. Nano Letters, 2007, 7, 3518-3522.	4.5	37
34	Elementary building blocks of graphene-nanoribbon-based electronic devices. Applied Physics Letters, 2007, 90, 223115.	1.5	119
35	Emerging nanocircuit paradigm: Graphene-based electronics for nanoscale computing., 2007,,.		10
36	Electronic structure of gated graphene and graphene ribbons. Physical Review B, 2007, 75, .	1.1	93
37	Vanadiumâ^Benzimidazole-Modified sDNA:Â A One-Dimensional Half-Metallic Ferromagnet. Journal of Physical Chemistry B, 2007, 111, 13877-13880.	1.2	46

#	ARTICLE	IF	Citations
38	Efficient Organometallic Spin Filter between Single-Wall Carbon Nanotube or Graphene Electrodes. Physical Review Letters, 2007, 98, 197202.	2.9	133
39	Analytical study of electronic structure in armchair graphene nanoribbons. Physical Review B, 2007, 75, .	1.1	278
40	Formation of Single-Walled Carbon Nanotube via the Interaction of Graphene Nanoribbons:  Ab Initio Density Functional Calculations. Nano Letters, 2007, 7, 3349-3354.	4.5	24
41	Ab Initio Calculation of a Graphene-Ribbon-Based Molecular Switch. Journal of Physical Chemistry C, 2007, 111, 14266-14273.	1.5	27
42	Diluted Graphene Antiferromagnet. Physical Review Letters, 2007, 99, 116802.	2.9	242
43	First principles study of magnetism in nanographenes. Journal of Chemical Physics, 2007, 127, 124703.	1.2	191
44	Gate Electrostatics and Quantum Capacitance of Graphene Nanoribbons. Nano Letters, 2007, 7, 1935-1940.	4.5	87
45	Nonlocal Exchange Interaction Removes Half-Metallicity in Graphene Nanoribbons. Nano Letters, 2007, 7, 2211-2213.	4.5	202
46	Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene Nanoribbons. Nano Letters, 2007, 7, 2295-2299.	4.5	547
47	Excitonic Effects in the Optical Spectra of Graphene Nanoribbons. Nano Letters, 2007, 7, 3112-3115.	4.5	254
48	Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Letters, 2007, 7, 2758-2763.	4.5	1,034
49	Will zigzag graphene nanoribbon turn to half metal under electric field?. Applied Physics Letters, 2007, 91, .	1.5	299
50	Altering low-bias transport in zigzag-edge graphene nanostrips with edge chemistry. Applied Physics Letters, 2007, 91, .	1.5	145
51	Low-energy electronic states and heat capacities in graphene strips. Physical Review B, 2007, 76, .	1.1	24
52	Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: A full real-space quantum transport simulation. Journal of Applied Physics, 2007, 102, .	1.1	124
53	Electronic structure and magnetic properties of graphitic ribbons. Physical Review B, 2007, 75, .	1.1	598
54	Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: A first-principles study. Journal of Chemical Physics, 2007, 127, 164706.	1.2	34
55	A hierarchic sparse matrix data structure for large-scale Hartree-Fock/Kohn-Sham calculations. Journal of Computational Chemistry, 2007, 28, 2531-2537.	1.5	29

#	Article	IF	Citations
56	Graphene: A pseudochiral Fermi liquid. Solid State Communications, 2007, 143, 58-62.	0.9	102
57	First-principle studies of electronic structure and C-doping effect in boron nitride nanoribbon. Chemical Physics Letters, 2007, 447, 181-186.	1.2	180
58	Graphene nano-ribbon electronics. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 40, 228-232.	1.3	1,410
59	Odd electrons in molecular chemistry, surface science, and solid state magnetism. International Journal of Quantum Chemistry, 2007, 107, 2935-2955.	1.0	11
60	Electronic transport measurements in graphene nanoribbons. Physica Status Solidi (B): Basic Research, 2007, 244, 4134-4137.	0.7	32
61	Superlattices consisting of "lines―of adsorbed hydrogen atom pairs on graphene. JETP Letters, 2007, 85, 77-81.	0.4	62
63	Electronic structures of graphene edges and nanographene. International Reviews in Physical Chemistry, 2007, 26, 609-645.	0.9	228
64	Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters, 2007, 98, 206805.	2.9	4,635
65	Graphene-based superconducting quantum point contacts. Applied Physics A: Materials Science and Processing, 2007, 89, 579-585.	1.1	21
66	Numerical simulation of electronic transport in zigzag-edged graphene nano-ribbon devices. Journal of Computational Electronics, 2008, 7, 390-393.	1.3	16
67	Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. Journal of Materials Science, 2008, 43, 5092-5101.	1.7	436
68	Sawtooth-like graphene nanoribbon. Nano Research, 2008, 1, 40-45.	5.8	41
69	Collective magnetic behavior of graphene nanohole superlattices. Nano Research, 2008, 1, 56-62.	5.8	94
70	Controlled nanocutting of graphene. Nano Research, 2008, 1, 116-122.	5.8	472
71	Charge transport in disordered graphene-based low dimensional materials. Nano Research, 2008, 1, 361-394.	5.8	319
72	A unified geometric rule for designing nanomagnetism in graphene. Nano Research, 2008, 1, 497-501.	5.8	81
73	Epitaxial graphene: a new material. Physica Status Solidi (B): Basic Research, 2008, 245, 1436-1446.	0.7	173
74	Silicon nanowire optical Raman line shapes at cryogenic and elevated temperatures. Physica Status Solidi (B): Basic Research, 2008, 245, 2090-2093.	0.7	10

#	Article	IF	CITATIONS
75	Electronic properties of chemically modi.ed graphene ribbons. Physica Status Solidi (B): Basic Research, 2008, 245, 2068-2071.	0.7	22
76	Carbon nanotube, graphene, nanowire, and moleculeâ€based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory. Journal of Computational Chemistry, 2008, 29, 1073-1083.	1.5	88
77	Tunable Magnetism in Carbonâ€lonâ€lmplanted Highly Oriented Pyrolytic Graphite. Advanced Materials, 2008, 20, 4679-4683.	11.1	103
78	Large oscillating tunnel magnetoresistance in ferromagnetic graphene single tunnel junction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 725-729.	0.9	48
79	Quantum modulation effect in a graphene-based magnetic tunnel junction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5054-5058.	0.9	20
80	Resonant transport and quantum bound states in Z-shaped graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5928-5931.	0.9	18
81	Radial breathing-like mode of wide carbon nanoribbon. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 7183-7186.	0.9	11
82	End states and singlet–triplet degeneracy in linear atomic chains. Chemical Physics Letters, 2008, 465, 102-105.	1.2	18
83	Circumacenes versus periacenes: HOMO–LUMO gap and transition from nonmagnetic to magnetic ground state with size. Chemical Physics Letters, 2008, 466, 72-75.	1.2	103
84	Theoretical study of third-order nonlinear optical properties in square nanographenes with open-shell singlet ground states. Chemical Physics Letters, 2008, 467, 120-125.	1.2	96
85	Quaternary metallic ferrimagnets based on antiferromagnetic semiconductor MnTe. Physica B: Condensed Matter, 2008, 403, 3239-3243.	1.3	0
86	Transport properties of AB-stacked bilayer graphene nanoribbons in an electric field. European Physical Journal B, 2008, 64, 73-80.	0.6	16
87	Superlattice structures of graphene-based armchair nanoribbons. Physical Review B, 2008, 78, .	1.1	148
88	Dirac equation description of the electronic states and magnetic properties of a square graphene quantum dot. Nanotechnology, 2008, 19, 435401.	1.3	22
89	Orbital magnetization of graphene and graphene nanoribbons. Journal of Applied Physics, 2008, 103, 103711.	1.1	36
90	Structure, Stability, Edge States, and Aromaticity of Graphene Ribbons. Physical Review Letters, 2008, 101, 096402.	2.9	582
91	Magnetic Correlations at Graphene Edges: Basis for Novel Spintronics Devices. Physical Review Letters, 2008, 100, 047209.	2.9	646
92	Magnetism in Disordered Graphene and Irradiated Graphite. Physical Review Letters, 2008, 101, 037203.	2.9	408

#	Article	IF	CITATIONS
93	Tight-binding Hamiltonian from first-principles calculations. Scientific Modeling and Simulation SMNS, 2008, 15, 81-95.	0.8	9
94	Electron energy level statistics in graphene quantum dots. JETP Letters, 2008, 88, 607-610.	0.4	41
95	Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nature Physics, 2008, 4, 627-630.	6.5	404
96	Anisotropic behaviours of massless DiracÂfermions in graphene under periodicÂpotentials. Nature Physics, 2008, 4, 213-217.	6.5	609
97	Half metallicity along the edge of zigzag boron nitride nanoribbons. Physical Review B, 2008, 78, .	1.1	226
98	Orientation dependence of the optical spectra in graphene at high frequencies. Physical Review B, 2008, 77, .	1.1	73
99	\tilde{MAq} bius and twisted graphene nanoribbons: Stability, geometry, and electronic properties. Journal of Chemical Physics, 2008, 128, 164719.	1.2	54
100	Graphene Layer Growth Chemistry:  Five- and Six-Member Ring Flip Reaction. Journal of Physical Chemistry A, 2008, 112, 2125-2130.	1.1	35
101	Half-Metallicity in Undoped and Boron Doped Graphene Nanoribbons in the Presence of Semilocal Exchange-Correlation Interactions. Journal of Physical Chemistry B, 2008, 112, 1333-1335.	1.2	188
102	Long-range Josephson coupling through ferromagnetic graphene. Physical Review B, 2008, 78, .	1.1	34
103	Specular Andreev reflection and magnetoresistance in graphene-based ferromagnet-superconductor double junctions. Applied Physics Letters, 2008, 92, 102513.	1.5	40
104	Spin States of Zigzag-Edged Möbius Graphene Nanoribbons from First Principles. Journal of Physical Chemistry C, 2008, 112, 5348-5351.	1.5	27
105	Half-Metallicity in Edge-Modified Zigzag Graphene Nanoribbons. Journal of the American Chemical Society, 2008, 130, 4224-4225.	6.6	640
106	Field effect on spin-polarized transport in graphene nanoribbons. Applied Physics Letters, 2008, 92, 163109.	1.5	93
107	Armchair graphene nanoribbons: Electronic structure and electric-field modulation. Physical Review B, 2008, 77, .	1.1	185
108	Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes. Nano Letters, 2008, 8, 3582-3586.	4.5	1,090
109	Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Physical Review B, 2008, 77, .	1.1	503
110	The growth and morphology of epitaxial multilayer graphene. Journal of Physics Condensed Matter, 2008, 20, 323202.	0.7	622

#	Article	IF	CITATIONS
111	Energy Gaps and Stark Effect in Boron Nitride Nanoribbons. Nano Letters, 2008, 8, 2200-2203.	4.5	370
112	Modeling extended contacts for nanotube and graphene devices. Physical Review B, 2008, 77, .	1.1	71
113	Tight-binding Hamiltonian from first-principles calculations. Lecture Notes in Computational Science and Engineering, 2008, , 81-95.	0.1	1
114	Optical properties of graphene antidot lattices. Physical Review B, 2008, 77, .	1.1	109
115	Half-metallicity in hybrid BCN nanoribbons. Journal of Chemical Physics, 2008, 129, 084712.	1.2	133
116	Understanding structures and electronic/spintronic properties of single molecules, nanowires, nanotubes, and nanoribbons towards the design of nanodevices. Journal of Materials Chemistry, 2008, 18, 4510.	6.7	59
117	Modeling of Graphite Oxide. Journal of the American Chemical Society, 2008, 130, 10697-10701.	6.6	736
118	Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Applied Physics Letters, 2008, 93, .	1.5	481
119	Crystallographic Etching of Few-Layer Graphene. Nano Letters, 2008, 8, 1912-1915.	4.5	520
120	Hydrocarbon lithography on graphene membranes. Applied Physics Letters, 2008, 92, .	1.5	252
121	Half-metallic finite zigzag single-walled carbon nanotubes from first principles. Physical Review B, 2008, 78, .	1.1	42
122	Edge States and Magnetism in Carbon Nanotubes with Line Defects. Physical Review Letters, 2008, 100, 146801.	2.9	27
123	Electronic flexoelectricity in low-dimensional systems. Physical Review B, 2008, 77, .	1.1	157
124	Self-Assembled Metal Atom Chains on Graphene Nanoribbons. Physical Review Letters, 2008, 101, 266105.	2.9	78
125	Stability and magnetism of hydrogen dimers on graphene. Physical Review B, 2008, 78, .	1.1	103
126	Electronic and magnetic properties of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mn>3 < /mml:mn> < mml:mi>d < /mml:mi> < /mml:mrow> < /mml:math> transition atom adsorbed graphene and graphene nanoribbons. Physical Review B, 2008, 77, .</mml:math>	-metal	452
127	Half-Metallic Zigzag Carbon Nanotube Dots. ACS Nano, 2008, 2, 2243-2249.	7.3	68
128	Specular Andreev reflection and magnetoresistance in graphene-based ferromagnet–superconductor hybrid systems. Journal of Physics Condensed Matter, 2008, 20, 335202.	0.7	9

#	Article	IF	CITATIONS
129	Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations. Physical Review B, 2008, 77, .	1.1	272
130	Graphene NanoFlakes with Large Spin. Nano Letters, 2008, 8, 241-245.	4.5	443
131	A Prototype for Graphene Material Simulation:  Structures and Interaction Potentials of Coronene Dimers. Journal of Physical Chemistry C, 2008, 112, 4061-4067.	1.5	152
132	The growth of AA graphite on (111) diamond. Journal of Chemical Physics, 2008, 129, 234709.	1.2	188
133	Self-doping effects in epitaxially grown graphene. Applied Physics Letters, 2008, 93, .	1.5	33
134	Band structure engineering of graphene by strain: First-principles calculations. Physical Review B, 2008, 78, .	1.1	537
135	Transport properties of branched graphene nanoribbons. Applied Physics Letters, 2008, 92, 042115.	1.5	32
136	Magnetic Behavior in Zinc Oxide Zigzag Nanoribbons. Nano Letters, 2008, 8, 1562-1565.	4.5	150
137	Edge chirality determination of graphene by Raman spectroscopy. Applied Physics Letters, 2008, 93, .	1.5	226
138	Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule. Journal of Physical Chemistry C, 2008, 112, 8196-8199.	1.5	37
139	Field effects on the electronic and spin properties of undoped and doped graphene nanodots. Physical Review B, 2008, 78, .	1.1	31
140	First-principles calculations of spin-dependent conductance of graphene flakes. Physical Review B, 2008, 78, .	1.1	93
141	Prediction of hidden multiferroic order in graphene zigzag ribbons. Physical Review B, 2008, 77, .	1.1	112
142	Energy-gap modulations of graphene ribbons under external fields: A theoretical study. Physical Review B, 2008, 77, .	1.1	64
143	A defective graphene phase predicted to be a room temperature ferromagnetic semiconductor. New Journal of Physics, 2008, 10, 033002.	1.2	130
144	Half-metallic graphene nanodots: A comprehensive first-principles theoretical study. Physical Review B, 2008, 77, .	1.1	290
145	Electron transport of L-shaped graphene nanoribbons. Journal of Applied Physics, 2008, 103, 063711.	1.1	54
146	Tight-binding study of nonmagnetic-defect-induced magnetism in graphene. Low Temperature Physics, 2008, 34, 805-811.	0.2	16

#	Article	IF	CITATIONS
147	Chapter 7 Low-Energy Electronic Structure of Graphene and its Dirac Theory. Contemporary Concepts of Condensed Matter Science, 2008, 3, 171-197.	0.5	0
148	Ïf- and Ï∈-Defects at Graphene Nanoribbon Edges: Building Spin Filters. Nano Letters, 2008, 8, 2293-2298.	4.5	101
149	Localized States at Zigzag Edges of Bilayer Graphene. Physical Review Letters, 2008, 100, 026802.	2.9	136
150	Electronic structures of SiC nanoribbons. Journal of Chemical Physics, 2008, 129, 174114.	1.2	222
151	Switching on magnetism in Ni-doped graphene: Density functional calculations. Physical Review B, 2008, 78, .	1.1	83
152	MoS ₂ Nanoribbons: High Stability and Unusual Electronic and Magnetic Properties. Journal of the American Chemical Society, 2008, 130, 16739-16744.	6.6	876
153	Graphene Antidot Lattices: Designed Defects and Spin Qubits. Physical Review Letters, 2008, 100, 136804.	2.9	451
154	Role of Symmetry in the Transport Properties of Graphene Nanoribbons under Bias. Physical Review Letters, 2008, 100, 206802.	2.9	421
155	Strain effect on electronic structures of graphene nanoribbons: A first-principles study. Journal of Chemical Physics, 2008, 129, 074704.	1.2	182
156	An extensive western Mediterranean deep water renewal between 2004 and 2006. Geophysical Research Letters, 2008, 35, .	1.5	152
157	Magnetoresistance of nanoscale molecular devices based on Aharonov–Bohm interferometry. Journal of Physics Condensed Matter, 2008, 20, 383201.	0.7	30
158	Zigzag Graphene Nanoribbons with Saturated Edges. ACS Nano, 2008, 2, 516-522.	7.3	105
159	Energy gaps, magnetism, and electric-field effects in bilayer graphene nanoribbons. Physical Review B, 2008, 78, .	1.1	143
160	An <i>ab initio</i> study on energy gap of bilayer graphene nanoribbons with armchair edges. Applied Physics Letters, 2008, 92, .	1.5	64
161	Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nature Nanotechnology, 2008, 3, 408-412.	15.6	747
162	Chaotic Dirac Billiard in Graphene Quantum Dots. Science, 2008, 320, 356-358.	6.0	2,098
163	Energetics of nanoscale graphene ribbons: Edge geometries and electronic structures. Physical Review B, 2008, 77, .	1.1	127
164	Chemical Functionalization of Graphene with Defects. Nano Letters, 2008, 8, 4373-4379.	4.5	607

#	Article	IF	Citations
165	Transport Length Scales in Disordered Graphene-Based Materials: Strong Localization Regimes and Dimensionality Effects. Physical Review Letters, 2008, 100, 036803.	2.9	192
166	Symmetry Breaking Induced Bandgap in Epitaxial Graphene Layers on SiC. Nano Letters, 2008, 8, 4464-4468.	4.5	154
167	In-plane conductance measurement of graphene nanoislands using an integrated nanogap probe. Nanotechnology, 2008, 19, 495701.	1.3	22
168	Metal-semiconductor junction of graphene nanoribbons. Applied Physics Letters, 2008, 92, 083107.	1.5	54
169	First-principles approach to monitoring the band gap and magnetic state of a graphene nanoribbon via its vacancies. Physical Review B, 2008, 78, .	1.1	120
170	Suppression of spin polarization in graphene nanoribbons by edge defects and impurities. Physical Review B, 2008, 77, .	1.1	178
171	Chemical Functionalization of Graphene Nanoribbons by Carboxyl Groups on Stone-Wales Defects. Journal of Physical Chemistry C, 2008, 112, 12003-12007.	1.5	93
172	Low Dimensional Nanomaterials for Spintronics. , 2008, , 247-271.		0
173	Investigation of gas sensing properties of armchair graphene nanoribbons. Journal of Physics Condensed Matter, 2008, 20, 425211.	0.7	23
174	Magnetic Boron Nitride Nanoribbons with Tunable Electronic Properties. Nano Letters, 2008, 8, 2210-2214.	4.5	317
175	Spin and band-gap engineering in doped graphene nanoribbons. Physical Review B, 2008, 78, .	1.1	128
176	Vacancy-induced magnetism in graphene and graphene ribbons. Physical Review B, 2008, 77, .	1.1	390
177	Edge States and Optical Transition Energies in Carbon Nanoribbons. Physical Review Letters, 2008, 101, 246803.	2.9	40
178	Multiscale Simulations of High Performance Capacitors and Nanoelectronic Devices., 2008,,.		0
179	Local Magnetic Moment Formation on Edges of Graphene. Journal of the Physical Society of Japan, 2008, 77, 044705.	0.7	33
180	Localized states at zigzag edges of multilayer graphene and graphite steps. Europhysics Letters, 2008, 84, 17001.	0.7	25
181	Electronic structure of triangular, hexagonal and round graphene flakes near the Fermi level. New Journal of Physics, 2008, 10, 103015.	1.2	79
182	Ballistic rectification in a Z-shaped graphene nanoribbon junction. Applied Physics Letters, 2008, 92, .	1.5	55

#	Article	IF	CITATIONS
183	Coulomb blockade in graphene nanodisks. Physical Review B, 2008, 77, .	1.1	60
184	Strong terahertz conductance of graphene nanoribbons under a magnetic field. Applied Physics Letters, 2008, 93, .	1.5	81
185	Band-Gap Tuning in Magnetic Graphene Nanoribbons. Applied Physics Express, 0, 1, 064004.	1.1	19
186	MAGNETISM IN GRAPHENE SYSTEMS. Nano, 2008, 03, 433-442.	0.5	70
187	Comparative Study of Carbon and BN Nanographenes: Ground Electronic States and Energy Gap Engineering. Journal of Physical Chemistry C, 2008, 112, 12677-12682.	1.5	66
188	Density-functional study of edge stress in graphene. Physical Review B, 2008, 78, .	1.1	75
189	Ab Initio Study of Phonon-Induced Dephasing of Electronic Excitations in Narrow Graphene Nanoribbons. Nano Letters, 2008, 8, 2510-2516.	4.5	42
190	Electronic Ground State of Higher Acenes. Journal of Physical Chemistry A, 2008, 112, 332-335.	1.1	236
191	Tuning the gap in bilayer graphene using chemical functionalization: Density functional calculations. Physical Review B, 2008, 78, .	1.1	183
192	Scaling law of the giant Stark effect in boron nitride nanoribbons and nanotubes. Physical Review B, 2008, 78, .	1.1	96
193	Magnetic Edge-State Excitons in Zigzag Graphene Nanoribbons. Physical Review Letters, 2008, 101, 186401.	2.9	139
194	Benzimidazole-Modified Single-Stranded DNA: Stable Scaffolds for 1-Dimensional Spintronics Constructs. Journal of Physical Chemistry B, 2008, 112, 16982-16989.	1.2	11
195	Edge states of zigzag bilayer graphite nanoribbons. Journal of Physics Condensed Matter, 2008, 20, 365202.	0.7	11
196	Magnetism as a Mass Term of the Edge States in Graphene. Journal of the Physical Society of Japan, 2008, 77, 054703.	0.7	18
197	Quantum electron transport in toroidal carbon nanotubes with metallic leads. Molecular Simulation, 2008, 34, 9-16.	0.9	5
198	Defect formation in graphene nanosheets by acid treatment: an x-ray absorption spectroscopy and density functional theory study. Journal Physics D: Applied Physics, 2008, 41, 062001.	1.3	112
199	Two-dimensional, phenanthroline-based, extended π-conjugated molecules for single-molecule conduction. Journal of Physics Condensed Matter, 2008, 20, 295208.	0.7	4
200	The dilepton probe in heavy-ion collisions. Journal of Physics G: Nuclear and Particle Physics, 2008, 35, 104034.	1.4	6

#	ARTICLE	IF	CITATIONS
201	Algebraic-Geometric Solution to (2+1)-Dimensional Sawada–Kotera Equation. Communications in Theoretical Physics, 2008, 49, 31-36.	1.1	19
202	Spin-Filter Effect Induced by Magnetic Edge States of Zigzag Carbon Nanotube. Chinese Physics Letters, 2008, 25, 1431-1434.	1.3	0
203	Functionalizing graphene by embedded boron clusters. Nanotechnology, 2008, 19, 335707.	1.3	19
204	A model of a tunable quantum dot in a semiconducting carbon nanotube. Semiconductor Science and Technology, 2008, 23, 085024.	1.0	3
205	Recursive inverse factorization. Journal of Chemical Physics, 2008, 128, 104105.	1.2	17
206	The electronic structure of a single-walled aluminosilicate nanotube. Nanotechnology, 2008, 19, 175702.	1.3	17
207	Chiral selective tunneling induced negative differential resistance in zigzag graphene nanoribbon: A theoretical study. Applied Physics Letters, 2008, 92, .	1.5	93
208	Electron transport in a ferromagnet-superconductor junction on graphene. Physical Review B, 2008, 78, .	1.1	57
209	Electron-electron interactions on the edge states of graphene: A many-body configuration interaction study. Physical Review B, 2008, 77, .	1.1	99
210	Controllable spin transport in ferromagnetic graphene junctions. Physical Review B, 2008, 77, .	1.1	138
211	First-principles study of edge chemical modifications in graphene nanodots. Physical Review B, 2008, 78, .	1.1	77
212	Magnetism in <u>n</u> anopatterned graphite film. Applied Physics Letters, 2008, 93, .	1.5	33
213	Bandwidth controlled half-metallicity in a ferromagnetic metal: <i>Ab initio</i> calculations. Physical Review B, 2008, 77, .	1.1	16
214	Molecular magnetism of monoclinic SrN: A first-principles study. Physical Review B, 2008, 77, .	1.1	11
215	Half metallicty in finite-length zigzag single walled carbon nanotube: A first-principle prediction. Applied Physics Letters, 2008, 93, 073101.	1.5	31
216	Edge state magnetism of single layer graphene nanostructures. Journal of Chemical Physics, 2008, 128, 244717.	1.2	96
217	Proposal for a correlation induced spin-current polarizer. Physical Review B, 2008, 77, .	1.1	9
218	High-resolution nanofabrication using a highly focused electron beam. Journal of Applied Physics, 2008, 104, .	1.1	25

#	Article	IF	CITATIONS
219	Spin confinement in the superlattices of graphene ribbons. Applied Physics Letters, 2008, 92, .	1.5	79
220	Interactions and Magnetism in Graphene Boundary States. Physical Review Letters, 2008, 101, 036803.	2.9	51
221	Controllable <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>0</mml:mn><mml:mtext mathvariant="normal">â^'</mml:mtext><mml:mi>\€</mml:mi></mml:math> Transition in a Superconducting Graphene-Nanoribbon Junction. Physical Review Letters, 2008, 101, 187002.	2.9	28
222	Relativistic ferromagnetic magnon at the zigzag edge of graphene. Physical Review B, 2008, 78, .	1.1	15
223	Functionalization of silicon nanowires with transition metal atoms. Physical Review B, 2008, 78, .	1.1	26
224	Spin Currents in Rough Graphene Nanoribbons: Universal Fluctuations and Spin Injection. Physical Review Letters, 2008, 100, 177207.	2.9	288
225	Possible Half Metallic Antiferromagnet in a Hole-Doped Perovskite Cuprate Predicted By First-Principles Calculations. Physical Review Letters, 2008, 100, 117203.	2.9	37
226	Unscreened Coulomb Interactions and the Quantum Spin Hall Phase in Neutral Zigzag Graphene Ribbons. Physical Review Letters, 2008, 101, 196804.	2.9	22
227	Asymmetric transport in asymmetric T-shaped graphene nanoribbons. Applied Physics Letters, 2008, 93, 092104.	1.5	45
228	Supercurrent Switch in Graphene <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>l€</mml:mi></mml:math> Junctions. Physical Review Letters, 2008, 100, 187004.	2.9	78
229	Andreev-Klein reflection in graphene ferromagnet-superconductor junctions. Physical Review B, 2008, 78, .	1.1	65
230	Disorder effects in the quantum Hall effect of graphene <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>â^'</mml:mtext><mml:mi>n</mml:mi><td>າrow><td>ml:Math>jun</td></td></mml:mrow></mml:math>	າrow> <td>ml:Math>jun</td>	ml:Math>jun
231	Magnetotransport properties of mesoscopic graphite spin valves. Physical Review B, 2008, 77, .	1.1	104
232	Local conductance measurement of few-layer graphene on SiC substrate using an integrated nanogap probe. Journal of Physics: Conference Series, 2008, 100, 052006.	0.3	8
233	Properties of a Unique Type of Critical State in the Two-Dimensional Two-Band Anderson Lattice Model in the Presence of Site-Selective Disorder. Journal of the Physical Society of Japan, 2008, 77, 124705.	0.7	0
234	Magnetic Properties of Mn Doped Armchair Graphene Nanoribbon. Materials Transactions, 2008, 49, 2445-2447.	0.4	10
235	Wave-vector-dependent spin filtering and spin transport through magnetic barriers in graphene. Physical Review B, 2009, 80, .	1.1	65
236	Impurity-induced spin gap asymmetry in nanoscale graphene. Physical Review B, 2009, 80, .	1.1	16

#	ARTICLE	IF	CITATIONS
237	Model of impurity segregation in graphene nanoribbons. Physical Review B, 2009, 80, .	1.1	14
238	Edge states interferometry and spin rotations in zigzag graphene nanoribbons. Physical Review B, 2009, 80, .	1.1	34
239	Electronic and transport properties of rectangular graphene macromolecules and zigzag carbon nanotubes of finite length. Physical Review B, 2009, 79, .	1.1	8
240	Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Applied Physics Letters, 2009, 95, .	1.5	176
241	Thermal rectification in asymmetric graphene ribbons. Applied Physics Letters, 2009, 95, .	1.5	308
242	Enhanced Optical Conductivity of Bilayer Graphene Nanoribbons in the Terahertz Regime. Physical Review Letters, 2009, 103, 207401.	2.9	133
243	Electronic structures of BC3 nanoribbons. Applied Physics Letters, 2009, 94, .	1.5	58
244	Self-redirection of tearing edges in graphene: Tight-binding molecular dynamics simulations. Physical Review B, 2009, 80, .	1.1	19
245	Challenge of Magnetism in Strongly Correlated Open-Shell <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>2</mml:mn><mml:mi>p</mml:mi></mml:math> Systems. Physical Review Letters, 2009, 102, 016401.	2.9	42
246	Magnetism in hybrid carbon nanostructures: Nanobuds. Physical Review B, 2009, 79, .	1.1	31
247	Bonding and magnetism in nanosized graphene molecules: Singlet states of zigzag edged hexangulenes C6m2H6m(m=2,3,…,10). Journal of Chemical Physics, 2009, 131, 214706.	1.2	21
248	Magnetism and spin-polarized transport in carbon atomic wires. Physical Review B, 2009, 80, .	1.1	25
249	Exotic magnetism in the alkali sesquioxidesRb4O6andCs4O6. Physical Review B, 2009, 79, .	1,1	22
250	Standing spin waves excited optically across an indirect gap in short graphene nanoribbons. Physical Review B, 2009, 79, .	1.1	4
251	Ground-state properties of gapped graphene using the random phase approximation. Physical Review B, 2009, 79, .	1.1	41
252	Electric-field control of magnetic states, charge transfer, and patterning of adatoms on graphene: First-principles density functional theory calculations. Physical Review B, 2009, 80, .	1.1	25
253	Power-law singularity in the local density of states due to the point defect in graphene. Physical Review B, 2009, 80, .	1.1	14
254	Magnetism in finite-sized single-walled carbon nanotubes of the zigzag type. Physical Review B, 2009, 79, .	1.1	29

#	Article	IF	CITATIONS
255	Magnetic molecules created by hydrogenation of polycyclic aromatic hydrocarbons. Physical Review B, 2009, 79, .	1.1	14
256	Stability of the ferromagnetic state in a mixed <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>s</mml:mi><mml:msup><mml:mi>p</mml:mi><mml:mn>2</mml:mn> system. Physical Review B. 2009. 80</mml:msup></mml:mrow></mml:math>	nml:msup	> ⁶ mml:mo>
257	Linear correlation between binding energy and Young's modulus in graphene nanoribbons. Journal of Applied Physics, 2009, 106, 054318.	1.1	28
258	Graphene nanoribbon array in a cellular automata architecture for propagation of binary information. Applied Physics Letters, 2009, 94, .	1.5	5
259	Theory of Interedge Superexchange in Zigzag Edge Magnetism. Physical Review Letters, 2009, 102, 227205.	2.9	141
260	Polarization-induced switching effect in graphene nanoribbon edge-defect junction. Journal of Chemical Physics, 2009, 131, 234706.	1.2	8
261	Morphology of Graphene on Step-Controlled Sapphire Surfaces. Applied Physics Express, 0, 2, 075502.	1.1	37
262	Effect of Uniaxial Strain on the Electrical and Magnetic Property of a One-Dimensional Bimetallic Sandwich Molecular Wire (FeCpVCp) < sub>â^ž. Journal of Physical Chemistry C, 2009, 113, 21422-21427.	1.5	18
263	Using circumacenes to improve organic electronics and molecular electronics: design clues. Nanotechnology, 2009, 20, 475201.	1.3	9
264	Conductance gaps in graphene ribbons designed by molecular aggregations. Nanotechnology, 2009, 20, 095705.	1.3	17
265	Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties. Nanotechnology, 2009, 20, 375704.	1.3	27
266	A theoretical study of linear beryllium chains: Full configuration interaction. Journal of Chemical Physics, 2009, 130, 024301.	1.2	32
267	Stable half-metallic ferromagnetism in nonstoichiometric cubic binary chromium chalcogenides. Europhysics Letters, 2009, 88, 67007.	0.7	9
268	Spin transport in graphite and graphene spin valves. Proceedings of SPIE, 2009, , .	0.8	8
269	Carbon Nanomaterials for Next-Generation Interconnects and Passives: Physics, Status, and Prospects. IEEE Transactions on Electron Devices, 2009, 56, 1799-1821.	1.6	390
270	Soluble Graphene: Generation of Aqueous Graphene Solutions Aided by a Perylenebisimideâ€Based Bolaamphiphile. Advanced Materials, 2009, 21, 4265-4269.	11.1	196
271	The Formation of Largeâ€Area Conducting Grapheneâ€Like Platelets. Chemistry - A European Journal, 2009, 15, 8235-8240.	1.7	76
273	Graphene: The New Twoâ€Dimensional Nanomaterial. Angewandte Chemie - International Edition, 2009, 48, 7752-7777.	7.2	3,668

#	Article	IF	CITATIONS
274	Electronic and magnetic properties of zigzag edge graphene nanoribbons with Stone–Wales defects. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 3354-3358.	0.9	41
275	Third-order nonlinear optical properties of trigonal, rhombic and bow-tie graphene nanoflakes with strong structural dependence of diradical character. Chemical Physics Letters, 2009, 480, 278-283.	1.2	49
276	Computational study of carbon-based electronics. Journal of Computational Electronics, 2009, 8, 427-440.	1.3	13
277	Chemically decorated boron-nitride nanoribbons. Frontiers of Physics in China, 2009, 4, 367-372.	1.0	59
278	Chiral selective tunneling induced graphene nanoribbon switch. Frontiers of Physics in China, 2009, 4, 373-377.	1.0	2
279	Towards graphene nanoribbon-based electronics. Frontiers of Physics in China, 2009, 4, 269-279.	1.0	43
280	Exploring at nanoscale from first principles. Frontiers of Physics in China, 2009, 4, 256-268.	1.0	1
281	Shedding light on the crystallographic etching of multi-layer graphene at the atomic scale. Nano Research, 2009, 2, 695-705.	5.8	72
282	Magnetism in carbon nanoscrolls: Quasi-half-metals and half-metals in pristine hydrocarbons. Nano Research, 2009, 2, 844-850.	5.8	11
283	Trends in graphene research. Materials Today, 2009, 12, 34-37.	8.3	114
284	On the catalytic hydrogenation of graphite for graphene nanoribbon fabrication. Physica Status Solidi (B): Basic Research, 2009, 246, 2540-2544.	0.7	25
285	The thermodynamic stability and simulated STM images of graphene nanoribbons. Physica Status Solidi (B): Basic Research, 2009, 246, 2586-2591.	0.7	9
286	Current–phase relation in graphene and application to a superconducting quantum interference device. Physica Status Solidi (B): Basic Research, 2009, 246, 2568-2571.	0.7	9
287	Lattice vibrations in graphene nanoribbons from density functional theory. Physica Status Solidi (B): Basic Research, 2009, 246, 2577-2580.	0.7	6
288	Ultralong Natural Graphene Nanoribbons and Their Electrical Conductivity. Small, 2009, 5, 924-927.	5.2	33
289	NMR computations for carbon nanotubes from first principles: Present status and future directions. International Journal of Quantum Chemistry, 2009, 109, 3343-3367.	1.0	27
290	Chemical reactivity and magnetism of graphene. International Journal of Quantum Chemistry, 2010, 110, 1938-1946.	1.0	4
291	Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458, 872-876.	13.7	3,246

#	Article	IF	CITATIONS
292	The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Materials, 2009, 8, 235-242.	13.3	1,270
293	Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials, 2009, 8, 203-207.	13.3	2,396
294	Room-temperature ferromagnetism in graphite driven by two-dimensional networks of pointÂdefects. Nature Physics, 2009, 5, 840-844.	6.5	559
295	The effect of corner form on electron transport of L-shaped graphene nanoribbons. Physica B: Condensed Matter, 2009, 404, 1771-1775.	1.3	12
296	Quantum spin Hall phase in neutral zigzag graphene ribbons. Physica B: Condensed Matter, 2009, 404, 2694-2698.	1.3	5
297	Premature switching in graphene Josephson transistors. Solid State Communications, 2009, 149, 1046-1049.	0.9	23
298	The edge state of nanographene and the magnetism of the edge-state spins. Solid State Communications, 2009, 149, 1144-1150.	0.9	126
299	Dirac tunneling magnetoresistance in a double ferromagnetic graphene barrier structure. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1310-1314.	1.3	20
300	Massive Dirac fermion transport in a gapped graphene-based magnetic tunnel junction. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1475-1478.	1.3	14
301	Experimental studies of the electronic structure of graphene. Progress in Surface Science, 2009, 84, 380-413.	3.8	75
302	Half metallicity in a zigzag double-walled nanotube nanodot: An ab initio prediction. Chemical Physics Letters, 2009, 468, 257-259.	1.2	3
303	First principle studies of zigzag AlN nanoribbon. Chemical Physics Letters, 2009, 469, 183-185.	1.2	86
304	Theoretical study on third-order nonlinear optical properties in hexagonal graphene nanoflakes: Edge shape effect. Chemical Physics Letters, 2009, 477, 355-359.	1.2	74
305	From trans-polyacetylene to zigzag-edged graphene nanoribbons. Chemical Physics Letters, 2009, 483, 120-123.	1.2	24
306	Edge effect on electronic transport properties of graphene nanoribbons and presence of perfectly conducting channel. Carbon, 2009, 47, 124-137.	5.4	89
307	The importance of defects for carbon nanoribbon based electronics. Physica Status Solidi - Rapid Research Letters, 2009, 3, 181-183.	1.2	11
308	Spin currents and magnetoresistance of graphene-based magnetic junctions. European Physical Journal B, 2009, 67, 239-244.	0.6	28
309	Spin-polarization and magnetoresistance in graphene-based resonant-tunnelling structures. European Physical Journal B, 2009, 68, 119-122.	0.6	5

#	Article	IF	Citations
310	Spin-orbit coupling, edge states and quantum spin Hall criticality due to Dirac fermion confinement: the case study of graphene. European Physical Journal B, 2009, 69, 499-504.	0.6	6
311	Electron transport in nanotube-ribbon hybrids. European Physical Journal B, 2009, 70, 497-505.	0.6	4
312	Electronic properties and quantum transport in Graphene-based nanostructures. European Physical Journal B, 2009, 72, 1-24.	0.6	185
313	Crossed Andreev reflection in graphene-based ferromagnet-superconductor structures. European Physical Journal B, 2009, 72, 217-223.	0.6	10
314	The electronic properties of graphene. Reviews of Modern Physics, 2009, 81, 109-162.	16.4	20,779
315	Transport properties of T-shaped and crossed junctions based on graphene nanoribbons. Nanotechnology, 2009, 20, 055202.	1.3	35
316	Chemical functionalization of graphene. Journal of Physics Condensed Matter, 2009, 21, 344205.	0.7	331
317	Oxidation Unzipping of Stable Nanographenes into Joint Spin-Rich Fragments. Journal of the American Chemical Society, 2009, 131, 9663-9669.	6.6	46
318	Dots versus Antidots: Computational Exploration of Structure, Magnetism, and Half-Metallicity in Boronâ^Nitride Nanostructures. Journal of the American Chemical Society, 2009, 131, 17354-17359.	6.6	174
319	Magnetoresistive junctions based on epitaxial graphene and hexagonal boron nitride. Physical Review B, 2009, 80, .	1.1	109
320	Hydrogen storage of calcium atoms adsorbed on graphene: First-principles plane wave calculations. Physical Review B, 2009, 79, .	1.1	314
321	Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Physical Review B, 2009, 80, .	1.1	1,769
322	Novel Magnetic Properties of Graphene: Presence of Both Ferromagnetic and Antiferromagnetic Features and Other Aspects. Journal of Physical Chemistry C, 2009, 113, 9982-9985.	1.5	252
323	A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano, 2009, 3, 2653-2659.	7.3	2,115
324	Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study. Nano Letters, 2009, 9, 2730-2735.	4.5	716
325	Electronics and Magnetism of Patterned Graphene Nanoroads. Nano Letters, 2009, 9, 1540-1543.	4.5	235
326	Localized Spins on Graphene. Physical Review Letters, 2009, 102, 046801.	2.9	106
327	Electron-Hole Asymmetry of Spin Injection and Transport in Single-Layer Graphene. Physical Review Letters, 2009, 102, 137205.	2.9	130

#	Article	IF	CITATIONS
328	lâ^'Vcurve signatures of nonequilibrium-driven band gap collapse in magnetically ordered zigzag graphene nanoribbon two-terminal devices. Physical Review B, 2009, 79, .	1.1	39
329	Thermal conductivity of graphene nanoribbons. Applied Physics Letters, 2009, 95, .	1.5	388
330	Tunable band gap and magnetic ordering by adsorption of molecules on graphene. Physical Review B, 2009, 80, .	1.1	133
331	Emerging nanodevice paradigm. ACM Journal on Emerging Technologies in Computing Systems, 2009, 5, 1-19.	1.8	8
332	Crystallographic Tailoring of Graphene by Nonmetal SiO _{<i>x</i>>Visub> Nanoparticles. Journal of the American Chemical Society, 2009, 131, 13934-13936.}	6.6	68
333	Conductance Enhancement in Nanographeneâ^'Gold Junctions by Molecular Ï€-Stacking. Journal of the American Chemical Society, 2009, 131, 14857-14867.	6.6	25
334	Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology, 2009, 20, 325703.	1.3	185
335	Lithium adsorption on zigzag graphene nanoribbons. Journal of Applied Physics, 2009, 106, .	1.1	117
336	First-Principles Study of Chemisorption of Oxygen and Aziridine on Graphitic Nanostructures. Journal of Physical Chemistry C, 2009, 113, 14721-14726.	1.5	21
337	Magnetic Properties of Fully Bare and Half-Bare Boron Nitride Nanoribbons. Journal of Physical Chemistry C, 2009, 113, 2273-2276.	1.5	102
338	Spin stiffness of graphene and zigzag graphene nanoribbons. Physical Review B, 2009, 80, .	1.1	27
339	Ferromagnetism in armchair graphene nanoribbons. Physical Review B, 2009, 79, .	1.1	43
340	Giant Magnetoresistance in Ultrasmall Graphene Based Devices. Physical Review Letters, 2009, 102, 136810.	2.9	274
341	Itinerant Flat-Band Magnetism in Hydrogenated Carbon Nanotubes. ACS Nano, 2009, 3, 1646-1650.	7.3	17
342	Effect of Stacking Order on the Electric-Field Induced Carrier Modulation in Graphene Bilayers. Nano Letters, 2009, 9, 3124-3128.	4.5	25
343	Energy Gaps in Supramolecular Functionalized Graphene Nanoribbons. ACS Nano, 2009, 3, 1995-1999.	7.3	49
344	Electronic structures of silicon nanoribbons. Applied Physics Letters, 2009, 95, .	1.5	276
345	Edge-passivation induced half-metallicity of zigzag zinc oxide nanoribbons. Applied Physics Letters, 2009, 95, .	1.5	39

#	ARTICLE	IF	CITATIONS
346	Capacitance of graphene nanoribbons. Physical Review B, 2009, 80, .	1.1	68
347	Graphene nanoribbon as a negative differential resistance device. Applied Physics Letters, 2009, 94, .	1.5	219
348	Dirac Spectra and Edge States in Honeycomb Plasmonic Lattices. Physical Review Letters, 2009, 102, 123904.	2.9	77
349	Edge States in Graphene: From Gapped Flat-Band to Gapless Chiral Modes. Physical Review Letters, 2009, 102, 096801.	2.9	328
350	First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Physical Review B, 2009, 79, .	1.1	580
351	Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Physical Review Letters, 2009, 102, 236804.	2.9	2,837
352	Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Applied Physics Letters, 2009, 95, .	1.5	123
353	Spin-dependent transport in double ferromagnetic-gate graphene structures. Journal of Physics: Conference Series, 2009, 187, 012037.	0.3	3
354	Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Physical Review B, 2009, 79, .	1.1	143
355	Magnetic states of zigzag graphene nanoribbons from first principles. Applied Physics Letters, 2009, 94,	1.5	41
356	"Narrow―Graphene Nanoribbons Made Easier by Partial Hydrogenation. Nano Letters, 2009, 9, 4025-4030.	4.5	120
357	The stabilities of boron nitride nanoribbons with different hydrogen-terminated edges. Applied Physics Letters, 2009, 94, .	1.5	73
358	Carrier density and magnetism in graphene zigzag nanoribbons. Physical Review B, 2009, 79, .	1.1	159
359	B ₂ C Graphene, Nanotubes, and Nanoribbons. Nano Letters, 2009, 9, 1577-1582.	4.5	154
360	The effects of defects on the conductance of graphene nanoribbons. Nanotechnology, 2009, 20, 015201.	1.3	67
361	Electron transport of folded graphene nanoribbons. Journal of Applied Physics, 2009, 106, .	1.1	28
362	Electrical Control of Magnetization in Narrow Zigzag Silicon Carbon Nanoribbons. Journal of Physical Chemistry C, 2009, 113, 21213-21217.	1.5	67
363	Substrate-induced magnetism in epitaxial graphene buffer layers. Nanotechnology, 2009, 20, 275705.	1.3	22

#	ARTICLE	IF	CITATIONS
364	Photoluminescence and band gap modulation in graphene oxide. Applied Physics Letters, 2009, 94, .	1.5	494
365	Impurity induced spin filtering in graphene nanoribbons. Applied Physics Letters, 2009, 95, 123109.	1.5	51
366	Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation. Physical Review B, 2009, 79, .	1.1	239
367	Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons. Science, 2009, 323, 1701-1705.	6.0	655
368	Spin Channels in Functionalized Graphene Nanoribbons. Nano Letters, 2009, 9, 3425-3429.	4.5	103
369	Electronic transport properties of graphene nanoribbons. New Journal of Physics, 2009, 11, 095016.	1.2	175
370	Intrinsic Half-Metallicity in Modified Graphene Nanoribbons. Physical Review Letters, 2009, 102, 096601.	2.9	398
371	Spin Gapless Semiconductorâ^'Metalâ^'Half-Metal Properties in Nitrogen-Doped Zigzag Graphene Nanoribbons. ACS Nano, 2009, 3, 1952-1958.	7.3	499
372	Shot noise probing of magnetic ordering in zigzag graphene nanoribbons. Physical Review B, 2009, 79, .	1.1	11
373	Bandgap Engineering of Bilayer Graphene for Field-Effect Transistor Channels. Japanese Journal of Applied Physics, 2009, 48, 091605.	0.8	20
374	Electronic properties of zigzag graphene nanoribbons on Si(001). Applied Physics Letters, 2009, 95, 023107.	1.5	27
375	First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: Analysis of catalytic activity for the oxygen reduction reaction. Physical Review B, 2009, 80, .	1.1	177
376	Effects of antidots on the transport properties of graphene nanoribbons. Physical Review B, 2009, 80, .	1.1	45
377	Electromechanical Properties of Suspended Graphene Nanoribbons. Nano Letters, 2009, 9, 2619-2622.	4.5	114
378	Theoretical Evaluation of Channel Structure in Graphene Field-Effect Transistors. Japanese Journal of Applied Physics, 2009, 48, 041202.	0.8	13
379	Performance Prediction of Graphene-Channel Field-Effect Transistors. Japanese Journal of Applied Physics, 2009, 48, 011604.	0.8	9
380	Controllable spin-dependent transport in armchair graphene nanoribbon structures. Journal of Applied Physics, 2009, 106, 053710.	1.1	49
381	Effects of nonmagnetic impurities on the spin transport property of a graphene nanoribbon device. Journal of Chemical Physics, 2009, 130, 214103.	1.2	22

#	Article	IF	Citations
382	Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene. Nano Letters, 2009, 9, 2600-2604.	4.5	483
383	Multiferroicity: the coupling between magnetic and polarization orders. Advances in Physics, 2009, 58, 321-448.	35.9	1,333
384	Magnetism in graphene due to single-atom defects: dependence on the concentration and packing geometry of defects. Journal of Physics Condensed Matter, 2009, 21, 196002.	0.7	96
385	Transport properties of antidot superlattices of graphene nanoribbons. Physical Review B, 2009, 80, .	1.1	54
386	Mechanical properties of graphene nanoribbons. Journal of Physics Condensed Matter, 2009, 21, 285304.	0.7	158
387	Electronic and Magnetic Properties of Partially Open Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 17919-17925.	6.6	47
388	Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons. Physical Review Letters, 2009, 102, 096803.	2.9	323
389	Orientated Langmuirâ^Blodgett Assembly of VO ₂ Nanowires. Nano Letters, 2009, 9, 826-830.	4.5	73
390	Theoretical Study of Be _{<i>N</i>} Linear Chains: Optimized Geometries and Harmonic Frequencies. Journal of Chemical Theory and Computation, 2009, 5, 1266-1273.	2.3	11
391	Edge effects in bilayer graphene nanoribbons: <i>Ab initio</i> total-energy density functional theory calculations. Physical Review B, 2009, 79, .	1.1	58
392	Graphene oxide thin film field effect transistors without reduction. Journal Physics D: Applied Physics, 2009, 42, 135109.	1.3	95
393	Topological Frustration in Graphene Nanoflakes: Magnetic Order and Spin Logic Devices. Physical Review Letters, 2009, 102, 157201.	2.9	237
394	Rashba spin-orbit interaction in graphene and zigzag nanoribbons. Physical Review B, 2009, 79, .	1.1	136
395	Tunable Ferromagnetic Spin Ordering in Boron Nitride Nanotubes with Topological Fluorine Adsorption. Journal of the American Chemical Society, 2009, 131, 6874-6879.	6.6	85
396	Materials design of half-metallic graphene and graphene nanoribbons. Applied Physics Letters, 2009, 94, .	1.5	100
397	Screened hybrid density functionals for solid-state chemistry and physics. Physical Chemistry Chemical Physics, 2009, 11, 443-454.	1.3	384
398	The effect of sublattice symmetry breaking on the electronic properties of doped graphene. New Journal of Physics, 2009, 11, 095023.	1.2	25
399	Spin-polarized edge and transport in graphene nanoscale junctions. Applied Physics Letters, 2009, 94, 243104.	1.5	13

#	Article	IF	CITATIONS
400	Fabrication of Graphene Nanodisk Arrays Using Nanosphere Lithography. Journal of Physical Chemistry C, 2009, 113, 6529-6532.	1.5	98
401	Spin-valve effect in zigzag graphene nanoribbons by defect engineering. Physical Review B, 2009, 80, .	1.1	56
402	Band-Gap Engineering with Hybrid Graphaneâ^Graphene Nanoribbons. Journal of Physical Chemistry C, 2009, 113, 20841-20844.	1.5	66
403	Electronic Structure and Reactivity of Boron Nitride Nanoribbons with Stone-Wales Defects. Journal of Chemical Theory and Computation, 2009, 5, 3088-3095.	2.3	127
404	Ab initiocalculation of transverse spin current in graphene nanostructures. Physical Review B, 2009, 79, .	1.1	43
405	Structural and Electronic Properties of Graphane Nanoribbons. Journal of Physical Chemistry C, 2009, 113, 15043-15045.	1.5	118
406	First-principles study of zinc oxide honeycomb structures. Physical Review B, 2009, 80, .	1.1	298
407	Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions. Journal of Physics Condensed Matter, 2009, 21, 126001.	0.7	26
408	Novel Andreev reflection and differential conductance of a ferromagnet/ferromagnet/superconductor junction on graphene. Journal of Physics Condensed Matter, 2009, 21, 095302.	0.7	4
409	Vibrational properties of graphene nanoribbons by first-principles calculations. Physical Review B, 2009, 80, .	1.1	96
410	Tunneling transport in a graphene-based ferromagnet/insulator/d-wave superconductor junction. Europhysics Letters, 2009, 87, 27008.	0.7	19
411	Intrinsic and extrinsic corrugation of monolayer graphene deposited on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SiO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2009, 102, 076102.	2.9	336
412	Organometallic vanadium-borazine systems: efficient one-dimensional half-metallic spin filters. Journal of Materials Chemistry, 2009, 19, 1761-1766.	6.7	53
413	Magnetoconductance of graphene nanoribbons. Philosophical Magazine, 2009, 89, 697-709.	0.7	24
414	Odd–even width effect on persistent current in zigzag hexagonal graphene rings. Nanoscale, 2009, 1, 387.	2.8	33
415	Simulation of Graphene Nanoribbon Spin-Filter Device with Spin-Density Functional Tight-Binding Method. , 2009, , .		О
416	A theoretical study of BeN linear chains: Variational and perturbative approaches. Journal of Chemical Physics, 2009, 131, 034309.	1.2	13
417	Magnetoelectric Effect in Graphene Nanoribbons on Substrates via Electric Bias Control of Exchange Splitting. Physical Review Letters, 2009, 103, 187204.	2.9	71

#	ARTICLE	IF	CITATIONS
418	Ab Initio Study of Carboxylated Graphene. Journal of Physical Chemistry C, 2009, 113, 12970-12975.	1.5	67
419	Graphene at the Edge: Stability and Dynamics. Science, 2009, 323, 1705-1708.	6.0	1,153
420	Effects induced by single and multiple dopants on the transport properties in zigzag-edged graphene nanoribbons. Physical Review B, 2009, 80, .	1.1	74
421	Spin-Polarized Transport on Zigzag Graphene Nanoribbon with a Single Defect. Journal of the Physical Society of Japan, 2009, 78, 094701.	0.7	13
422	Growth of Semiconducting Graphene on Palladium. Nano Letters, 2009, 9, 3985-3990.	4.5	307
423	Resonant impurity band induced by point defects in graphene. Europhysics Letters, 2009, 88, 68005.	0.7	21
424	Source and Drain Structures for Suppressing Ambipolar Characteristics of Graphene Field-Effect Transistors. Applied Physics Express, 0, 2, 061601.	1.1	11
425	Flat-band ferromagnetism in armchair graphene nanoribbons. Journal of Physics: Conference Series, 2009, 150, 042110.	0.3	5
426	Background, status and future of the Transmission Electron Aberration-corrected Microscope project. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 3795-3808.	1.6	77
428	General View of Graphenes. Journal of the Vacuum Society of Japan, 2010, 53, 61-65.	0.3	0
429	Tamm states in zigzag carbon nanotubes: Analytic estimates in the $H\tilde{A}\frac{1}{4}$ ckel approximation. Russian Journal of Physical Chemistry A, 2010, 84, 1759-1766.	0.1	1
430	Broken spin symmetry approach to chemical reactivity and magnetism of graphenium species. Journal of Experimental and Theoretical Physics, 2010, 110, 121-132.	0.2	23
431	Spin filter effect and large magnetoresistance in the zigzag graphene nanoribbons. European Physical Journal B, 2010, 73, 139-143.	0.6	12
432	Effect of gap opening on the quasiparticle properties of doped graphene sheets. European Physical Journal B, 2010, 74, 479-485.	0.6	3
433	Electronic transport for a crossed graphene nanoribbon junction with and without doping. European Physical Journal B, 2010, 76, 421-425.	0.6	12
434	Electronic structures for armchair-edge graphene nanoribbons under a small uniaxial strain. European Physical Journal B, 2010, 76, 463-467.	0.6	23
435	Supercurrent switching effect in zigzag graphene nanoribbons. European Physical Journal B, 2010, 78, 83-86.	0.6	2
436	Edge phonon state of mono- and few-layer graphene nanoribbons observed by surface and interference co-enhanced Raman spectroscopy. Physical Review B, 2010, 81, .	1.1	77

#	Article	IF	CITATIONS
437	Tunneling Spin Injection into Single Layer Graphene. Physical Review Letters, 2010, 105, 167202.	2.9	422
438	Properties of graphene: a theoretical perspective. Advances in Physics, 2010, 59, 261-482.	35 . 9	970
439	Graphene: Materially Better Carbon. MRS Bulletin, 2010, 35, 289-295.	1.7	191
440	Spatially Resolved Spontaneous Reactivity of Diazonium Salt on Edge and Basal Plane of Graphene without Surfactant and Its Doping Effect. Langmuir, 2010, 26, 12278-12284.	1.6	92
441	Interface Landau levels in graphene monolayer-bilayer junctions. Physical Review B, 2010, 82, .	1.1	38
442	Electronic properties of twoâ€dimensional hydrogenated and semihydrogenated hexagonal boron nitride sheets. Physica Status Solidi - Rapid Research Letters, 2010, 4, 34-36.	1.2	63
443	Novel properties of graphene nanoribbons: a review. Journal of Materials Chemistry, 2010, 20, 8207.	6.7	369
444	Direct determination of the crystallographic orientation of graphene edges by atomic resolution imaging. Applied Physics Letters, 2010, 97, 053110.	1.5	70
445	Magnetism of solids resulting from spin polarization of p orbitals. Journal of Physics Condensed Matter, 2010, 22, 073202.	0.7	145
446	Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. Chemical Communications, 2010, 46, 3672.	2.2	176
447	Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design. Journal of Physical Chemistry C, 2010, 114, 832-842.	1.5	1,002
448	Edges Bring New Dimension to Graphene Nanoribbons. Nano Letters, 2010, 10, 3638-3642.	4.5	72
449	Oblique terahertz plasmons in graphene nanoribbon arrays. Physical Review B, 2010, 81, .	1.1	74
450	First-principles investigation of transport properties through longitudinal unzipped carbon nanotubes. Physical Review B, 2010, 81, .	1.1	22
451	Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia. Physical Review B, 2010, 82, .	1.1	85
452	Emergence of magnetism in graphene materials and nanostructures. Reports on Progress in Physics, 2010, 73, 056501.	8.1	1,026
453	Electronic states of graphene nanoribbons and analytical solutions. Science and Technology of Advanced Materials, 2010, 11, 054504.	2.8	336
454	lon and electron irradiation-induced effects in nanostructured materials. Journal of Applied Physics, 2010, 107, .	1.1	878

#	Article	IF	CITATIONS
455	Synthesis and Characterization of Teranthene: A Singlet Biradical Polycyclic Aromatic Hydrocarbon Having Kekulé Structures. Journal of the American Chemical Society, 2010, 132, 11021-11023.	6.6	285
456	Topological defects in graphene: Dislocations and grain boundaries. Physical Review B, 2010, 81, .	1.1	659
457	Electron localizability and polarizability in tight-binding graphene nanostructures. Theoretical Chemistry Accounts, 2010, 126, 257-263.	0.5	19
458	Spin-birefringence in molecular currents: Tellurium and gold complexes. Chemical Physics Letters, 2010, 484, 104-109.	1.2	0
459	Structural and electronic properties of the fully hydrogenated boron nitride sheets and nanoribbons: Insight from first-principles calculations. Chemical Physics Letters, 2010, 488, 67-72.	1.2	60
460	Signature of multiradical character in second hyperpolarizabilities of rectangular graphene nanoflakes. Chemical Physics Letters, 2010, 489, 212-218.	1.2	90
461	First principle study of unzipped boron nitride nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 605-609.	0.9	12
462	Carbon–nitrogen nanorings and nanoribbons: a theoretical approach for altering the ground states of cyclacenes and polyacenes. Monatshefte Für Chemie, 2010, 141, 1313-1319.	0.9	15
463	Strain effects in graphene and graphene nanoribbons: The underlying mechanism. Nano Research, 2010, 3, 545-556.	5.8	170
464	Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Research, 2010, 3, 16-22.	5.8	143
465	Radiation stability of carbon nanostructures. Journal of Engineering Physics and Thermophysics, 2010, 83, 393-400.	0.2	4
466	Graphene on Au(111): A Highly Conductive Material with Excellent Adsorption Properties for Highâ€Resolution Bio/Nanodetection and Identification. ChemPhysChem, 2010, 11, 585-589.	1.0	222
467	A Waveguideâ€Like Effect Observed in Multiwalled Carbon Nanotube Bundles. Advanced Functional Materials, 2010, 20, 2263-2268.	7.8	5
468	Controllable Synthesis of Graphene and Its Applications. Advanced Materials, 2010, 22, 3225-3241.	11.1	375
469	An Anisotropic Etching Effect in the Graphene Basal Plane. Advanced Materials, 2010, 22, 4014-4019.	11.1	242
470	Towards Supramolecular Engineering of Functional Nanomaterials: Preâ€Programming Multiâ€Component 2D Selfâ€Assembly at Solidâ€Liquid Interfaces. Advanced Materials, 2010, 22, 3506-3520.	11.1	276
471	Graphene Quantum Sheets: A New Material for Spintronic Applications. Advanced Materials, 2010, 22, 5531-5536.	11.1	63
472	BCN: A Graphene Analogue with Remarkable Adsorptive Properties. Chemistry - A European Journal, 2010, 16, 149-157.	1.7	194

#	Article	IF	CITATIONS
473	A Radical Polymer as a Twoâ€Dimensional Organic Half Metal. Chemistry - A European Journal, 2010, 16, 12141-12146.	1.7	25
475	Luminescent Carbon Nanodots: Emergent Nanolights. Angewandte Chemie - International Edition, 2010, 49, 6726-6744.	7.2	4,109
476	Fabrication and electrical properties of graphene nanoribbons. Materials Science and Engineering Reports, 2010, 70, 341-353.	14.8	83
477	Spin switching effects in a ferromagnetic graphene junction having a second gate. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1287-1292.	1.3	14
478	Transport in armchair graphene nanoribbons modulated by magnetic barriers. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2808-2811.	1.3	8
479	The influence of Stone–Wales defects on magnetic properties in graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 593-597.	1.3	7
480	Nucleation effect of Sia of 6H–SiC-(0 0 0 1)–(â^š3×â^š3)R30° surface: First-principles study. Physica B: Condensed Matter, 2010, 405, 3576-3580.	1.3	5
481	Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 2010, 5, 351-372.	6.2	817
482	Chemical vapor deposition of large area few layer graphene on Si catalyzed with nickel films. Thin Solid Films, 2010, 518, S128-S132.	0.8	67
483	Effect of a gap opening on the conductance of graphene superlattices. Solid State Communications, 2010, 150, 655-659.	0.9	17
484	Structural and electronic properties of monolayer hydrogenated honeycomb III–V sheets from first-principles. Solid State Communications, 2010, 150, 1473-1478.	0.9	46
485	Theoretical understanding of adlayer structure, thermal stability and electronic property of graphene molecules. Surface Science, 2010, 604, 2091-2097.	0.8	2
486	Transformation of graphene into graphane in the absence of hydrogen. Carbon, 2010, 48, 981-986.	5.4	26
487	Production, properties and potential of graphene. Carbon, 2010, 48, 2127-2150.	5.4	1,502
488	In situ observations of the nucleation and growth of atomically sharp graphene bilayer edges. Carbon, 2010, 48, 2354-2360.	5.4	33
489	The characterization of non-planar graphene nanowires with an \hat{I} shape cross-section. Carbon, 2010, 48, 3405-3411.	5.4	4
490	Edge reconstructions induce magnetic and metallic behavior in zigzag graphene nanoribbons. Carbon, 2010, 48, 4409-4413.	5.4	44
491	Evolution of graphene mediated magnetic coupling between Fe-chains. Chemical Physics Letters, 2010, 492, 127-130.	1.2	12

#	Article	IF	CITATIONS
492	Beryllium chains interacting with Graphene Nanoislands: From anti-ferromagnetic to ferromagnetic ground state. Chemical Physics Letters, 2010, 496, 306-309.	1.2	12
493	Viewing spin structures with soft X-ray microscopy. Materials Today, 2010, 13, 14-22.	8.3	21
494	Charge-transfer with graphene and nanotubes. Materials Today, 2010, 13, 34-40.	8.3	139
495	Electronic and transport properties of graphene nanoribbons. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 304-308.	0.8	31
496	The screenedâ€exchange approximation as alternative method for DFT calculations on graphene structures. Physica Status Solidi (B): Basic Research, 2010, 247, 2945-2948.	0.7	8
497	Ramanâ€ective modes in graphene nanoribbons. Physica Status Solidi (B): Basic Research, 2010, 247, 2941-2944.	0.7	27
498	Size dependence of the magnetic response of graphite oxide and graphene flakes – an electron spin resonance study. Physica Status Solidi (B): Basic Research, 2010, 247, 2958-2961.	0.7	35
499	Tunable Bandgap in Graphene by the Controlled Adsorption of Water Molecules. Small, 2010, 6, 2535-2538.	5.2	279
500	Oriented Arrays of Graphene in a Polymer Matrix by in situ Reduction of Graphite Oxide Nanosheets. Small, 2010, 6, 205-209.	5.2	143
501	Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010, 466, 470-473.	13.7	3,144
502	Nanoscale patchworks. Nature Materials, 2010, 9, 379-380.	13.3	65
503	A new spin on spintronics. Nature Materials, 2010, 9, 380-381.	13.3	56
504	Plastic antibodies. Nature Materials, 2010, 9, 612-614.	13.3	119
505	Ribbons piece-by-piece. Nature Materials, 2010, 9, 611-612.	13.3	14
506	Very large magnetoresistance in graphene nanoribbons. Nature Nanotechnology, 2010, 5, 655-659.	15.6	253
507	Graphene nanomesh. Nature Nanotechnology, 2010, 5, 190-194.	15.6	1,276
509	Infrared Optical Response of Metallic Graphene Nanoribbons. Advances in Condensed Matter Physics, 2010, 2010, 1-6.	0.4	8
510	Chemical Functionalization of Graphene Nanoribbons. Journal of Nanomaterials, 2010, 2010, 1-7.	1.5	46

#	Article	IF	Citations
511	Spin Filter of Graphene Nanoribbon Based Structure. Chinese Physics Letters, 2010, 27, 087205.	1.3	1
512	Band Structures of Metal-Oxide Capped Graphene: A First Principles Study. Chinese Physics Letters, 2010, 27, 077201.	1.3	7
513	Spin current pumped by a rotating magnetic field in zigzag graphene nanoribbons. Journal of Physics Condensed Matter, 2010, 22, 445801.	0.7	6
514	Electronic states of graphene grain boundaries. Physical Review B, 2010, 82, .	1.1	69
515	Ferrimagnetism in zigzag graphene nanoribbons induced by main-group adatoms. Applied Physics Letters, 2010, 96, .	1.5	39
516	Half-metallicity in the ferrimagnet <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>Nb</mml:mtext><mml:msub><mml:mrow><mml:mrow><mml:mo>< first principles. Physical Review B, 2010, 82, .</mml:mo></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	(<b rainl:mo	>>< 16 ml:mro
517	First-principles study of substitutional metal impurities in graphene: structural, electronic and magnetic properties. New Journal of Physics, 2010, 12, 053012.	1.2	214
518	Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study. Applied Physics Letters, 2010, 97, 133107.	1.5	146
519	Armchair nanoribbons of silicon and germanium honeycomb structures. Physical Review B, 2010, 81, .	1.1	137
520	Magnetoresistance in ferromagnetic-metal/graphene/ferromagnetic-metal lateral junctions. Physical Review B, 2010, 82, .	1.1	13
521	Semiconductor-homojunction induction in single-crystal GaN nanostructures under a transverse electric field: $\langle i \rangle$ Ab initio $\langle i \rangle$ calculations. Physical Review B, 2010, 81, .	1,1	13
522	Room-temperature giant magnetoresistance over one billion percent in a bare graphene nanoribbon device. Physical Review B, 2010, 81, .	1.1	44
523	Edge states and enhanced spin-orbit interaction at graphene/graphane interfaces. Physical Review B, 2010, 81, .	1.1	41
524	Adsorption of small hydrocarbon radicals on single walled carbon nanotubes of finite length. Physical Review B, 2010, 81, .	1.1	13
525	Metal-terminated graphene nanoribbons. Physical Review B, 2010, 82, .	1.1	58
526	Marker-free on-the-fly fabrication of graphene devices based on fluorescence quenching. Nanotechnology, 2010, 21, 015303.	1.3	18
527	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi><mml:mi></mml:mi></mml:math>-Invariant Quantum Spin Hall Effect in Ferromagnetic Graphene. Physical Review Letters, 2010, 104, 066805.</pre>	2.9	59
528	Electronic structures and transverse electrical field effects in folded zigzag-edged graphene nanoribbons. Applied Physics Letters, 2010, 97, 153129.	1.5	23

#	Article	IF	CITATIONS
529	Spin polarized electron transport through a graphene nanojunction. Applied Physics Letters, 2010, 96, 132108.	1.5	25
530	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>Ni</mml:mtext></mml:mrow><mml:mi>n xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Fe</mml:mtext></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mi></mml:msub></mml:mrow>	1.1	77
531	xmlns:mml="http://www.w3.org/1998/Math/MathML" displa. Physical Review B, 2010, 81, . WKB analysis of edge states in graphene in a strong magnetic field. Physical Review B, 2010, 82, .	1.1	63
532	Elastic properties of graphene flakes: Boundary effects and lattice vibrations. Physical Review B, 2010, 82, .	1.1	27
533	Adsorption and diffusion of gold adatoms on graphene nanoribbons: An <i>ab initio</i> study. Physical Review B, 2010, 82, .	1.1	28
534	Origin of half-semimetallicity induced at interfaces of C-BN heterostructures. Physical Review B, 2010, 81, .	1.1	139
535	Anisotropy induced localization of pseudo-relativistic spin states in graphene double quantum wire structures. Nanotechnology, 2010, 21, 365401.	1.3	4
536	Interactions and screening in gated bilayer graphene nanoribbons. Physical Review B, 2010, 82, .	1.1	11
537	Trapping of electrons near chemisorbed hydrogen on graphene. Physical Review B, 2010, 81, .	1.1	18
538	Opening carbon nanotubes into zigzag graphene nanoribbons by energy-optimum oxidation. Physical Review B, 2010, 82, .	1.1	27
539	Effect of electron localization on the edge-state spins in a disordered network of nanographene sheets. Physical Review B, 2010, 81, .	1.1	46
540	Tuning the magnetic and electronic properties of bilayer graphene nanoribbons on Si(001) by bias voltage. Physical Review B, 2010, 81, .	1.1	28
541	Resonance Transport of Graphene Nanoribbon T-Shaped Junctions. Chinese Physics Letters, 2010, 27, 047202.	1.3	5
542	Negative differential resistance behaviour in N-doped crossed graphene nanoribbons. Chinese Physics B, 2010, 19, 097301.	0.7	10
543	Graphene Edge from Armchair to Zigzag: The Origins of Nanotube Chirality?. Physical Review Letters, 2010, 105, 235502.	2.9	174
544	Zigzag nanoribbons in external electric fields. Asymptotic Analysis, 2010, 66, 187-206.	0.2	13
545	Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite. Journal of Chemical Physics, 2010, 133, 134114.	1.2	18
546	Multiple localized states and magnetic orderings in partially open zigzag carbon nanotube superlattices: An <i>ab initio</i> study. Journal of Chemical Physics, 2010, 133, 084702.	1.2	11

#	ARTICLE	IF	CITATIONS
547	Selective functionalization of halogens on zigzag graphene nanoribbons: A route to the separation of zigzag graphene nanoribbons. Applied Physics Letters, 2010, 97, 233101.	1.5	23
548	Zigzag nanoribbons in external electric and magnetic fields. International Journal of Computing Science and Mathematics, 2010, 3, 168.	0.2	9
549	Soliton trap in strained graphene nanoribbons. New Journal of Physics, 2010, 12, 103015.	1.2	18
550	Spin-dependent transport through interacting graphene armchair nanoribbons. New Journal of Physics, 2010, 12, 033038.	1.2	1
551	Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations. Journal of Physics Condensed Matter, 2010, 22, 352205.	0.7	11
552	Deflection of suspended graphene by a transverse electric field. Physical Review B, 2010, 81, .	1.1	17
553	Transmission through a boundary between monolayer and bilayer graphene. Physical Review B, 2010, 82, .	1.1	82
554	Ultrathin epitaxial cobalt films on graphene for spintronic investigations and applications. New Journal of Physics, 2010, 12, 103040.	1.2	74
555	Mechanically Robust Tri-Wing Graphene Nanoribbons with Tunable Electronic and Magnetic Properties. Nano Letters, 2010, 10, 494-498.	4. 5	71
556	Polarized Vibrational Infrared Absorption of Graphene Nanoribbons. Journal of Physical Chemistry C, 2010, 114, 6959-6965.	1.5	10
557	Longitudinal Cutting of Pure and Doped Carbon Nanotubes to Form Graphitic Nanoribbons Using Metal Clusters as Nanoscalpels. Nano Letters, 2010, 10, 366-372.	4.5	323
558	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub> <mml:msub><mml:mi>! xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:msub><mml:mi></mml:mi></mml:msub></mml:msub></mml:mi></mml:msub>	2.7	121
559	First Principles, Physical Review Letters, 2010, 105, 266806. Orientation-selective unzipping of carbon nanotubes. Physical Chemistry Chemical Physics, 2010, 12, 13674.	1.3	18
560	Electronic transport through a graphene-based ferromagnetic/normal/ferromagnetic junction. Journal of Physics Condensed Matter, 2010, 22, 035301.	0.7	27
561	Multifunctional Porous Graphene for Nanoelectronics and Hydrogen Storage: New Properties Revealed by First Principle Calculations. Journal of the American Chemical Society, 2010, 132, 2876-2877.	6.6	304
562	Reconstruction and evaporation at graphene nanoribbon edges. Physical Review B, 2010, 81, .	1.1	55
563	Semiconducting to Half-Metallic to Metallic Transition on Spin-Resolved Zigzag Bilayer Graphene Nanoribbons. Journal of Physical Chemistry C, 2010, 114, 13098-13105.	1.5	43
564	Tunable electronic transport and unidirectional quantum wires in graphene subjected to electric and magnetic fields. Physical Review B, 2010, 81, .	1.1	45

#	Article	IF	CITATIONS
565	Energy and transport gaps in etched graphene nanoribbons. Semiconductor Science and Technology, 2010, 25, 034002.	1.0	56
566	Applications of Carbon Nanomaterials as Electrical Interconnects and Thermal Interface Materials. , $2010, , 87\text{-}138.$		6
567	Perfect spin-filter and spin-valve in carbon atomic chains. Applied Physics Letters, 2010, 96, 042104.	1.5	174
568	Nitrogen/Boron Doping Position Dependence of the Electronic Properties of a Triangular Graphene. ACS Nano, 2010, 4, 7619-7629.	7.3	86
569	Electronic and magnetic properties of zigzag graphene nanoribbon with one edge saturated. Applied Physics Letters, 2010, 96, .	1.5	121
570	Electronic structure of oxygen-terminated zigzag graphene nanoribbons: A hybrid density functional theory study. Physical Review B, 2010, 81, .	1.1	50
571	A study of the synthetic methods and properties of graphenes. Science and Technology of Advanced Materials, 2010, 11, 054502.	2.8	164
572	Spin-polarized energy-gap opening in asymmetric bilayer graphene nanoribbons. Applied Physics Letters, 2010, 97, .	1.5	12
573	Splitting of the zero-energy edge states in bilayer graphene. Physical Review B, 2010, 81, .	1.1	14
574	External Bias Dependent Direct To Indirect Band Gap Transition in Graphene Nanoribbon. Nano Letters, 2010, 10, 2857-2862.	4.5	25
575	Electronic Structure of Bi Nanoribbon: Greatly Influenced by Edge Chirality and Edge Reconstruction. Journal of Physical Chemistry C, 2010, 114, 19289-19293.	1.5	12
576	Spin Controlling in Narrow Zigzag Silicon Carbon Nanoribbons by Carrier Doping. Journal of Physical Chemistry C, 2010, 114, 10947-10951.	1.5	47
577	Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study. Physical Review B, 2010, 81, .	1.1	219
578	Hydrogenation: A Simple Approach To Realize Semiconductorâ^'Half-Metalâ^'Metal Transition in Boron Nitride Nanoribbons. Journal of the American Chemical Society, 2010, 132, 1699-1705.	6.6	277
579	Disorder-based graphene spintronics. Nanotechnology, 2010, 21, 345202.	1.3	30
580	Strain-induced semiconducting-metallic transition for ZnO zigzag nanoribbons. Journal of Applied Physics, 2010, 107, .	1.1	18
581	Fluorination induced half metallicity in two-dimensional few zinc oxide layers. Journal of Chemical Physics, 2010, 132, 204703.	1.2	32
582	Tuning Molecular Orbitals in Molecular Electronics and Spintronics. Accounts of Chemical Research, 2010, 43, 111-120.	7.6	155

#	Article	IF	Citations
583	Graphene/Substrate Charge Transfer Characterized by Inverse Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 21618-21624.	1.5	61
584	Engineering graphene by oxidation: a first-principles study. Nanotechnology, 2010, 21, 045704.	1.3	92
585	Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale, 2010, 2, 1069.	2.8	149
586	Thermoelectric properties of graphene nanoribbons, junctions and superlattices. Journal of Physics Condensed Matter, 2010, 22, 372202.	0.7	72
587	"White Graphenes― Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping. Nano Letters, 2010, 10, 5049-5055.	4.5	723
588	Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature. Journal Physics D: Applied Physics, 2010, 43, 275402.	1.3	96
589	Excitons of Edge and Surface Functionalized Graphene Nanoribbons. Journal of Physical Chemistry C, 2010, 114, 17257-17262.	1.5	38
590	Magnetism in graphene oxide. New Journal of Physics, 2010, 12, 083040.	1.2	69
591	Transition from insulator to metal induced by hybridized connection of graphene and boron nitride nanoribbons. Applied Physics Letters, 2010, 97, .	1.5	135
592	Electric-Field- and Hydrogen-Passivation-Induced Band Modulations in Armchair ZnO Nanoribbons. Journal of Physical Chemistry C, 2010, 114, 1326-1330.	1.5	42
593	Electronic Properties of the Biphenylene Sheet and Its One-Dimensional Derivatives. ACS Nano, 2010, 4, 4565-4570.	7.3	124
594	Hydrogenated graphene nanoribbons for spintronics. Physical Review B, 2010, 81, .	1.1	119
595	Controlling Half-Metallicity of Graphene Nanoribbons by Using a Ferroelectric Polymer. ACS Nano, 2010, 4, 1345-1350.	7.3	89
596	Tunneling conductance of graphene ferromagnet-insulator-superconductor junctions. Physical Review B, 2010, 81, .	1.1	35
597	Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene nanoribbons. Physical Review B, 2010, 81, .	1.1	95
598	Patterned Hydrogenation of Graphene: Magnetic Quantum Dot Array. Journal of Physical Chemistry C, 2010, 114, 139-142.	1.5	35
599	Zero-energy states in triangular and trapezoidal graphene structures. Physical Review B, 2010, 81, .	1.1	102
600	Exploration of Half Metallicity in Edge-Modified Graphene Nanoribbons. Journal of Physical Chemistry C, 2010, 114, 3937-3944.	1.5	105

#	Article	IF	CITATIONS
601	Curved graphene nanoribbons: structure and dynamics of carbon nanobelts. Nanotechnology, 2010, 21, 075710.	1.3	59
602	Curvature Effects on the Magnetism of Ultrashort Zigzag Carbon Nanotubes and Nanographenes. Journal of Physical Chemistry C, 2010, 114, 7553-7557.	1.5	7
604	Intrinsic half-metallic BN–C nanotubes. Applied Physics Letters, 2010, 97, 043115.	1.5	54
606	Dangling Bond States, Edge Magnetism, and Edge Reconstruction in Pristine and B/N-Terminated Zigzag Graphene Nanoribbons. Journal of Physical Chemistry C, 2010, 114, 12145-12150.	1.5	82
607	Magnetism and perfect spin filtering effect in graphene nanoflakes. Nanotechnology, 2010, 21, 385201.	1.3	66
608	Magnetism in armchair BC2N nanoribbons. Applied Physics Letters, 2010, 96, 133103.	1.5	19
609	Electronic and magnetic properties of zigzag graphene nanoribbons with periodic protruded edges. Physical Review B, 2010, 82, .	1.1	18
610	Magnetoelectric coupling in zigzag graphene nanoribbons. Physical Review B, 2010, 81, .	1.1	48
611	Mimicking nanoribbon behavior using a graphene layer on SiC. Physical Review B, 2010, 82, .	1.1	8
612	Building Half-Metallicity in Graphene Nanoribbons by Direct Control over Edge States Occupation. Journal of Physical Chemistry C, 2010, 114, 4190-4193.	1.5	100
613	Half-Metallic Spintronic Switch of Bimetallic Sandwich Molecular Wire via the Control of External Electrical Field. Journal of Physical Chemistry C, 2010, 114, 21705-21707.	1.5	21
614	Electric Field Control of Spin Rotation in Bilayer Graphene. Nano Letters, 2010, 10, 4463-4469.	4.5	45
615	First-Principles Study of Titania Nanoribbons: Formation, Energetics, and Electronic Properties. Journal of Physical Chemistry C, 2010, 114, 9234-9238.	1.5	17
616	Electronic and magnetic properties of superlattices of graphene/graphane nanoribbons with different edge hydrogenation. Physical Review B, 2010, 82, .	1.1	47
617	The Interaction of Li ⁺ with Single-Layer and Few-Layer Graphene. Nano Letters, 2010, 10, 3386-3388.	4.5	332
618	Graphene Oxide Nanocolloids. Journal of the American Chemical Society, 2010, 132, 17667-17669.	6.6	352
619	Silicon/graphene core/shell nanowires produced by self-scrolling. Computational Materials Science, 2010, 49, 588-592.	1.4	22
620	Effects of symmetry and Stone–Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons. Journal of Applied Physics, 2010, 107, .	1.1	85

#	Article	IF	Citations
621	Nonlinear optical and optical limiting properties of graphene families. Applied Physics Letters, 2010, 96,	1.5	264
622	Zero-gap materials for future spintronics, electronics and optics. NPG Asia Materials, 2010, 2, 31-38.	3.8	175
623	A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chemical Communications, 2010, 46, 5951.	2.2	301
624	Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. Journal of Applied Physics, 2010, 108, .	1.1	258
625	Graphene Nanoribbons Obtained by Electrically Unwrapping Carbon Nanotubes. ACS Nano, 2010, 4, 1362-1366.	7.3	151
626	Mixed Low-Dimensional Nanomaterial: 2D Ultranarrow MoS ₂ Inorganic Nanoribbons Encapsulated in Quasi-1D Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 13840-13847.	6.6	218
627	Free Folding of Suspended Graphene Sheets by Random Mechanical Stimulation. Physical Review Letters, 2010, 104, 166805.	2.9	143
628	Modeling graphene-based nanoelectromechanical devices. Physical Review B, 2010, 81, .	1.1	56
629	Graphene-Based Electronic Spin Lenses. Physical Review Letters, 2010, 105, 146803.	2.9	70
630	Anisotropy of the Stone-Wales defect and warping of graphene nanoribbons: A first-principles analysis. Physical Review B, 2010, 81, .	1.1	55
631	Spintronic properties of zigzag-edged triangular graphene flakes. Journal of Applied Physics, 2010, 108,	1.1	65
632	Clarâ∈™s Theory, Ï∈-Electron Distribution, and Geometry of Graphene Nanoribbons. Journal of the American Chemical Society, 2010, 132, 3440-3451.	6.6	219
633	Ferromagnetic and antiferromagnetic properties of the semihydrogenated SiC sheet. Applied Physics Letters, 2010, 96, .	1.5	56
634	Unimpeded tunneling in graphene nanoribbons. Journal of Physics Condensed Matter, 2010, 22, 165301.	0.7	13
635	Electronic structure of substitutionally Mn-doped graphene. New Journal of Physics, 2010, 12, 063020.	1.2	83
636	Pseudospin valve in bilayer graphene nanoribbons. Physical Review B, 2010, 81, .	1.1	15
637	Nano-Bio- Electronic, Photonic and MEMS Packaging. , 2010, , .		38
638	Efficient implementation of the nonequilibrium Green function method for electronic transport calculations. Physical Review B, 2010, 81, .	1.1	160

#	Article	IF	CITATIONS
639	Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures. Physical Review B, 2010, 81 , .	1.1	234
640	A Review on Fabrication Methods of High-Quality Graphene Nanoribbons. Advanced Materials Research, 0, 148-149, 1737-1740.	0.3	2
641	Dual spin filter effect in a zigzag graphene nanoribbon. Physical Review B, 2010, 81, .	1.1	121
642	First Principles Study of the Binding of 4d and 5d Transition Metals to Graphene. Journal of Physical Chemistry C, 2010, 114, 18548-18552.	1.5	49
643	Electronic structure and Peierls instability in graphene nanoribbons sculpted in graphane. Physical Review B, 2010, 81, .	1.1	40
644	Robust Dirac point in honeycomb-structure nanoribbons with zigzag edges. Physical Review B, 2010, 81,	1.1	12
645	Epitaxial graphene monolayer and bilayers on Ru(0001):Ab initiocalculations. Physical Review B, 2010, 82, .	1.1	17
646	Wetting and energetics in nanoparticle etching of graphene. Journal of Applied Physics, 2010, 108, 024307.	1.1	18
647	Robustness of edge states in graphene quantum dots. Physical Review B, 2010, 82, .	1.1	154
648	Spin-transport selectivity upon Co adsorption on antiferromagnetic graphene nanoribbons. Journal of Chemical Physics, 2010, 133, 124703.	1.2	45
649	Symmetry properties of vibrational modes in graphene nanoribbons. Physical Review B, 2010, 81, .	1.1	44
650	Mesostructured Assemblies of Ultrathin Superlong Tellurium Nanowires and Their Photoconductivity. Journal of the American Chemical Society, 2010, 132, 8945-8952.	6.6	242
651	Calcium-Decorated Graphene-Based Nanostructures for Hydrogen Storage. Nano Letters, 2010, 10, 793-798.	4.5	331
652	Controlling Energy Gap of Bilayer Graphene by Strain. Nano Letters, 2010, 10, 3486-3489.	4.5	173
653	Spontaneous edge-defect formation and defect-induced conductance suppression in graphene nanoribbons. Physical Review B, 2010, 82, .	1.1	41
654	Tuning Magnetism in Zigzag ZnO Nanoribbons by Transverse Electric Fields. ACS Nano, 2010, 4, 2124-2128.	7.3	52
655	Thermal transport properties of graphene-based ferromagnetic/singlet superconductor/ferromagnetic junctions. Journal of Applied Physics, 2010, 107, .	1.1	24
656	Resonant splitting of phonon transport in periodic T-shaped graphene nanoribbons. Europhysics Letters, 2010, 91, 46006.	0.7	10

#	Article	IF	Citations
657	The ultimate diamond slab: GraphAne versus graphEne. Diamond and Related Materials, 2010, 19, 368-373.	1.8	71
658	Quantum Interference Channeling at Graphene Edges. Nano Letters, 2010, 10, 943-947.	4.5	101
659	Spin and electronic correlations in gated graphene quantum rings. Physical Review B, 2010, 82, .	1.1	49
660	Ferromagnetically Coupled Cobaltâ 'Benzeneâ 'Cobalt: The Smallest Molecular Spin Filter with Unprecedented Spin Injection Coefficient. Journal of the American Chemical Society, 2010, 132, 15334-15339.	6.6	37
661	Raman Scattering at Pure Graphene Zigzag Edges. Nano Letters, 2010, 10, 4544-4548.	4.5	166
662	Epitaxial graphene on silicon substrates. Journal Physics D: Applied Physics, 2010, 43, 374012.	1.3	107
663	Tight-binding theory of the spin-orbit coupling in graphene. Physical Review B, 2010, 82, .	1.1	425
664	Electric field effects in zigzag edged graphene nanoribbons. Journal of Physics: Conference Series, 2010, 200, 062015.	0.3	8
665	Giant electric field effect on the second hyperpolarizability of symmetric singlet diradical molecules. Journal of Chemical Physics, 2010, 133, 154302.	1.2	38
666	Conductance Anisotropy in Epitaxial Graphene Sheets Generated by Substrate Interactions. Nano Letters, 2010, 10, 1559-1562.	4.5	97
667	Electric-field control of magnetism in graphene quantum dots:Ab initiocalculations. Physical Review B, 2010, 82, 201411.	1.1	42
668	Modeling demands for nanoscale devices. , 2010, , .		1
669	Size- and shape-dependence of the graphene to graphane transformation in the absence of hydrogen. Journal of Materials Chemistry, 2010, 20, 10459.	6.7	29
670	Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations. Physical Chemistry Chemical Physics, 2010, 12, 2313.	1.3	76
671	One-dimensional organometallic V–anthracene wire and its B–N analogue: efficient half-metallic spin filters. Physical Chemistry Chemical Physics, 2010, 12, 6924.	1.3	22
672	Graphene Nanoribbon Fermi Energy Model in Parabolic Band Structure. , 2010, , .		2
673	Structure-Dependent All-Optical Switching in Graphene-Nanoribbon-Like Molecules: Fully Conjugated Tri(perylene bisimides). Journal of Physical Chemistry A, 2010, 114, 9130-9135.	1.1	27
674	Theoretical investigation of Möbius strips formed from graphene. Applied Physics Letters, 2010, 97, 123103.	1.5	34

#	ARTICLE	IF	CITATIONS
675	Cutting graphene using an atomic force microscope based nanorobot., 2010,,.		5
676	Complex edge effects in zigzag graphene nanoribbons due to hydrogen loading. Physical Review B, 2010, 82, .	1.1	80
677	Spontaneous persistent currents in a quantum spin Hall insulator. Physical Review B, 2010, 82, .	1.1	60
678	Well-defined plateaus of the conductance in two-terminal device of nonsuspended graphene. , 2010, , .		O
679	Weber-Fechner type nonlinear behavior in zigzag edge graphene nanoribbons. Physical Review B, 2010, 82, .	1.1	21
680	Interface edge states and quantum Hall effect in graphene under a modulated magnetic field. Physical Review B, 2010, 82, .	1.1	4
681	The electronic properties of graphene nanoribbons with boron/nitrogen codoping. Applied Physics Letters, 2010, 96, 243110.	1.5	47
682	On the role of line-edge roughness on the diffusion and localization in GNRs. , 2010, , .		0
683	Spin polarization of uniaxially strained zigzag graphene nanoribbon., 2011,,.		1
684	Low-temperature rapid synthesis of high-quality pristine or boron-doped graphene via Wurtz-type reductive coupling reaction. Journal of Materials Chemistry, 2011, 21, 10685.	6.7	68
685	Hybrid W-shaped graphene nanoribbons: Distinct electronic and transport properties. Journal of Applied Physics, 2011, 110, 124312.	1.1	14
686	Density functional study on the increment of carrier mobility in armchair graphene nanoribbons induced by Stone–Wales defects. Physical Chemistry Chemical Physics, 2011, 13, 11939.	1.3	53
687	Structural and electronic properties of graphene nanotube–nanoribbon hybrids. Physical Chemistry Chemical Physics, 2011, 13, 3925.	1.3	7
688	Giant Enhancement of the Second Hyperpolarizabilities of Open-Shell Singlet Polyaromatic Diphenalenyl Diradicaloids by an External Electric Field and Donor–Acceptor Substitution. Journal of Physical Chemistry Letters, 2011, 2, 1094-1098.	2.1	111
689	Electronic and magnetic properties of C-adsorbed graphene: a first-principles study. Physical Chemistry Chemical Physics, 2011, 13, 16574.	1.3	12
690	Gapped ferromagnetic graphene nanoribbons. Physical Chemistry Chemical Physics, 2011, 13, 13202.	1.3	7
691	Formation of identical-size graphene nanoclusters on Ru(0001). Chemical Communications, 2011, 47, 1470-1472.	2.2	74
692	Design of ferromagnetism in Cu-doped ZnO nanowires: First-principles prediction. Europhysics Letters, 2011, 95, 47011.	0.7	17

#	Article	IF	CITATIONS
693	Spin-polarized quantum pumping in bilayer graphene. Nanotechnology, 2011, 22, 395201.	1.3	18
694	Dirac boundary condition at the reconstructed zigzag edge of graphene. Physical Review B, 2011, 84, .	1.1	43
695	Thermally induced currents in graphene-based heterostructure. Applied Physics Letters, 2011, 99, .	1.5	15
696	Characterization and nanopatterning of organically functionalized graphene with ultrahigh vacuum scanning tunneling microscopy. MRS Bulletin, 2011, 36, 532-542.	1.7	12
697	Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap. Journal of Physical Chemistry C, 2011, 115, 4381-4386.	1.5	8
698	Control of Graphene Etching by Atomic Structures of the Supporting Substrate Surfaces. Journal of Physical Chemistry C, 2011, 115, 8580-8585.	1.5	28
699	Edge States and Half-Metallicity in TiO ₂ Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 18047-18050.	1.5	3
700	Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons. Nanoscale, 2011, 3, 2324.	2.8	23
701	Fabrication of Carbon Nanoscrolls from Monolayer Graphene Controlled by P-Doped Silicon Nanowires: A MD Simulation Study. Journal of Physical Chemistry C, 2011, 115, 15217-15224.	1.5	37
702	Growth of Two-Dimensional Carbon Nanostructures and Their Electrical Transport Properties at Low Tempertaure. Japanese Journal of Applied Physics, 2011, 50, 01AF02.	0.8	1
703	Adatoms in graphene as a source of current polarization: Role of the local magnetic moment. Physical Review B, 2011, 84, .	1.1	27
704	display="inline"> <mml:mrow><mml:mn>3</mml:mn><mml:mi>d</mml:mi></mml:mrow> , <mml:math>,<mml:math>,<mml:math>,<mml:math>,<mml:math>,<mml:math>,<mml:math>,<mml:math>,<mml:math>,<mml:math>,<mml:math>,<mml:math>,<mml:math>,<mml:math>,<mml:math>,<mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>th 1.1</td><td>49</td></mml:math></mml:math></mml:math></mml:math></mml:math></mml:math></mml:math></mml:math></mml:math></mml:math></mml:math></mml:math></mml:math></mml:math></mml:math></mml:math>	th 1.1	49
705	Versatile Electronic and Magnetic Properties of Corrugated V ₂ O ₅ Two-Dimensional Crystal and Its Derived One-Dimensional Nanoribbons: A Computational Exploration. Journal of Physical Chemistry C, 2011, 115, 11983-11990.	1.5	33
706	Conductance modulation in graphene nanoribbon under transverse asymmetric electric potential. Journal of Applied Physics, 2011, 109, 073704.	1.1	5
707	How Do Surface and Edge Effects Alter the Electronic Properties of GaN Nanoribbons?. Journal of Physical Chemistry C, 2011, 115, 1724-1731.	1.5	41
708	Template Effect in the Competition between Haeckelite and Graphene Growth on Ni(111): Quantum Chemical Molecular Dynamics Simulations. Journal of the American Chemical Society, 2011, 133, 18837-18842.	6.6	95
709	Doping induced spin filtering effect in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Applied Physics Letters, 2011, 98, .	1.5	91
710	Graphene Nucleation on Transition Metal Surface: Structure Transformation and Role of the Metal Step Edge. Journal of the American Chemical Society, 2011, 133, 5009-5015.	6.6	315

#	Article	IF	Citations
711	Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads. Journal of Physics Condensed Matter, 2011, 23, 135304.	0.7	12
712	Ferromagnetic Order from p-Electrons in Rubidium Oxide. Chemistry of Materials, 2011, 23, 1578-1586.	3.2	23
713	Quantum Master Equation Method Based on the Broken-Symmetry Time-Dependent Density Functional Theory: Application to Dynamic Polarizability of Open-Shell Molecular Systems. Journal of Physical Chemistry A, 2011, 115, 3565-3575.	1.1	16
714	Intrinsic Spin-Orbit Coupling in Zigzag and Armchair Graphene Nanoribbons. Journal of Nanomaterials, 2011, 2011, 1-7.	1.5	O
715	Chromium Porphyrin Arrays As Spintronic Devices. Journal of the American Chemical Society, 2011, 133, 9364-9369.	6.6	167
716	Nonlocal exchange effects in zigzag-edge magnetism of neutral graphene nanoribbons. Physical Review B, 2011, 83, .	1.1	22
717	Favorable Zigzag Configuration at Etched Graphene Edges. Journal of Physical Chemistry C, 2011, 115, 20546-20549.	1.5	17
718	Inducing Electronic Changes in Graphene through Silicon (100) Substrate Modification. Nano Letters, 2011, 11, 2735-2742.	4.5	57
719	Transport Properties of Zigzag Graphene Nanoribbons Decorated by Carboxyl Group Chains. Journal of Physical Chemistry C, 2011, 115, 21893-21898.	1.5	8
720	Electronic Structures of Porous Graphene, BN, and BC ₂ N Sheets with One- and Two-Hydrogen Passivations from First Principles. Journal of Physical Chemistry C, 2011, 115, 5334-5343.	1.5	48
721	Magnetism and bonding in graphene nanodots with H modified interior, edge, and apex. Journal of Chemical Physics, 2011, 135, 084707.	1.2	4
722	Robust zero-averaged wave-number gap inside gapped graphene superlattices. Journal of Applied Physics, 2011, 109, .	1.1	51
723	Influence of hydrogen functionalization on thermal conductivity of graphene: Nonequilibrium molecular dynamics simulations. Applied Physics Letters, 2011, 98, .	1.5	113
724	Magnetoresistance in disordered graphene: The role of pseudospin and dimensionality effects unraveled. Europhysics Letters, 2011, 94, 47006.	0.7	69
725	Anomalous magnetic transport in ferromagnetic graphene junctions. Physical Review B, 2011, 83, .	1.1	39
726	Graphene Spin-Valve Device Grown Epitaxially on the Ni(111) Substrate: A First Principles Study. Journal of Physical Chemistry C, 2011, 115, 6019-6023.	1.5	42
727	Dynamical Signatures of Edge-State Magnetism on Graphene Nanoribbons. Physical Review Letters, 2011, 106, 226401.	2.9	115
728	Boron Nitride Nanoribbons Become Metallic. Nano Letters, 2011, 11, 3267-3273.	4.5	120

#	Article	IF	Citations
729	Effects of Transverse Electric Fields on Quasi-Landau Levels in Zigzag Graphene Nanoribbons. Journal of the Physical Society of Japan, 2011, 80, 044602.	0.7	13
730	Induced magnetism in transition metal intercalated graphitic systems. Journal of Materials Chemistry, 2011, 21, 18681.	6.7	46
731	Graphene on Ni(111): Coexistence of Different Surface Structures. Journal of Physical Chemistry Letters, 2011, 2, 759-764.	2.1	158
732	Graphene nanoribbons with smooth edges behave as quantum wires. Nature Nanotechnology, 2011, 6, 563-567.	15.6	197
733	Graphene Nanoribbons from Unzipped Carbon Nanotubes: Atomic Structures, Raman Spectroscopy, and Electrical Properties. Journal of the American Chemical Society, 2011, 133, 10394-10397.	6.6	170
734	Graphene Oxide: Synthesis, Characterization, Electronic Structure, and Applications. Nanoscience and Technology, 2011, , 435-464.	1.5	2
735	Tunneling conductance of a magnetized zigzag graphene nanoribbon/superconductor junction. Physical Review B, 2011, 83, .	1.1	25
736	A spin-filter device based on armchair graphene nanoribbons. Applied Physics Letters, 2011, 98, 023106.	1.5	108
737	Do Stone–Wales Defects Alter the Magnetic and Transport Properties of Single-Walled Carbon Nanotubes?. Journal of Physical Chemistry C, 2011, 115, 22232-22241.	1.5	28
738	Functionalized Graphene for High-Performance Two-Dimensional Spintronics Devices. ACS Nano, 2011, 5, 2601-2610.	7.3	116
739	Ab Initio Study of Boron- and Nitrogen-Doped Graphene and Carbon Nanotubes Functionalized with Carboxyl Groups. Journal of Physical Chemistry C, 2011, 115, 18500-18510.	1.5	64
740	Covalent Chemistry for Graphene Electronics. Journal of Physical Chemistry Letters, 2011, 2, 2487-2498.	2.1	131
741	Growth Mechanism of Hexagonal-Shape Graphene Flakes with Zigzag Edges. ACS Nano, 2011, 5, 9154-9160.	7.3	154
742	Helical Encapsulation of Graphene Nanoribbon into Carbon Nanotube. ACS Nano, 2011, 5, 2126-2133.	7.3	70
743	Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons. Nanoscale, 2011, 3, 2127.	2.8	99
744	Electronic and magnetic properties of triangular graphene quantum rings. Physical Review B, 2011, 83, .	1.1	56
745	Resonant transport through graphene nanoribbon quantum dots. Journal of Applied Physics, 2011, 109, 103707.	1.1	8
746	Electric Field-Driven Acidâ^'Base Chemistry: Proton Transfer from Acid (HCl) to Base (NH ₃ /H ₂ O). Journal of Physical Chemistry A, 2011, 115, 1418-1422.	1.1	43

#	ARTICLE	IF	CITATIONS
747	Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons. Nanoscale, 2011, 3, 4330.	2.8	93
748	Graphene-based Spin Caloritronics. Nano Letters, 2011, 11, 1369-1373.	4.5	183
749	Gate voltage induced spin-filtering effect in a junction based on zigzag graphene nanoribbons. Applied Physics Letters, 2011, 99, 243503.	1.5	12
750	Width- and Edge-Dependent Stability, Electronic Structures, and Magnetic Properties of Graphene-Like and Wurtzite ZnS Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 4466-4475.	1.5	17
751	Charge and spin transport in graphene-based heterostructure. Applied Physics Letters, 2011, 98, 053101.	1.5	62
752	Half-metallicity in graphene nanoribbons with topological line defects. Physical Review B, 2011, 84, .	1.1	108
753	Control of Thermal and Electronic Transport in Defect-Engineered Graphene Nanoribbons. ACS Nano, 2011, 5, 3779-3787.	7.3	320
754	Negative differential resistance in oxidized zigzag graphene nanoribbons. Physical Chemistry Chemical Physics, 2011, 13, 1413-1418.	1.3	46
755	Half metallicity in BC2N nanoribbons: stability, electronic structures, and magnetism. Nanoscale, 2011, 3, 2583.	2.8	33
756	Electronic Structures of BC ₂ N Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 3572-3577.	1.5	37
757	Accurate Prediction of the Electronic Properties of Low-Dimensional Graphene Derivatives Using a Screened Hybrid Density Functional. Accounts of Chemical Research, 2011, 44, 269-279.	7.6	115
758	Strain-tunable spin transport in ferromagnetic graphene junctions. Applied Physics Letters, 2011, 98, .	1.5	46
759	Zigzag graphene nanoribbons without inversion symmetry. Physical Review B, 2011, 84, .	1.1	6
760	Magnetoresistance and Magnetic Ordering Fingerprints in Hydrogenated Graphene. Physical Review Letters, 2011, 107, 016602.	2.9	132
761	Graphene quantum dots embedded in hexagonal boron nitride sheets. Applied Physics Letters, 2011, 98, .	1.5	71
762	Simulated porosity and electronic structure of nanoporous carbons. Journal of Chemical Physics, 2011, 135, 104706.	1.2	37
763	Electron transport through the p-n junction of zigzag graphene nanoribbon with external transverse electric fields. Journal of Applied Physics, 2011, 110, 113710.	1.1	5
764	Paramagnetic centers in graphene nanoribbons prepared from longitudinal unzipping of carbon nanotubes. New Journal of Physics, 2011, 13, 113004.	1.2	25

#	Article	IF	CITATIONS
765	Dispersion of edge states and quantum confinement of electrons in graphene channels drawn on graphene fluoride. Physical Review B, 2011, 83, .	1.1	14
766	Anomalous paramagnetism in graphene on hexagonal boron nitride substrates. Physical Review B, 2011, 84, .	1.1	17
767	Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications, 2011, 47, 6858.	2.2	1,458
768	The integrated effects of temperature and stress on the formation of carbon linear atomic chains from graphene nanoribbons. Journal of Applied Physics, 2011, 110, .	1.1	8
769	Effect of Layer Stacking on the Electronic Structure of Graphene Nanoribbons. ACS Nano, 2011, 5, 6096-6101.	7.3	32
770	Structural and Electronic Properties of Hybrid Fluorographene–Graphene Nanoribbons: Insight from First-Principles Calculations. Journal of Physical Chemistry C, 2011, 115, 16644-16651.	1.5	44
771	Curvature-induced spin-orbit coupling and spin relaxation in a chemically clean single-layer graphene. Physical Review B, 2011, 84, .	1.1	45
772	Ferromagnetism in Hydrogenated Graphene Nanopore Arrays. Physical Review Letters, 2011, 107, 217203.	2.9	47
773	Electric-field controlled spin in bilayer triangular graphene quantum dots. Physical Review B, 2011, 84,	1.1	59
774	Manipulating fully spin-polarized edge currents in graphene ribbon. Physical Review B, 2011, 84, .	1.1	0
775	Observation of Raman <i>G</i> -Peak Split for Graphene Nanoribbons with Hydrogen-Terminated Zigzag Edges. Nano Letters, 2011, 11, 4083-4088.	4.5	56
776	Upright Standing Graphene Formation on Substrates. Journal of the American Chemical Society, 2011, 133, 16072-16079.	6.6	47
777	Graphene-based bipolar spin diode and spin transistor: Rectification and amplification of spin-polarized current. Physical Review B, 2011, 83, .	1.1	145
778	Graphene Spintronics: The Role of Ferromagnetic Electrodes. Nano Letters, 2011, 11, 151-155.	4.5	137
779	"Seamless―Graphene Interconnects for the Prospect of All-Carbon Spin-Polarized Field-Effect Transistors. Journal of Physical Chemistry C, 2011, 115, 2874-2879.	1.5	14
780	Graphene magnet realized by hydrogenated graphene nanopore arrays. Applied Physics Letters, 2011, 99, 183111.	1.5	27
781	Electronic and Magnetic Properties and Structural Stability of BeO Sheet and Nanoribbons. ACS Applied Materials & Date: Ap	4.0	62
782	Electronic Functionality in Graphene-Based Nanoarchitectures: Discovery and Design via First-Principles Modeling. Journal of Physical Chemistry Letters, 2011, 2, 73-80.	2.1	56

#	Article	IF	CITATIONS
783	First-principles study on the electronic and magnetic properties of hydrogenated CdS nanosheets. Journal of Applied Physics, 2011, 109, .	1.1	28
784	Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles. Physical Review B, $2011,83,.$	1.1	124
785	Graphene-based spin logic gates. Applied Physics Letters, 2011, 98, .	1.5	59
786	Ab initio Study of Half-Metallicity and Magnetism of Complex Organometallic Molecular Wires. Journal of Physical Chemistry C, 2011, 115, 7292-7297.	1.5	19
787	Spin-polarized electron transport through graphene nanoribbon with zigzag edges. Journal of Physics Condensed Matter, 2011, 23, 205304.	0.7	8
788	Spin-dependent transport and spin-switching effect in graphene with magnetoelectric modulations. Journal of Applied Physics, 2011, 109, 053716.	1.1	7
789	Spin-polarized current and tunneling magnetoresistance in ferromagnetic gate bilayer graphene structures. Journal of Applied Physics, 2011, 109, 073717.	1.1	19
790	Boron and Nitrogen Doping Induced Half-Metallicity in Zigzag Triwing Graphene Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 6195-6199.	1.5	60
791	Zak phase and the existence of edge states in graphene. Physical Review B, 2011, 84, .	1.1	391
792	Nanotechnology Research Directions for Societal Needs in 2020. , 2011, , .		202
793	Ground and low-lying excited electronic states of graphene flakes: a density functional theory study. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 205105.	0.6	5
794	Emergence of Atypical Properties in Assembled Graphene Nanoribbons. Physical Review Letters, 2011, 107, 135501.	2.9	69
795	Family-Dependent Rectification Characteristics in Ultra-Short Graphene Nanoribbon <i>p</i> pfi>– <i>n</i> Junctions. Journal of Physical Chemistry C, 2011, 115, 8547-8554.	1.5	28
796	Electronic and magnetic properties of BNC nanoribbons: a detailed computational study. New Journal of Physics, 2011, 13, 053008.	1.2	38
797	Quantum Dots and Nanoroads of Graphene Embedded in Hexagonal Boron Nitride. Journal of Physical Chemistry C, 2011, 115, 9889-9893.	1.5	135
798	Uncooled infrared sensing using graphene. , 2011, , .		1
799	Development of graphene-based optical detectors for infrared sensing applications. , 2011, , .		3
800	Quantized conductance of a suspended graphene nanoconstriction. Nature Physics, 2011, 7, 697-700.	6.5	143

#	Article	IF	CITATIONS
801	Zigzag graphene nanoribbons: bandgap and midgap state modulation. Journal of Physics Condensed Matter, 2011, 23, 382203.	0.7	21
802	Half-Metallicity in Hybrid Graphene/Boron Nitride Nanoribbons with Dihydrogenated Edges. Journal of Physical Chemistry C, 2011, 115, 9442-9450.	1.5	96
803	Understanding the Band Gap, Magnetism, and Kinetics of Graphene Nanostripes in Graphane. Journal of Physical Chemistry C, 2011, 115, 21088-21097.	1.5	39
804	Decorating graphene sheets with Pt nanoparticles using sodium citrate as reductant. Applied Surface Science, 2011, 257, 10758-10762.	3.1	47
805	Functionalization of low-dimensional honeycomb germanium with 3d transition-metal atoms. Computational Materials Science, 2011, 50, 1717-1724.	1.4	10
806	Electronic and magnetic properties of nitrogen-doped finite-size and open-ended zigzag carbon nanotubes. Computational Materials Science, 2011, 50, 1917-1924.	1.4	7
807	Sign-changeable spin-filter efficiency and giant magnetoresistance in seamless graphene nanoribbon junctions. Computational Materials Science, 2011, 50, 2886-2890.	1.4	6
808	Singlet–triplet (S0→T1) excitation energies of the [4×n] rectangular graphene nanoribbon series (n=2–6): A comparative theoretical study. Computational and Theoretical Chemistry, 2011, 977, 163-167.	1.1	13
809	Formation of Carbon Clusters in the Initial Stage of Chemical Vapor Deposition Graphene Growth on Ni(111) Surface. Journal of Physical Chemistry C, 2011, 115, 17695-17703.	1.5	119
810	Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA. Science, 2011, 331, 894-897.	6.0	615
811	High-spin states of cation vacancies in GaP, GaN, AlN, BN, ZnO, and BeO: A first-principles study. Physical Review B, 2011, 83, .	1.1	41
812	Half-metallic ferromagnetism in the half-Heusler compounds GeKCa and SnKCa from first-principles calculations. Journal of Alloys and Compounds, 2011, 509, 10172-10178.	2.8	67
813	Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping. ACS Nano, 2011, 5, 7517-7524.	7.3	222
814	Raman Spectroscopy of Lithographically Patterned Graphene Nanoribbons. ACS Nano, 2011, 5, 4123-4130.	7.3	148
815	Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response. Journal of Physical Chemistry Letters, 2011, 2, 894-899.	2.1	252
816	Conversion of carbon dioxide to few-layer graphene. Journal of Materials Chemistry, 2011, 21, 9491.	6.7	262
817	Theory of the electro-optical properties of graphene nanoribbons. Physical Review B, 2011, 83, .	1.1	42
818	Spin-orbit interaction in curved graphene ribbons. Physical Review B, 2011, 83, .	1.1	29

#	Article	IF	CITATIONS
819	Ab initio Theories of the Structural, Electronic, and Optical Properties of Semiconductors: Bulk Crystals to Nanostructures. , 2011, , 42-76.		0
820	SiC ₂ Silagraphene and Its One-Dimensional Derivatives: Where Planar Tetracoordinate Silicon Happens. Journal of the American Chemical Society, 2011, 133, 900-908.	6.6	171
822	Electronic Properties of Graphene Nanoribbons. Nanoscience and Technology, 2011, , 277-299.	1.5	4
823	Exploring Quantum Transport in Graphene Ribbons with Lattice Defects and Adsorbates. Nanoscience and Technology, 2011, , 395-434.	1.5	0
825	Half-metallicity and spin-contamination of the electronic ground state of graphene nanoribbons and related systems: An impossible compromise?. Journal of Chemical Physics, 2011, 135, 104704.	1.2	61
826	Spin superconductor in ferromagnetic graphene. Physical Review B, 2011, 84, .	1.1	34
827	sp-Electron Magnetic Clusters with a Large Spin in Graphene. ACS Nano, 2011, 5, 2440-2446.	7.3	80
828	Organometallic Complexes of Graphene: Toward Atomic Spintronics Using a Graphene Web. ACS Nano, 2011, 5, 9939-9949.	7.3	70
829	Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. Journal of Materials Chemistry, 2011, 21, 5319.	6.7	219
830	Finite-Size Effects in Graphene Nanostructures. , 2011, , .		2
831	Mechanical and Electronic Properties of Graphene Nanostructures. , 2011, , .		3
832	Electronic and Transport Properties of Defected Graphene Nanoribbons. , 2011, , .		3
833	Theoretical Study on Magnetoelectric and Thermoelectric Properties for Graphene Devices. Japanese Journal of Applied Physics, 2011, 50, 070115.	0.8	8
834	Graphene Nano-Flakes and Nano-Dots: Theory, Experiment and Applications. , 0, , .		5
835	Graphene Nanoribbons: Geometric, Electronic, and Magnetic Properties. , 0, , .		25
836	One-dimensional structural irregularities in graphene: chiral edges and grain boundaries. Journal of Physics: Conference Series, 2011, 302, 012016.	0.3	5
837	Magnetism in Dehydrogenated Armchair Graphene Nanoribbon. Journal of the Physical Society of Japan, 2011, 80, 044712.	0.7	6
838	Electronic transport properties of graphene nanoribbons with anomalous edges. EPJ Applied Physics, 2011, 53, 20602.	0.3	10

#	Article	IF	CITATIONS
839	Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials, 2011, 10, 443-449.	13.3	1,356
840	Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons. Nature Nanotechnology, 2011, 6, 45-50.	15.6	177
841	Topological origin of subgap conductance in insulating bilayer graphene. Nature Physics, 2011, 7, 38-42.	6.5	105
842	Spatially resolving edge states of chiral grapheneÂnanoribbons. Nature Physics, 2011, 7, 616-620.	6.5	628
843	Electronic and magnetic properties of copper-family-element atom adsorbed graphene nanoribbons with zigzag edges. Solid State Communications, 2011, 151, 1440-1443.	0.9	9
844	Spin-polarized edge and magnetoresistance in graphene flake. Solid State Communications, 2011, 151, 1763-1766.	0.9	10
845	First principles calculations of armchair graphene nanoribbons interacting with Cu atoms. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 75-79.	1.3	28
846	Spin-polarized tunneling in a ferromagnetic graphene junction: Interplay between the exchange interaction and the orbital effect of the magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 327-332.	1.3	3
847	Strain-induced switching of magnetoresistance and perfect spin-valley filtering in graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 579-579.	1.3	4
848	GMR effects in graphene-based Ferromagnetic/Normal/Ferromagnetic junctions. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 647-653.	1.3	13
849	A wide-angle spin filter based on graphene with Rashba coupling and exchange field. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 738-742.	1.3	3
850	Tuning electronic and magnetic properties of AlN nanosheets with hydrogen and fluorine: First-principles prediction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3583-3587.	0.9	31
851	Novel electric field effects on magnetic oscillations in graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3624-3633.	0.9	18
852	Specific heat of graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3726-3730.	0.9	17
853	Electronic transport in large systems through a QUAMBO–NEGF approach: Application to atomic carbon chains. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3710-3715.	0.9	5
854	Electronic and magnetic properties of perfect and defected germanium nanoribbons. Materials Chemistry and Physics, 2011, 130, 140-146.	2.0	12
855	Fabrication of Cu2(OH)2CO3 and CuO particles: from spindle to nanorod, nanoribbon and hollow structure. Micro and Nano Letters, 2011 , 6 , 639 .	0.6	3
856	Theory of zwitterionic molecular-based organic magnets. Chemical Physics Letters, 2011, 511, 294-298.	1.2	7

#	Article	IF	Citations
857	Simulations for the formation dynamics and electronic states of carbon nano materials: Diffusion and alignment of oxygen atoms on graphene. Current Applied Physics, 2011, 11, S50-S54.	1.1	5
858	Graphene edges: a review of their fabrication and characterization. Nanoscale, 2011, 3, 86-95.	2.8	410
859	Shape Effect of Graphene Quantum Dots on Enhancing Second-Order Nonlinear Optical Response and Spin Multiplicity in NH2–GQD–NO2Systems. Journal of Physical Chemistry C, 2011, 115, 16282-16286.	1.5	42
860	Structural Defects in Graphene. ACS Nano, 2011, 5, 26-41.	7.3	2,818
861	Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nature Materials, 2011, 10, 687-692.	13.3	253
862	Thermal Dynamics of Graphene Edges Investigated by Polarized Raman Spectroscopy. ACS Nano, 2011, 5, 147-152.	7.3	51
863	Edge effects in graphene nanostructures: From multiple reflection expansion to density of states. Physical Review B, 2011, 84, .	1.1	47
864	Fast Synthesis of Graphene Sheets with Good Thermal Stability by Microwave Irradiation. Chemistry - an Asian Journal, 2011, 6, 1151-1154.	1.7	19
865	Graphene field-effect transistors. Journal Physics D: Applied Physics, 2011, 44, 313001.	1.3	116
866	Mechanical and Electronic Properties of MoS ₂ Nanoribbons and Their Defects. Journal of Physical Chemistry C, 2011, 115, 3934-3941.	1.5	427
867	Inducing and optimizing magnetism in graphene nanomeshes. Physical Review B, 2011, 84, .	1.1	69
868	Three-dimensional network model of carbon containing only sp2-carbon bonds and boron nitride analogues. Chemical Communications, 2011, 47, 4406.	2.2	45
869	Synthesis of Graphene Nanoribbons Encapsulated in Single-Walled Carbon Nanotubes. Nano Letters, 2011, 11, 4352-4356.	4.5	174
870	Electronic properties of the partially hydrogenated armchair carbon nanotubes. Physical Review B, 2011, 84, .	1.1	16
871	Theory of magnetic edge states in chiral graphene nanoribbons. Physical Review B, 2011, 84, .	1.1	113
872	Magic numbers of nanoholes in graphene: Tunable magnetism and semiconductivity. Physical Review B, 2011, 84, .	1.1	43
873	Electron and spin transport in adiabatic quantum pumps based on graphene nanoribbons. Journal of Experimental and Theoretical Physics, 2011, 113, 698-708.	0.2	1
874	Modulation of the electronic and magnetic properties of the silicene nanoribbons by a singleÂC chain. European Physical Journal B, 2011, 79, 197-202.	0.6	19

#	Article	IF	CITATIONS
875	Effect of N doping and Stone-Wales defects on the electronic properties of graphene nanoribbons. European Physical Journal B, 2011, 79, 335-340.	0.6	42
876	Exciton effects in armchair graphene nanoribbons. European Physical Journal B, 2011, 83, 451-455.	0.6	15
877	Edge states and distributions of edge currents in semi-infinite graphene. European Physical Journal B, 2011, 81, 431-439.	0.6	5
878	On the actual nature of the anti-ferromagnetism shown by unrestricted calculations on conjugated hydrocarbon rings. European Physical Journal D, 2011, 64, 239-248.	0.6	5
879	Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics, 2011, 60, 413-550.	35.9	797
880	Optical Control of Edge Chirality in Graphene. Nano Letters, 2011, 11, 4874-4878.	4.5	45
881	Direct Imaging of Graphene Edges: Atomic Structure and Electronic Scattering. Nano Letters, 2011, 11, 3663-3668.	4.5	86
882	Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 2011, 83, 407-470.	16.4	2,857
883	Formation and electronic properties of hydrogenated few layer graphene. Nanotechnology, 2011, 22, 185202.	1.3	74
884	Parity induced edge-current saturation and current distribution in zigzag-edged graphene nano-ribbon devices. Journal of Computational Electronics, 2011, 10, 35-43.	1.3	2
885	Control of Spin-Valley Current in Strain-Engineered Graphene Magnetic Junction. Journal of Superconductivity and Novel Magnetism, 2011, 24, 1885-1892.	0.8	20
886	Stability and electronic states of NC3 nanoribbons. Applied Physics A: Materials Science and Processing, 2011, 104, 55-60.	1.1	5
887	(Hyper)polarizability density analysis for open-shell molecular systems based on natural orbitals and occupation numbers. Theoretical Chemistry Accounts, 2011, 130, 711-724.	0.5	125
888	Tuning graphene nanoribbon field effect transistors via controlling doping level. Theoretical Chemistry Accounts, 2011, 130, 483-489.	0.5	5
890	A first-principles study on the electromechanical effect of graphene nanoribbon. Computer Physics Communications, 2011, 182, 99-102.	3.0	17
891	Low-energy electronic structures of nanotube–nanoribbon hybrid systems. Computer Physics Communications, 2011, 182, 68-70.	3.0	4
892	Vibrational modes and resonant Raman spectra of new B2C nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2733-2737.	0.9	0
893	Inorganic nanoribbons with unpassivated zigzag edges: Half metallicity and edge reconstruction. Nano Research, 2011, 4, 233-239.	5.8	62

#	Article	IF	CITATIONS
894	Firstâ€principles modeling of the interactions of iron impurities with graphene and graphite. Physica Status Solidi (B): Basic Research, 2011, 248, 1347-1351.	0.7	16
895	Scanning tunneling microscopy and spectroscopy of graphene on insulating substrates. Physica Status Solidi (B): Basic Research, 2011, 248, 2423-2434.	0.7	35
896	Grapheneâ€Based Materials: Synthesis, Characterization, Properties, and Applications. Small, 2011, 7, 1876-1902.	5.2	2,239
897	Effect of Nitrophenyl Functionalization on the Magnetic Properties of Epitaxial Graphene. Small, 2011, 7, 1175-1180.	5.2	65
898	IxV curves of boron and nitrogen doping zigzag graphene nanoribbons. International Journal of Quantum Chemistry, 2011, 111, 1379-1386.	1.0	17
899	Epitaxial Growth of Crystalline Polyaniline on Reduced Graphene Oxide. Macromolecular Rapid Communications, 2011, 32, 1277-1283.	2.0	29
900	Oneâ€Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications. Advanced Functional Materials, 2011, 21, 2989-2996.	7.8	487
901	Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Advanced Materials, 2011, 23, 1482-1513.	11.1	1,963
902	Patterning Graphene with Zigzag Edges by Selfâ€Aligned Anisotropic Etching. Advanced Materials, 2011, 23, 3061-3065.	11.1	167
903	Graphene: Piecing it Together. Advanced Materials, 2011, 23, 4471-4490.	11.1	127
904	Openâ€Shell Characters and Second Hyperpolarizabilities of Oneâ€Dimensional Graphene Nanoflakes Composed of Trigonal Graphene Units. ChemPhysChem, 2011, 12, 1697-1707.	1.0	46
905	Carbogenic Nanodots: Photoluminescence and Roomâ€Temperature Ferromagnetism. ChemPhysChem, 2011, 12, 2624-2632.	1.0	50
906	Transport properties of graphene nanoribbonâ€based molecular devices. Journal of Computational Chemistry, 2011, 32, 737-741.	1.5	8
907	Firstâ€principles prediction on electronic and magnetic properties of hydrogenated AlN nanosheets. Journal of Computational Chemistry, 2011, 32, 3122-3128.	1.5	42
909	Graphene Nanoribbons by Chemists: Nanometerâ€Sized, Soluble, and Defectâ€Free. Angewandte Chemie - International Edition, 2011, 50, 2540-2543.	7.2	228
910	Exceptionally Large Secondâ€Order Nonlinear Optical Response in Donor–Graphene Nanoribbon–Acceptor Systems. Chemistry - A European Journal, 2011, 17, 2414-2419.	1.7	59
911	Facile Synthesis of Wideâ€Bandgap Fluorinated Graphene Semiconductors. Chemistry - A European Journal, 2011, 17, 8896-8903.	1.7	121
912	Enhancing the ferromagnetization of graphite by successive 12C+ ion implantation steps. Carbon, 2011, 49, 1931-1938.	5.4	19

#	Article	IF	CITATIONS
913	Discriminative generation and hydrogen modulation of the Dirac-Fermi polarons at graphene edges and atomic vacancies. Carbon, 2011, 49, 3615-3621.	5.4	47
914	The effects of the dangling bond on the electronic and magnetic properties of AlN nanoribbon. Computational and Theoretical Chemistry, 2011, 967, 113-119.	1.1	18
915	Automated quantum conductance calculations using maximally-localised Wannier functions. Computer Physics Communications, 2011, 182, 2174-2183.	3.0	26
916	Configuration and electronic properties of graphene nanoribbons on Si(211) surface. Applied Surface Science, 2011, 257, 2474-2480.	3.1	2
917	Repair of magnetism in oxidized graphene nanoribbons. Chemical Physics Letters, 2011, 501, 396-399.	1.2	10
918	Substituted graphene nano-flakes: Defective structure and large nonlinear optical property. Chemical Physics Letters, 2011, 504, 211-215.	1.2	16
919	Carbon nanosheets with catalyst-induced wrinkles formed by plasma-enhanced chemical-vapor deposition. Carbon, 2011, 49, 884-889.	5.4	38
920	First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B: Condensed Matter, 2011, 406, 2254-2260.	1.3	613
921	Unit cell dependence of optical matrix elements in tight-binding theory: The case of zigzag graphene nanoribbons. Physica B: Condensed Matter, 2011, 406, 3538-3543.	1.3	9
922	Exploring nanoscale magnetism in advanced materials with polarized X-rays. Materials Science and Engineering Reports, 2011, 72, 81-95.	14.8	18
923	Adsorption-induced magnetism properties in graphene. Journal of Magnetism and Magnetic Materials, 2011, 323, 547-551.	1.0	8
924	Theoretical Calculation of Optical Absorption Spectrum for Armchair Graphene Nanoribbon. Procedia Engineering, 2011, 8, 25-29.	1.2	16
925	Controllable spin filter composed of ferromagnetic AB-stacking bilayer graphenes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2858-2862.	0.9	9
926	Electronic transport properties on V-shaped-notched zigzag graphene nanoribbons junctions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3319-3324.	0.9	35
927	Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport. Physics Reports, 2011, 503, 77-114.	10.3	338
928	Lithium adsorption on armchair graphene nanoribbons. Surface Science, 2011, 605, 1633-1642.	0.8	34
929	Spin waves in zigzag graphene nanoribbons and the stability of edge ferromagnetism. New Journal of Physics, 2011, 13, 033028.	1.2	36
930	Graphite patterning in a controlled gas environment. Nanotechnology, 2011, 22, 335304.	1.3	15

#	ARTICLE	IF	CITATIONS
931	Proposal of Graphene Bandgap Control by Hexagonal Network Formation. Japanese Journal of Applied Physics, 2011, 50, 06GE14.	0.8	0
932	Impact of Site-Potential Asymmetry on Electron Transport in Graphene. Japanese Journal of Applied Physics, 2011, 50, 090205.	0.8	0
933	Hydrogenation-chain-opened conductive channels in zigzag graphene nanoribbons. Journal of Applied Physics, 2011, 110, 033712.	1.1	3
934	Structural and electronic properties of hydrogen adsorptions on BC (sub) 3 (/sub) sheet and graphene: a comparative study. Nanotechnology, 2011, 22, 135703.	1.3	24
935	Raman study of correlation between defects and ferromagnetism in graphite. Journal Physics D: Applied Physics, 2011, 44, 085001.	1.3	24
936	Band gap formation in graphene by in-situ doping. Applied Physics Letters, 2011, 98, 203102.	1.5	11
937	Zipping and unzipping of nanoscale carbon structures. Physical Review B, 2011, 83, .	1.1	9
938	Spin relaxation properties in graphene due to its linear dispersion. Physical Review B, 2011, 84, .	1.1	68
939	Edge states and flat bands in graphene nanoribbons with arbitrary geometries. Physical Review B, 2011, 83, .	1.1	67
940	Spin-asymmetric graphene nanoribbons in graphane on silicon dioxide. Physical Review B, 2011, 84, .	1.1	2
941	Anisotropic magnetism of graphite irradiated with medium-energy hydrogen and helium ions. Physical Review B, 2011, 83, .	1.1	39
942	Mechanically-induced transport switching effect in graphene-based nanojunctions. Physical Review B, 2011, 83, .	1.1	7
943	Controlling doping in graphene through a SiC substrate: A first-principles study. Physical Review B, 2011, 83, .	1.1	27
944	Perfect spin-filtering and giant magnetoresistance with Fe-terminated graphene nanoribbon. Applied Physics Letters, 2011, 99, .	1.5	19
945	Spin-polarized and valley helical edge modes in graphene nanoribbons. Physical Review B, 2011, 84, .	1.1	53
946	Adsorption of hydrogen on the interface of a graphene/boron nitride hybrid atomic membrane. Physical Review B, 2011, 84, .	1.1	10
947	Carrier-induced antiferromagnet of graphene islands embedded in hexagonal boron nitride. Physical Review B, 2011, 84, .	1.1	73
948	Trends in charge transfer and spin alignment of metallocene on graphene. Physical Review B, 2011, 83, .	1.1	15

#	Article	IF	CITATIONS
949	Magnetization profile for impurities in graphene nanoribbons. Physical Review B, 2011, 84, .	1.1	20
950	Effect of oxygen adsorption on magnetic properties of graphite. Physical Review B, 2011, 83, .	1.1	21
951	Exact diagonalization study of the tunable edge magnetism in graphene. Physical Review B, $2011,83,.$	1.1	21
952	Manifold electronic structure transition of BNC biribbons. Journal of Applied Physics, 2011, 110, .	1.1	30
953	Small-angle lattice rotations in graphene on Ru(0001). Physical Review B, 2011, 84, .	1.1	32
954	Half-metallic chromium-chain-embedded wire in graphene and carbon nanotubes. Physical Review B, 2011, 84, .	1.1	20
955	Theory of quantum spin Hall effect detection by measurements of the polarization resistance. Physical Review B, 2011, 83, .	1.1	3
956	Stability and electronic structure of hydrogen passivated few atomic layer silicon films: A theoretical exploration. Journal of Applied Physics, 2011, 109, 053516.	1.1	10
957	Energy gap in graphene nanoribbons with structured external electric potentials. Physical Review B, 2011, 83, .	1.1	12
958	Dynamic response of graphene to thermal impulse. Physical Review B, 2011, 84, .	1.1	66
959	Tailoring band gap in GaN sheet by chemical modification and electric field: <i>Ab initio</i> calculations. Applied Physics Letters, 2011, 98, .	1.5	105
960	Magnetism induced by boron impurities in amorphous silicon. Journal of Applied Physics, 2011, 109, 073913.	1.1	1
961	Nonlinear transverse current response in zigzag graphene nanoribbons. Journal of Applied Physics, 2011, 110, .	1.1	2
962	Energy model and band-gap modulation of graphene band self-organized on the functional vicinal surfaces. Applied Physics Letters, 2011, 98, 013104.	1.5	1
963	Interfacial properties and morphologies of graphene-graphane composite sheets. Journal of Applied Physics, 2011, 109, 054314.	1.1	25
964	A spin-valve device based on dumbbell-shaped graphene nanoislands. Applied Physics Letters, 2011, 99, .	1.5	38
965	Graphene as a non-magnetic spin current lens. Journal of Physics Condensed Matter, 2011, 23, 175302.	0.7	4
966	Electron Transport of Right-Angle Graphene Nanoribbons. Advanced Materials Research, 0, 295-297, 1451-1455.	0.3	0

#	ARTICLE	IF	CITATIONS
967	Modelling the role of size, edge structure and terminations on the electronic properties of graphene nano-flakes. Modelling and Simulation in Materials Science and Engineering, 2011, 19, 054001.	0.8	51
968	ELECTRONIC STRUCTURE OF GRAPHENE NANORIBBONS SUBJECTED TO TWIST AND NONUNIFORM STRAIN. International Journal of High Speed Electronics and Systems, 2011, 20, 153-160.	0.3	2
969	Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons. Journal of Chemical Physics, 2011, 134, 074708.	1.2	17
970	Energy gap tuning in uniaxial strained zigzag graphene nanoribbons. Applied Physics Letters, 2011, 98, 213502.	1.5	21
971	Investigation and characterization of graphene for optical sensing. , 2011, , .		0
972	SPIN-POLARIZATION-DEPENDENT TRANSPORT IN GRAPHENE NANORIBBON WITH A VACANCY. International Journal of Nanoscience, 2011, 10, 533-538.	0.4	1
973	Nature of Graphene Edges: A Review. Japanese Journal of Applied Physics, 2011, 50, 070101.	0.8	121
974	FIRST-PRINCIPLES CALCULATION OF THE ELECTRONIC STRUCTURE AND MAGNETISM AT THE GRAPHENE/Ni(111) INTERFACE. International Journal of Modern Physics B, 2011, 25, 2791-2800.	1.0	2
975	Electronic transmission selectivity in multiterminal graphitic nanorings. Applied Physics Letters, 2011, 98, 112111.	1.5	5
976	Universal magnetic properties of sp ³ -type defects in covalently functionalized graphene. New Journal of Physics, 2012, 14, 043022.	1.2	87
977	Carbon nanotube bundles under electric field perturbations. Journal of Physics Condensed Matter, 2012, 24, 095301.	0.7	1
978	Electronic band structure and magnetic states of zigzag graphene nanoribbons: quantum chemical calculations. Journal of Nanophotonics, 2012, 6, 061712.	0.4	11
979	SEMICONDUCTING GRAPHENE. Nano LIFE, 2012, 02, 1230009.	0.6	5
980	Effect of edge passivation on electronic and transport properties of carbon nanotube-based molecular devices. Europhysics Letters, 2012, 100, 57001.	0.7	2
981	Synthesis, electromechanical characterization, and applications of graphene nanostructures. Journal of Nanophotonics, 2012, 6, 064501.	0.4	10
982	Bifurcations and chaotic threshold for a nonlinear system with an irrational restoring force. Chinese Physics B, 2012, 21, 020503.	0.7	18
983	A prototype MRPC beam test for the BESIII ETOF upgrade. Chinese Physics C, 2012, 36, 429-433.	1.5	17
984	Tunable Magnetic Properties of Rhombohedral Graphite Thin Films: Effects of Insulating Substrate on Magnetic Properties. Japanese Journal of Applied Physics, 2012, 51, 02BN04.	0.8	О

#	Article	IF	CITATIONS
985	Valley and subband-selective electronic transport through a line defect embedded carbon nanotube. Journal of Physics Condensed Matter, 2012, 24, 475303.	0.7	4
986	Thermally driven spin transport through a transverse-biased zigzag-edge graphene nanoribbon. Journal of Physics Condensed Matter, 2012, 24, 095302.	0.7	5
987	Effects of semiconductor processing chemicals on conductivity of graphene. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	0.6	7
988	First-principles study of hydrogenated carbon nanotubes: A promising route for bilayer graphene nanoribbons. Applied Physics Letters, 2012, 101, .	1.5	7
989	Dimensional crossover of thermal conductance in graphene nanoribbons: a first-principles approach. Journal of Physics Condensed Matter, 2012, 24, 295403.	0.7	6
990	Molecular Spintronics. Solid State Phenomena, 0, 189, 95-127.	0.3	1
991	Magnetic impurities in graphane with dehydrogenated channels. Physical Review B, 2012, 85, .	1.1	15
992	Magnetoresistance in fcc Ni/graphene/fcc Ni(111) junctions. Physical Review B, 2012, 85, .	1.1	9
993	Effects of edge potential on an armchair-graphene open boundary and nanoribbons. Physical Review B, 2012, 85, .	1.1	14
994	Stabilizing the Zigzag Edge: Graphene Nanoribbons with Sterically Constrained Terminations. Physical Review Letters, 2012, 109, 076802.	2.9	17
995	Ferromagnetism in a graphene nanoribbon with grain boundary defects. Physical Review B, 2012, 86, .	1.1	16
996	Bosonic field theory of tunable edge magnetism in graphene. Physical Review B, 2012, 86, .	1.1	11
997	Crossover from Coulomb Blockade to Quantum Hall Effect in Suspended Graphene Nanoribbons. Physical Review Letters, 2012, 108, 266601.	2.9	27
998	<i>Ab initio</i> study of the interactions between boron and nitrogen dopants in graphene. Journal of Applied Physics, 2012, 112, .	1.1	46
999	Single mode phonon scattering at carbon nanotube-graphene junction in pillared graphene structure. Applied Physics Letters, 2012, 100, 183111.	1.5	36
1000	Antiferromagnetic coupling and spin filtering in asymmetrically hydrogenated graphene nanoribbon homojunction. Applied Physics Letters, 2012, 100, .	1.5	22
1001	Control of graphene nanoribbon vacancies by Fe and N dopants: Implications for catalysis. Applied Physics Letters, 2012, 101, 064102.	1.5	37
1002	Stabilizing the ground state in zigzag-edged graphene nanoribbons by dihydrogenation. Physical Review B, 2012, 86, .	1.1	40

#	ARTICLE	IF	Citations
1003	Intrinsic half-metallicity in hydrogenated boron-nitride nanoribbons. Applied Physics Letters, 2012, 100, 103107.	1.5	30
1004	Magnetic and electronic properties of $\hat{l}\pm$ -graphyne nanoribbons. Journal of Chemical Physics, 2012, 136, 244702.	1.2	75
1005	Strain-activated edge reconstruction of graphene nanoribbons. Physical Review B, 2012, 85, .	1.1	25
1006	Negative differential spin conductance in doped zigzag graphene nanoribbons. Applied Physics Letters, 2012, 100, .	1.5	49
1007	Preferred armchair edges of epitaxial graphene on 6H-SiC(0001) by thermal decomposition. Applied Physics Letters, 2012, 101, .	1.5	16
1008	Impact of edge shape on the functionalities of graphene-based single-molecule electronics devices. Physical Review B, 2012, 85, .	1.1	26
1009	Subangstrom Edge Relaxations Probed by Electron Microscopy in Hexagonal Boron Nitride. Physical Review Letters, 2012, 109, 205502.	2.9	52
1010	Half-metallicity induced by charge injection in hexagonal boron nitride clusters embedded in graphene. Physical Review B, 2012, 86, .	1.1	19
1011	Al enhances the H <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> storage capacity of graphene at nanoribbon borders but not at central sites: A study using nonlocal van der Waals density functionals. Physical Review B, 2012, 85, .	1.1	25
1012	Dual conductance, negative differential resistance, and rectifying behavior in a molecular device modulated by side groups. Journal of Chemical Physics, 2012, 136, 184704.	1.2	75
1013	FOLDING MECHANICS OF BI-LAYER GRAPHENE SHEET. Nano LIFE, 2012, 02, 1240007.	0.6	4
1014	Rectifying and perfect spin filtering behavior realized by tailoring graphene nanoribbons. Journal of Applied Physics, 2012, 112, 114319.	1.1	5
1015	DESIGNING TUNABLE ELECTRONIC AND MAGNETIC PROPERTIES OF GRAPHENE: A THEORETICAL PERSPECTIVE. International Journal of Modern Physics B, 2012, 26, 1242003.	1.0	3
1016	AB-INITIO CALCULATIONS OF ELECTRONIC PROPERTIES AND QUANTUM TRANSPORT IN U-SHAPED GRAPHENE NANORIBBONS. International Journal of Computational Materials Science and Engineering, 2012, 01, 1250030.	0.5	2
1017	Circulation of the Mediterranean Sea and its Variability. , 2012, , 187-256.		54
1018	Quantum computation with two-dimensional graphene quantum dots. Chinese Physics B, 2012, 21, 017302.	0.7	7
1019	Low energy electron microscopy and photoemission electron microscopy investigation of graphene. Journal of Physics Condensed Matter, 2012, 24, 314209.	0.7	18
1020	Carbon Nanotube- and Graphene-based Sensors for Environmental Applications. , 2012, , 621-645.		1

#	Article	IF	CITATIONS
1021	Electronic and magnetic properties of oxygen patterned graphene superlattice. Journal of Applied Physics, $2012,112,.$	1.1	10
1022	The electronic structure of ideal graphene. , 2012, , 1-22.		4
1023	Electron states in a magnetic field., 0,, 23-62.		0
1024	Quantum transport via evanescent waves. , 0, , 63-76.		0
1025	Edges, nanoribbons and quantum dots., 0,, 103-133.		0
1026	Optics and response functions. , 2012, , 161-184.		2
1027	Crystal lattice dynamics, structure and thermodynamics. , 0, , 205-242.		1
1028	Gauge fields and strain engineering. , 0, , 243-265.		0
1029	Scattering mechanisms and transport properties. , 0, , 266-300.		0
1030	Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier. AIP Advances, 2012, 2, .	0.6	16
1031	Graphene carbon nanostructures for nanoelectronics. , 2012, , 198-242.		2
1032	Gate-Controlled P–l–N Junction Switching Device with Graphene Nanoribbon. Applied Physics Express, 2012, 5, 015101.	1.1	17
1033	Unusual magnetic properties of graphene and related materials. Chemical Science, 2012, 3, 45-52.	3.7	140
1034	Functionalized graphene oxide-based carbon paste electrode for potentiometric detection of copper ion(ii). Analytical Methods, 2012, 4, 3332.	1.3	23
1035	Defects and doping and their role in functionalizing graphene. MRS Bulletin, 2012, 37, 1187-1194.	1.7	61
1036	Defects and localization in chemically-derived graphene. Physical Review B, 2012, 86, .	1.1	36
1037	Half-metallic ferromagnetism in substitutionally doped boronitrene. Physical Review B, 2012, 86, .	1.1	10
1038	Electronic Transport Properties of Assembled Carbon Nanoribbons. ACS Nano, 2012, 6, 6483-6491.	7.3	29

#	Article	IF	CITATIONS
1039	Magnetic Properties of Single Transition-Metal Atom Absorbed Graphdiyne and Graphyne Sheet from DFT+U Calculations. Journal of Physical Chemistry C, 2012, 116, 26313-26321.	1.5	264
1040	Electronic Transport in Graphene. , 2012, , 17-49.		0
1041	Spin-spin and spin-orbit interactions in nanographene fragments: A quantum chemistry approach. Journal of Chemical Physics, 2012, 136, 104702.	1.2	37
1042	Symmetry-dependent transport properties and bipolar spin filtering in zigzag <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>1±</mml:mi></mml:math> -graphyne nanoribbons. Physical Review B, 2012, 86, .	1.1	59
1043	Interaction between single gold atom and the graphene edge: A study via aberration-corrected transmission electron microscopy. Nanoscale, 2012, 4, 2920.	2.8	70
1044	Amide Functionalization of Graphene and Carbon Nanotubes: Coverage- and Pattern-Dependent Electronic and Magnetic Properties. Journal of Physical Chemistry C, 2012, 116, 13722-13730.	1.5	20
1045	Quantum Dots at Room Temperature Carved out from Few-Layer Graphene. Nano Letters, 2012, 12, 6096-6100.	4.5	72
1046	A structural stability diagram of multiple vacancies and defect self-healing in graphene. Nanoscale, 2012, 4, 7489.	2.8	15
1047	Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry, 2012, 22, 7461.	6.7	667
1048	Energy-Gap Opening in a Bi(110) Nanoribbon Induced by Edge Reconstruction. Physical Review Letters, 2012, 109, 246804.	2.9	62
1049	Graphene and Its Derivative-based Biosensing Systems. Chinese Journal of Analytical Chemistry, 2012, 40, 1772-1779.	0.9	13
1050	Graphene-based ferromagnetic superconductors. Applied Physics Letters, 2012, 101, 252602.	1.5	8
1051	Synthesis and characterization of nanocomposites of thermoplastic polyurethane with both graphene and graphene nanoribbon fillers. Polymer, 2012, 53, 4019-4024.	1.8	37
1052	Cutting forces related with lattice orientations of graphene using an atomic force microscopy based nanorobot. Applied Physics Letters, 2012, 101, .	1.5	23
1053	From quantum confinement to quantum Hall effect in graphene nanostructures. Physical Review B, 2012, 85, .	1.1	11
1054	Threeâ€Dimensionally Arranged Cyclic <i>p</i> àêHexaphenylbenzene: Toward a Bottomâ€Up Synthesis of Sizeâ€Defined Carbon Nanotubes. Chemistry - A European Journal, 2012, 18, 16621-16625.	1.7	107
1055	Spontaneous spin polarization and spin pumping effect on edges of graphene antidot lattices. Physica Status Solidi (B): Basic Research, 2012, 249, 2491-2496.	0.7	12
1056	Effects of contact oxidization on the transport properties of Au/ZGNR junctions. Physica Status Solidi - Rapid Research Letters, 2012, 6, 457-459.	1.2	4

#	Article	IF	CITATIONS
1057	Adsorption and dissociation of molecular hydrogen on the edges of graphene nanoribbons. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	15
1058	Spin-polarized transport through heterobilayers of graphene nanoribbons and ruthenium-porphyrin tapes. Chemical Physics, 2012, 405, 148-154.	0.9	3
1059	Spin-polarized transport in graphene nanoribbon superlattices. Chinese Physics B, 2012, 21, 107202.	0.7	9
1060	Quenching of magnetism in hexagonal graphene nanoflakes by non-local electron correlation. Chemical Physics Letters, 2012, 553, 6-10.	1.2	20
1061	Size effect of half-metallic properties of BN/C hybrid nanoribbons. Physica B: Condensed Matter, 2012, 407, 4770-4772.	1.3	11
1062	First-principles study on ferromagnetism in two-dimensional ZnO nanosheet. Chemical Physics Letters, 2012, 548, 60-63.	1.2	20
1063	S doping effect on the properties of double perovskite La2FeMoO6. Applied Physics Letters, 2012, 100, .	1.5	14
1064	Magnetic properties of carbon nanoparticles. IOP Conference Series: Materials Science and Engineering, 2012, 38, 012010.	0.3	4
1065	The properties of BiSb nanoribbons from first-principles calculations. Nanoscale, 2012, 4, 511-517.	2.8	9
1066	Structure dependent electronic and magnetic properties of graphitic GaN–ZnO nanoribbons. Journal of Materials Chemistry, 2012, 22, 7708.	6.7	6
1067	On the microscopic origin of bending of graphene nanoribbons in the presence of a perpendicular electric field. Physical Chemistry Chemical Physics, 2012, 14, 9439.	1.3	9
1068	First-principles study of the triwing graphene nanoribbons: junction-dependent electronic structures and electric field modulations. Physical Chemistry Chemical Physics, 2012, 14, 2040.	1.3	3
1069	Self-Assembly of Cobalt-Phthalocyanine Molecules on Epitaxial Graphene on Ir(111). Journal of Physical Chemistry C, 2012, 116, 20433-20437.	1.5	74
1070	Stability, electronic and magnetic properties of embedded triangular graphene nanoflakes. Physical Chemistry Chemical Physics, 2012, 14, 1253-1261.	1.3	11
1071	Evolution of graphene nanoribbons under low-voltage electron irradiation. Nanoscale, 2012, 4, 4555.	2.8	16
1072	Modelling the role of size, edge structure and terminations on the electronic properties of trigonal graphene nanoflakes. Nanotechnology, 2012, 23, 065707.	1.3	26
1073	Spin-polarized transport in zigzag-edge graphene nanoribbon junctions. Journal of Applied Physics, 2012, 111, .	1.1	21
1074	Half-Metallic Ferromagnetism in Synthetic Co ₉ Se ₈ Nanosheets with Atomic Thickness. Journal of the American Chemical Society, 2012, 134, 11908-11911.	6.6	170

#	Article	IF	CITATIONS
1075	Strain-Tunable Spin Moment in Ni-Doped Graphene. Journal of Physical Chemistry C, 2012, 116, 1174-1178.	1.5	36
1076	Electronics and Optics of Graphene Nanoflakes: Edge Functionalization and Structural Distortions. Journal of Physical Chemistry C, 2012, 116, 17328-17335.	1.5	52
1077	Carrier-mediated long-range ferromagnetism in electron-doped Fe-C <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>4</mml:mn></mml:msub></mml:math> and Fe-N <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>4</mml:mn></mml:msub><td>1.1</td><td>50</td></mml:math>	1.1	50
1078	Successive hydrogenation starting from the edge(s): an effective approach to fine-tune the electronic and magnetic behaviors of SiC nanoribbons. Journal of Materials Chemistry, 2012, 22, 24166.	6.7	32
1079	Orbital symmetry induced conductance switching in a graphene nanoribbon heterojunction with different edge hydrogenations. Applied Physics Letters, 2012, 101, 053101.	1.5	23
1080	Charge-Driven Selective Adsorption of Sodium Dodecyl Sulfate on Graphene Oxide Visualized by Atomic Force Microscopy. Journal of Physical Chemistry C, 2012, 116, 20080-20085.	1.5	25
1081	Half-Metallic Ferromagnetism <i>via</i> the Interface Electronic Reconstruction in LaAlO ₃ /SrMnO ₃ Nanosheet Superlattices. ACS Nano, 2012, 6, 8552-8562.	7.3	30
1082	Kinetically Blocked Stable Heptazethrene and Octazethrene: Closed-Shell or Open-Shell in the Ground State?. Journal of the American Chemical Society, 2012, 134, 14913-14922.	6.6	256
1083	Frustrated Lewis Pair Nanoribbons. Journal of Physical Chemistry C, 2012, 116, 16467-16472.	1.5	4
1084	Random matrices and quantum chaos in weakly disordered graphene nanoflakes. Physical Review B, 2012, 85, .	1.1	31
1085	Manifestation of the shape and edge effects in spin-resolved transport through graphene quantum dots. Physical Review B, 2012, 85, .	1.1	24
1086	Correlated Magnetic States in Extended One-Dimensional Defects in Graphene. Nano Letters, 2012, 12, 5097-5102.	4.5	69
1087	Nano-sized biosensors for medical applications. , 2012, , 65-102.		7
1088	Impact of Antidot Structure on the Multiradical Characters, Aromaticities, and Third-Order Nonlinear Optical Properties of Hexagonal Graphene Nanoflakes. Journal of Physical Chemistry C, 2012, 116, 17787-17795.	1.5	61
1089	Electronic and magnetic properties of boron nitride nanoribbons with topological line defects. RSC Advances, 2012, 2, 6192.	1.7	14
1090	Multitemplates for the Hierarchical Synthesis of Diverse Inorganic Materials. Journal of the American Chemical Society, 2012, 134, 2325-2331.	6.6	68
1091	Universal optical properties of graphane nanoribbons: A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1406-1409.	1.3	21
1092	Ab initio study on the effects of MoO3 molecule on graphene clusters. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1675-1679.	1.3	2

#	ARTICLE	IF	CITATIONS
1093	Electromechanical switch in metallic graphene nanoribbons via twisting. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 2021-2026.	1.3	10
1094	Thermoelectric properties of one-dimensional graphene antidot arrays. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2425-2429.	0.9	48
1095	Electronic transport in the multi-terminal graphene nanodevices. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2555-2561.	0.9	3
1096	Spin-filtered edge states in graphene. Solid State Communications, 2012, 152, 1469-1476.	0.9	13
1097	Intrinsic spin–orbit interaction in carbon nanotubes and curved nanoribbons. Solid State Communications, 2012, 152, 1477-1482.	0.9	7
1098	B, C and N adatoms effects on the transport properties in zigzag graphene nanoribbons. Solid State Communications, 2012, 152, 1635-1640.	0.9	9
1099	Functionalization of edge reconstructed graphene nanoribbons by H and Fe: A density functional study. Solid State Communications, 2012, 152, 1719-1724.	0.9	6
1100	Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. Chemical Society Reviews, 2012, 41, 7857.	18.7	590
1101	Graphene Edge Lithography. Nano Letters, 2012, 12, 4642-4646.	4.5	49
1102	Electronic properties of gated triangular graphene quantum dots: Magnetism, correlations, and geometrical effects. Physical Review B, 2012, 85, .	1.1	97
1103	Chiral graphene nanoribbon inside a carbon nanotube: ab initio study. Nanoscale, 2012, 4, 4522.	2.8	32
1104	Edge state transport through disordered graphene nanoribbons in the quantum Hall regime. Physical Review B, 2012, 86, .	1.1	11
1105	Graphene Conductance Uniformity Mapping. Nano Letters, 2012, 12, 5074-5081.	4.5	152
1106	Electronic Structure of Atomically Precise Graphene Nanoribbons. ACS Nano, 2012, 6, 6930-6935.	7.3	410
1107	Bipolar-unipolar transition in thermospin transport through a graphene-based transistor. Applied Physics Letters, 2012, 101, 083117.	1.5	17
1108	Spin waves in graphene nanoribbon devices. Physical Review B, 2012, 86, .	1.1	11
1109	Half-metallicity in graphene nanoribbons with topological defects at edge. Journal of Chemical Physics, 2012, 137, 094705.	1.2	11
1110	A theoretical study of closed polyacene structures. Physical Chemistry Chemical Physics, 2012, 14, 15666.	1.3	5

#	Article	IF	CITATIONS
1111	Stability, Electronic and Magnetic Properties of In-Plane Defects in Graphene: A First-Principles Study. Journal of Physical Chemistry C, 2012, 116, 8161-8166.	1.5	187
1112	Nanoscale Graphene Oxide (nGO) as Artificial Receptors: Implications for Biomolecular Interactions and Sensing. Journal of the American Chemical Society, 2012, 134, 16725-16733.	6.6	181
1113	Low-Temperature Aluminum Reduction of Graphene Oxide, Electrical Properties, Surface Wettability, and Energy Storage Applications. ACS Nano, 2012, 6, 9068-9078.	7.3	91
1114	Stable Tetrabenzo-Chichibabin's Hydrocarbons: Tunable Ground State and Unusual Transition between Their Closed-Shell and Open-Shell Resonance Forms. Journal of the American Chemical Society, 2012, 134, 14513-14525.	6.6	218
1115	Enhanced Cathodic Electrogenerated Chemiluminescence of Luminol at a Graphene Modified Electrode in Neutral Solution. Journal of the Electrochemical Society, 2012, 159, H692-H696.	1.3	18
1116	Graphene nanoribbon-guided fluid channel: a fast transporter of nanofluids. Nanoscale, 2012, 4, 6279.	2.8	23
1117	Diverse nanowires activated self-scrolling of graphene nanoribbons. Applied Surface Science, 2012, 258, 1964-1970.	3.1	20
1118	Growth of graphene-like thin films at low temperature by dual-frequency capacitively coupled plasma. Applied Surface Science, 2012, 258, 7751-7754.	3.1	5
1119	Band-gap and Slater–Pauling rule in half-metallic Ti2-based Heusler alloys: A first-principles study. Journal of Magnetism and Magnetic Materials, 2012, 324, 3099-3104.	1.0	76
1120	Band gap engineering in armchair-edged graphene nanoribbons by edge dihydrogenation. Computational Materials Science, 2012, 62, 93-98.	1.4	25
1121	Magnetism in graphene induced by hydrogen adsorbates. Chemical Physics Letters, 2012, 541, 70-74.	1.2	27
1122	Coupling of a carbon nanotube and graphene nanoribbon by titanium and vanadium chains: a first-principles study. RSC Advances, 2012, 2, 9958.	1.7	3
1123	Open-shell polycyclic aromatic hydrocarbons. Journal of Materials Chemistry, 2012, 22, 4151-4160.	6.7	157
1124	Graphene: nanoscale processing and recent applications. Nanoscale, 2012, 4, 1824-1839.	2.8	115
1125	Spatial control of defect creation in graphene at the nanoscale. Nature Communications, 2012, 3, 1144.	5.8	305
1126	Graphene: An Emerging Electronic Material. Advanced Materials, 2012, 24, 5782-5825.	11.1	718
1127	Magnetic response in a zigzag carbon nanotube. European Physical Journal B, 2012, 85, 1.	0.6	8
1128	Spin filtering in a ferromagnetic graphene superlattice. European Physical Journal B, 2012, 85, 1.	0.6	19

#	Article	IF	CITATIONS
1129	Self-Assembled Ti Quantum Wire on Zigzag Graphene Nanoribbons with One Edge Saturated. Journal of Physical Chemistry C, 2012, 116, 24824-24828.	1.5	2
1130	Graphene field-effect transistors. Journal Physics D: Applied Physics, 2012, 45, 019501.	1.3	29
1132	Transport through graphene quantum dots. Reports on Progress in Physics, 2012, 75, 126502.	8.1	143
1133	Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 2012, 112, 6156-6214.	23.0	3,531
1135	Enhanced thermoelectric performance of graphene nanoribbons. Applied Physics Letters, 2012, 100, .	1.5	80
1136	Bipolar magnetic semiconductors: a new class of spintronics materials. Nanoscale, 2012, 4, 5680.	2.8	241
1137	Tuning of the Band Structures of Zigzag Graphene Nanoribbons by an Electric Field and Adsorption of Pyridine and BF3: A DFT Study. Journal of Physical Chemistry C, 2012, 116, 20054-20061.	1.5	10
1138	Methane and carbon dioxide adsorption on edge-functionalized graphene: A comparative DFT study. Journal of Chemical Physics, 2012, 137, 054702.	1.2	105
1139	Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons. Scientific Reports, 2012, 2, 983.	1.6	246
1140	HALF-METALLIC SILICENE AND GERMANENE NANORIBBONS: TOWARDS HIGH-PERFORMANCE SPINTRONICS DEVICE. Nano, 2012, 07, 1250037.	0.5	105
1141	Topographic and Spectroscopic Characterization of Electronic Edge States in CVD Grown Graphene Nanoribbons. Nano Letters, 2012, 12, 1928-1933.	4.5	104
1142	Doped GNR p–n Junction as High Performance NDR and Rectifying Device. Journal of Physical Chemistry C, 2012, 116, 18064-18069.	1.5	78
1143	Precise unzipping of flattened carbon nanotubes to regular graphene nanoribbons by acid cutting along the folded edges. Journal of Materials Chemistry, 2012, 22, 16283.	6.7	26
1144	Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. Journal of Materials Chemistry, 2012, 22, 7280.	6.7	250
1145	Transport Characteristics of Multichannel Transistors Made from Densely Aligned Sub-10 nm Half-Pitch Graphene Nanoribbons. ACS Nano, 2012, 6, 9700-9710.	7.3	79
1146	Production and processing of graphene and 2d crystals. Materials Today, 2012, 15, 564-589.	8.3	866
1147	Electronic and Magnetic Properties of Hybrid Graphene Nanoribbons with Zigzag-Armchair Heterojunctions. Journal of Physical Chemistry C, 2012, 116, 208-213.	1.5	30
1148	Enhanced optical dichroism of graphene nanoribbons. Physical Review B, 2012, 86, .	1.1	18

#	Article	IF	Citations
1149	The spin-dependent transport properties of zigzag graphene nanoribbon edge-defect junction. New Carbon Materials, 2012, 27, 181-187.	2.9	3
1150	Transport properties of zigzag graphene nanoribbons with oxygen edge decoration. Organic Electronics, 2012, 13, 2494-2501.	1.4	15
1151	Rectifying regularity for a combined nanostructure of two trigonal graphenes with different edge modifications. Organic Electronics, 2012, 13, 2257-2263.	1.4	23
1152	Structural, magnetic, electronic and optical properties of iron cluster (Fe6) decorated boron nitride sheet. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 46, 182-188.	1.3	26
1153	Strain-tunable band parameters of ZnO monolayer in graphene-like honeycomb structure. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3287-3289.	0.9	29
1154	Intrinsic and extrinsic strain induced structural change of zigzag graphene nanoribbon. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 377, 118-123.	0.9	1
1155	Electronic and magnetic properties of chevron-type graphene nanoribbon edge-terminated by oxygen atoms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 377, 112-117.	0.9	6
1156	Electronic properties of a dual-gated GNR-FET under uniaxial tensile strain. Microelectronics Reliability, 2012, 52, 2579-2584.	0.9	21
1157	Infrared imaging system using nanocarbon materials. , 2012, , .		0
1158	Using carbon chains to mediate magnetic coupling in zigzag graphene nanoribbons. Applied Physics Letters, 2012, 100, 173106.	1.5	17
1159	The modification of central B/N atom chain on electron transport of graphene nanoribbons. Journal of Applied Physics, 2012, 112, 113713.	1.1	1
1160	Highly tunable spin-dependent electron transport through carbon atomic chains connecting two zigzag graphene nanoribbons. Journal of Chemical Physics, 2012, 137, 104107.	1.2	19
1161	Nanographene production from platelet carbon nanofiber by supercritical fluid exfoliation. Applied Physics Letters, 2012, 100, 233110.	1.5	16
1162	Quasiparticle band gaps of boron nitride nanoribbons. Physical Review B, 2012, 85, .	1.1	11
1163	Electronic, magnetic and transport properties of graphene ribbons terminated by nanotubes. New Journal of Physics, 2012, 14, 123012.	1.2	13
1164	Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron–Hole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response. Journal of the American Chemical Society, 2012, 134, 4393-4397.	6.6	565
1165	Modeling of graphene nanoribbon devices. Nanoscale, 2012, 4, 5538.	2.8	53
1166	External Electric Field Modulation of Structural Configurations and Electronic Properties of Gold Dimers on Graphene. Journal of Physical Chemistry C, 2012, 116, 7393-7398.	1.5	11

#	Article	IF	CITATIONS
1167	Stereo Boron Nitride Nanoribbons with Junction-Dependent Electronic Structures from First-Principles. Journal of Physical Chemistry C, 2012, 116, 5995-6003.	1.5	15
1168	Spin-polarized transport in a normal/ferromagnetic/normal zigzag graphene nanoribbon junction. Chinese Physics B, 2012, 21, 017203.	0.7	12
1169	Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chemical Society Reviews, 2012, 41, 97-114.	18.7	487
1170	Quantum mechanical properties of graphene nano-flakes and quantum dots. Nanoscale, 2012, 4, 6761.	2.8	34
1171	Geometric influence on Ruderman-Kittel-Kasuya-Yosida interactions in zigzag carbon nanotubes. Journal of Chemical Physics, 2012, 136, 154504.	1.2	6
1172	Spin polarization and magnetoresistance through a ferromagnetic barrier in bilayer graphene. Journal of Physics Condensed Matter, 2012, 24, 045303.	0.7	9
1173	Intraribbon Heterojunction Formation in Ultranarrow Graphene Nanoribbons. ACS Nano, 2012, 6, 2020-2025.	7.3	169
1174	Electronic structure and transport properties of sulfur-passivated graphene nanoribbons. Journal of Applied Physics, 2012, 112, .	1.1	13
1175	Transport properties of hybrid graphene/graphane nanoribbons. Applied Physics Letters, 2012, 100, 103109.	1.5	10
1176	Structural and electronic properties of graphitic nanowiggles. Physical Review B, 2012, 85, .	1.1	24
1177	Pressure induced insulator/half-metal/metal transition in a strongly correlated <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -electron system. Physical Review B, 2012, 85, .	1.1	10
1178	Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study. Journal of Physics Condensed Matter, 2012, 24, 455302.	0.7	33
1179	Polyaromatic Ribbons from Oligo-Alkynes via Selective Radical Cascade: Stitching Aromatic Rings with Polyacetylene Bridges. Journal of the American Chemical Society, 2012, 134, 9609-9614.	6.6	72
1180	Spin-dependent transport induced by magnetization in zigzag graphene nanoribbons coupled to one-dimensional leads. Chinese Physics B, 2012, 21, 017305.	0.7	1
1181	Theory of Magnetism in Graphene. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, 2012, 2, 71-103.	0.6	6
1182	How does folding modulate thermal conductivity of graphene?. Applied Physics Letters, 2012, 100, 093107.	1.5	82
1183	Quantum Transport in Graphene Nanoribbons with Realistic Edges. Journal of Physical Chemistry C, 2012, 116, 18382-18387.	1.5	14
1184	Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition and Remarkable Large Magnetism. Journal of Physical Chemistry C, 2012, 116, 5531-5537.	1.5	22

#	Article	IF	CITATIONS
1185	Suppression of edge magnetism in a titanium-embedded zigzag graphene nanoribbon. Journal of Applied Physics, 2012, 111, 033707.	1.1	11
1186	Perpendicular magnetic anisotropy of cobalt films intercalated under graphene. Applied Physics Letters, 2012, 101, .	1.5	82
1187	Facile bottom-up synthesis of graphene nanofragments and nanoribbons by thermal polymerization of pentacenes. Nanoscale, 2012, 4, 6553.	2.8	14
1188	Interface Formation in Monolayer Graphene-Boron Nitride Heterostructures. Nano Letters, 2012, 12, 4869-4874.	4.5	256
1189	Electronic structures of zigzag SiC nanoribbons with asymmetric hydrogen-terminations. Applied Physics Letters, 2012, 101, 013102.	1.5	42
1190	Towards a rigorous proof of magnetism on the edges of graphene nanoribbons. Physical Review B, 2012, 86, .	1.1	30
1191	Production of Nitrogen-Doped Graphene by Low-Energy Nitrogen Implantation. Journal of Physical Chemistry C, 2012, 116, 5062-5066.	1.5	96
1192	Theoretical investigation of the electronic structures and carrier transport of hybrid graphene and boron nitride nanostructure. AIP Advances, 2012, 2, .	0.6	11
1193	ELECTRONIC, MAGNETIC, AND MECHANICAL PROPERTIES OF LINE-DEFECT EMBEDDED GRAPHENE NANORIBBONS: A FIRST-PRINCIPLES STUDY. Nano LIFE, 2012, 02, 1240003.	0.6	4
1194	Symmetry of atomistic structure for armchair-edge graphene nanoribbons under uniaxial strain. Applied Physics Letters, 2012, 100, 153112.	1.5	14
1195	Electronic transport properties on transition-metal terminated zigzag graphene nanoribbons. Journal of Applied Physics, 2012, 111, .	1.1	34
1196	Native defects in hybrid C/BN nanostructures by density functional theory calculations. Physical Review B, 2012, 85, .	1.1	40
1198	Critical analysis of vacancy-induced magnetism in monolayer and bilayer graphene. Physical Review B, 2012, 85, .	1.1	105
1199	Room-temperature Magnetic Ordering in Functionalized Graphene. Scientific Reports, 2012, 2, 624.	1.6	71
1200	First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. Journal of Applied Physics, 2012, 111, .	1.1	58
1201	Stability of Graphene Edges under Electron Beam: Equilibrium Energetics <i>versus</i> Dynamic Effects. ACS Nano, 2012, 6, 671-676.	7.3	120
1202	A bipolar spin-filtering effect in graphene zigzag nanoribbons with spin–orbit coupling. Nanotechnology, 2012, 23, 095201.	1.3	20
1203	Novel Nanocarbons for Adsorption. , 2012, , 3-34.		18

#	Article	IF	Citations
1204	Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nature Communications, 2012, 3, 646.	5.8	149
1205	Lateral in-plane coupling between graphene nanoribbons: A density functional study. Journal of Applied Physics, 2012, 111, 043714.	1.1	2
1206	Electric-field-induced spin depolarization in graphene quantum dots. Physical Review B, 2012, 86, .	1.1	28
1207	Large area tunable arrays of graphene nanodots fabricated using diblock copolymer micelles. Nanotechnology, 2012, 23, 125301.	1.3	23
1208	Theoretical investigation of halfâ€metallicity in Co/Ni substituted AlN. International Journal of Quantum Chemistry, 2012, 112, 882-888.	1.0	15
1209	Boron and nitrogen substitutional impurities inducing magnetic and halfâ€metallic behavior in zigzag silicon carbon nanoribbons. Physica Status Solidi (B): Basic Research, 2012, 249, 91-98.	0.7	22
1210	Role of nitrogen distribution in asymmetric Stone–Wales defects on electronic transport of graphene nanoribbons. Physica Status Solidi (B): Basic Research, 2012, 249, 128-133.	0.7	4
1211	Magnetic properties in semifluorinated GaN sheet from first principles calculations. Physica Status Solidi (B): Basic Research, 2012, 249, 1465-1469.	0.7	10
1212	Effects of boron–nitrogen pair on the electronic properties of zigzag graphene nanoribbon. Physica Status Solidi (B): Basic Research, 2012, 249, 1555-1558.	0.7	5
1213	Nanoscale and edge effect on electronic properties of graphene. Solid State Communications, 2012, 152, 1420-1430.	0.9	63
1214	Redox-switchable devices based on functionalized graphene nanoribbons. Nanoscale, 2012, 4, 1350.	2.8	12
1215	Mechanically tunable magnetism on graphene nanoribbon adsorbed SiO2 surface. Journal of Applied Physics, 2012, 111, 074317.	1.1	5
1216	Interplay between sublattice and spin symmetry breaking in graphene. Physical Review B, 2012, 85, .	1.1	35
1217	Orbital magnetic susceptibility of finite-sized graphene. Physical Review B, 2012, 85, .	1.1	18
1218	First-Principles Prediction of Metal-Free Magnetism and Intrinsic Half-Metallicity in Graphitic Carbon Nitride. Physical Review Letters, 2012, 108, 197207.	2.9	272
1219	Patterned Partially Hydrogenated Graphene (C ₄ H) and Its One-Dimensional Analogues: A Computational Study. Journal of Physical Chemistry C, 2012, 116, 4526-4534.	1.5	38
1220	Enhanced Carrier Transport along Edges of Graphene Devices. Nano Letters, 2012, 12, 1839-1844.	4.5	33
1221	Transmission of electron through monolayer graphene laser barrier. Applied Physics Letters, 2012, 100,	1.5	37

#	Article	IF	CITATIONS
1222	Electron-Electron Interactions in Graphene: Current Status and Perspectives. Reviews of Modern Physics, 2012, 84, 1067-1125.	16.4	999
1223	Reversible, opto-mechanically induced spin-switching in a nanoribbon-spiropyran hybrid material. Nanoscale, 2012, 4, 1321.	2.8	42
1224	Energy gaps in graphene nanomeshes. Physical Review B, 2012, 85, .	1.1	72
1225	Graphene-Based Normal/Ferromagnetic/Normal Junction as a Polarizer. International Journal of Theoretical Physics, 2012, 51, 1989-1996.	0.5	4
1226	Magnetotransport through graphene nanoribbons at high magnetic fields. Physical Review B, 2012, 85,	1.1	14
1227	Magnetism in nanoscale graphite flakes as seen via electron spin resonance. Physical Review B, 2012, 85,	1.1	13
1228	Band energy effect on carrier velocity limit in graphene nanoribbon. Journal of Experimental Nanoscience, 2012, 7, 62-73.	1.3	5
1229	Tunable Magnetism in a Nonmetal-Substituted ZnO Monolayer: A First-Principles Study. Journal of Physical Chemistry C, 2012, 116, 11336-11342.	1.5	180
1230	The use of a Ga ⁺ focused ion beam to modify graphene for device applications. Nanotechnology, 2012, 23, 255305.	1.3	46
1231	Binary and Ternary Atomic Layers Built from Carbon, Boron, and Nitrogen. Advanced Materials, 2012, 24, 4878-4895.	11.1	219
1233	From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angewandte Chemie - International Edition, 2012, 51, 7640-7654.	7.2	725
1234	Covalent Functionalization of Strained Graphene. ChemPhysChem, 2012, 13, 1463-1469.	1.0	38
1235	Engineering the Atomic Structure of Carbon Nanotubes by a Focused Electron Beam: New Morphologies at the Subâ€Nanometer Scale. ChemPhysChem, 2012, 13, 2596-2600.	1.0	19
1236	van der Waals interaction in magnetic bilayer graphene nanoribbons. Physical Review B, 2012, 85, .	1.1	41
1237	Lithium Adsorption on Graphene: From Isolated Adatoms to Metallic Sheets. Journal of Chemical Theory and Computation, 2012, 8, 1064-1071.	2.3	79
1238	Modeling of Quasi-One-Dimensional Carbon Nanostructures with Density Functional Theory. , 2012, , 901-938.		2
1239	Modeling of Nanostructures. , 2012, , 995-1041.		0
1240	Excitonic properties of graphene-based materials. Nanoscale, 2012, 4, 1044-1050.	2.8	14

#	Article	IF	CITATIONS
1241	Graphane/Fluorographene Bilayer: Considerable C–H···F–C Hydrogen Bonding and Effective Band Structure Engineering. Journal of the American Chemical Society, 2012, 134, 11269-11275.	6.6	105
1242	Graphene Nanoribbons as Low Band Gap Donor Materials for Organic Photovoltaics: Quantum Chemical Aided Design. ACS Nano, 2012, 6, 5539-5548.	7.3	99
1243	Carbon sp chains in graphene nanoholes. Journal of Physics Condensed Matter, 2012, 24, 104019.	0.7	15
1244	Ferromagnetism in Graphene Nanoribbons: Split versus Oxidative Unzipped Ribbons. Nano Letters, 2012, 12, 1210-1217.	4.5	92
1245	Giant magnetoresistance in silicene nanoribbons. Nanoscale, 2012, 4, 3111.	2.8	216
1246	Electric Field Effects on Armchair MoS ₂ Nanoribbons. ACS Nano, 2012, 6, 4823-4834.	7.3	187
1247	Clustering and magnetic anisotropy of Fe adatoms on graphene. Physical Review B, 2012, 85, .	1.1	29
1248	Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons. International Journal of Thermophysics, 2012, 33, 986-991.	1.0	16
1249	A theoretical quest for graphene nanoribbons: effects of nitrogen substitution on the ground state alteration. Monatshefte FA½r Chemie, 2012, 143, 551-556.	0.9	0
1250	The effect of downstream plasma treatments on graphene surfaces. Carbon, 2012, 50, 395-403.	5.4	95
1251	Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection. Carbon, 2012, 50, 2147-2154.	5.4	197
1252	A single particle Hamiltonian for electro-magnetic properties of graphene nanoribbons. Carbon, 2012, 50, 3454-3458.	5.4	3
1253	Adsorption of epoxy and hydroxyl groups on zigzag graphene nanoribbons: Insights from density functional calculations. Chemical Physics, 2012, 392, 33-45.	0.9	23
1254	Tunable band gap and magnetism in C2-(BN) sheets and ribbons. Chemical Physics Letters, 2012, 523, 98-103.	1.2	18
1255	Structural, electronic and magnetic properties of single transition-metal adsorbed BN sheet: A density functional study. Chemical Physics Letters, 2012, 532, 40-46.	1.2	42
1256	Electronic spin transitions in finite-size graphene. Chemical Physics Letters, 2012, 535, 75-79.	1.2	12
1257	Zigzag graphene nanoribbons: Flexible and robust transparent conductors. Solid State Sciences, 2012, 14, 711-714.	1.5	6
1258	Electronic properties and conductance suppression of defected and doped zigzag graphene nanoribbons. Solid State Communications, 2012, 152, 45-49.	0.9	13

#	Article	IF	CITATIONS
1259	Effects of heteroatom (boron or nitrogen) substitutional doping on the electronic properties of graphene nanoribbons. Solid State Communications, 2012, 152, 64-67.	0.9	17
1260	Theoretical search for half-metallic material: Y MnS3. Solid State Communications, 2012, 152, 288-291.	0.9	3
1261	A simple capacitor model and first-principles study of carbon-doped zigzag ZnO nanoribbons. Solid State Communications, 2012, 152, 534-539.	0.9	7
1262	Ab initio calculations of optical properties of B2C graphene sheet. Solid State Communications, 2012, 152, 1012-1017.	0.9	46
1263	The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surface Science Reports, 2012, 67, 83-115.	3.8	746
1264	Metal-semiconductor transition of graphene nanoribbons with different addends. Physica B: Condensed Matter, 2012, 407, 571-575.	1.3	3
1265	Electronic structures of zigzag AlN, GaN nanoribbons and AlxGa1â^'xN nanoribbon heterojunctions: First-principles study. Physica B: Condensed Matter, 2012, 407, 515-518.	1.3	16
1266	Thermoelectric properties of hexagonal graphene quantum dots. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1154-1158.	0.9	16
1267	Rectification effect about vacuum separating carbon nanotube bundle predicted by first-principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1845-1848.	0.9	4
1268	Effect of an out-of-plane cross connection on the electronic transport of zigzag graphene nanoribbon. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2010-2014.	0.9	0
1269	Spin transport and relaxation in graphene. Journal of Magnetism and Magnetic Materials, 2012, 324, 369-381.	1.0	128
1270	Graphene Nanoribbon Tunneling Field-Effect Transistors With a Semiconducting and a Semimetallic Heterojunction Channel. IEEE Transactions on Electron Devices, 2012, 59, 1454-1461.	1.6	7
1271	Electronic transport for impurity-doped armchair-edge graphene nanoribbons. European Physical Journal B, 2012, 85, 1.	0.6	7
1272	The role of size in spin properties of zigzag graphene nanoribbon. European Physical Journal B, 2012, 85, 1.	0.6	1
1273	Halfâ€Metallic Carbon Nanotubes. Advanced Materials, 2012, 24, 2019-2023.	11.1	32
1274	Edge stability of boron nitride nanoribbons and its application in designing hybrid BNC structures. Nano Research, 2012, 5, 62-72.	5.8	62
1275	Studies of graphene-based nanoelectromechanical switches. Nano Research, 2012, 5, 82-87.	5.8	54
1276	Recent Progress and Challenges in Graphene Nanoribbon Synthesis. ChemPhysChem, 2013, 14, 47-54.	1.0	203

#	Article	IF	CITATIONS
1277	Antidot effects on the openâ€shell characters and second hyperpolarizabilities of rectangular graphene nanoflakes. International Journal of Quantum Chemistry, 2013, 113, 605-611.	1.0	3
1278	Electron-Spin-Based Phenomena Arising from Pore Edges of Graphene Nanomeshes. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1037-1043.	0.8	5
1279	Coupled spin and pseudomagnetic field in graphene nanoribbons. Physical Review B, 2013, 88, .	1.1	17
1284	EDGE MAGNETISM AND QUANTUM SPIN HALL EFFECT IN ZIGZAG GRAPHENE NANORIBBON. International Journal of Modern Physics B, 2013, 27, 1362011.	1.0	2
1285	SAM-like arrangement of thiolated graphene nanoribbons: decoupling the edge state from the metal substrate. Physical Chemistry Chemical Physics, 2013, 15, 3233.	1.3	2
1286	Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study. Journal of Physics Condensed Matter, 2013, 25, 275301.	0.7	1
1287	Electronic structure of twisted graphene flakes. Physical Review B, 2013, 87, .	1.1	54
1288	Spin-Controlled Superconductivity and Tunable Triplet Correlations in Graphene Nanostructures. Physical Review Letters, 2013, 111, 046602.	2.9	46
1289	Absence and presence of Dirac electrons in silicene on substrates. Physical Review B, 2013, 87, .	1.1	195
1290	Absorption and diffusion of beryllium in graphite, beryllium carbide formation investigated by density functional theory. Journal of Applied Physics, 2013, 113, 213514.	1.1	16
1291	Density of states of magnetic substitutional impurity-doped graphene in the paramagnetic and ferromagnetic phases. Journal of Magnetism and Magnetic Materials, 2013, 342, 54-60.	1.0	8
1292	Spin valve effect of NiFe/graphene/NiFe junctions. Nano Research, 2013, 6, 373-380.	5.8	79
1293	Effect of gap fluctuations on conductance of monolayer and bilayer graphene superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 54, 214-219.	1.3	2
1294	Atomic structure and electronic properties of folded graphene nanoribbons: A first-principles study. Journal of Applied Physics, 2013, 113, .	1.1	17
1295	Unexpected magnetism in nanomaterials. Journal of Magnetism and Magnetic Materials, 2013, 346, 58-73.	1.0	98
1296	Vertical-strain-induced spin-splitting in zigzag graphene nanoribbons. Nanoscale, 2013, 5, 9118.	2.8	8
1297	Unusual Magnetic Properties of Functionalized Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2013, 4, 2482-2488.	2.1	22
1298	Edge reconstruction limited electron transport of zigzag graphene nanoribbon. European Physical Journal B, 2013, 86, 1.	0.6	7

#	Article	IF	CITATIONS
1299	Spin filtering in graphene nanoribbons with Mn-doped boron nitride inclusions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 1347-1351.	1.7	21
1300	Flexible Supercapacitors – Development of Bendable Carbon Architectures. ACS Symposium Series, 2013, , 101-141.	0.5	5
1301	Topological phase transition in a graphene system with a coexistence of Coulomb interaction, staggered potential, and intrinsic spin-orbit coupling. Physical Review B, 2013, 88, .	1.1	14
1302	Multi-functional nano-electronics constructed using boron phosphide and silicon carbide nanoribbons. NPG Asia Materials, 2013, 5, e56-e56.	3.8	52
1303	Investigating the edge state of graphene nanoribbons by a chemical approach: Synthesis and magnetic properties of zigzag-edged nanographene molecules. Solid State Communications, 2013, 175-176, 62-70.	0.9	18
1304	Numerical analysis of shape transition in graphene nanoribbons. Computational Materials Science, 2013, 75, 69-72.	1.4	5
1305	Diradical character dependences of the first and second hyperpolarizabilities of asymmetric open-shell singlet systems. Journal of Chemical Physics, 2013, 138, 244306.	1.2	51
1306	Ultrathin Nanosheets of Halfâ€Metallic Monoclinic Vanadium Dioxide with a Thermally Induced Phase Transition. Angewandte Chemie - International Edition, 2013, 52, 7554-7558.	7.2	52
1307	Spin-Dependent Electron Transport in an Armchair Graphene Nanoribbon Subject to Charge and Spin Biases. Chinese Physics Letters, 2013, 30, 017201.	1.3	4
1308	Novel electronic and magnetic properties in AlN nanoribbons: First-principles prediction. Europhysics Letters, 2013, 103, 37009.	0.7	4
1309	Edge-states in graphene nanoribbons: a combined spectroscopy and transport study. Journal of Physics Condensed Matter, 2013, 25, 392001.	0.7	25
1310	Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?. Physical Chemistry Chemical Physics, 2013, 15, 16819.	1.3	247
1312	Lithium-Mediated Benzene Adsorption on Graphene and Graphene Nanoribbons. Journal of Physical Chemistry C, 0, , 130916143804002.	1.5	5
1315	The investigation on the electronic structures of hybrid GNR-ZnO. Applied Physics A: Materials Science and Processing, 2013, 112, 357-362.	1.1	5
1316	Carbon-based spintronics. Science China: Physics, Mechanics and Astronomy, 2013, 56, 207-221.	2.0	20
1317	Regioselective Oxidation of Strained Graphene for Controllable Synthesis of Nanoribbons. Journal of Physical Chemistry C, 2013, 117, 19160-19166.	1.5	6
1318	Magnetism in quantum dots on graphene-graphane nanoribbons. Doklady Physics, 2013, 58, 272-276.	0.2	1
1319	Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine. Physical Chemistry Chemical Physics, 2013, 15, 5067.	1.3	70

#	Article	IF	CITATIONS
1320	Magnetic properties of 3d transition metals and nitrogen functionalized armchair graphene nanoribbon. RSC Advances, 2013, 3, 21110.	1.7	10
1321	Sensitivity of Graphene Edge States to Surface Adatom Interactions. Nano Letters, 2013, 13, 4820-4826.	4.5	28
1322	Effects of Geometry and Symmetry on Electron Transport through Graphene–Carbon-Chain Junctions. Journal of Physical Chemistry C, 2013, 117, 18845-18850.	1.5	21
1323	Tunable electronic and magnetic properties of WS2 nanoribbons. Journal of Applied Physics, 2013, 114, .	1.1	48
1324	Electrical Spin Switch in Hydrogenated Multilayer Graphene. Journal of Physical Chemistry C, 2013, 117, 6420-6425.	1.5	12
1325	Optical Absorption of Graphene Nanoribbon in Transverse and Modulated Longitudinal Electric Field. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 183-197.	1.0	5
1326	Molecular hydrogen uptake by zigzag graphene nanoribbons doped with early 3d transition-metal atoms. International Journal of Hydrogen Energy, 2013, 38, 8872-8880.	3.8	22
1327	Half-metallicity of graphene nanoribbons and related systems: a new quantum mechanical El Dorado for nanotechnologies … or a hype for materials scientists?. Journal of Molecular Modeling, 2013, 19, 2699-2714.	0.8	10
1328	Spatially Separated Spin Carriers in Spin-Semiconducting Graphene Nanoribbons. Physical Review Letters, 2013, 111, 096803.	2.9	119
1329	Enhanced metallicity and spin polarization in zigzag graphene nanoribbons with Fe impurities. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 54, 103-108.	1.3	20
1330	Mesoscopic conductance fluctuations in multi-layer graphene. Applied Physics Letters, 2013, 103, 043117.	1.5	12
1331	High-capacity hydrogen storage of Na-decorated graphene with boron substitution: First-principles calculations. Chemical Physics Letters, 2013, 555, 212-216.	1.2	41
1332	Thermoelectric effects in silicene nanoribbons. Physical Review B, 2013, 88, .	1.1	120
1333	Interlayer magnetoconductance of misoriented bilayer graphene ribbons. Journal of Applied Physics, 2013, 114, .	1.1	5
1334	Pure carbon-based Schottky diode, an implication of stretched carbon nanowire. Journal of Applied Physics, 2013, 114, .	1.1	6
1335	Simulation of hydrogen storage in porous carbons. Journal of Materials Research, 2013, 28, 589-604.	1.2	31
1336	Rectifying performance in zigzag graphene nanoribbon heterojunctions with different edge hydrogenations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1905-1910.	0.9	21
1337	Periodic graphene nanobuds: A novel Li-storage material. Materials Chemistry and Physics, 2013, 142, 44-51.	2.0	23

#	Article	IF	CITATIONS
1338	Tunable band gap and hydrogen adsorption property of a two-dimensional porous polymer by nitrogen substitution. Physical Chemistry Chemical Physics, 2013, 15, 666-670.	1.3	20
1339	Spin Transport of Polyacetylene Chains Bridging Zigzag Graphene Nanoribbon Electrodes: A Nonequilibrium Treatment of Structural Control and Spin Filtering. Journal of Physical Chemistry C, 2013, 117, 21178-21185.	1.5	16
1340	First principles investigation on the stability, magnetic and electronic properties of the fully and partially hydrogenated BN nanoribbons in different conformers. Journal of Materials Chemistry C, 2013, 1, 6890.	2.7	17
1341	Modulation of rectification and negative differential resistance in graphene nanoribbon by nitrogen doping. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1134-1138.	0.9	46
1342	Graphene nanoribbon intercalated with hexagonal boron nitride: Electronic transport properties from ab initio calculations. Solid State Communications, 2013, 173, 24-29.	0.9	10
1343	Bipolar magnetic materials for electrical manipulation of spin-polarization orientation. Physical Chemistry Chemical Physics, 2013, 15, 15793.	1.3	78
1344	Fermi surface nesting and magnetic quantum phase transition in graphenelike BC <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> : A first-principles study. Physical Review B, 2013, 88, .	1.1	15
1345	Manipulation of resonant tunneling by substrate-induced inhomogeneous energy band gaps in graphene with square superlattice potentials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2895-2900.	0.9	8
1346	Atomically perfect torn graphene edges and their reversible reconstruction. Nature Communications, 2013, 4, 2723.	5.8	110
1347	Comment on "Planar tetra-coordinate carbon resulting in enhanced third-order nonlinear optical response of metal-terminated graphene nanoribbons―by GL. Chai, CS. Lin and WD. Cheng, J. Mater. Chem., 2012, 22, 11303. Journal of Materials Chemistry C, 2013, 1, 3035.	2.7	10
1348	Doping Effect on Magnetism and Transport Property of Heterojunction between Carbon and Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2013, 117, 24115-24120.	1.5	3
1349	Intrinsic Magnetism of Grain Boundaries in Two-Dimensional Metal Dichalcogenides. ACS Nano, 2013, 7, 10475-10481.	7. 3	232
1350	Chemically Engineered Graphene-Based 2D Organic Molecular Magnet. ACS Nano, 2013, 7, 10011-10022.	7.3	47
1351	Band Gap Engineering via Edge-Functionalization of Graphene Nanoribbons. Journal of Physical Chemistry C, 2013, 117, 26790-26796.	1.5	78
1352	Energy splitting and optical activation of triplet excitons in zigzag-edged graphene nanoribbons. Physical Review B, 2013, 88, .	1.1	14
1353	In situ high-resolution X-ray photoelectron spectroscopy – Fundamental insights in surface reactions. Surface Science Reports, 2013, 68, 446-487.	3.8	90
1354	Lattice-Oriented Catalytic Growth of Graphene Nanoribbons on Heteroepitaxial Nickel Films. ACS Nano, 2013, 7, 10825-10833.	7.3	27
1355	Structural Stability, Electronic, Magnetic, and Optical Properties of Rectangular Graphene and Boron Nitride Quantum Dots: Effects of Size, Substitution, and Electric Field. Journal of Physical Chemistry C, 2013, 117, 23295-23304.	1.5	50

#	Article	IF	Citations
1356	Electronic states in finite graphene nanoribbons: Effect of charging and defects. Physical Review B, 2013, 88, .	1.1	49
1357	Spin conductance of diffusive graphene nanoribbons: A probe of zigzag edge magnetization. Physical Review B, 2013, 88, .	1.1	11
1358	Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20386-20391.	3.3	213
1359	A New Paradigm to Half-Metallicity in Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2013, 4, 951-955.	2.1	29
1360	Vanadium sulfide nanoribbons: Electronic and magnetic properties. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 3154-3157.	0.9	13
1361	Density functional study of structural defects in h-BNC2sheets. Journal of Physics Condensed Matter, 2013, 25, 025304.	0.7	4
1362	Field-effect transistors based on two-dimensional materials for logic applications. Chinese Physics B, 2013, 22, 098505.	0.7	32
1363	Weak localization and Raman study of anisotropically etched graphene antidots. Applied Physics Letters, 2013, 103, 143111.	1.5	29
1364	Hydrogenated bilayer wurtzite SiC nanofilms: a two-dimensional bipolar magnetic semiconductor material. Physical Chemistry Chemical Physics, 2013, 15, 497-503.	1.3	55
1365	Carrier-Mediated Magnetoelectric Coupling in Functionalized Graphene. ACS Nano, 2013, 7, 9927-9932.	7.3	10
1366	Electron-electron interactions and topology in the electronic properties of gated graphene nanoribbon rings in MÃ \P bius and cylindrical configurations. Physical Review B, 2013, 87, .	1.1	26
1367	Orbital magnetism of graphene nanostructures. Solid State Communications, 2013, 175-176, 51-61.	0.9	12
1368	Magnetic Moment and Anisotropy of Individual Co Atoms on Graphene. Physical Review Letters, 2013, 111, 236801.	2.9	116
1369	Interface-Induced Room-Temperature Ferromagnetism in Hydrogenated Epitaxial Graphene. Physical Review Letters, 2013, 111, 166101.	2.9	84
1370	Electronic and optical properties of AlN nanosheet: An ab initio study. Optics Communications, 2013, 309, 153-157.	1.0	46
1371	Half-metallic ferromagnetism in the full-Heusler compounds KCaX2 (X=C, N, and O). Computational Materials Science, 2013, 69, 229-233.	1.4	51
1372	Engineering quantum spin Hall effect in graphene nanoribbons via edge functionalization. Physical Review B, 2013, 87, .	1.1	16
1373	Spin polarization effects of zigzag-edge graphene electrodes on the rectifying performance of the D-Ïf-A molecular diode. Organic Electronics, 2013, 14, 958-965.	1.4	15

#	Article	IF	CITATIONS
1374	Edge-adsorption of potassium adatoms on graphene nanoribbon: A first principle study. Applied Surface Science, 2013, 280, 698-704.	3.1	19
1375	Monitoring of magnetism in passivated/terminated zigzag-edged triangular-shaped nanodisks. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	1
1376	Graphene nanoribbon in sharply localized magnetic fields. European Physical Journal B, 2013, 86, 1.	0.6	1
1377	Band-gap modulations of armchair silicene nanoribbons by transverse electric fields. European Physical Journal B, 2013, 86, 1.	0.6	21
1378	Tuning the electronic and magnetic properties of triangular boron nitride quantum dots via carbon doping. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 49, 52-60.	1.3	17
1379	ON THE ROBUSTNESS OF MAGNETISM IN ZIGZAG GRAPHENE NANORIBBONS. Modern Physics Letters B, 2013, 27, 1350111.	1.0	O
1380	Large-scale and Rapid Synthesis of Disk-Shaped and Nano-Sized Graphene. Scientific Reports, 2013, 3, 2144.	1.6	17
1381	Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. Nanoscale, 2013, 5, 9264.	2.8	163
1382	A new exploration on the substantial improvement of rectifying behaviors for a donor–acceptor molecular diode by graphene electrodes. Carbon, 2013, 61, 284-293.	5 . 4	34
1383	Formation and development of dislocation in graphene. Applied Physics Letters, 2013, 102, .	1.5	31
1384	Effect of Stone-Thrower-Wales defect on structural stability of graphene at zero and finite temperatures. Europhysics Letters, 2013, 103, 46001.	0.7	31
1385	Nonmagnetic impurity chemistry substitution effects in zigzag silicon carbide nanoribbons. Physica Status Solidi (B): Basic Research, 2013, 250, 1265-1277.	0.7	19
1386	Structural and electronic properties of hybrid graphene and boron nitride nanostructures on Cu. Physical Review B, 2013, 88, .	1.1	9
1387	Designing π-conjugated polymers for organic electronics. Progress in Polymer Science, 2013, 38, 1832-1908.	11.8	698
1388	Tunable band gap of AlN, GaN nanoribbons and AlN/GaN nanoribbon heterojunctions: A first-principle study. Solid State Communications, 2013, 172, 24-28.	0.9	26
1389	Ferromagnetism of V-doped ZnO nanowires. Chinese Physics B, 2013, 22, 027503.	0.7	4
1390	Graphene-based semiconductor nanostructures. Physics-Uspekhi, 2013, 56, 105-122.	0.8	61
1391	Electron-beam engineering of single-walled carbon nanotubes from bilayer graphene. Carbon, 2013, 65, 80-86.	5.4	26

#	Article	IF	CITATIONS
1392	Indirect exchange of magnetic impurities in zigzag graphene ribbon. Journal of Applied Physics, 2013, 113, .	1.1	6
1393	Giant Seebeck coefficient of the graphene/h-BN superlattices. Applied Physics Letters, 2013, 103, .	1.5	61
1394	Impact of carbon material on RF MEMS switch., 2013,,.		2
1395	Zero-energy states of graphene triangular quantum dots in a magnetic field. Physical Review B, 2013, 88, .	1.1	33
1396	Possible half-metallic phase in bilayer graphene: Calculations based on mean-field theory applied to a two-layer Hubbard model. Physical Review B, 2013, 88, .	1.1	13
1397	Benzenoid Polycyclic Hydrocarbons with an Open–Shell Biradical Ground State. Chemistry - an Asian Journal, 2013, 8, 2894-2904.	1.7	100
1398	The donor/acceptor edge-modification: an effective strategy to modulate the electronic and magnetic behaviors of zigzag silicon carbon nanoribbons. Physical Chemistry Chemical Physics, 2013, 15, 18039.	1.3	23
1399	Tuning the electronic and optical properties of graphene and boron-nitride quantum dots by molecular charge-transfer interactions: a theoretical study. Physical Chemistry Chemical Physics, 2013, 15, 13881.	1.3	36
1401	Magnetoelectric effect in functionalized few-layer graphene. Physical Review B, 2013, 87, .	1.1	8
1402	Applications of Graphene. , 2013, , 333-437.		9
1403	Properties of Graphene., 2013,, 61-127.		9
1404	Synthesis and Characterization of Quarteranthene: Elucidating the Characteristics of the Edge State of Graphene Nanoribbons at the Molecular Level. Journal of the American Chemical Society, 2013, 135, 1430-1437.	6.6	237
1405	Investigation of doping effects on magnetic properties of the hydrogenated and fluorinated graphene structures by extra charge mimic. Physical Chemistry Chemical Physics, 2013, 15, 3786.	1.3	16
1406	A Guide to the Design of Electronic Properties of Graphene Nanoribbons. Accounts of Chemical Research, 2013, 46, 2319-2328.	7.6	187
1407	Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale, 2013, 5, 4541.	2.8	614
1408	The edges of graphene. Nanoscale, 2013, 5, 2556.	2.8	91
1409	How graphene crumples are stabilized?. RSC Advances, 2013, 3, 2720.	1.7	29
1410	Boron-doping controlled peculiar transport properties of graphene nanoribbon p–n junctions. Solid State Communications, 2013, 153, 46-52.	0.9	17

#	Article	IF	CITATIONS
1411	More π Electrons Make a Difference: Emergence of Many Radicals on Graphene Nanoribbons Studied by <i>Ab Initio</i> DMRG Theory. Journal of Chemical Theory and Computation, 2013, 9, 401-407.	2.3	98
1412	Boron–carbon–nitrogen foam surfaces for thermal physisorption applications. Thin Solid Films, 2013, 528, 187-193.	0.8	18
1413	Adsorption of transition metal atoms (Co and Ni) on zigzag graphene nanoribbon. Applied Physics A: Materials Science and Processing, 2013, 110, 235-239.	1,1	17
1414	Tunable bandgap of a single layer graphene doped by the manganese oxide using the electrochemical doping. Applied Physics Letters, 2013, 102, 032106.	1.5	17
1415	The Multiradical Character of One―and Twoâ€Dimensional Graphene Nanoribbons. Angewandte Chemie - International Edition, 2013, 52, 2581-2584.	7.2	197
1416	Molecular rectification in triangularly shaped graphene nanoribbons. Journal of Computational Chemistry, 2013, 34, 360-365.	1.5	19
1417	Absence of Edge States in Covalently Bonded Zigzag Edges of Graphene on Ir(111). Advanced Materials, 2013, 25, 1967-1972.	11.1	42
1418	Edge-Dependent Transport Properties in Graphene. Nano Letters, 2013, 13, 1126-1130.	4.5	16
1419	Disorder induced loss of magnetization in Liebâ \in TM s graphene quantum dots. Superlattices and Microstructures, 2013, 64, 44-51.	1.4	15
1420	The feasibility of tunable p-type Mg doping in a GaN monolayer nanosheet. Acta Materialia, 2013, 61, 7720-7725.	3.8	81
1421	Electronic and magnetic properties of triangular graphene nanoflakes embedded in fluorographene. Chemical Physics Letters, 2013, 572, 48-52.	1.2	5
1422	Thermal transport in S-shaped graphene nano-junctions. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 53, 110-114.	1.3	5
1423	Predicted ferromagnetism in hole doped armchair nanoribbons: A first principles study. Chemical Physics Letters, 2013, 555, 173-177.	1.2	4
1424	Structural, electronic and magnetic properties of transition-metal embedded zigzag-edged graphene nanoribbons. Journal Physics D: Applied Physics, 2013, 46, 375303.	1.3	9
1425	Site-dependent stability and electronic structure of single vacancy point defects in hexagonal graphene nano-flakes. Physical Chemistry Chemical Physics, 2013, 15, 4897.	1.3	14
1426	Edge states in silicene nanodisks. Physical Review B, 2013, 88, .	1.1	29
1427	Stable hydrogenated graphene edge types: Normal and reconstructed Klein edges. Physical Review B, 2013, 88, .	1.1	55
1428	Structural, electronic, and magnetic properties of the period vacancy in zigzag Ga <scp>N</scp> nanoribbons. Physica Status Solidi (B): Basic Research, 2013, 250, 1510-1518.	0.7	13

#	Article	IF	CITATIONS
1429	Room-temperature ferromagnetism in hydrothermally treated glassy carbon. Current Applied Physics, 2013, 13, 2055-2058.	1.1	5
1430	Numerical analysis on vacancy induced vibrational properties of graphene nanoribbons. Computational Materials Science, 2013, 79, 356-361.	1.4	20
1431	Electronic and magnetism properties of half-bare zigzag silicon carbon nanoribbons from hybrid density functional calculations. Solid State Communications, 2013, 158, 25-28.	0.9	7
1432	Spin-polarized zero-energy states in BN/C core–shell quantum dots. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1102-1108.	0.9	9
1433	Opening a large band gap for graphene by covalent addition. Chemical Physics Letters, 2013, 555, 1-6.	1.2	18
1434	Diluted ferromagnetic graphene by compensated n–p codoping. Carbon, 2013, 61, 609-615.	5.4	28
1435	Growth of few-layer graphene on SiC at low temperature with the fluorocarbon plasma pre-etching. Thin Solid Films, 2013, 527, 65-68.	0.8	5
1436	Quantum Transport Properties of Graphene Nanoribbons with Defects and Dephasing Scattering Processes. Journal of Electronic Materials, 2013, 42, 1-9.	1.0	14
1437	Fabrication of Electrochemically Reduced Graphene Oxide Films on Glassy Carbon Electrode by Self-Assembly Method and Their Electrocatalytic Application. Journal of Physical Chemistry C, 2013, 117, 4326-4335.	1.5	166
1438	Spin-polarized transport in zigzag graphene nanoribbons adsorbing nonmagnetic atomic chain. European Physical Journal B, 2013, 86, 1.	0.6	6
1439	Spin-polarized electronic current induced by sublattice engineering of graphene sheets with boron/nitrogen. Physical Review B, 2013, 87, .	1.1	24
1440	Second-Hyperpolarizability (\hat{I}^3) Enhancement in Metal-Decorated Zigzag Graphene Flakes and Ribbons: The Size Effect. Journal of Physical Chemistry C, 2013, 117, 3134-3140.	1.5	32
1441	An Effective Approach to Achieve a Spin Gapless Semiconductor–Halfâ€Metal–Metal Transition in Zigzag Graphene Nanoribbons: Attaching A Floating Induced Dipole Field via ⟨i⟩Ï€⟨/i⟩–⟨i⟩Ĭ€⟨/i⟩ Interactions. Advanced Functional Materials, 2013, 23, 1507-1518.	7.8	37
1442	A new pathway towards all-electric spintronics: electric-field control of spin states through surface/interface effects. Science China: Physics, Mechanics and Astronomy, 2013, 56, 232-244.	2.0	11
1443	Electromechanical switching in graphene nanoribbons. Carbon, 2013, 51, 102-109.	5.4	32
1444	Effect of edges on the stability and magnetic interaction of Co atoms embedded in zigzag graphene nanoribbons. Physical Review B, 2013, 87, .	1.1	7
1445	Antiferromagnetism in hexagonal graphene structures: Rings versus dots. Physical Review B, 2013, 87, .	1.1	31
1446	Sensory-organ-like response determines the magnetism of zigzag-edged honeycomb nanoribbons. Physical Review B, 2013, 87, .	1.1	15

#	Article	IF	Citations
1447	Experimentally Engineering the Edge Termination of Graphene Nanoribbons. ACS Nano, 2013, 7, 198-202.	7.3	147
1448	R-graphyne: a new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons. Journal of Materials Chemistry A, 2013, 1, 5341.	5.2	118
1449	Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS ₂ . Journal of Physical Chemistry C, 2013, 117, 9042-9047.	1.5	602
1450	Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM. Scientific Reports, 2013, 3, 1195.	1.6	43
1451	Origin of the half-metallic properties of graphitic carbon nitride in bulk and confined forms. Journal of Materials Chemistry C, 2013, 1, 3655.	2.7	11
1452	Computational Studies on Nonâ€covalent Interactions of Carbon and Boron Fullerenes with Graphene. ChemPhysChem, 2013, 14, 1844-1852.	1.0	25
1453	Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube. Journal of Physical Chemistry Letters, 2013, 4, 1328-1333.	2.1	13
1454	Stacking stability, emergence of magnetization and electromechanical nanosensing in bilayer graphene nanoribbons. Journal of Physics Condensed Matter, 2013, 25, 115303.	0.7	16
1455	Carbon clusters near the step of Rh surface: implication for the initial stage of graphene nucleation. European Physical Journal D, 2013, 67, 1.	0.6	6
1456	Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube. Nanoscale, 2013, 5, 3306.	2.8	12
1457	Noncollinear magnetism and half-metallicity in biased bilayer zigzag graphene nanoribbons. New Journal of Physics, 2013, 15, 043016.	1.2	8
1458	Microscopy of Graphene Growth, Processing, and Properties. Advanced Functional Materials, 2013, 23, 2617-2634.	7.8	35
1459	An overview of the magnetoresistance phenomenon in molecular systems. Chemical Society Reviews, 2013, 42, 5907.	18.7	94
1460	Impact of Tube Curvature on the Groundâ€State Magnetism of Axially Confined Singleâ€Walled Carbon Nanotubes of the Zigzagâ€√ype. ChemPhysChem, 2013, 14, 1696-1702.	1.0	9
1461	Theoretical investigation of second-order nonlinear optical response by linking hexamolybdate with graphene in the donor–acceptor (D–A) framework. Molecular Simulation, 2013, 39, 214-219.	0.9	8
1462	Spin Filtering and Magneto-Resistive Effect at the Graphene/ <i>h</i> -BN Ribbon Interface. ACS Nano, 2013, 7, 4578-4585.	7. 3	21
1463	Ï€-Conjugated Nickel Bis(dithiolene) Complex Nanosheet. Journal of the American Chemical Society, 2013, 135, 2462-2465.	6.6	717
1464	Atomic resolution imaging of graphene by transmission electron microscopy. Nanoscale, 2013, 5, 4079.	2.8	125

#	ARTICLE	IF	CITATIONS
1465	A Computational Experiment on Single-Walled Carbon Nanotubes. Journal of Chemical Education, 2013, 90, 651-655.	1.1	19
1466	Modeling of the infrared photodetector based on multi layer armchair graphene nanoribbons. Journal of Applied Physics, 2013, 113, .	1.1	10
1467	Widthâ€Tunable Graphene Nanoribbons on a SiC Substrate with a Controlled Step Height. Advanced Materials, 2013, 25, 1144-1148.	11.1	26
1468	Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom. Nature Communications, 2013, 4, 2023.	5.8	177
1469	Toward Single-Layer Uniform Hexagonal Boron Nitride–Graphene Patchworks with Zigzag Linking Edges. Nano Letters, 2013, 13, 3439-3443.	4.5	242
1470	Controlling Ferromagnetic Easy Axis in a Layered mml:mhttp://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub> Single Crystal, Physical Review Letters, 2013, 110, 247201.	2.9	108
1471	Controllable Atomic Scale Patterning of Freestanding Monolayer Graphene at Elevated Temperature. ACS Nano, 2013, 7, 1566-1572.	7. 3	104
1472	After the electronic field: Structure, bonding, and the first hyperpolarizability of HArF. Journal of Computational Chemistry, 2013, 34, 952-957.	1.5	20
1473	Half-Metallic and Magnetic Silicon Nanowires Functionalized by Transition-Metal Atoms. Springer Series in Materials Science, 2013, , 149-169.	0.4	1
1474	The transport properties and new device design: the case of 6,6,12-graphyne nanoribbons. Nanoscale, 2013, 5, 4468.	2.8	76
1475	Two-Dimensional Hexagonal Beryllium Sulfide Crystal. Journal of Physical Chemistry Letters, 2013, 4, 1856-1860.	2.1	38
1476	A facile one-step redox route for the synthesis of graphene/poly (3,4-ethylenedioxythiophene) nanocomposite and their applications in biosensing. Sensors and Actuators B: Chemical, 2013, 181, 567-574.	4.0	80
1477	Spin Seebeck Effect and Thermal Colossal Magnetoresistance in Graphene Nanoribbon Heterojunction. Scientific Reports, 2013, 3, 1380.	1.6	74
1478	Spectroscopic Characterization of the Chiral Structure of Individual Singleâ€Walled Carbon Nanotubes and the Edge Structure of Isolated Graphene Nanoribbons. Small, 2013, 9, 1284-1304.	5.2	32
1479	Novel Carbon-Based Nanomaterials. , 2013, , 61-87.		5
1480	Energetics and Electronic Structure of Encapsulated Graphene Nanoribbons in Carbon Nanotube. Journal of Physical Chemistry A, 2013, 117, 8568-8575.	1.1	15
1481	Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon. Journal of Physics Condensed Matter, 2013, 25, 055304.	0.7	26
1482	Electronic and Magnetic Properties of Zigzag Graphene Nanoribbons on the (111) Surface of Cu, Ag, and Au. Physical Review Letters, 2013, 110, 216804.	2.9	66

#	Article	IF	CITATIONS
1483	Facile hydrothermal preparation of graphene oxide nanoribbons from graphene oxide. Chemical Communications, 2013, 49, 6087.	2.2	4
1484	Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids. Advances in Physics, 2013, 62, 113-224.	35.9	486
1485	The electronic and magnetic properties with intrinsic defects in ZnO nanosheets: First-principles prediction. Current Applied Physics, 2013, 13, 799-802.	1.1	7
1486	Electronic and magnetic properties of adsorbed H2 on graphene with atomic defects: Ab initio study. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 52, 127-135.	1.3	11
1487	Half-metallic ferromagnetism in wurtzite and rocksalt TiTe: A density functional theory study. Computational Materials Science, 2013, 69, 278-283.	1.4	14
1489	A Pariser–Parr–Pople Model Hamiltonian-Based Approach to the Electronic Structure and Optical Properties of Graphene Nanostructures. Carbon Materials, 2013, , 199-227.	0.2	1
1490	Electronic properties of four typical zigzag-edged graphyne nanoribbons. Journal of Physics Condensed Matter, 2013, 25, 285502.	0.7	23
1491	Thermodynamics of a Potts-like model for a reconstructed zigzag edge in graphene nanoribbons. Physical Review B, 2013, 87, .	1.1	3
1492	Microwaveâ€Assisted Inâ€Situ Synthesis of Graphene/PEDOT Hybrid and Its Application in Supercapacitors. ChemPlusChem, 2013, 78, 227-234.	1.3	61
1493	Atomic and electronic properties of quasi-one-dimensional MoS ₂ nanowires. Journal of Materials Research, 2013, 28, 240-249.	1.2	20
1494	Effect of edge states on the electronic, magnetic and transport properties of BN-fused polyacene zigzag nanoribbons. Journal of Materials Chemistry C, 2013, 1, 3439.	2.7	12
1495	A demonstration of half-metallicity in graphene using Mn3O4 nanosheet. Carbon, 2013, 61, 254-259.	5.4	10
1496	The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon, 2013, 61, 47-56.	5.4	224
1497	A sandwich-type DNA biosensor based on electrochemical co-reduction synthesis of graphene-three dimensional nanostructure gold nanocomposite films. Analytica Chimica Acta, 2013, 767, 50-58.	2.6	71
1498	Comparative analysis of different methods for graphene nanoribbon synthesis. Hemijska Industrija, 2013, 67, 147-156.	0.3	0
1499	Nanostructured Few-Layer Graphene with Superior Optical Limiting Properties Fabricated by a Catalytic Steam Etching Process. Journal of Physical Chemistry C, 2013, 117, 11811-11817.	1.5	29
1500	A 3Nrule for the electronic properties of doped graphene. Nanotechnology, 2013, 24, 225705.	1.3	53
1501	A theoretical investigation on the possible improvement of spin-filter effects by an electric field for a zigzag graphene nanoribbon with a line defect. Carbon, 2013, 60, 94-101.	5.4	56

#	ARTICLE	IF	CITATIONS
1502	Structural and electronic properties of a single C chain doped zigzag silicene nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 53, 173-177.	1.3	14
1503	Structural and electronic properties of substitutionally doped armchair silicene nanoribbons. Physica B: Condensed Matter, 2013, 425, 66-71.	1.3	43
1504	Effects of edge hydrogenation in zigzag silicon carbide nanoribbons: stability, electronic and magnetic properties, as well as spin transport property. Journal of Materials Chemistry C, 2013, 1, 2996.	2.7	41
1505	On-surface single molecule synthesis chemistry: a promising bottom-up approach towards functional surfaces. Nanoscale, 2013, 5, 8269.	2.8	67
1506	Dark current of infrared photodetectors based on armchair graphene nanoribbons. Physica Scripta, 2013, T157, 014003.	1.2	4
1507	The Effects of the Formation of Stone–Wales Defects on the Electronic and Magnetic Properties of Silicon Carbide Nanoribbons: A Firstâ€Principles Investigation. ChemPhysChem, 2013, 14, 2841-2852.	1.0	37
1508	d0 magnetism and large magnetoelectric effect in BC4N nanoribbons. Journal of Applied Physics, 2013, 113, 133705.	1.1	3
1509	Largeâ€Area Fabrication of Periodic Subâ€15 nmâ€Width Singleâ€Layer Graphene Nanorings. Advanced Materials, 2013, 25, 199-204.	11.1	20
1510	Interplay between edge states and simple bulk defects in graphene nanoribbons. European Physical Journal B, 2013, 86, 1.	0.6	3
1511	Atomic Scale Investigation of a Graphene Nano-ribbon Based High Efficiency Spin Valve. Scientific Reports, 2013, 3, 2921.	1.6	15
1512	Half-metallicity study of graphene nanoribbon bilayers under external fields. Physical Review B, 2013, 88, .	1.1	13
1513	Giant spin thermoelectric efficiency in ferromagnetic graphene nanoribbons with antidots. Physical Review B, 2013, 88, .	1.1	52
1514	Nanomaterials applied in medicine, cultural heritage and chemical sensor technology. International Journal of Nanotechnology, 2013, 10, 508.	0.1	5
1515	Photon induced tunneling of electron through a graphene electrostatic barrier. Journal of Applied Physics, 2013, 114, .	1.1	15
1516	Tuning from Half-Metallic to Semiconducting Behavior in SiC Nanoribbons. Journal of Physical Chemistry C, 2013, 117, 15447-15455.	1.5	26
1517	Atom-Scale Reaction Pathways and Free-Energy Landscapes in Oxygen Plasma Etching of Graphene. Journal of Physical Chemistry Letters, 2013, 4, 1592-1596.	2.1	31
1518	Electronic and Magnetic Properties of Zigzag Boron-Nitride Nanoribbons with Even and Odd-Line Stone-Wales (5–7 Pair) Defects. Journal of Physical Chemistry C, 2013, 117, 3580-3594.	1.5	22
1519	THERMOELECTRIC AND THERMOMAGNETIC PROPERTIES OF GRAPHENE IN THE PRESENCE OF DIFFERENT SCATTERING PROCESSES. Modern Physics Letters B, 2013, 27, 1350060.	1.0	4

#	Article	IF	CITATIONS
1520	Observation of intense second harmonic generation from MoS <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> atomic crystals. Physical Review B, 2013, 87, .	1.1	566
1521	Significant reduction of the triggering electric field for half-metallicity in hydrogenated carbon nanotubes by optimized field direction. Current Applied Physics, 2013, 13, 894-896.	1.1	4
1522	The design of spin filter junction in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Organic Electronics, 2013, 14, 3240-3248.	1.4	33
1523	Electronic structures and half-metallicity in perovskite BaRu1â^'xFexO3: first-principles studies. European Physical Journal B, 2013, 86, 1.	0.6	4
1524	Benchmark theoretical study of the electric polarizabilities of naphthalene, anthracene, and tetracene. Journal of Chemical Physics, 2013, 138, 024319.	1.2	17
1525	Y-Shaped Spin Filter in Graphene with Rashba Spin–Orbit Coupling. Journal of the Physical Society of Japan, 2013, 82, 074711.	0.7	9
1526	Electronic structures of zigzag silicene nanoribbons with asymmetric sp2â^'sp3 edges. Applied Physics Letters, 2013, 102, .	1.5	74
1527	One-Step Production of Anisotropically Etched Graphene Using Supercritical Water. ACS Macro Letters, 2013, 2, 794-798.	2.3	8
1528	Electric field driven magnetic phase transition in graphene nanoflakes. Applied Physics Letters, 2013, 103, .	1.5	19
1529	Functionalization of Graphene Nanoribbons. Nanoscience and Technology, 2013, , 69-92.	1.5	1
1530	Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges. Journal of Chemical Physics, 2013, 138, 014704.	1.2	2
1531	Antiferromagnetic ordering of dangling-bond electrons at the stepped Si(001) surface. Journal of Chemical Physics, 2013, 138, 104702.	1.2	O
1532	Interior and Edge Elastic Waves in Graphene. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	2
1533	First-Principles Study on Structural and Electronic Properties of the Armchair GaN Nanoribbons. Advanced Materials Research, 0, 703, 67-70.	0.3	O
1534	Electronic Structure Tuning and Interface Charge Transfer in Hybrid Graphene/Titania and Adatom/Graphene/Titania: First Principles Calculations. Advanced Materials Research, 0, 873, 471-478.	0.3	0
1536	CONFRONTING MODELS OF DWARF GALAXY QUENCHING WITH OBSERVATIONS OF THE LOCAL GROUP. Astrophysical Journal, 2013, 773, 17.	1.6	18
1537	A SEARCH FOR C II 158 ν m LINE EMISSION IN HCM 6A, A LyΠ \pm EMITTER AT $\langle i \rangle z \langle j i \rangle = 6.56$. Astrophysical Journal Letters, 2013, 771, L20.	3.0	46
1538	Controllable valley and spin transport in ferromagnetic silicene junctions. Physical Review B, 2013, 87,	1.1	184

#	Article	IF	CITATIONS
1539	Spin transport and magnetoresistance in Thue-Morse graphene superlattice with two ferromagnetic graphene electrodes. Journal of Applied Physics, 2013, 114, 163715.	1.1	12
1540	Valley-dependent resonant inelastic transmission through a time-modulated region in graphene. Physical Review B, 2013, 88, .	1.1	3
1541	Boltzmann conductivity of ferromagnetic graphene with magnetic impurities. Physical Review B, 2013, 88, .	1.1	6
1542	Coulomb blockade effect of molecularly suspended graphene nanoribbons investigated with scanning tunneling microscopy. Physical Review B, 2013, 88, .	1.1	2
1543	Charge and spin Hall effect in spin chiral ferromagnetic graphene. Applied Physics Letters, 2013, 103, 132409.	1.5	5
1544	Magnetic Correlations in Short and Narrow Graphene Armchair Nanoribbons. Physical Review Letters, 2013, 111, 085504.	2.9	31
1545	Effective models for strong correlations and edge magnetism in graphene. Physical Review B, 2013, 87, .	1.1	22
1546	Electrical control of the spin polarization of a current in "pure-carbon―systems based on partially hydrogenated graphene nanoribbon. Journal of Applied Physics, 2013, 113, .	1.1	14
1547	Enhancement of anisotropic magnetoresistance in zigzag graphene nanodevices., 2013,,.		0
1548	Towards graphene based ultrasensitive chemical detectors: Lithium anchoring of organic molecules on the surface of graphene. , 2013, , .		0
1549	Visualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination. Physical Review B, 2013, 87, .	1.1	41
1550	Strain-induced transitions to quantum chaos and effective time-reversal symmetry breaking in triangular graphene nanoflakes. Physical Review B, 2013, 87, .	1.1	23
1551	Width dependent edge distribution of graphene nanoribbons unzipped from multiwall carbon nanotubes. Journal of Applied Physics, 2013, 113, 174307.	1.1	4
1552	Investigation of the effect of low energy ion beam irradiation on mono-layer graphene. AIP Advances, 2013, 3, .	0.6	51
1553	Proximity Effects Induced in Graphene by Magnetic Insulators: First-Principles Calculations on Spin Filtering and Exchange-Splitting Gaps. Physical Review Letters, 2013, 110, 046603.	2.9	287
1554	Anisotropic RKKY interaction in spin-polarized graphene. Physical Review B, 2013, 87, .	1.1	23
1555	Orbital magnetism of graphene flakes. Physical Review B, 2013, 87, .	1,1	47
1556	Gate-tunable exchange coupling between cobalt clusters on graphene. Physical Review B, 2013, 87, .	1.1	29

#	Article	IF	CITATIONS
1557	Decay behavior of localized states at reconstructed armchair graphene edges. Physical Review B, 2013, 88, .	1.1	15
1558	Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons. Physical Review B, 2013, 87, .	1.1	44
1559	Preserving the Edge Magnetism of Zigzag Graphene Nanoribbons by Ethylene Termination: Insight by Clar's Rule. Scientific Reports, 2013, 3, 2030.	1.6	37
1560	Absence of Dirac Electrons in Silicene on Ag(111) Surfaces. Journal of the Physical Society of Japan, 2013, 82, 063714 .	0.7	81
1561	Graphene field effect transistor without an energy gap. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8786-8789.	3.3	72
1562	Electronic properties of graphene nanoribbons stacked on boron nitride nanoribbons. Journal of Applied Physics, 2013, 113, .	1.1	14
1563	Switching effects in superconductor/ferromagnet/superconductor graphene junctions. Chinese Physics B, 2013, 22, 127401.	0.7	0
1564	Facile Synthesis and Lateral π-Expansion of Bisanthenes. Chemistry Letters, 2013, 42, 592-594.	0.7	52
1565	Introduction to carbon-based nanostructures., 0,, 1-10.		0
1566	Electronic properties of carbon-based nanostructures. , 0, , 11-90.		0
1568	A combined theoretical-experimental investigation of paramagnetic centres in chemically exfoliated graphene nanoribbons. Journal of Applied Physics, 2013, 114, 024309.	1.1	6
1569	Graphene and Graphene Nanomesh Spintronics. Electronics (Switzerland), 2013, 2, 368-386.	1.8	30
1570	ELECTRONIC STRUCTURE OF GRAPHENE NANORIBBONS SUBJECTED TO TWIST AND NONUNIFORM STRAIN. , 2013, , .		0
1571	Indirect Exchange and Ruderman–Kittel–Kasuya–Yosida (RKKY) Interactions in Magnetically-Doped Graphene. Crystals, 2013, 3, 49-78.	1.0	88
1572	Laser Induced Multiphoton Effects in Nano-Graphene Molecules. Applied Sciences (Switzerland), 2013, 3, 278-287.	1.3	3
1573	A new (2 \tilde{A} — 1) reconstructed edge structure of zigzag Si nanoribbon: First principles study. Journal of Chemical Physics, 2013, 139, 104703.	1.2	13
1574	Heterospin Junctions in Zigzag-Edged Graphene Nanoribbons. Applied Sciences (Switzerland), 2014, 4, 351-365.	1.3	1
1576	Sensors Based on Carbon Nanotube Arrays and Graphene for Water Monitoring. , 2014, , 3-19.		1

#	Article	IF	CITATIONS
1577	Valley-polarized insulating states in zigzag silicene nanoribbons. Materials Research Express, 2014, 1, 045009.	0.8	14
1578	Nanopatterned Graphene Field Effect Transistor Fabricated Using Block Co-polymer Lithography. Materials Research Letters, 2014, 2, 131-139.	4.1	11
1579	Spin and valley transports in junctions of Dirac fermions. New Journal of Physics, 2014, 16, 085005.	1.2	38
1580	Magnetization and spin-polarized conductance of asymmetrically hydrogenated graphene nanoribbons: significance of sigma bands. Journal Physics D: Applied Physics, 2014, 47, 485004.	1.3	3
1581	Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes. Journal of Chemical Physics, 2014, 141, 214704.	1.2	40
1582	Negative Differential Resistance and Spin-Filtering Effects in Zigzag Graphene Nanoribbons with Nitrogen-Vacancy Defects. Chinese Journal of Chemical Physics, 2014, 27, 653-658.	0.6	2
1583	Direct experimental determination of onset of electron–electron interactions in gap opening of zigzag graphene nanoribbons. Nature Communications, 2014, 5, 4311.	5.8	83
1584	Techniques for Production of Large Area Graphene for Electronic and Sensor Device Applications. Graphene and 2D Materials, $2014,1,$	2.0	0
1585	Understanding the structure and electronic properties of N-doped graphene nanoribbons upon hydrogen saturation. Journal of Chemical Sciences, 2014, 126, 1737-1742.	0.7	26
1586	Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons. Chinese Physics B, 2014, 23, 067305.	0.7	7
1587	Limited robustness of edge magnetism in zigzag graphene nanoribbons with electrodes. Nanotechnology, 2014, 25, 465201.	1.3	6
1588	Pure spin current induced by adiabatic quantum pumping in zigzag-edged graphene nanoribbons. Applied Physics Letters, 2014, 104, 183103.	1.5	11
1589	Generation of full polarization in ferromagnetic graphene with spin energy gap. Applied Physics Letters, 2014, 105, .	1.5	15
1590	In situ observation of step-edge in-plane growth of graphene in a STEM. Nature Communications, 2014, 5, 4055.	5.8	55
1591	Electronic properties of two-dimensional ZnO atomically sheet on Cu substrate: a first-principles study. Modern Physics Letters B, 2014, 28, 1450204.	1.0	3
1593	Stability and electronic properties of hexagonal boron nitride monolayer with irregular graphene domains embedded. Modern Physics Letters B, 2014, 28, 1450144.	1.0	4
1595	NONLINEAR SPIN WAVES IN GRAPHENE STRUCTURES. Spin, 2014, 04, 1450005.	0.6	1
1596	Electron Transport in Zigzag Graphene Nanoribbons with a Tetra-Vacancy Complex: A Perfect Spin Filter. Advanced Materials Research, 0, 937, 207-213.	0.3	1

#	Article	IF	CITATIONS
1597	Fano-Kondo Effect of Magnetic Impurity with Side-Coupled Graphene Flake. Acta Physica Polonica A, 2014, 126, 202-203.	0.2	0
1598	Influence of zigzag edges on the Ruderman-Kittel-Kasuya-Yosida interaction between magnetic impurities in graphene nanoribbons. Journal of Applied Physics, 2014, 116, 194309.	1.1	7
1599	Antiferromagnetic exchange interactions among dopant electrons in Si nanowires. Physical Review B, 2014, 90, .	1.1	1
1600	IN SITU UNZIPPING OF CARBON NANOTUBES TO FORM GRAPHENE NANORIBBONS. Nano, 2014, 09, 1450010.	0.5	1
1601	Phosphorus-doping-induced rectifying behavior in armchair graphene nanoribbons devices. Journal of Applied Physics, 2014, 115, .	1.1	18
1602	Fundamental Properties of Graphene. World Scientific Series on Carbon Nanoscience, 2014, , 1-37.	0.1	4
1603	Surface magnetism of the carbon foam: An ab-initio theoretical study. Applied Physics Letters, 2014, 105, 061601.	1.5	7
1604	Novel spin-electronic properties of BC7 sheets induced by strain. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 061507.	0.9	2
1605	Rectification induced in N2AA-doped armchair graphene nanoribbon device. Journal of Applied Physics, 2014, 116, .	1.1	11
1606	Defects induced ferromagnetism in plasma-enabled graphene nanopetals. Applied Physics Letters, 2014, 104, 092417.	1.5	14
1607	Half-metallicity modulation of hybrid BN-C nanotubes by external electric fields: A first-principles study. Journal of Chemical Physics, 2014, 140, 234702.	1.2	5
1608	Direct visualization of atomically precise nitrogen-doped graphene nanoribbons. Applied Physics Letters, 2014, 105, .	1.5	82
1609	Polarized micro Raman scattering spectroscopy for curved edges of epitaxial graphene. Applied Physics Letters, 2014, 105, 243103.	1.5	6
1610	Enhanced half-metallicity in the zigzag graphene nanoribbons by adsorption of the zigzag hydrogen fluoride molecular chains. AIP Advances, 2014, 4, 067132.	0.6	0
1611	An electrochemical sensor based on polyelectrolyte-functionalized graphene for detection of 4-nitrophenol. Journal of Electroanalytical Chemistry, 2014, 734, 1-6.	1.9	57
1612	Many-body effects in the spin-polarized electron transport through graphene nanoislands. Journal of Applied Physics, 2014, 115, 053705.	1.1	11
1613	Electronic structure and optical properties of Ag-doped SnO ₂ nanoribbons. RSC Advances, 2014, 4, 41819-41824.	1.7	12
1614	Electronic properties of three-terminal graphitic nanowiggles. Physical Review B, 2014, 90, .	1.1	4

#	Article	IF	CITATIONS
1615	Influence of edge and field effects on topological states of germanene nanoribbons from self-consistent calculations. Physical Review B, 2014, 90, .	1.1	56
1616	Application of Electrodepositing Graphene Nanosheets for Latent Fingerprint Enhancement. Electroanalysis, 2014, 26, 209-215.	1.5	9
1617	Spin-dependent dwell time through ferromagnetic graphene barrier. Physica B: Condensed Matter, 2014, 454, 240-244.	1.3	4
1618	ORGANIC SPINTRONICS: PAST, PRESENT AND FUTURE. Spin, 2014, 04, 1440013.	0.6	10
1619	Parity conservation in electron-phonon scattering in zigzag graphene nanoribbon. Applied Physics Letters, 2014, 105, 113112.	1.5	16
1620	Effects of Edge Oxidation on the Stability and Halfâ€Metallicity of Graphene Quantum Dots. ChemPhysChem, 2014, 15, 157-164.	1.0	16
1621	Tailoring of the structural, energetic and electronic properties of silicene-based nanostructures. Journal of Physics: Conference Series, 2014, 491, 012005.	0.3	4
1622	Extended Klein Edges in Graphene. ACS Nano, 2014, 8, 12272-12279.	7.3	41
1623	Density Functional Theory Beyond the Generalized Gradient Approximation for Surface Chemistry. Topics in Current Chemistry, 2014, , 25-51.	4.0	9
1624	Large on/off current ratio in hybrid graphene/BN nanoribbons by transverse electric field-induced control of bandgap. Applied Physics Letters, 2014, 105, 073114.	1.5	22
1625	A first-principles study of lithium-decorated hybrid boron nitride and graphene domains for hydrogen storage. Journal of Chemical Physics, 2014, 141, 084711.	1.2	29
1626	Spin relaxation related to edge scattering in graphene. Physical Review B, 2014, 90, .	1.1	28
1627	Preferential antiferromagnetic coupling of vacancies in graphene on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SiO</mml:mi><mml:mn>2<td>nn⊵.≰/mml:</td><td>mszub></td></mml:mn></mml:msub></mml:math>	nn ⊵. ≰/mml:	mszub>
1628	First-principles study of 3d transition metal atom adsorption onto graphene: the role of the extended line defect. Journal of Materials Chemistry C, 2014, 2, 9767-9774.	2.7	18
1629	Self-reconstruction and predictability of bonds disruption in twisted graphene nanoribbons. Applied Physics Letters, 2014, 104, 083119.	1.5	12
1630	Spectroscopic study of graphene nanoribbons formed by crystallographic etching of highly oriented pyrolytic graphite. Applied Physics Letters, 2014, 105, 123116.	1.5	4
1631	Thermal transport in folded zigzag and armchair graphene nanoribbons. Applied Physics Letters, 2014, 104, .	1.5	20
1632	Electronic Structure And NMR Study Of Selected Doped And Functionalized GrapheneÂ. Advanced Materials Letters, 2014, 5, 441-446.	0.3	1

#	Article	IF	CITATIONS
1633	EFFECTS OF SPIRAL ARMS ON STAR FORMATION IN NUCLEAR RINGS OF BARRED-SPIRAL GALAXIES. Astrophysical Journal, 2014, 792, 47.	1.6	18
1634	Low-Temperature Synthesis of Highly Crystallized Hexagonal Boron Nitride Sheets with Li3N as Additive Agent. European Journal of Inorganic Chemistry, 2014, 2014, 5507-5513.	1.0	18
1635	Antiaromaticity in Nonbenzenoid Oligoarenes and Ladder Polymers. Topics in Current Chemistry, 2014, 350, 141-175.	4.0	11
1636	Structural dependence of electronic properties of graphene nanoribbons on an electric field. Japanese Journal of Applied Physics, 2014, 53, 06JD05.	0.8	5
1637	Spin and charge excitations in zigzag honeycomb nanoribbons: Effect of many body correlation. Japanese Journal of Applied Physics, 2014, 53, 06JD01.	0.8	6
1638	Impact of Stone-Wales and lattice vacancy defects on the electro-thermal transport of the free standing structure of metallic ZGNR. Journal of Computational Electronics, 2014, 13, 862-871.	1.3	2
1639	Thermoelectric Properties of Carbon Nanotubes and Related One-Dimensional Structures. Lecture Notes in Nanoscale Science and Technology, 2014, , 363-391.	0.4	0
1640	Perfect Spin-Filtering in 4H-TAHDI-Based Molecular Devices: the Effect of N-Substitution. Chinese Physics Letters, 2014, 31, 107302.	1.3	2
1641	Spin-dependent transport properties of a chromium porphyrin-based molecular embedded between two graphene nanoribbon electrodes. RSC Advances, 2014, 4, 60376-60381.	1.7	26
1642	Controllable Tuning of the Spin-Dependent Transport in the Graphene Sheet. Applied Mechanics and Materials, 2014, 668-669, 8-11.	0.2	0
1643	Prediction of two-dimensional materials with half-metallic Dirac cones: Ni2C18H12 and Co2C18H12. Carbon, 2014, 73, 382-388.	5.4	48
1644	Enhanced half-metallicity in carbon-chain–linked trigonal graphene. Organic Electronics, 2014, 15, 65-70.	1.4	22
1645	Spin filter effects in zigzag-edge graphene nanoribbons with symmetric and asymmetric edge hydrogenations. Carbon, 2014, 66, 646-653.	5.4	108
1646	Long-range ferromagnetic graphene via compensated Fe/NO2 co-doping. Applied Surface Science, 2014, 305, 768-773.	3.1	13
1647	The effects of spin-filter and negative differential resistance on Fe-substituted zigzag graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 960-965.	0.9	37
1648	Nitrogen and Boron substitutional doped zigzag silicene nanoribbons: Ab initio investigation. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 60, 112-117.	1.3	21
1649	High performance of CNT-interconnects by the multi-layer structure. Microelectronics Reliability, 2014, 54, 778-784.	0.9	5
1650	Electric field-induced unzipping of hydrogenated carbon nanotubes into graphene nanoribbons. Current Applied Physics, 2014, 14, 337-339.	1.1	7

#	Article	IF	CITATIONS
1651	Correlation between atomistic morphology and electron transport properties in defect-free and defected graphene nanoribbons: An interpretation through Clar sextet theory. Carbon, 2014, 75, 190-200.	5.4	6
1652	In silico design of a tunable molecular spin filter using chromium–carbon–chromium chains. Chemical Physics, 2014, 428, 34-42.	0.9	5
1653	Electronic and transport properties of boron and nitrogen doped graphene nanoribbons: an ab initio approach. Applied Nanoscience (Switzerland), 2014, 4, 461-467.	1.6	42
1654	Enantiomeric separation by open-tubular capillary electrochromatography using bovine-serum-albumin-conjugated graphene oxide–magnetic nanocomposites as stationary phase. Microfluidics and Nanofluidics, 2014, 16, 195-206.	1.0	38
1655	Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	15
1656	Magnetic properties and origin of the half-metallicity of Ti2MnZ (Z=Al, Ga, In, Si, Ge, Sn) Heusler alloys with the Hg2CuTi-type structure. Journal of Magnetism and Magnetic Materials, 2014, 349, 104-108.	1.0	46
1657	The electronic transport behavior of hybridized zigzag graphene and boron nitride nanoribbons. Journal of Applied Physics, 2014, 115, .	1.1	18
1658	Dangling bond modulating the electronic and magnetic properties of zigzag SiGe nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 58, 1-5.	1.3	4
1659	Simple, green and high-yield production of single- or few-layer graphene by hydrothermal exfoliation of graphite. Nanoscale, 2014, 6, 4598-4603.	2.8	54
1660	Kondo effect of a cobalt adatom on a zigzag graphene nanoribbon. Physical Review B, 2014, 89, .	1.1	19
1661	First-principle study of the transition-metal adatoms on B-doped vacancy-defected graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 60, 133-138.	1.3	24
1662	Friction anisotropy dependence on lattice orientation of graphene. Science China: Physics, Mechanics and Astronomy, 2014, 57, 663-667.	2.0	11
1663	Electrochemical properties and electrocatalytic activity of conducting polymer/copper nanoparticles supported on reduced graphene oxide composite. Journal of Power Sources, 2014, 257, 300-307.	4.0	62
1664	A General Route Towards Defect and Pore Engineering in Graphene. Small, 2014, 10, 2280-2284.	5.2	46
1665	Role of Edge Geometry and Magnetic Interaction in Opening Bandgap of Lowâ€Dimensional Graphene. ChemPhysChem, 2014, 15, 958-965.	1.0	6
1666	Degenerate Perturbation in Band-Gap Opening of Graphene Superlattice. Journal of Physical Chemistry C, 2014, 118, 8174-8180.	1.5	15
1667	Chlorine sensing properties of zigzag boron nitride nanoribbons. Solid State Communications, 2014, 185, 41-46.	0.9	21
1668	Magnetic polaron formation in graphene-based single-electron transistor. Physica Status Solidi (B): Basic Research, 2014, 251, 864-870.	0.7	3

#	Article	IF	CITATIONS
1669	Electronic properties of zigzag, armchair and their hybrid quantum dots of graphene and boron-nitride with and without substitution: A DFT study. Chemical Physics Letters, 2014, 603, 28-32.	1.2	25
1670	Fully spin-polarized transport induced by B doping in graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1945-1951.	0.9	1
1671	Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing. Analytica Chimica Acta, 2014, 825, 26-33.	2.6	66
1672	Short-range exact exchange effects in ultra-narrow zigzag silicon carbide nanoribbons. Physica Status Solidi (B): Basic Research, 2014, 251, 423-434.	0.7	10
1673	Spin-semiconducting properties in silicene nanoribbons. Physical Chemistry Chemical Physics, 2014, 16, 15477-15482.	1.3	30
1674	Two-Dimensional Thermal Transport in Graphene: A Review of Numerical Modeling Studies. Nanoscale and Microscale Thermophysical Engineering, 2014, 18, 155-182.	1.4	52
1675	Spin filtering and large magnetoresistance behaviors in carbon chain-zigzag graphene nanoribbon nanojunctions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1540-1547.	0.9	14
1676	Facile, rapid and upscaled synthesis of green luminescent functional graphene quantum dots for bioimaging. RSC Advances, 2014, 4, 21101.	1.7	61
1677	Graphene and Graphene-like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology. ACS Nano, 2014, 8, 4133-4156.	7.3	507
1678	Substrate effects: Disappearance of adsorbate-induced magnetism in graphene. Physical Review B, 2014, 89, .	1.1	23
1679	Excitonic effects of E11, E22, and E33 in armchair-edged graphene nanoribbons. Journal of Applied Physics, 2014, 115, 103701.	1.1	6
1680	Growth of homogeneous single-layer graphene on Ni-Ge binary substrate. Applied Physics Letters, 2014, 104, .	1.5	9
1681	Electronic structures of reconstructed zigzag silicene nanoribbons. Applied Physics Letters, 2014, 104,	1.5	46
1682	The stability and electronic structure of Fe atoms embedded in zigzag graphene nanoribbons. Physica B: Condensed Matter, 2014, 441, 28-32.	1.3	15
1683	Edge proximity-induced magnetoresistance and spin polarization in ferromagnetic gated bilayer graphene nanoribbon. Journal of Magnetism and Magnetic Materials, 2014, 357, 29-34.	1.0	8
1684	Width- and edge-dependent magnetic properties, electronic structures, and stability of SnSe2 nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 59, 102-106.	1.3	13
1685	Chemical Vapor Deposition of N-Doped Graphene and Carbon Films: The Role of Precursors and Gas Phase. ACS Nano, 2014, 8, 3337-3346.	7.3	133
1686	<i>In Situ</i> Fabrication Of Quasi-Free-Standing Epitaxial Graphene Nanoflakes On Gold. ACS Nano, 2014, 8, 3735-3742.	7.3	50

#	Article	IF	CITATIONS
1687	Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction. Chemical Society Reviews, 2014, 43, 530-546.	18.7	309
1688	The first decade of organic spintronics research. Chemical Communications, 2014, 50, 1781-1793.	2.2	167
1689	Spin negative differential resistance in edge doped zigzag graphene nanoribbons. Carbon, 2014, 68, 406-412.	5.4	49
1690	Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sensors and Actuators B: Chemical, 2014, 190, 516-522.	4.0	304
1691	Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nature Chemistry, 2014, 6, 126-132.	6.6	468
1692	Quasi-one-dimensional electronic states induced by an extended line defect in graphene: an analytic solution. Journal of Physics Condensed Matter, 2014, 26, 035302.	0.7	1
1693	Variable range of the RKKY interaction in edged graphene. Journal of Physics Condensed Matter, 2014, 26, 055007.	0.7	21
1694	Edge-closed graphene nanoribbons fabricated by spontaneous collapse of few-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2014, 16, 1921-1929.	1.3	13
1695	A B–C–N hybrid porous sheet: an efficient metal-free visible-light absorption material. Physical Chemistry Chemical Physics, 2014, 16, 4299.	1.3	13
1696	Quantum Nature of Edge Magnetism in Graphene. Physical Review Letters, 2014, 112, 046601.	2.9	58
1697	Graphene nanoribbons with zigzag and armchair edges prepared by scanning tunneling microscope lithography on gold substrates. Applied Surface Science, 2014, 291, 48-52.	3.1	26
1698	Tailoring the structural and electronic properties of a graphene-like ZnS monolayer using biaxial strain. Journal Physics D: Applied Physics, 2014, 47, 075302.	1.3	31
1699	Graphene/g-C3N4 bilayer: considerable band gap opening and effective band structure engineering. Physical Chemistry Chemical Physics, 2014, 16, 4230.	1.3	138
1700	Engineering the field emission properties of graphene film by gas adsorbates. Physical Chemistry Chemical Physics, 2014, 16, 1850-1855.	1.3	18
1701	Hydrogen-free graphene edges. Nature Communications, 2014, 5, 3040.	5.8	74
1702	Line defects at the heterojunction of hybrid boron nitride–graphene nanoribbons. Journal of Materials Chemistry C, 2014, 2, 392-398.	2.7	23
1703	Effects of Edge Oxidation on the Structural, Electronic, and Magnetic Properties of Zigzag Boron Nitride Nanoribbons. Journal of Chemical Theory and Computation, 2014, 10, 373-380.	2.3	30
1704	Molecular sensing using armchair graphene nanoribbon. Journal of Computational Chemistry, 2014, 35, 1916-1920.	1.5	18

#	Article	IF	CITATIONS
1705	Manipulation and Characterization of Aperiodical Graphene Structures Created in a Two-Dimensional Electron Gas. Physical Review Letters, 2014, 113, 196803.	2.9	36
1706	Transport properties of zigzag graphene nanoribbon decorated with copper clusters. Journal of Applied Physics, 2014, 116, 093701.	1.1	12
1707	Spatially resolved one-dimensional boundary states in graphene–hexagonal boron nitride planar heterostructures. Nature Communications, 2014, 5, 5403.	5.8	71
1708	Chemical stitching. Nature Nanotechnology, 2014, 9, 875-876.	15.6	10
1709	Tuning electronic and magnetic properties of SnSe ₂ armchair nanoribbons via edge hydrogenation. Journal of Materials Chemistry C, 2014, 2, 10175-10183.	2.7	17
1710	Enhance the stability of î±-graphyne nanoribbons by dihydrogenation. Organic Electronics, 2014, 15, 3392-3398.	1.4	35
1711	Thermoelectricity at the gate. Nature Nanotechnology, 2014, 9, 876-877.	15.6	16
1712	Electronic structure changes during the surface-assisted formation of a graphene nanoribbon. Journal of Chemical Physics, 2014, 140, 024701.	1.2	19
1713	Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy. Journal of Chemical Physics, 2014, 140, 074304.	1.2	35
1714	Bond length and electric current oscillation of long linear carbon chains: Density functional theory, MpB model, and quantum spin transport studies. Journal of Chemical Physics, 2014, 140, 134703.	1.2	13
1715	First-principles study of carrier-induced ferromagnetism in bilayer and multilayer zigzag graphene nanoribbons. Applied Physics Letters, 2014, 104, .	1.5	12
1716	Magneto-electronics properties of fluorine-passivated "Christmas Tree―graphene nanoribbons. Organic Electronics, 2014, 15, 3406-3412.	1.4	19
1717	Localization of metallicity and magnetic properties of graphene and of graphene nanoribbons doped with boron clusters. Philosophical Magazine, 2014, 94, 1841-1858.	0.7	8
1718	Effects of symmetry and spin configuration on spin-dependent transport properties of iron-phthalocyanine-based devices. Journal of Applied Physics, 2014, 116, .	1.1	25
1719	Semiconductor with intrinsic spin: a hybrid structure of zigzag edge graphene nanoribbon/singleâ€walled carbon nanotube. Physica Status Solidi - Rapid Research Letters, 2014, 8, 187-190.	1.2	6
1720	Role of Vacancies in Zigzag Graphene Nanoribbons: An <i>Ab Initio</i> Study. Journal of Nano Research, 2014, 27, 65-73.	0.8	4
1721	Preserving the edge magnetism of graphene nanoribbons by iodine termination: a computational study. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	2
1722	Graphene spin diode: Strain-modulated spin rectification. Applied Physics Letters, 2014, 105, 052409.	1.5	12

#	Article	IF	Citations
1723	Topological origin of quasi-flat edge band in phosphorene. New Journal of Physics, 2014, 16, 115004.	1.2	189
1724	Spin conductance and tunnelling magnetoresistance in a fractal graphene superlattice with two ferromagnetic graphene electrodes. Journal Physics D: Applied Physics, 2014, 47, 185301.	1.3	11
1725	Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature, 2014, 514, 608-611.	13.7	662
1726	Adjusting the electronic properties of silicon carbide nanoribbons by introducing edge functionalization. RSC Advances, 2014, 4, 35042-35047.	1.7	17
1727	Rectifying, giant magnetoresistance, spin-filtering, newgative differential resistance, and switching effects in single-molecule magnet Mn(dmit) 2 -based molecular device with graphene nanoribbon electrodes. Organic Electronics, 2014, 15, 3615-3623.	1.4	13
1728	Edge-state magnetism in hydrogenated armchair carbon nanotubes. Current Applied Physics, 2014, 14, 1783-1787.	1.1	1
1729	In situ synthesis of a reduced graphene oxide/cuprous oxide nanocomposite: a reusable catalyst. RSC Advances, 2014, 4, 52044-52052.	1.7	57
1730	Formation of ultra-long nanoribbons by self-assembly of carbon dots and anionic oligomers for multi-colored fluorescence and electrical conduction. Chemical Communications, 2014, 50, 10244.	2.2	17
1731	Semiconductor–halfmetal–metal transition and magnetism of bilayer graphene nanoribbons/hexagonal boron nitride heterostructure. Solid State Communications, 2014, 199, 1-10.	0.9	7
1732	Silicane as an Inert Substrate of Silicene: A Promising Candidate for FET. Journal of Physical Chemistry C, 2014, 118, 25278-25283.	1.5	64
1733	Graphitic Silicon Nitride: A Metalâ€Free Ferromagnet with Charge and Spin Current Rectification. ChemPhysChem, 2014, 15, 2756-2761.	1.0	8
1734	Electric field induced breaking down of graphene nanoribbons. , 2014, , .		1
1735	Highly conductive graphene nanoribbons from the reduction of graphene oxide nanoribbons with lithium aluminium hydride. Journal of Materials Chemistry C, 2014, 2, 856-863.	2.7	34
1736	Disintegration of graphene nanoribbons in large electrostatic fields. Physical Chemistry Chemical Physics, 2014, 16, 15927-15933.	1.3	5
1737	CrXTe < sub > 3 < / sub > (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors. Journal of Materials Chemistry C, 2014, 2, 7071.	2.7	332
1738	Two-dimensional ferromagnetic iron crystals constrained by graphene edges: a first principles study. RSC Advances, 2014, 4, 17008-17014.	1.7	8
1739	Dihalogen edge-modification: an effective approach to realize the half-metallicity and metallicity in zigzag silicon carbon nanoribbons. Journal of Materials Chemistry C, 2014, 2, 7836-7850.	2.7	28
1740	Spin density waves in periodically strained graphene nanoribbons. Nanoscale, 2014, 6, 4285-4291.	2.8	6

#	Article	IF	Citations
1741	Realizing semiconductor–half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene–graphane nanoribbons. Physical Chemistry Chemical Physics, 2014, 16, 23214-23223.	1.3	23
1742	One-pot synthesis of carbon nanoribbons and their enhanced lithium storage performance. Journal of Materials Chemistry A, 2014, 2, 11974-11979.	5.2	14
1743	Hybrid platforms of graphane–graphene 2D structures: prototypes for atomically precise nanoelectronics. Physical Chemistry Chemical Physics, 2014, 16, 23558-23563.	1.3	10
1744	Synthesis of graphene nanosheet powder with layer number control via a soluble salt-assisted route. RSC Advances, 2014, 4, 13350.	1.7	54
1745	Electron transport enhanced by electrode surface reconstruction: a case study of C60-based molecular junctions. RSC Advances, 2014, 4, 44718-44725.	1.7	1
1746	A first-principles study of the spin transport properties of a 4H-TAHDI-based multifunctional spintronic device with graphene nanoribbon electrodes. Journal of Materials Chemistry C, 2014, 2, 6648-6654.	2.7	30
1747	Interaction forces between a spherical nanoparticle and a flat surface. Physical Chemistry Chemical Physics, 2014, 16, 5846.	1.3	59
1748	Band gap opening in zigzag graphene nanoribbon modulated with magnetic atoms. Current Applied Physics, 2014, 14, 1509-1513.	1.1	14
1749	Graphene nanoribbon heterojunctions. Nature Nanotechnology, 2014, 9, 896-900.	15.6	528
1750	Electronic States at the Graphene–Hexagonal Boron Nitride Zigzag Interface. Nano Letters, 2014, 14, 5128-5132.	4.5	79
1751	Characteristics of p-type Mg-doped GaS and GaSe nanosheets. Physical Chemistry Chemical Physics, 2014, 16, 18799.	1.3	44
1752	Doped defective graphene nanoribbons: a new class of materials with novel spin filtering properties. RSC Advances, 2014, 4, 49946-49952.	1.7	13
1753	Anomalous exchange interaction between intrinsic spins in conducting graphene systems. Physical Review B, 2014, 89, .	1.1	6
1754	Influence of graphene-substrate interactions on configurations of organic molecules on graphene: Pentacene/epitaxial graphene/SiC. Applied Physics Letters, 2014, 105, .	1.5	12
1755	Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nature Communications, 2014, 5, 4253.	5.8	155
1756	Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale, 2014, 6, 2821.	2.8	166
1757	Semiconductor to Metal to Half-Metal Transition in Pt-Embedded Zigzag Graphene Nanoribbons. Journal of Physical Chemistry C, 2014, 118, 16133-16139.	1.5	22
1758	A Computational Study on the Electronic Transport Properties of Ultranarrow Disordered Zigzag Graphene Nanoribbons. IEEE Transactions on Electron Devices, 2014, 61, 23-29.	1.6	16

#	Article	IF	CITATIONS
1759	Electronic and magnetic structures of coronene-based graphitic nanoribbons. Physical Chemistry Chemical Physics, 2014, 16, 3603.	1.3	10
1760	Half-metal behaviour mediated by self-doping of topological line defect combining with adsorption of 3d transition-metal atomic chains in graphene. Journal Physics D: Applied Physics, 2014, 47, 055303.	1.3	20
1761	Two Dimensional Molecular Electronics Spectroscopy for Molecular Fingerprinting, DNA Sequencing, and Cancerous DNA Recognition. ACS Nano, 2014, 8, 1827-1833.	7.3	65
1762	Novel electronic transport of zigzag graphdiyne nanoribbons induced by edge states. Europhysics Letters, 2014, 107, 57002.	0.7	12
1763	Electronic and magnetic properties of armchair MoS2 nanoribbons under both external strain and electric field, studied by first principles calculations. Journal of Applied Physics, 2014, 116, .	1,1	13
1764	Vacancy Effects on Electric and Thermoelectric Properties of Zigzag Silicene Nanoribbons. Journal of Physical Chemistry C, 2014, 118, 21339-21346.	1.5	41
1765	Spin-filtering, giant magnetoresistance, rectifying and negative differential resistance effects in planar four-coordinate Fe complex with graphene nanoribbon electrodes. Journal of Chemical Physics, 2014, 140, 044311.	1.2	27
1766	Discerning Site Selectivity on Graphene Nanoflakes Using Conceptual Density Functional Theory Based Reactivity Descriptors. Journal of Physical Chemistry C, 2014, 118, 23058-23069.	1.5	10
1767	Direct Observation of a Long-Lived Single-Atom Catalyst Chiseling Atomic Structures in Graphene. Nano Letters, 2014, 14, 450-455.	4.5	81
1768	Naphthalene adsorptions on graphene using Cr/Cr 2 /Fe/Fe 2 linkages: Stability and spin perspectives from first-principles calculations. Chemical Physics Letters, 2014, 614, 238-242.	1.2	0
1769	Review on graphene spintronic, new land for discovery. Superlattices and Microstructures, 2014, 74, 123-145.	1.4	39
1770	Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field. Journal of Chemical Physics, 2014, 141, 014708.	1.2	38
1772	One-pot hydrothermal synthesis of zirconium dioxide nanoparticles decorated reduced graphene oxide composite as high performance electrochemical sensing and biosensing platform. Electrochimica Acta, 2014, 143, 196-206.	2.6	72
1773	Tunable band gaps in graphene/GaN van der Waals heterostructures. Journal of Physics Condensed Matter, 2014, 26, 295304.	0.7	17
1774	Graphene's potential in materials science and engineering. RSC Advances, 2014, 4, 28987-29011.	1.7	60
1775	Effect of vacancy defects on phonon properties of hydrogen passivated graphene nanoribbons. Carbon, 2014, 80, 146-154.	5.4	32
1776	Recent Highlights and Perspectives on Acene Based Molecules and Materials. Chemistry of Materials, 2014, 26, 4046-4056.	3.2	277
1777	A promising photoelectrochemical sensor based on a ZnO particle decorated N-doped reduced graphene oxide modified electrode for simultaneous determination of catechol and hydroquinone. RSC Advances, 2014, 4, 48522-48534.	1.7	28

#	Article	IF	CITATIONS
1778	Metal-Free Magnetism and Half-Metallicity of Carbon Nitride Nanotubes: A First-Principles Study. Journal of Physical Chemistry C, 2014, 118, 22491-22498.	1.5	22
1779	Theoretical exploration of the half-metallicity of graphene nanoribbons/boron nitride bilayer system. Computational Materials Science, 2014, 95, 384-392.	1.4	4
1780	Versatile Electronic and Magnetic Properties of SnSe ₂ Nanostructures Induced by the Strain. Journal of Physical Chemistry C, 2014, 118, 9251-9260.	1.5	68
1781	Tri-Gate Graphene Nanoribbon Transistors With Transverse-Field Bandgap Modulation. IEEE Transactions on Electron Devices, 2014, 61, 3329-3334.	1.6	8
1782	Spin and band-gap engineering in zigzag graphene nanoribbons with methylene group. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 63, 259-263.	1.3	6
1783	Electronic and optical properties of boron nitride nanoribbons in electric field by the tight-binding model. Physica B: Condensed Matter, 2014, 452, 7-12.	1.3	17
1784	Configuration-dependent geometric and electronic properties of bilayer graphene nanoribbons. Carbon, 2014, 77, 1031-1039.	5.4	18
1785	Polarized microscopic laser Raman scattering spectroscopy for edge structure of epitaxial graphene and localized vibrational mode. Carbon, 2014, 77, 1073-1081.	5.4	13
1786	Spin transport properties of a carbon nanotube/zigzag graphene nanoribbon junction: a first principles investigation. Applied Physics A: Materials Science and Processing, 2014, 117, 2175-2181.	1.1	1
1787	Graphene produced by electrochemical exfoliation. , 2014, , 81-98.		5
1788	Theoretical two-atom thick semiconducting carbon sheet. Physical Chemistry Chemical Physics, 2014, 16, 18118-18123.	1.3	19
1789	Iron-Oxide-Supported Nanocarbon in Lithium-Ion Batteries, Medical, Catalytic, and Environmental Applications. ACS Nano, 2014, 8, 7571-7612.	7. 3	157
1790	A New Kind of Edge-Modified Spin Semiconductor in Graphene Nanoribbons. Journal of Physical Chemistry C, 2014, 118, 4475-4482.	1.5	12
1791	Emergent magnetism in irradiated graphene nanostructures. Carbon, 2014, 78, 196-203.	5.4	9
1792	FMR evidence of ferromagnetic correlations at zigzag edge states in single-layer graphene. Journal of Molecular Structure, 2014, 1076, 31-34.	1.8	15
1793	Coulomb edge effects in graphene nanoribbons. Solid State Communications, 2014, 196, 1-7.	0.9	4
1794	Electric field control of spin-resolved edge states in graphene quantum nanorings. Journal of Applied Physics, 2014, 115, .	1.1	19
1796	Tunable electronic properties induced by a defect-substrate in graphene/BC ₃ heterobilayers. Physical Chemistry Chemical Physics, 2014, 16, 22861-22866.	1.3	30

#	Article	IF	CITATIONS
1797	Half-metallicity in graphitic C3 N4 nanoribbons: An ab initio study. Physica Status Solidi (B): Basic Research, 2014, 251, 1386-1392.	0.7	12
1798	Molecular Spintronics: Destructive Quantum Interference Controlled by a Gate. Journal of the American Chemical Society, 2014, 136, 15065-15071.	6.6	65
1799	Graphene spintronics. Nature Nanotechnology, 2014, 9, 794-807.	15.6	1,290
1800	Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices. Nature Physics, 2014, 10, 743-747.	6.5	64
1801	Investigating the role of graphene in the photovoltaic performance improvement of dye-sensitized solar cell. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 190, 111-118.	1.7	8
1802	Scanning tunneling microscopy (STM) of graphene. , 2014, , 124-155.		1
1803	Raman identification of edge alignment of bilayer graphene down to the nanometer scale. Nanoscale, 2014, 6, 7519-7525.	2.8	8
1804	Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity. ACS Nano, 2014, 8, 9181-9187.	7.3	187
1805	Thermal conductivity and heat transport properties of graphene nanoribbons. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	34
1806	Intrinsic ferromagnetism in hexagonal boron nitride nanosheets. Journal of Chemical Physics, 2014, 140, 204701.	1.2	24
1807	Giant magnetoresistance and spin Seebeck coefficient in zigzag α-graphyne nanoribbons. Nanoscale, 2014, 6, 11121-11129.	2.8	46
1808	Spin-Polarized Negative Differential Resistance in a Self-Assembled Molecular Chain. Journal of Physical Chemistry C, 2014, 118, 21199-21203.	1.5	10
1809	A comparison of singlet and triplet states for one- and two-dimensional graphene nanoribbons using multireference theory. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	56
1810	Multiconfigurational character of the ground states of polycyclic aromatic hydrocarbons. A systematic study. Journal of Molecular Modeling, 2014, 20, 2208.	0.8	22
1811	Progress on the Theoretical Study of Two-Dimensional MoS2 Monolayer and Nanoribbon. Lecture Notes in Nanoscale Science and Technology, 2014, , 1-35.	0.4	2
1812	Edge magnetization and local density of states in chiral graphene nanoribbons. Physical Review B, 2014, 89, .	1.1	34
1813	Insertion of Line Defect in Nanoribbons of Graphene, Boron Nitride, and Hybrid of Them: An AIMD Study. Journal of Physical Chemistry C, 2014, 118, 14670-14676.	1.5	9
1814	First-principles study on electronic and magnetic properties of twisted graphene nanoribbon and Möbius strips. Carbon, 2014, 71, 150-158.	5.4	23

#	Article	IF	Citations
1815	Edge-, width- and strain-dependent semiconductor–metal transition in SnSe nanoribbons. RSC Advances, 2014, 4, 6933.	1.7	23
1816	Half-metallic ferromagnetism in zinc-blende (CaX)1/(YX)1 (001)(Y=Al, Ga, and In; X=N, P, and As) superlattices: A first-principles study. Computational Materials Science, 2014, 84, 306-309.	1.4	6
1817	Magnetic properties and half-metallic in bulk and (001) surface of Ti2MnAl Heusler alloy with Hg2CuTi-type structure. Thin Solid Films, 2014, 558, 241-246.	0.8	16
1818	Clar Theory Extended for Polyacenes and Beyond. Journal of Physical Chemistry A, 2014, 118, 4325-4338.	1.1	21
1819	Thermoelectric Properties of Graphene-Boron-Nitride Nanoribbons with Transition Metal Impurities. Journal of Electronic Materials, 2014, 43, 3470-3476.	1.0	11
1820	Spin-resolved self-doping tunes the intrinsic half-metallicity of AlN nanoribbons. Nano Research, 2014, 7, 63-70.	5.8	13
1821	Perfect spin filter and strong current polarization in carbon atomic chain with asymmetrical connecting points. Europhysics Letters, 2014, 105, 57003.	0.7	9
1822	Atomic Structure, Electronic Properties, and Reactivity of In-Plane Heterostructures of Graphene and Hexagonal Boron Nitride. Journal of Physical Chemistry C, 2014, 118, 16104-16112.	1.5	20
1823	Ab-initio study of half-metallic ferromagnetism in the XCsSr (X=C, Si, Ge, and Sn) half-Heusler compounds. Superlattices and Microstructures, 2014, 74, 146-155.	1.4	47
1824	Effect of Substrate Chemistry on the Bottom-Up Fabrication of Graphene Nanoribbons: Combined Core-Level Spectroscopy and STM Study. Journal of Physical Chemistry C, 2014, 118, 12532-12540.	1.5	113
1825	Electric field induced spin polarization in graphene nanodots. Physical Review B, 2014, 90, .	1.1	18
1826	Tunable electronic structures of $\langle i \rangle p \langle i \rangle$ -type Mg doping in AlN nanosheet. Journal of Applied Physics, 2014, 116, .	1.1	33
1827	Edge Chemistry Effects on the Structural, Electronic, and Electric Response Properties of Boron Nitride Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 21110-21118.	1.5	23
1828	Half-metallicity in aluminum-doped zigzag silicene nanoribbons. Journal Physics D: Applied Physics, 2014, 47, 105304.	1.3	17
1829	Graphene nanoribbon superlattices fabricated via He ion lithography. Applied Physics Letters, 2014, 104,	1.5	35
1830	Electronic structure trends of Möbius graphene nanoribbons from minimal-cell simulations. Computational Materials Science, 2014, 81, 264-268.	1.4	6
1831	Modelling of Plasmonic and Graphene Nanodevices. Springer Theses, 2014, , .	0.0	9
1832	Plasma-assisted nitrogen doping of graphene-encapsulated Pt nanocrystals as efficient fuel cell catalysts. Journal of Materials Chemistry A, 2014, 2, 472-477.	5.2	44

#	ARTICLE	IF	CITATIONS
1833	Perfect spin-filter, spin-valve, switching and negative differential resistance in an organic molecular device with graphene leads. RSC Advances, 2014, 4, 18522-18528.	1.7	24
1834	Prediction of half-metallic ferromagnetism in C-doped CdS nanowire. RSC Advances, 2014, 4, 24399.	1.7	8
1835	Half-metallicity of C/BN hybrid nanoribbons containing a topological defective interface. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 60, 224-228.	1.3	1
1836	Structural and electronic properties of a single C chain doped zigzag BN nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 817-821.	0.9	6
1837	Can binary sp half-metallic ferromagnets maintain half-metallicity when they form superlattices? A first-principles approach. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1208-1212.	0.9	9
1838	XTRANS: An electron transport package for current distribution and magnetic field in helical nanostructures. Computational Materials Science, 2014, 83, 426-433.	1.4	7
1839	Effect of edge states on the transport properties of pentacene–graphene nanojunctions. Chemical Physics Letters, 2014, 597, 1-5.	1.2	16
1840	Open-shell characters and second hyperpolarizabilities for hexagonal graphene nanoflakes including boron nitride domains. Chemical Physics Letters, 2014, 595-596, 220-225.	1.2	9
1841	Spin transport through electric field modulated graphene periodic ferromagnetic barriers. Physica B: Condensed Matter, 2014, 434, 69-73.	1.3	4
1842	Molecular dynamics simulation of graphene bombardment with Si ion. Journal of Molecular Structure, 2014, 1061, 19-25.	1.8	13
1843	Spin-polarized currents generated by magnetic Fe atomic chains. Nanotechnology, 2014, 25, 235202.	1.3	0
1844	Novel graphene-based nanostructures: physicochemical properties and applications. Russian Chemical Reviews, 2014, 83, 251-279.	2.5	49
1845	Evidence of van Hove Singularities in Ordered Grain Boundaries of Graphene. Physical Review Letters, 2014, 112, 226802.	2.9	61
1846	Graphene/clay composite electrode formed by exfoliating graphite with Laponite for simultaneous determination of ascorbic acid, dopamine, and uric acid. Monatshefte Fýr Chemie, 2014, 145, 1389-1394.	0.9	12
1847	Scaling laws for the band gap and optical response of phosphorene nanoribbons. Physical Review B, 2014, 89, .	1.1	256
1848	Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application. Surface and Coatings Technology, 2014, 254, 167-174.	2.2	156
1849	Conductance and Fano factor in normal/ferromagnetic/normal bilayer graphene junction. Journal of Physics Condensed Matter, 2014, 26, 255302.	0.7	5
1850	Formation of Oriented Graphene Nanoribbons over Heteroepitaxial Cu Surfaces by Chemical Vapor Deposition. Chemistry of Materials, 2014, 26, 5215-5222.	3.2	9

#	Article	IF	CITATIONS
1851	A 3D insight on the catalytic nanostructuration of few-layer graphene. Nature Communications, 2014, 5, 4109.	5.8	23
1852	Magnetic response of zigzag nanoribbons under electric fields. Journal of Physics Condensed Matter, 2014, 26, 216002.	0.7	7
1853	Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (1 11) substrate. Carbon, 2014, 77, 208-214.	5.4	9
1854	Structural and electromagnetic properties of double C chains decorated zigzag silicene nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 205-210.	1.3	4
1855	Numerical investigation of the effect of substrate surface roughness on the performance of zigzag graphene nanoribbon field effect transistors symmetrically doped with BN. Beilstein Journal of Nanotechnology, 2014, 5, 1569-1574.	1.5	15
1856	Edge-Termination and Core-Modification Effects of Hexagonal Nanosheet Graphene. Molecules, 2014, 19, 2361-2373.	1.7	21
1857	Edge-Sensitive Semiconducting Behaviour in Low-Defect Narrow Graphene Nanoribbons. Nanomaterials and Nanotechnology, 2014, 4, 12.	1,2	2
1858	Large magnetoresistance from long-range interface coupling in armchair graphene nanoribbon junctions. Applied Physics Letters, 2014, 105, .	1.5	3
1859	Electrostatic force microscopy and electrical isolation of etched few-layer graphene nano-domains. Applied Physics Letters, 2014, 105, .	1.5	2
1861	Graphene Overview. Electrochemical Energy Storage and Conversion, 2014, , 1-20.	0.0	1
1862	Spin disorder scattering in a ferromagnetic insulator-on-graphene structure. Physica Status Solidi (B): Basic Research, 2014, 251, 407-414.	0.7	3
1863	Production of spin-semiconducting zigzag graphene nanoribbons by constructing asymmetric notch on graphene edges. Materials Research Express, 2015, 2, 125006.	0.8	1
1864	Half-Metallic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -Type <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	1.5 nml:mn>3	13 <
1865	Strain-modified RKKY interaction in carbon nanotubes. Physical Review B, 2015, 92, .	1.1	5
1866	Contrasting interedge superexchange interactions of graphene nanoribbons embedded in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi></mml:math> -BN and graphane. Physical Review B, 2015, 92, .	1,1	17
1867	Valley caloritronics and its realization by graphene nanoribbons. Physical Review B, 2015, 92, .	1.1	35
1868	Ferromagnetism and perfect spin filtering in transition-metal-doped graphyne nanoribbons. Physical Review B, 2015, 92, .	1.1	39
1869	Thermoelectric properties of silicene in the topological- and band-insulator states. Physical Review B, 2015, 91, .	1.1	26

#	Article	IF	CITATIONS
1870	Divacancy-induced ferromagnetism in graphene nanoribbons. Physical Review B, 2015, 91, .	1.1	12
1871	Tuning the magnetic anisotropy in single-layer crystal structures. Physical Review B, 2015, 92, .	1.1	37
1872	Silicon and silicon-nitrogen impurities in graphene: Structure, energetics, and effects on electronic transport. Physical Review B, 2015, 92, .	1.1	23
1873	Layer-selective half-metallicity in bilayer graphene nanoribbons. Scientific Reports, 2015, 5, 9825.	1.6	10
1874	Perfect spin filtering effect and negative differential behavior in phosphorus-doped zigzag graphene nanoribbons. Scientific Reports, 2015, 5, 15966.	1.6	28
1875	Synthesis of Extended Atomically Perfect Zigzag Graphene - Boron Nitride Interfaces. Scientific Reports, 2015, 5, 16741.	1.6	33
1876	Magneto-induced tunability of thermo-spin current in deformed zigzag graphene nanoribbons. Journal of Applied Physics, 2015, 118, .	1.1	0
1877	An Overview of Nanomaterials. , 2015, , 22-108.		4
1878	Electronic and mechanical properties of hybrid graphene/h-BN nanoribbons. AIP Conference Proceedings, 2015, , .	0.3	1
1879	Graphene nanoribbons production from flat carbon nanotubes. Journal of Applied Physics, 2015, 118, 184301.	1.1	0
1880	Robust half-metallicity and topological aspects in two-dimensional Cu-TPyB. Scientific Reports, 2015, 5, 14098.	1.6	29
1881	Understanding the Unique Electronic Properties of Nano Structures Using Photoemission Theory. Scientific Reports, 2015, 5, 17834.	1.6	4
1882	- Functionalization of Carbon Nanotubes with Polymers. , 2015, , 848-869.		1
1883	Tuning of the Electronic Properties of Armchair Graphene Nanoribbons through Functionalization: Theoretical Study of ¹ î" _g O ₂ Border Addition. ChemPhysChem, 2015, 16, 3030-3037.	1.0	2
1884	Chemical Bonding of Transitionâ€Metal Co ₁₃ Clusters with Graphene. ChemPhysChem, 2015, 16, 3700-3710.	1.0	18
1885	Electricâ€fieldâ€induced magnetism of firstâ€row <i>d</i> ⁰ semiconductor nanowires and nanotubes. Physica Status Solidi (B): Basic Research, 2015, 252, 484-489.	0.7	2
1886	Edge State of Bi Thin Film Studied by Spin-Resolved ARPES. Hyomen Kagaku, 2015, 36, 412-417.	0.0	0
1887	Tuning the Electronic Structure of Graphene through Collective Electrostatic Effects. Advanced Materials Interfaces, 2015, 2, 1500323.	1.9	8

#	Article	IF	CITATIONS
1888	Electronic, magnetic, and spinâ€polarized transport properties of hybrid graphene/boronâ€nitride nanoribbons having 5â€8â€5 line defects at the heterojunction. Physica Status Solidi (B): Basic Research, 2015, 252, 573-581.	0.7	5
1889	Effect of spin-orbit coupling on spin transport at graphene/transition metal interface. Physica Status Solidi - Rapid Research Letters, 2015, 9, 544-549.	1.2	2
1890	Dispersive hybrid states and bandgap in zigzag graphene/BN heterostructures. Semiconductor Science and Technology, 2015, 30, 105002.	1.0	4
1891	Modulation of electronic properties with external fields in silicene-based nanostructures. Chinese Physics B, 2015, 24, 087302.	0.7	8
1893	Direct Topâ€Down Fabrication of Largeâ€Area Graphene Arrays by an In Situ Etching Method. Advanced Materials, 2015, 27, 4195-4199.	11.1	36
1894	From Graphene to Carbon Nanotubes: Variation of the Electronic States and Nonlinear Optical Responses. ChemPhysChem, 2015, 16, 2151-2158.	1.0	10
1895	Photomagnetic and nonlinear optical properties in <i>cisâ€trans</i> green fluoroprotein chromophore coupled Bisâ€imino nitroxide diradicals. International Journal of Quantum Chemistry, 2015, 115, 1561-1572.	1.0	12
1896	Graphene quantum interference photodetector. Beilstein Journal of Nanotechnology, 2015, 6, 726-735.	1.5	10
1897	Topological and Energetic Conditions for Lithographic Production of Carbon Nanotubes from Graphene. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	5
1898	Spin transport properties in lower n-acene–graphene nanojunctions. Physical Chemistry Chemical Physics, 2015, 17, 11292-11300.	1.3	22
1899	Electric field and substrate–induced modulation of spin-polarized transport in graphene nanoribbons on A3B5 semiconductors. Journal of Applied Physics, 2015, 117, .	1.1	29
1900	Stable half-metallic monolayers of FeCl2. Applied Physics Letters, 2015, 106, .	1.5	108
1901	Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 2015, 115, 4744-4822.	23.0	1,519
1902	Hydrogen sulfide gas sensor based on decorated zigzag graphene nanoribbon with copper. Sensors and Actuators B: Chemical, 2015, 219, 338-345.	4.0	37
1903	Energetics, Electron States, and Magnetization in Nearly Zigzag-Edged Graphene Nano-Ribbons. Journal of the Physical Society of Japan, 2015, 84, 024704.	0.7	10
1904	Hybrid structures of a BN nanoribbon/single-walled carbon nanotube: ab initio study. RSC Advances, 2015, 5, 55458-55467.	1.7	6
1905	Thermoelectric properties of zigzag silicene nanoribbons doped with Co impurity atoms. Journal of Magnetism and Magnetic Materials, 2015, 393, 305-309.	1.0	5
1906	Tunable half-metallic properties and spin Seebeck effects in zigzag-edged graphene nanoribbons adsorbed with V atom or V-benzene compound. Organic Electronics, 2015, 24, 80-88.	1.4	8

#	Article	IF	CITATIONS
1907	Dynamic conductance in L-shaped graphene nanosystems. Journal of Applied Physics, 2015, 117, 014303.	1.1	7
1908	Generalized Hamiltonian for a graphene subjected to arbitrary in-plane strains. Functional Materials Letters, 2015, 08, 1530001.	0.7	6
1909	Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene. Physical Review B, 2015, 91, .	1.1	60
1910	Effect of edge chemistry doping on the transport and optical properties for asymmetric armchair-edge graphene nanoribbons under a uniaxial strain. Applied Physics A: Materials Science and Processing, 2015, 120, 657-662.	1.1	1
1911	Spin transport in hydrogenated graphene. 2D Materials, 2015, 2, 022002.	2.0	81
1912	Two-dimensional Kagome phosphorus and its edge magnetism: a density functional theory study. Journal of Physics Condensed Matter, 2015, 27, 255006.	0.7	16
1913	Zigzag nanoribbons of two-dimensional silicene-like crystals: magnetic, topological and thermoelectric properties. Journal of Physics Condensed Matter, 2015, 27, 485301.	0.7	16
1914	Origin of room-temperature single-channel ballistic transport in zigzag graphene nanoribbons. Science China Materials, 2015, 58, 677-682.	3.5	5
1915	Role of edge dehydrogenation in magnetization and spin transport of zigzag graphene nanoribbons with line defects. Organic Electronics, 2015, 27, 212-220.	1.4	5
1916	First principles study of bilayer graphene formed by zigzag nanoribbons. IET Circuits, Devices and Systems, 2015, 9, 386-391.	0.9	2
1917	Electronic and magnetic properties of 1 T-TiSe ₂ nanoribbons. 2D Materials, 2015, 2, 044002.	2.0	21
1918	Two-Dimensional Layered Materials-Based Spintronics. Spin, 2015, 05, 1540011.	0.6	10
1919	Even–odd product variation of the Cn+ + D2 (n = 4–9) reaction: complexity of the linear carbon cation electronic states. Physical Chemistry Chemical Physics, 2015, 17, 24810-24819.	1.3	3
1920	Interface engineering of electronic properties of graphene/boron nitride lateral heterostructures. 2D Materials, 2015, 2, 041001.	2.0	40
1921	Ultra-narrow metallic armchair graphene nanoribbons. Nature Communications, 2015, 6, 10177.	5 . 8	359
1922	Selective Formation of Zigzag Edges in Graphene Cracks. ACS Nano, 2015, 9, 9027-9033.	7.3	24
1923	Edge state magnetism in zigzag-interfaced graphene via spin susceptibility measurements. Scientific Reports, 2015, 5, 13382.	1.6	39
1924	Electron confinement induced by diluted hydrogen-like ad-atoms in graphene ribbons. Physical Chemistry Chemical Physics, 2015, 17, 24707-24715.	1.3	7

#	Article	IF	CITATIONS
1925	Interface sensing and cutting of ultra-thin film based on UV-assisted AFM., 2015,,.		1
1926	Magnetic structure and Magnetic transport Properties of Graphene Nanoribbons With Sawtooth Zigzag Edges. Scientific Reports, 2014, 4, 7587.	1.6	41
1927	Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect. Physical Review Letters, 2015, 114, 016603.	2.9	428
1928	Magnetic phase transitions in pure zigzag graphone nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 753-760.	0.9	14
1929	Electronic properties and charge carrier mobilities of graphynes and graphdiynes from first principles. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015, 5, 215-227.	6.2	42
1930	Scaling laws of band gaps of phosphorene nanoribbons: A tight-binding calculation. Physical Review B, 2015, 91, .	1.1	114
1931	One-Dimensional Edge States with Giant Spin Splitting in a Bismuth Thin Film. Physical Review Letters, 2015, 114, 066402.	2.9	76
1932	Diradical character dependence of third-harmonic generation spectra in open-shell singlet systems. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	9
1933	Spin asymmetric band gap opening in graphene by Fe adsorption. Surface Science, 2015, 634, 62-67.	0.8	16
1934	Coupling site controlled spin transport through the graphene nanoribbon junction: A first principles investigation. Computational Materials Science, 2015, 99, 203-208.	1.4	6
1935	Electronic structures and transport properties of armchair graphene nanoribbons by ordered doping. Organic Electronics, 2015, 18, 135-142.	1.4	42
1936	Tailoring the electronic properties of a Z-shaped graphene field effect transistor via B/N doping. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 710-718.	0.9	16
1937	Resonant longitudinalZitterbewegungin zigzag graphene nanoribbons. Physical Review B, 2015, 91, .	1.1	6
1938	Tensile strain induced half-metallicity in graphene-like carbon nitride. Physical Chemistry Chemical Physics, 2015, 17, 6028-6035.	1.3	45
1939	Enhanced Ferromagnetism in a Mn ₃ C ₁₂ N ₁₂ H ₁₂ Sheet. ChemPhysChem, 2015, 16, 614-620.	1.0	39
1940	Transport of Polarons in Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2015, 6, 510-514.	2.1	41
1941	Nanosized graphene crystallite induced strong magnetism in pure carbon films. Nanoscale, 2015, 7, 4475-4481.	2.8	37
1942	C ₆₀ /Collapsed Carbon Nanotube Hybrids: A Variant of Peapods. Nano Letters, 2015, 15, 829-834.	4.5	26

#	Article	IF	CITATIONS
1943	Organic molecules deposited on graphene: A computational investigation of self-assembly and electronic structure. Journal of Chemical Physics, 2015, 142, 044301.	1.2	23
1944	Soft-landing electrospray ion beam deposition of sensitive oligoynes on surfaces in vacuum. International Journal of Mass Spectrometry, 2015, 377, 228-234.	0.7	25
1945	Scalable production of wrinkled and few-layered graphene sheets and their use for oil and organic solvent absorption. Physical Chemistry Chemical Physics, 2015, 17, 6913-6918.	1.3	23
1946	Boron-doped graphene as high-performance electrocatalyst for the simultaneously electrochemical determination of hydroquinone and catechol. Electrochimica Acta, 2015, 156, 228-234.	2.6	96
1947	Edge contact dependent spin transport for n-type doping zigzag-graphene with asymmetric edge hydrogenation. Scientific Reports, 2014, 4, 4038.	1.6	33
1948	Numerical Study of Graphene Superlattice-Based Photodetectors. IEEE Transactions on Electron Devices, 2015, 62, 593-600.	1.6	17
1949	Multilayer graphene synthesized using magnetron sputtering for planar supercapacitor application. Canadian Journal of Chemistry, 2015, 93, 160-164.	0.6	20
1950	Correlation between micrometer-scale ripple alignment and atomic-scale crystallographic orientation of monolayer graphene. Scientific Reports, 2014, 4, 7263.	1.6	21
1951	Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons. Journal of Chemical Physics, 2015, 142, 024706.	1.2	32
1952	The Effects of Dangling Bonds on AlN Nanoribbons: A First-Principles Study. Journal of Superconductivity and Novel Magnetism, 2015, 28, 271-275.	0.8	1
1953	Giant magnetism in punched zigzag-edged triangular-shaped graphene nanodisks. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	0
1954	Drastic modification of graphene oxide properties by incorporation of nickel: a simple inorganic chemistry approach. Journal of Materials Science, 2015, 50, 3425-3433.	1.7	1
1955	Electronic structure calculations of oxygen-doped diamond using DFT technique. Microelectronic Engineering, 2015, 146, 26-31.	1.1	14
1956	Uthrene, a radically new molecule?. Chemical Communications, 2015, 51, 5387-5390.	2.2	29
1957	Manipulation of magnetic state in phosphorene layer by non-magnetic impurity doping. New Journal of Physics, 2015, 17, 023056.	1.2	81
1958	Nitrogenated holey two-dimensional structures. Nature Communications, 2015, 6, 6486.	5.8	923
1959	First-principles prediction on silicene-based heterobilayers as a promising candidate for FET. Materials Chemistry and Physics, 2015, 156, 89-94.	2.0	9
1960	Tunable Magnetism and Half-Metallicity in Hole-Doped Monolayer GaSe. Physical Review Letters, 2015, 114, 236602.	2.9	350

#	Article	IF	CITATIONS
1961	The influence of edge defects on the electrical and thermal transport of graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 363-370.	1.3	7
1962	Interaction of BN- and BP-doped graphene nanoflakes with some representative neutral molecules and anions. Molecular Physics, 2015, 113, 2916-2929.	0.8	0
1963	Half-metallic and magnetic properties in nonmagnetic element embedded graphitic carbon nitride sheets. Physical Chemistry Chemical Physics, 2015, 17, 22136-22143.	1.3	25
1964	Electrical and Magnetic Properties of Graphene Films with Ni Nanoparticles. Materials Today: Proceedings, 2015, 2, 383-388.	0.9	1
1965	Uniformly Nanopatterned Graphene Field-Effect Transistors with Enhanced Properties. Nanoscale Research Letters, 2015, 10, 976.	3.1	6
1966	The critical contribution of unzipped graphene nanoribbons to scalable silicon–carbon fiber anodes in rechargeable Li-ion batteries. Nano Energy, 2015, 16, 446-457.	8.2	30
1967	Study of Nitrogen terminated doped zigzag GNR FET exhibiting negative differential resistance. Superlattices and Microstructures, 2015, 86, 355-362.	1.4	16
1968	Half-Metallic Ferromagnetism and Surface Functionalization-Induced Metal–Insulator Transition in Graphene-like Two-Dimensional Cr ₂ C Crystals. ACS Applied Materials & Diterfaces, 2015, 7, 17510-17515.	4.0	314
1969	Controllable Tailoring Graphene Nanoribbons with Tunable Surface Functionalities: An Effective Strategy toward High-Performance Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17441-17449.	4.0	52
1970	Theoretical Design of Open-Shell Singlet Molecular Systems for Nonlinear Optics. Journal of Physical Chemistry Letters, 2015, 6, 3236-3256.	2.1	142
1971	Magnetization due to localized states on graphene grain boundary. Scientific Reports, 2015, 5, 11744.	1.6	28
1972	Metal-free ferromagnetic metal and intrinsic spin semiconductor: two different kinds of SWCNT functionalized BN nanoribbons. Physical Chemistry Chemical Physics, 2015, 17, 7949-7959.	1.3	7
1973	The design of bipolar spin semiconductor based on zigzag–edge graphene nanoribbons. Carbon, 2015, 94, 317-325.	5.4	23
1974	Graphene-based protein biomarker detection. Bioanalysis, 2015, 7, 725-742.	0.6	26
1975	Wall by wall controllable unzipping of MWCNTs via intercalation with oxalic acid to produce multilayers graphene oxide ribbon. Chemical Engineering Journal, 2015, 281, 192-198.	6.6	97
1976	Ferromagnetic and antiferromagnetic order analysis of Fe- and FeO-modified Graphene-nano-ribbon: A Monte Carlo simulation study. Journal of Magnetism and Magnetic Materials, 2015, 395, 7-17.	1.0	28
1977	Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons. Journal of the American Chemical Society, 2015, 137, 8872-8875.	6.6	213
1978	Magnetic transport properties of DBTAA-based nanodevices with graphene nanoribbon electrodes. Organic Electronics, 2015, 25, 308-316.	1.4	25

#	Article	IF	CITATIONS
1979	Electronic Properties of Halogen-Adsorbed Graphene. Journal of Physical Chemistry C, 2015, 119, 17271-17277.	1.5	42
1980	Manifestation of coherent magnetic anisotropy in a carbon nanotube matrix with low ferromagnetic nanoparticle content. New Journal of Physics, 2015, 17, 023073.	1.2	16
1981	Adsorption of Ti atoms on zigzag silicene nanoribbons: influence on electric, magnetic, and thermoelectric properties. Journal Physics D: Applied Physics, 2015, 48, 215306.	1.3	6
1982	Structure dependent hydrogen induced etching features of graphene crystals. Applied Physics Letters, 2015, 106, .	1.5	14
1983	The Effects of Temperature and Vacancies on the Elastic Modulus and Strength of Graphene Sheet. Journal of Thermal Stresses, 2015, 38, 926-933.	1.1	8
1984	Molecular charge transfer via π–π interaction: an effective approach to realize the half-metallicity and spin-gapless-semiconductor in zigzag graphene nanoribbon. RSC Advances, 2015, 5, 53003-53011.	1.7	11
1985	Unravelling the photo-excited chlorophyll-a assisted deoxygenation of graphene oxide: formation of a nanohybrid for oxygen reduction. RSC Advances, 2015, 5, 65487-65495.	1.7	6
1986	The integrated spintronic functionalities of an individual high-spin state spin-crossover molecule between graphene nanoribbon electrodes. Nanotechnology, 2015, 26, 315201.	1.3	24
1987	First-principles study on electronic and magnetic properties of MnO3superhalogen cluster-doped bilayer graphene. Journal Physics D: Applied Physics, 2015, 48, 325002.	1.3	1
1988	Electronic and transmission properties of magnetotunnel junctions of cobalt/iron intercalated bilayer two dimensional sheets. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2661-2666.	0.9	1
1989	Stability of graphene-based heterojunction solar cells. RSC Advances, 2015, 5, 73575-73600.	1.7	75
1990	Robust Half-Metallicity and Electronic Structure of the New Full-Heusler Compounds CsBaX2 (X = C,) Tj ETQq $1\ 1\ 0$	0.784314 0.8	rgBT /Overlo
1991	A new two-dimensional metal–organic framework with high spin-filtering efficiency. Physical Chemistry Chemical Physics, 2015, 17, 17437-17444.	1.3	22
1992	New advances in nanographene chemistry. Chemical Society Reviews, 2015, 44, 6616-6643.	18.7	1,212
1993	Graphene Edges and Beyond: Temperature-Driven Structures and Electromagnetic Properties. ACS Nano, 2015, 9, 4669-4674.	7.3	31
1994	Structure and magnetic properties of open-ended silicon carbide nanotubes. RSC Advances, 2015, 5, 52754-52758.	1.7	2
1995	Electric field effect in ultrathin zigzag graphene nanoribbons. Chinese Physics B, 2015, 24, 076104.	0.7	5
1996	Magnetic transport properties of a trigonal graphene sandwiched between graphene nanoribbon electrodes. Carbon, 2015, 93, 335-341.	5.4	12

#	Article	IF	CITATIONS
1997	FMR Evidence of Stable Ferromagnetic Correlations at Zigzag Edge States in Graphene. Acta Physica Polonica A, 2015, 127, 537-539.	0.2	18
1998	Spin transport in a Zigzag normal/ferromagnetic graphene junction. Chinese Physics B, 2015, 24, 057202.	0.7	1
1999	Half-metallicity in armchair boron nitride nanoribbons: A first-principles study. Solid State Communications, 2015, 212, 19-24.	0.9	16
2000	Toward Cove-Edged Low Band Gap Graphene Nanoribbons. Journal of the American Chemical Society, 2015, 137, 6097-6103.	6.6	299
2001	Electronic Properties of Zigzag Graphene Nanoribbons Studied by TAO-DFT. Journal of Chemical Theory and Computation, 2015, 11, 2003-2011.	2.3	69
2002	Improved All-Carbon Spintronic Device Design. Scientific Reports, 2015, 5, 7634.	1.6	52
2003	CdS/Graphene Nanocomposite Photocatalysts. Advanced Energy Materials, 2015, 5, 1500010.	10.2	694
2004	A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nature Communications, 2015, 6, 6713.	5.8	290
2005	Transition Metal Doped Phosphorene: First-Principles Study. Journal of Physical Chemistry C, 2015, 119, 9198-9204.	1.5	227
2006	Temperature dependence of Joule heating in Zigzag Graphene Nanoribbon. Carbon, 2015, 89, 169-175.	5.4	28
2007	Resonance induced spin-selective transport behavior in carbon nanoribbon/nanotube/nanoribbon heterojunctions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1722-1725.	0.9	4
2008	The reconstructed edges of the hexagonal BN. Nanoscale, 2015, 7, 9723-9730.	2.8	41
2009	The magnetic and optical properties of 3d transition metal doped SnO ₂ nanosheets. RSC Advances, 2015, 5, 24306-24312.	1.7	29
2010	Ferromagnetic Graphene Nanoribbons: Edge Termination with Organic Radicals. Journal of Physical Chemistry C, 2015, 119, 10109-10115.	1.5	25
2011	Graphene oxide as a corrosion-inhibitive coating on magnesium alloys. RSC Advances, 2015, 5, 44149-44159.	1.7	54
2012	Temperature Dependence of the Reconstruction of Zigzag Edges in Graphene. ACS Nano, 2015, 9, 4786-4795.	7.3	68
2013	Tuning magnetic splitting of zigzag graphene nanoribbons by edge functionalization with hydroxyl groups. Journal of Applied Physics, 2015, 117, .	1.1	10
2014	Electronic structure and magnetism in $\langle i \rangle g \langle i \rangle$ -C4N3 controlled by strain engineering. Applied Physics Letters, 2015, 106, .	1.5	23

#	Article	IF	CITATIONS
2015	Charge, spin and thermal transport of graphene-based FNF multilayer. Physica B: Condensed Matter, 2015, 468-469, 61-65.	1.3	0
2016	Effect of electric field on the electronic and magnetic properties of a graphene nanoribbon/aluminium nitride bilayer system. RSC Advances, 2015, 5, 49308-49316.	1.7	25
2017	Sonication-assisted alcoholysis of boron nitride nanotubes for their sidewalls chemical peeling. Chemical Communications, 2015, 51, 7104-7107.	2.2	55
2018	Sharp Switching by Field-Effect Bandgap Modulation in All-Graphene Side-Gate Transistors. IEEE Journal of the Electron Devices Society, 2015, 3, 144-148.	1.2	5
2019	Enhancement of thermoelectric efficiency by embedding hexagonal boron-nitride cells in zigzag graphene nanoribbons. Journal Physics D: Applied Physics, 2015, 48, 235304.	1.3	17
2020	Spin currents and filtering behavior in zigzag graphene nanoribbons with adsorbed molybdenum chains. Journal of Physics Condensed Matter, 2015, 27, 135301.	0.7	3
2021	Model for spin waves and lasing in monolayer graphene films. Proceedings of SPIE, 2015, , .	0.8	1
2022	Bromination of graphene with pentagonal, hexagonal zigzag and armchair, and heptagonal edges. Journal of Materials Science, 2015, 50, 5183-5190.	1.7	15
2023	Computational study of adsorption of cobalt on benzene and coronene. Molecular Physics, 2015, 113, 1858-1864.	0.8	11
2024	Band gaps in jagged and straight graphene nanoribbons tunable by an external electric field. Journal of Physics Condensed Matter, 2015, 27, 145305.	0.7	33
2025	Graphene-templated directional growth of an inorganic nanowire. Nature Nanotechnology, 2015, 10, 423-428.	15.6	75
2026	Unexpected Magnetic Semiconductor Behavior in Zigzag Phosphorene Nanoribbons Driven by Half-Filled One Dimensional Band. Scientific Reports, 2015, 5, 8921.	1.6	88
2027	An organic photovoltaic featuring graphene nanoribbons. Chemical Communications, 2015, 51, 9185-9188.	2.2	17
2028	Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping. Small, 2015, 11, 3143-3152.	5.2	13
2029	The formation mechanism of multiple vacancies and amorphous graphene under electron irradiation. Nanoscale, 2015, 7, 8315-8320.	2.8	12
2030	Two-dimensional hexagonal V ₂ O nanosheet and nanoribbons. Applied Physics Express, 2015, 8, 035201.	1.1	2
2031	Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review. Reports on Progress in Physics, 2015, 78, 036501.	8.1	93
2032	Tuning electronic and magnetic properties of zigzag graphene nanoribbons with a Stone–Wales line defect by position and axis tensile strain. RSC Advances, 2015, 5, 33407-33413.	1.7	15

#	Article	IF	CITATIONS
2033	First-principles prediction of graphene/SnO2 heterostructure as a promising candidate for FET. RSC Advances, 2015, 5, 35377-35383.	1.7	5
2034	Formation of graphene nanoribbons and Y-junctions by hydrogen induced anisotropic etching. RSC Advances, 2015, 5, 35297-35301.	1.7	16
2035	Curvature in graphene nanoribbons generates temporally and spatially focused electric currents. Nanoscale, 2015, 7, 8627-8635.	2.8	17
2036	Tuning the electronic structure and magnetic properties of graphene by <i>i=</i> â€" <i>i=</i> sâ€" <i>i=</i> stacking with V _{<i>m</i>i>} B _{<i>n</i>} (<i>m</i> a‰, <i>n</i> a‰, <i>n</i> a‰, <i>m</i> a‰, <i>molecular nanomagnets. Journal Physics D: Applied Physics, 2015, 48, 195003.</i>	1.3	2
2037	N-Doped Zigzag Graphene Nanoribbons on Si(001): a First-Principles Calculation. Chinese Physics Letters, 2015, 32, 077102.	1.3	2
2038	Bias voltage control of magnetic phase transitions in graphene nanojunctions. Nanotechnology, 2015, 26, 345203.	1.3	3
2039	Ammonia borane in an external electric field: structure, charge transfer, and chemical bonding. RSC Advances, 2015, 5, 65991-65997.	1.7	11
2040	Charging-induced asymmetric spin distribution in an asymmetric (9,0) carbon nanotube. Physical Chemistry Chemical Physics, 2015, 17, 28860-28865.	1.3	6
2041	Magnetic properties in a IIIA-nitride monolayer doped with Cu: a density functional theory investigation. RSC Advances, 2015, 5, 82357-82362.	1.7	10
2042	Polar discontinuities and 1D interfaces in monolayered materials. Progress in Surface Science, 2015, 90, 444-463.	3.8	18
2043	On Trapping Porphyrin Free-Bases Between Graphene Oxide Plates. Nano, 2015, 10, 1550057.	0.5	1
2044	Detection of graphene chirality using achiral liquid crystalline platforms. Journal of Applied Physics, 2015, 118, 114302.	1.1	14
2045	Influence of boundary types on rectifying behaviors in hexagonal boron-nitride/graphene nanoribbon heterojunctions. Organic Electronics, 2015, 27, 137-142.	1.4	39
2046	Graphene-Based Dye-Sensitized Solar Cells: A Review. Science of Advanced Materials, 2015, 7, 1863-1912.	0.1	103
2047	Tailoring the transmission lineshape spectrum of zigzag graphene nanoribbon based heterojunctions via controlling their width and edge protrusions. Nanoscale, 2015, 7, 20003-20008.	2.8	11
2048	Characterization of Graphene and Transition Metal Dichalcogenide at the Atomic Scale. Journal of the Physical Society of Japan, 2015, 84, 121005.	0.7	6
2049	Theoretical Prediction of a Stable 2D Crystal of Vanadium Porphyrin: A Half-Metallic Ferromagnet. Journal of Physical Chemistry C, 2015, 119, 25657-25662.	1.5	21
2050	Edge states in graphene-like systems. Synthetic Metals, 2015, 210, 56-67.	2.1	40

#	Article	IF	CITATIONS
2051	Enhancement of the Carbon Dots/K ₂ S ₂ O ₈ Chemiluminescence System Induced by Triethylamine. Analytical Chemistry, 2015, 87, 11167-11170.	3.2	30
2052	Direct oriented growth of armchair graphene nanoribbons on germanium. Nature Communications, 2015, 6, 8006.	5.8	157
2053	Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz. Journal of Chemical Physics, 2015, 142, 214109.	1.2	21
2054	Electromechanical response at polar zigzag boundaries in hybrid monolayers. Physical Review B, 2015, 91, .	1.1	10
2055	Optical properties of armchair graphene nanoribbons with Stone–Wales defects and hydrogenation on the defects. RSC Advances, 2015, 5, 68722-68727.	1.7	10
2056	Magnetic property and possible half-metal behavior in Co-doped graphene. Journal of Applied Physics, 2015, 117, 084311.	1.1	12
2057	Nitrogen-Doping Induced Self-Assembly of Graphene Nanoribbon-Based Two-Dimensional and Three-Dimensional Metamaterials. Nano Letters, 2015, 15, 5770-5777.	4.5	80
2058	Noncovalent Molecular Doping of Twoâ€Dimensional Materials. ChemNanoMat, 2015, 1, 542-557.	1.5	41
2059	Long-range and strong ferromagnetic graphene by compensated n–p codoping and π–π stacking. Carbon, 2015, 95, 65-71.	5.4	11
2060	Enhanced nonlocal Andreev reflection in $F S F$ graphene spin-valve. Physica C: Superconductivity and Its Applications, 2015, 519, 124-129.	0.6	3
2061	First-principles study of the alkali earth metal atoms adsorption on graphene. Applied Surface Science, 2015, 356, 668-673.	3.1	90
2062	Transition metal adatoms on graphene: A systematic density functional study. Carbon, 2015, 95, 525-534.	5.4	144
2063	From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy. ACS Nano, 2015, 9, 8997-9011.	7.3	127
2064	Formation of Klein Edge Doublets from Graphene Monolayers. ACS Nano, 2015, 9, 8916-8922.	7.3	9
2065	Sub-Nanometer Width Armchair Graphene Nanoribbon Energy Gap Atlas. Journal of Physical Chemistry Letters, 2015, 6, 3228-3235.	2.1	13
2066	First-Principles Study of Half-Metallic Ferromagnetism of the Full-Heusler Compounds RbSrX2 (X = C,) Tj $ETQq1\ 1$	0,784314	rgBT Over
2067	Silicene spintronics — A concise review. Chinese Physics B, 2015, 24, 087201.	0.7	32
2068	Synthesis, charge transport and device applications of graphene nanoribbons. Synthetic Metals, 2015, 210, 109-122.	2.1	30

#	Article	IF	CITATIONS
2069	Tunable band gap and magnetism of the two-dimensional nickel hydroxide. RSC Advances, 2015, 5, 77154-77158.	1.7	24
2070	Adsorbing a PVDF polymer via noncovalent interactions to effectively tune the electronic and magnetic properties of zigzag SiC nanoribbons. Physical Chemistry Chemical Physics, 2015, 17, 24038-24047.	1.3	11
2071	Control of electronic transport in nanohole defective zigzag graphene nanoribbon by means of side alkene chain. RSC Advances, 2015, 5, 19152-19158.	1.7	10
2072	A DFT study of electronic and magnetic properties of titanium decorating point-defective graphene. Applied Surface Science, 2015, 356, 1025-1031.	3.1	9
2073	Electronic structures and transport properties of zigzag BNC nanoribbons with different combinations of BN and graphene nanoribbons. Computational Condensed Matter, 2015, 4, 40-45.	0.9	15
2074	Negative differential resistance and stable conductance switching behaviors of salicylideneaniline molecular devices sandwiched between armchair graphene nanoribbon electrodes. Organic Electronics, 2015, 27, 41-45.	1.4	31
2075	Enhanced microwave absorption properties of epoxy composites reinforced with Fe50Ni50-functionalized graphene. Journal of Alloys and Compounds, 2015, 653, 14-21.	2.8	87
2076	Magnetic structure and magnetic transport characteristics of nanostructures based on armchair-edged graphene nanoribbons. Journal of Materials Chemistry C, 2015, 3, 9657-9663.	2.7	40
2077	Correlation between the residual stress in 3C-SiC/Si epifilm and the quality of epitaxial graphene formed thereon. IOP Conference Series: Materials Science and Engineering, 2015, 79, 012004.	0.3	4
2078	Effects of polar and nonpolar on band structures in ultrathin ZnO/GaN type-II superlattices. Solid State Communications, 2015, 221, 14-17.	0.9	4
2079	Vacancy-induced insulator – direct spin gapless semiconductor – half-metal transition in double perovskite La2CrFeO6: A first-principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2897-2901.	0.9	8
2080	Zigzag faceting and width refinement of graphene nanoribbons and nanoperforations via catalyzed edge-annealing on Cu(111). Solid State Communications, 2015, 224, 76-80.	0.9	1
2081	Self-Assembly Strategy for Fabricating Connected Graphene Nanoribbons. ACS Nano, 2015, 9, 12035-12044.	7.3	81
2082	Spin filtering in a magnetized zigzag phosphorene nanoribbon. Journal Physics D: Applied Physics, 2015, 48, 485301.	1.3	18
2083	Spin effects in thermoelectric phenomena in SiC nanoribbons. Physical Chemistry Chemical Physics, 2015, 17, 1925-1933.	1.3	11
2084	Antiferromagnetic edge states in carbon nanotubes with hydrogen line defect abundancy. Current Applied Physics, 2015, 15, 163-168.	1.1	2
2085	Structural and electronic properties of a single Si chain doped zigzag AlN nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 68, 59-64.	1.3	1
2086	Anisotropic resistivity of the monolayer graphene in the trigonal warping and connected Fermi curve regimes. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 68, 28-32.	1.3	5

#	Article	IF	CITATIONS
2087	The electronic properties of the doped zigzag silicon carbon nanoribbon. Solid State Communications, 2015, 202, 69-72.	0.9	2
2088	Edge reconstruction-mediated graphene fracture. Nanoscale, 2015, 7, 2716-2722.	2.8	24
2089	A theoretical study on the structural and physical properties of the ground-state CaC. Solid State Communications, 2015, 203, 10-15.	0.9	2
2090	Spin filtering behaviors for a carbon chain connected with armchair- and zigzag-edged graphene nanoribbon electrodes. Solid State Communications, 2015, 203, 26-30.	0.9	6
2091	Ultra-Flexibility and Unusual Electronic, Magnetic and Chemical Properties of Waved Graphenes and Nanoribbons. Scientific Reports, 2014, 4, 4198.	1.6	33
2092	Evidencing the existence of intrinsic half-metallicity and ferromagnetism in zigzag gallium sulfide nanoribbons. Scientific Reports, 2014, 4, 5773.	1.6	8
2094	MXene nanoribbons. Journal of Materials Chemistry C, 2015, 3, 879-888.	2.7	65
2095	Possible polaron formation of zigzag graphene nano-ribbon in the presence of Rashba spin–orbit coupling. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 66, 303-308.	1.3	16
2096	Spin transport and tunnel magnetoresistance in ferromagnetic graphene/Thue–Morse graphene superlattice double junction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 192-198.	0.9	7
2097	Bottomâ€Up Synthesis of Chemically Precise Graphene Nanoribbons. Chemical Record, 2015, 15, 295-309.	2.9	151
2098	Transmission Through Gate-Induced Magnetic Islands on Graphene Nanoribbons. Journal of Low Temperature Physics, 2015, 179, 69-74.	0.6	0
2099	Halfâ€Metallicity in Singleâ€Layered Manganese Dioxide Nanosheets by Defect Engineering. Angewandte Chemie - International Edition, 2015, 54, 1195-1199.	7.2	177
2100	Molecular charge transfer by adsorbing TCNQ/TTF molecules via π–π interaction: a simple and effective strategy to modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons. Physical Chemistry Chemical Physics, 2015, 17, 941-950.	1.3	14
2101	Tuning spin polarization and spin transport of zigzag graphene nanoribbons by line defects. Physical Chemistry Chemical Physics, 2015, 17, 638-643.	1.3	29
2102	Macroscopic behavior and microscopic magnetic properties of nanocarbon. Journal of Magnetism and Magnetic Materials, 2015, 383, 78-82.	1.0	1
2103	First-principles Studies on Electronic and Magnetic Properties of I A –III A and I A –IV A Compounds with Zinc-Blende and Wurtzite Structures. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1535-1541.	0.8	4
2104	Conductance recovery and spin polarization in boron and nitrogen co-doped graphene nanoribbons. Carbon, 2015, 81, 339-346.	5.4	14
2105	Fabrication of shape-controlled reduced graphene oxide nanorings by Au@Pt nanoring lithography. Nanoscale, 2015, 7, 460-464.	2.8	14

#	Article	IF	CITATIONS
2106	Voltage-driven spintronic logic gates in graphene nanoribbons. Scientific Reports, 2014, 4, 6320.	1.6	27
2107	Spin-dependent transport properties of an armchair boron-phosphide nanoribbon embedded between two graphene nanoribbon electrodes. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 65, 61-67.	1.3	13
2108	Edge effect on magnetic phases of doped zigzag graphone nanoribbons. Journal of Magnetism and Magnetic Materials, 2015, 374, 394-401.	1.0	22
2109	Magnetic Exchange Coupling and Anisotropy of 3d Transition Metal Nanowires on Graphyne. Scientific Reports, 2014, 4, 4014.	1.6	56
2110	Structural, electronic and magnetic properties of the Si chains doped zigzag AlN nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 65, 114-119.	1.3	7
2111	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
2112	Model study of temperature dependent dynamic antiferromagnetic spin susceptibility in graphene. IOP Conference Series: Materials Science and Engineering, 2016, 149, 012192.	0.3	3
2113	The Effect of Adsorbed Molecules on Electronic Structure and Magnetic Properties of Nanographites. Solid State Phenomena, 0, 247, 111-117.	0.3	O
2114	Preparation of Graphene Quantum Dots and Their Application in Cell Imaging. Journal of Nanomaterials, 2016, 2016, 1-9.	1.5	23
2115	Ab Initio Theories of the Structural, Electronic, and Optical Properties of Semiconductors: Bulk Crystals to Nanostructures. , 2016, , .		O
2116	Tuning of the electronic properties of H-passivated armchair graphene nanoribbons by mild border oxidation: Theoretical study on periodic models. International Journal of Quantum Chemistry, 2016, 116, 1281-1284.	1.0	1
2117	The Nanoparticle Size Effect in Graphene Cutting: A "Pacâ€Man―Mechanism. Angewandte Chemie - International Edition, 2016, 55, 9918-9921.	7.2	28
2118	The Nanoparticle Size Effect in Graphene Cutting: A "Pacâ€Man―Mechanism. Angewandte Chemie, 2016, 128, 10072-10075.	1.6	8
2119	Magnetic properties in AlN nanosheet doped with alkali metals: A first-principles study. Physica Status Solidi (B): Basic Research, 2016, 253, 1816-1823.	0.7	12
2120	Twoâ€dimensional monolayer designs for spintronics applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 441-455.	6.2	64
2121	Regioselective multistep reconstructions of halfâ€saturated zigzag carbon nanotubes. Journal of Computational Chemistry, 2016, 37, 1363-1366.	1.5	1
2122	Electronic structures of p-type impurity in ZrS ₂ monolayer. RSC Advances, 2016, 6, 58325-58328.	1.7	6
2123	Electric field modulated half-metallicity of semichlorinated GaN nanosheets. Solid State Communications, 2016, 245, 5-10.	0.9	6

#	Article	IF	CITATIONS
2124	Electric gating induced bandgaps and enhanced Seebeck effect in zigzag bilayer graphene ribbons. Semiconductor Science and Technology, 2016, 31, 085002.	1.0	8
2125	Modulating the spin transport behaviors in ZBNCNRs by edge hydrogenation and position of BN chain. AIP Advances, 2016, 6, 035116.	0.6	6
2126	Magnetic effects in sulfur-decorated graphene. Scientific Reports, 2016, 6, 21460.	1.6	11
2127	Metal–Insulator Transition Induced by Spin Reorientation in Fe ₇ Se ₈ Grain Boundaries. Inorganic Chemistry, 2016, 55, 12912-12922.	1.9	19
2128	Lower Electric Field-Driven Magnetic Phase Transition and Perfect Spin Filtering in Graphene Nanoribbons by Edge Functionalization. Journal of Physical Chemistry Letters, 2016, 7, 5049-5055.	2.1	39
2129	Manipulating spin polarization and carrier mobility in zigzag graphene ribbons using an electric field. , 2016, , .		1
2130	Competition of edge effects on the electronic properties and excitonic effects in short graphene nanoribbons. New Journal of Physics, 2016, 18, 123033.	1.2	2
2131	Efficient spin-filter and negative differential resistance behaviors in FeN4 embedded graphene nanoribbon device. Journal of Applied Physics, 2016, 119, .	1.1	8
2132	Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons. Scientific Reports, 2016, 6, 39083.	1.6	15
2133	The study of electronic structure and properties of silicene for gas sensor application. AIP Conference Proceedings, 2016, , .	0.3	9
2134	Tailoring graphene magnetism by zigzag triangular holes: A first-principles thermodynamics study. AIP Advances, 2016, 6, 035023.	0.6	9
2135	Half-metallicity obtained in silicene nanosheet by nitrogenation engineering. Journal of Applied Physics, 2016, 120, 234303.	1.1	9
2136	Effects of line defects on spin-dependent electronic transport of zigzag MoS2 nanoribbons. AIP Advances, 2016, 6, 015015.	0.6	14
2137	Spin-state transition induced half metallicity in a cobaltate from first principles. Applied Physics Letters, 2016, 108, .	1.5	18
2138	Effective magnetic correlations in hole-doped graphene nanoflakes. Physical Review B, 2016, 94, .	1.1	23
2139	Magnetic and electronic properties of porphyrin-based molecular nanowires. AIP Advances, 2016, 6, 015216.	0.6	9
2140	Electronic, transport, and magnetic properties of punctured carbon nanotubes. Physical Review B, 2016, 94, .	1.1	3
2141	Enhanced half-metallicity in orientationally misaligned graphene/hexagonal boron nitride lateral heterojunctions. Physical Review B, 2016, 94, .	1.1	17

#	Article	IF	CITATIONS
2142	Direct imaging charge distribution in reduced graphene oxide sheets induced by isolated charges. Journal Physics D: Applied Physics, 2016, 49, 415303.	1.3	4
2143	Wide-band-gap wrinkled nanoribbon-like structures in a continuous metallic graphene sheet. Physical Review B, 2016, 94, .	1.1	7
2144	Phase transition and spin-resolved transport in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2016, 94, .</mml:mn></mml:msub></mml:math 	mm\> ∡.a m	l:m/sub>
2145	Electronic structures and edge effects of Ga 2 S 2 nanoribbons. Chinese Physics B, 2016, 25, 107101.	0.7	1
2146	Nanoribbons: From fundamentals to state-of-the-art applications. Applied Physics Reviews, 2016, 3, .	5 . 5	77
2147	Graphene nanoribbons epitaxy on boron nitride. Applied Physics Letters, 2016, 108, .	1.5	21
2148	Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets. Scientific Reports, 2016, 6, 31499.	1.6	40
2149	Electronic and magnetic properties of H-terminated graphene nanoribbons deposited on the topological insulator Sb2Te3. Scientific Reports, 2016, 6, 29009.	1.6	6
2151	Realizing stable fully spin polarized transport in SiC nanoribbons with dopant. Applied Physics Letters, 2016, 108, 233106.	1.5	17
2152	Spin and charge thermopower effects in the ferromagnetic graphene junction. Journal of Applied Physics, 2016, 120, .	1.1	7
2153	Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Applied Physics Letters, 2016, 109, .	1.5	20
2154	Intrinsic magnetism of monolayer graphene oxide quantum dots. Applied Physics Letters, 2016, 108, .	1.5	22
2155	Effect of temperature on the conductance of GNRFET. AIP Conference Proceedings, 2016, , .	0.3	3
2156	Spin density waves predicted in zigzag puckered phosphorene, arsenene and antimonene nanoribbons. AIP Advances, 2016, 6, .	0.6	20
2157	Edge-state-induced energy splitting of exciton triplet states in graphene nanoflakes. Journal of Applied Physics, 2016, 120, 204301.	1.1	2
2158	First-principles study of line-defect-embedded zigzag graphene nanoribbons: electronic and magnetic properties. Physical Chemistry Chemical Physics, 2016, 18, 12350-12356.	1.3	20
2159	Controllable electronic and magnetic properties in a two-dimensional germanene heterostructure. Physical Chemistry Chemical Physics, 2016, 18, 12169-12174.	1.3	13
2160	Mg/Ca decorated on carbon-doped boron nitride sheet: Application for gas adsorption. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 298-304.	1.0	15

#	Article	IF	CITATIONS
2161	Quantum transport behavior of Ni-based dinuclear complexes in presence of zigzag graphene nanoribbon as electrode. Chemical Physics, 2016, 478, 173-177.	0.9	6
2162	Electronic and Optical Properties of the Narrowest Armchair Graphene Nanoribbons Studied by Density Functional Methods. Australian Journal of Chemistry, 2016, 69, 960.	0.5	10
2163	Doping Effect on Edge-Terminated Ferromagnetic Graphene Nanoribbons. Journal of Physical Chemistry C, 2016, 120, 11237-11244.	1.5	22
2164	Graphyne core/shell nanoparticles: Monte Carlo study of thermal and magnetic properties. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 053206.	0.9	19
2165	Low-dimensional ScO ₂ with tunable electronic and magnetic properties: first-principles studies. Journal of Physics Condensed Matter, 2016, 28, 015004.	0.7	1
2166	Magnetic structures and magnetic device properties of edge-modified armchair-edged graphene nanoribbons. Carbon, 2016, 106, 252-259.	5.4	14
2167	Fine tuning the band-gap of graphene by atomic and molecular doping: a density functional theory study. RSC Advances, 2016, 6, 55990-56003.	1.7	40
2168	Graphene-based half-metal and spin-semiconductor for spintronic applications. Journal of Physics Condensed Matter, 2016, 28, 126004.	0.7	2
2169	Impact of the Electron–Phonon Interactions on the Polaron Dynamics in Graphene Nanoribbons. Journal of Physical Chemistry A, 2016, 120, 4901-4906.	1.1	19
2170	Versatile Fabrication of Self-Aligned Nanoscale Hall Devices Using Nanowire Masks. Nano Letters, 2016, 16, 3109-3115.	4.5	4
2171	Transport properties through hexagonal boron nitride clusters embedded in graphene nanoribbons. Nanotechnology, 2016, 27, 185203.	1.3	7
2172	A theoretical investigation on the magnetic and transport properties of the phosphorus nanoribbons with tetragons at the edges. Chemical Physics Letters, 2016, 652, 1-5.	1.2	7
2173	Scanning tunneling microscopy and density functional theory investigations on molecular self-assembly of graphene on Ru(0 0 0 1). Applied Surface Science, 2016, 367, 424-431.	3.1	7
2174	Rise of silicene: A competitive 2D material. Progress in Materials Science, 2016, 83, 24-151.	16.0	713
2175	Signatures of single quantum dots in graphene nanoribbons within the quantum Hall regime. Nanoscale, 2016, 8, 11480-11486.	2.8	10
2176	First-principles design of spintronics materials. National Science Review, 2016, 3, 365-381.	4.6	344
2177	A simple route to Develop Highly porous Nano Polypyrrole/Reduced Graphene Oxide Composite film for Selective Determination of Dopamine. Electrochimica Acta, 2016, 206, 77-85.	2.6	40
2178	The effects on the electronic properties of BN nanoribbon with C-chain substitution doping. Solid State Communications, 2016, 240, 33-36.	0.9	4

#	Article	IF	CITATIONS
2179	Controlled rippling of graphene via irradiation and applied strain modify its mechanical properties: a nanoindentation simulation study. Physical Chemistry Chemical Physics, 2016, 18, 13897-13903.	1.3	13
2180	Carbon Nanotube Interconnects â^' A Promising Solution for VLSI Circuits. IETE Journal of Education Online, 2016, 57, 46-64.	0.7	27
2181	Room-temperature metal-free ferromagnetism, stability, and spin transport properties in topologically fluorinated silicon carbide nanotubes. RSC Advances, 2016, 6, 39595-39604.	1.7	2
2182	Charge and Paramagnetic Spin Susceptibilities of Doped Gapped Graphene-Like Structures. Journal of Electronic Materials, 2016, 45, 2870-2878.	1.0	1
2183	Topological phases in two-dimensional materials: a review. Reports on Progress in Physics, 2016, 79, 066501.	8.1	385
2184	Band Gap Opening of Graphene by Forming Heterojunctions with the 2D Carbonitrides Nitrogenated Holey Graphene, g-C ₃ N ₄ , and g-CN: Electric Field Effect. Journal of Physical Chemistry C, 2016, 120, 11299-11305.	1.5	40
2185	The co-design of interface sensing and tailoring of ultra-thin film with ultrasonic vibration-assisted AFM system. Nanotechnology, 2016, 27, 235302.	1.3	10
2186	Giant decreasing of spin current in a single molecular junction with twisted zigzag graphene nanoribbon electrodes. Carbon, 2016, 110, 200-206.	5 . 4	53
2187	Electrochemical catalysis at low dimensional carbons: Graphene, carbon nanotubes and beyond – A review. Applied Materials Today, 2016, 5, 134-141.	2.3	79
2188	Tunable Conductivity and Half Metallic Ferromagnetism in Monolayer Platinum Diselenide: A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 25030-25036.	1.5	38
2189	Simultaneous and sensitive detection of acetaminophen and valacyclovir based on two dimensional graphene nanosheets. Journal of Electroanalytical Chemistry, 2016, 780, 241-248.	1.9	40
2190	Study of Transport Properties in Armchair Graphyne Nanoribbons: A Density Functional Approach. Communications in Theoretical Physics, 2016, 66, 143-148.	1.1	1
2191	Anomalous enhancement of Seebeck coefficients of the graphene/hexagonal boron nitride composites. Japanese Journal of Applied Physics, 2016, 55, 1102A9.	0.8	4
2192	The opposite induced magnetic moment in narrow zigzag graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3738-3742.	0.9	4
2193	Theoretical investigations of half-metallic ferromagnetism in new Half–Heusler YCrSb and YMnSb alloys using first-principle calculations. Chinese Physics B, 2016, 25, 107402.	0.7	19
2194	Theoretical realization of half-metallicity in two-dimensional monolayered molybdenum dinitride by Mo vacancy tuning. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 2669-2673.	0.9	4
2195	Electronic properties and nonlinear optical responses of boron/nitrogen-doped zigzag graphene nanoribbons. Canadian Journal of Chemistry, 2016, 94, 620-625.	0.6	9
2196	Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior. European Physical Journal B, 2016, 89, 1.	0.6	11

#	Article	IF	CITATIONS
2197	Theoretical Prediction of the Intrinsic Half-Metallicity in Surface-Oxygen-Passivated Cr ₂ N MXene. Journal of Physical Chemistry C, 2016, 120, 18850-18857.	1.5	118
2198	Gate-enhanced thermoelectric effects in all-carbon quantum devices. Carbon, 2016, 109, 411-417.	5.4	24
2199	Polymer Devices with Graphene: Solar Cells and Ultracapacitors. , 2016, , 209-226.		1
2200	Electronic properties and electron–electron interactions in graphene quantum dots. Physica Status Solidi - Rapid Research Letters, 2016, 10, 13-23.	1.2	17
2201	Correlated electronic properties of some graphene nanoribbons: A DMRG study. Physical Review B, 2016, 94, .	1.1	21
2202	Half-metallic Dirac cone in zigzag graphene nanoribbons on graphene. Physical Review B, 2016, 94, .	1.1	19
2203	Graphene quantum dots: wave function mapping by scanning tunneling spectroscopy and transport spectroscopy of quantum dots prepared by local anodic oxidation. Physica Status Solidi - Rapid Research Letters, 2016, 10, 24-38.	1.2	7
2204	Tunable electronic and magnetic properties of twoâ€dimensional materials and their oneâ€dimensional derivatives. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 324-350.	6.2	71
2205	Graphene and Its Hybrids as Electrode Materials for High-Performance Lithium-Ion Batteries. , 2016, , 133-152.		0
2206	Self-Organized Criticality, Percolation, and Electrical Instability in Graphene Analogs. , 2016, , 209-220.		0
2207	Optoelectronic and Transport Properties of Gapped Graphene. , 2016, , 489-504.		2
2208	Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials. Nanoscale, 2016, 8, 17998-18020.	2.8	83
2209	The diverse electronic properties of C ₄ N ₃ monolayer under biaxial compressive strain: a theoretical study. Journal Physics D: Applied Physics, 2016, 49, 295301.	1.3	9
2210	Vacancy Engineering for Tuning Electron and Phonon Structures of Twoâ€Dimensional Materials. Advanced Energy Materials, 2016, 6, 1600436.	10.2	198
2211	Facile and simultaneous synthesis of graphene quantum dots and reduced graphene oxide for bio-imaging and supercapacitor applications. New Journal of Chemistry, 2016, 40, 9111-9124.	1.4	49
2212	Room-temperature magnetism on the zigzag edges of phosphorene nanoribbons. Physical Review B, 2016, 94, .	1.1	58
2213	Edge or interface effect on bandgap openings in graphene nanostructures: A thermodynamic approach. Coordination Chemistry Reviews, 2016, 326, 1-33.	9.5	16
2214	Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3198-3205.	0.9	18

#	Article	IF	CITATIONS
2215	Edge magnetism of finite graphene-like nanoribbons in the presence of intrinsic spin–orbit interaction and perpendicular electric field. Nanotechnology, 2016, 27, 315201.	1.3	16
2216	DFT-based study on the mechanisms of the oxygen reduction reaction on Co(acetylacetonate) < sub > 2 < /sub > supported by N-doped graphene nanoribbon. RSC Advances, 2016, 6, 79662-79667.	1.7	5
2217	Synthesis of NBN-Type Zigzag-Edged Polycyclic Aromatic Hydrocarbons: 1,9-Diaza-9a-boraphenalene as a Structural Motif. Journal of the American Chemical Society, 2016, 138, 11606-11615.	6.6	121
2218	The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design. Scientific Reports, 2016, 6, 25914.	1.6	30
2219	Oriented electric fields as future smart reagents in chemistry. Nature Chemistry, 2016, 8, 1091-1098.	6.6	391
2220	Engineering spin exchange in nonbipartite graphene zigzag edges. Physical Review B, 2016, 94, .	1.1	22
2222	A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials. Annual Reports on NMR Spectroscopy, 2016, 88, 307-383.	0.7	7
2223	Half-metallic YN ₂ monolayer: dual spin filtering, dual spin diode and spin Seebeck effects. Physical Chemistry Chemical Physics, 2016, 18, 28018-28023.	1.3	35
2224	Spin-polarized valley Hall effect in ultrathin silicon nanomembrane via interlayer antiferromagnetic coupling. 2D Materials, 2016, 3, 035026.	2.0	9
2225	Half-metallicity in 2D organometallic honeycomb frameworks. Journal of Physics Condensed Matter, 2016, 28, 425301.	0.7	9
2226	Tuning Magnetic States of Planar Graphene/ <i>h-</i> BN Monolayer Heterostructures via Interface Transition Metal-Vacancy Complexes. Journal of Physical Chemistry C, 2016, 120, 23529-23535.	1.5	8
2227	Electron-doping induced half-metallicity in one-dimensional Co-dithiolene molecular wires. Journal of Materials Chemistry C, 2016, 4, 10209-10214.	2.7	9
2228	Peculiar half-metallic state in zigzag nanoribbons of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>ոռ.Հ<td>l:เซเรub></td></td></mml:mn></mml:msub></mml:math>	ո ռ. Հ <td>l:เซเรub></td>	l :เซเร ub>
2229	Few-layered graphene decked with TiO2 nano particles by ultrasonic assisted synthesis and its dye-sensitized solar cell application. Journal of Materials Science: Materials in Electronics, 2016, 27, 12574-12581.	1.1	5
2230	Effect of electron injection in copper-contacted graphene nanoribbons. Nano Research, 2016, 9, 2735-2746.	5.8	10
2231	Optical Unzipping of Carbon Nanotubes in Liquid Media. Journal of Physical Chemistry C, 2016, 120, 16985-16993.	1.5	21
2232	Spin-polarized transport in hydrogen-passivated graphene and silicene nanoribbons with magnetic transition-metal substituents. Physical Chemistry Chemical Physics, 2016, 18, 22606-22616.	1.3	13
2233	3D composites of layered MoS ₂ and graphene nanoribbons for high performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2016, 4, 13148-13154.	5.2	47

#	Article	IF	CITATIONS
2234	Field emission patterns showing symmetry of electronic states in graphene edges. Surface and Interface Analysis, 2016, 48, 1217-1220.	0.8	13
2235	Electronic properties of Li-doped zigzag graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 543-547.	1.3	12
2236	Synthesis of Reduced Graphene Oxide Obtained from Multiwalled Carbon Nanotubes and Its Electrocatalytic Properties., 2016,, 223-244.		0
2237	Synthesis and Application of Graphene Nanoribbons. , 2016, , 47-58.		0
2238	Magnetic phases of graphene nanoribbons under potential fluctuations. Physical Review B, 2016, 93, .	1.1	16
2239	Plasma-graphene interaction and its effects on nanoscale patterning. Physical Review B, 2016, 93, .	1.1	28
2240	Wigner crystallization at graphene edges. Physical Review B, 2016, 93, .	1.1	3
2241	Two-dimensional magnetic boron. Physical Review B, 2016, 93, .	1.1	101
2242	Experimental observation of surface states and Landau levels bending in bilayer graphene. Physical Review B, 2016, 93, .	1.1	25
2243	Electronic states in an atomistic carbon quantum dot patterned in graphene. Physical Review B, 2016, 93, .	1.1	8
2244	Tunable electronic band structures and zero-energy modes of heterosubstrate-induced graphene superlattices. Physical Review B, 2016, 93, .	1.1	11
2245	Optical signatures of electric-field-driven magnetic phase transitions in graphene quantum dots. Physical Review B, 2016, 93, .	1.1	14
2246	Magnetic Dirac fermions and Chern insulator supported on pristine silicon surface. Physical Review B, 2016, 94, .	1.1	18
2247	Carbon Tetragons as Definitive Spin Switches in Narrow Zigzag Graphene Nanoribbons. Physical Review Letters, 2016, 116, 026802.	2.9	51
2248	Electron Interference in Ballistic Graphene Nanoconstrictions. Physical Review Letters, 2016, 116, 186602.	2.9	24
2249	Multiferroic Two-Dimensional Materials. Physical Review Letters, 2016, 116, 206803.	2.9	187
2250	Magnetic-Phase Dependence of the Spin Carrier Mean Free Path in Graphene Nanoribbons. Physical Review Letters, 2016, 116, 236602.	2.9	11
2251	Mapping Atomic Orbitals with the Transmission Electron Microscope: Images of Defective Graphene Predicted from First-Principles Theory. Physical Review Letters, 2016, 117, 036801.	2.9	14

#	ARTICLE	IF	CITATIONS
2252	Physical properties of low-dimensional <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mi>p</mml:mi>></mml:mrow><carbon .<="" 2016,="" 88,="" modern="" nanostructures.="" of="" physics,="" reviews="" td=""><td>>1604ml:mr</td><td>o1⁄6€X mml:r</td></carbon></mml:mrow></mml:mrow></mml:math>	> 16 04ml:mr	o 1⁄6 €X mml:r
2253	Graphene nanoribbons anchored to SiC substrates. Journal of Physics Condensed Matter, 2016, 28, 364001.	0.7	2
2254	Spin-dependent transport properties in covalent–organic molecular device with graphene nanoribbon electrodes. Computational and Theoretical Chemistry, 2016, 1091, 85-91.	1.1	9
2255	Geometric, magnetic and electronic properties of folded graphene nanoribbons. RSC Advances, 2016, 6, 64852-64860.	1.7	10
2256	Tuning Surface Properties of Low Dimensional Materials via Strain Engineering. Small, 2016, 12, 4028-4047.	5.2	56
2257	Theory of Magnetism in Graphitic Materials. Springer Series in Materials Science, 2016, , 1-24.	0.4	3
2258	An investigation of electronic and optical properties of TlN nanosheet and compare with TlN bulk (Wurtzite) by first principle. Optik, 2016, 127, 9367-9376.	1.4	11
2259	Spin-dependent Seebeck effects in graphene-based molecular junctions. Physical Review B, 2016, 93, .	1,1	63
2260	Green's function approach to edge states in transition metal dichalcogenides. Physical Review B, 2016, 93, .	1.1	16
2261	Energy gaps of atomically precise armchair graphene sidewall nanoribbons. Physical Review B, 2016, 93,	1.1	54
2262	Robust band gap and half-metallicity in graphene with triangular perforations. Physical Review B, 2016, 93, .	1.1	7
2263	Spin Manipulation in Graphene by Chemically Induced Pseudospin Polarization. Physical Review Letters, 2016, 116, 106601.	2.9	19
2264	Thermal Conductivity and Pressure-Dependent Raman Studies of Vertical Graphene Nanosheets. Journal of Physical Chemistry C, 2016, 120, 25092-25100.	1.5	34
2265	Tunable electronic and dielectric properties of \hat{l}^2 -phosphorene nanoflakes for optoelectronic applications. RSC Advances, 2016, 6, 101835-101845.	1.7	5
2266	Metal-free half-metallicity in a high energy phase C-doped gh-C ₃ N ₄ system: a high Curie temperature planar system. Journal of Materials Chemistry C, 2016, 4, 11530-11539.	2.7	32
2267	Charge susceptibilities of armchair graphene nanoribbon in the presence of magnetic field. Chinese Physics B, 2016, 25, 097303.	0.7	6
2268	Excitonic States in Narrow Armchair Graphene Nanoribbons on Gold Surfaces. Journal of Physical Chemistry C, 2016, 120, 26168-26172.	1.5	14
2269	Giant edge state splitting at atomically precise graphene zigzag edges. Nature Communications, 2016, 7, 11507.	5.8	207

#	Article	IF	CITATIONS
2270	Spin polarization current induced by hydrogen hybrid within closed hexagon graphene nanoribbon devices. Modern Physics Letters B, 2016, 30, 1650333.	1.0	1
2271	Recent Advances in Soft Materials to Build and Functionalize Hard Structures for Electrochemical Energy Storage and In situ Electrochemical Molecular Biosensing. Advanced Functional Materials, 2016, 26, 8824-8853.	7.8	12
2272	First principles calculation of current-voltage characteristics of defected zigzag graphene nanoribons. , $2016, , .$		1
2273	Role of Kekul \tilde{A} © and Non-Kekul \tilde{A} © Structures in the Radical Character of Alternant Polycyclic Aromatic Hydrocarbons: A TAO-DFT Study. Scientific Reports, 2016, 6, 30562.	1.6	63
2274	Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Nature Communications, 2016, 7, 11010.	5.8	85
2275	Spin dynamics and relaxation in graphene dictated by electron-hole puddles. Scientific Reports, 2016, 6, 21046.	1.6	67
2276	Spintronic Transport in Armchair Graphene Nanoribbon with Ferromagnetic Electrodes: Half-Metallic Properties. Nanoscale Research Letters, 2016, 11, 456.	3.1	10
2277	Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Scientific Reports, 2016, 6, 22755.	1.6	82
2278	Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure. Scientific Reports, 2016, 6, 31160.	1.6	19
2279	New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. Journal of Materials Chemistry C, 2016, 4, 11143-11149.	2.7	164
2280	Self-organised formation of nanotubes from graphene ribbons. A molecular dynamics study. Materials Research Express, 2016, 3, 105044.	0.8	5
2281	Theoretical Analysis of Pseudodegenerate Zero-Energy Modes in Vacancy-Centered Hexagonal Armchair Nanographene. Journal of the Physical Society of Japan, 2016, 85, 084703.	0.7	8
2282	First-principles study of Cl-terminated silicon nanoribbons electronic properties. Journal of Physics: Conference Series, 2016, 758, 012002.	0.3	0
2283	Monolayer Molybdenum Disulfide Nanoribbons with High Optical Anisotropy. Advanced Optical Materials, 2016, 4, 756-762.	3.6	74
2284	"Guestâ€host―intercalate of doubleâ€walled carbon nanotube with tricarbonyl (cyclopentadienyl)manganese. Materialwissenschaft Und Werkstofftechnik, 2016, 47, 203-207.	0.5	4
2285	Recent advances in experimental basic research on graphene and graphene-based nanostructures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 023001.	0.7	6
2286	Nonlocal Immunized Mid-Infrared Magnetic Hot Spots in Graphene Junctions. Plasmonics, 2016, 11, 1481-1486.	1.8	1
2287	Stable and metallic borophene nanoribbons from first-principles calculations. Journal of Materials Chemistry C, 2016, 4, 6380-6385.	2.7	75

#	ARTICLE	IF	CITATIONS
2288	Large spin-filtering effect in Ti-doped defective zigzag graphene nanoribbon. Physical Chemistry Chemical Physics, 2016, 18, 16224-16228.	1.3	9
2289	Spin rectification by orbital polarization in Bi-bilayer nanoribbons. Physical Chemistry Chemical Physics, 2016, 18, 8637-8642.	1.3	13
2290	Half-metallic ferromagnetism in Mn-doped zigzag AlN nanoribbon from first-principles. Journal of Magnetism and Magnetic Materials, 2016, 420, 122-128.	1.0	14
2291	Optical response and gas sequestration properties of metal cluster supported graphene nanoflakes. Physical Chemistry Chemical Physics, 2016, 18, 18811-18827.	1.3	26
2292	Vacancy-induced spin polarization in graphene and B–N nanoribbon heterojunctions. RSC Advances, 2016, 6, 56429-56434.	1.7	5
2293	Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach. Journal of Physical Chemistry Letters, 2016, 7, 2478-2482.	2.1	33
2294	Spanning the "Parameter Space―of Chemical Vapor Deposition Graphene Growth with Quantum Chemical Simulations. Journal of Physical Chemistry C, 2016, 120, 13851-13864.	1.5	14
2295	Carrier-tunable magnetism in two dimensional graphene-like C ₂ N. RSC Advances, 2016, 6, 54027-54031.	1.7	28
2296	Collision-induced fusion of two single-walled carbon nanotubes: A quantitative study. Chemical Physics Letters, 2016, 657, 184-189.	1.2	2
2297	Size Control Methods and Size-Dependent Properties of Graphene. , 2016, , 45-58.		0
2298	Low-Cost and Simple Method for Graphene Synthesis. , 2016, , 359-376.		0
2299	Thermodynamic Complexing of Monocyclopentadienylferrum (II) Intercalates with Double-Walled Carbon Nanotubes. Nanoscale Research Letters, 2016, 11, 128.	3.1	4
2300	Quantum Interference in Graphene Nanoconstrictions. Nano Letters, 2016, 16, 4210-4216.	4.5	70
2301	Tunable magnetic moment and potential half-metal behavior of Fe-nanostructure-embedded graphene perforation. Carbon, 2016, 107, 268-272.	5.4	6
2302	Electron and phonon properties and gas storage in carbon honeycombs. Nanoscale, 2016, 8, 12863-12868.	2.8	50
2303	Controllable Fabrication of Nanostructured Graphene Towards Electronics. Advanced Electronic Materials, 2016, 2, 1500456.	2.6	22
2304	Bottom-Up Synthesis of $\langle i \rangle N \langle i \rangle = 13$ Sulfur-Doped Graphene Nanoribbons. Journal of Physical Chemistry C, 2016, 120, 2684-2687.	1.5	119
2305	Fundamental insights into the electronic structure of zigzag MoS ₂ nanoribbons. Physical Chemistry Chemical Physics, 2016, 18, 4675-4683.	1.3	16

#	ARTICLE	IF	CITATIONS
2306	Electronic and optical properties of surface hydrogenated armchair graphene nanoribbons: a theoretical study. RSC Advances, 2016, 6, 11786-11794.	1.7	8
2307	Structural and electronic properties of zigzag InP nanoribbons with Stone–Wales type defects. Journal of Physics Condensed Matter, 2016, 28, 065503.	0.7	1
2308	Tuning carrier mobility of phosphorene nanoribbons by edge passivation and strain. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 614-620.	0.9	26
2309	A Structural Supercapacitor Based on Graphene and Hardened Cement Paste. Journal of the Electrochemical Society, 2016, 163, E83-E87.	1.3	45
2310	Thermodynamic synthesis of solution processable ladder polymers. Chemical Science, 2016, 7, 881-889.	3.7	70
2311	Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons. Nanotechnology, 2016, 27, 065707.	1.3	1
2312	Bottom-up fabrication of graphene nanostructures on Ru\$left(10ar{1}0ight)\$. Nanotechnology, 2016, 27, 055602.	1.3	4
2313	Electronic and magnetic behaviors of graphene with 5d series transition metal atom substitutions: A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 80, 142-148.	1.3	56
2314	Band gap opening and semiconductor–metal phase transition in (n, n) single-walled carbon nanotubes with distinctive boron–nitrogen line defect. Physical Chemistry Chemical Physics, 2016, 18, 4643-4651.	1.3	8
2315	Peculiar Magnetotransport Features of Ultranarrow Graphene Nanoribbons under High Magnetic Field. ACS Nano, 2016, 10, 1853-1858.	7.3	10
2316	Graphene and its analogues. Nanotechnology Reviews, 2016, 5, .	2.6	5
2317	Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers. Journal of Materials Chemistry C, 2016, 4, 2518-2526.	2.7	202
2318	On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature, 2016, 531, 489-492.	13.7	1,154
2319	Sublattice engineering and voltage control of magnetism in triangular single and biâ€layer graphene quantum dots. Physica Status Solidi - Rapid Research Letters, 2016, 10, 58-67.	1.2	8
2320	Spintronics with graphene quantum dots. Physica Status Solidi - Rapid Research Letters, 2016, 10, 75-90.	1.2	22
2321	Hexagonal Boron Nitride–Graphene Heterostructures: Synthesis and Interfacial Properties. Small, 2016, 12, 32-50.	5.2	136
2322	Strain-tunable half-metallicity in hybrid graphene-hBN monolayer superlattices. Applied Surface Science, 2016, 375, 179-185.	3.1	6
2323	Possibility of spin-polarized transport in edge fluorinated armchair boron nitride nanoribbons. RSC Advances, 2016, 6, 11014-11022.	1.7	17

#	Article	IF	Citations
2324	Novel scroll peapod produced by spontaneous scrolling of graphene onto fullerene string. Physical Chemistry Chemical Physics, 2016, 18, 10138-10143.	1.3	8
2325	Direct synthesis of highly conducting graphene nanoribbon thin films from graphene ridges and wrinkles. Acta Materialia, 2016, 107, 96-101.	3.8	7
2326	Energetics and electronic structure of graphene nanoribbons under a lateral electric field. Carbon, 2016, 96, 351-361.	5.4	31
2327	Light adatoms influences on electronic structures of the two-dimensional arsenene nanosheets. Solid State Communications, 2016, 230, 6-10.	0.9	24
2328	Graphene Nanoribbons-Based Ultrasensitive Chemical Detectors. Journal of Physical Chemistry C, 2016, 120, 3791-3797.	1.5	11
2329	First principles many-body calculations of electronic structure and optical properties of SiC nanoribbons. Journal Physics D: Applied Physics, 2016, 49, 105306.	1.3	45
2330	Electronic and optical properties of surface-functionalized armchair graphene nanoribbons. RSC Advances, 2016, 6, 23974-23980.	1.7	8
2331	Excited state analysis of absorption processes in metal decorated graphene nanoribbons. RSC Advances, 2016, 6, 20565-20570.	1.7	9
2332	Tight-binding calculation studies of vacancy and adatom defects in graphene. Journal of Physics Condensed Matter, 2016, 28, 115001.	0.7	17
2333	Tight-binding model study of substrate induced pseudo-spin polarization and magnetism in mono-layer graphene. Journal of Magnetism and Magnetic Materials, 2016, 407, 396-405.	1.0	25
2334	The magnetic and transport properties of edge passivated silicene nanoribbon by Mn atoms. Chemical Physics Letters, 2016, 646, 148-152.	1.2	9
2335	Dispersion stability of chemically reduced graphene oxide nanoribbons in organic solvents. RSC Advances, 2016, 6, 19389-19393.	1.7	27
2336	Electronic Structure Properties of Two-Dimensional π-Conjugated Polymers. Macromolecules, 2016, 49, 1305-1312.	2.2	32
2337	Magnetic Properties of Graphene Structure: a Monte Carlo Simulation. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1363-1369.	0.8	28
2338	Magnetism and spin transport of carbon chain between armchair graphene nanoribbon electrodes. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83, 414-419.	1.3	6
2339	Molecular Lifting, Twisting, and Curling during Metal-Assisted Polycyclic Hydrocarbon Dehydrogenation. Journal of the American Chemical Society, 2016, 138, 3395-3402.	6.6	12
2340	Li-doped graphene for spintronic applications. RSC Advances, 2016, 6, 18156-18164.	1.7	5
2341	Local and collective magnetism of gallium vacancies in GaN studied by GGA+U approach. Journal of Magnetism and Magnetic Materials, 2016, 401, 310-319.	1.0	2

#	Article	IF	CITATIONS
2342	Spin-Resolved Transport Properties of a Pyridine-Linked Single Molecule Embedded between Zigzag-Edged Graphene Nanoribbon Electrodes. Journal of Physical Chemistry C, 2016, 120, 3010-3018.	1.5	44
2343	The coordination nanosheet (CONASH). Coordination Chemistry Reviews, 2016, 320-321, 118-128.	9.5	91
2344	New memory devices based on the proton transfer process. Nanotechnology, 2016, 27, 015202.	1.3	4
2345	Electron transport study on functionalized armchair graphene nanoribbons: DFT calculations. RSC Advances, 2016, 6, 21954-21960.	1.7	24
2346	Magnetism of N-doped graphene nanoribbons with zigzag edges from bottom-up fabrication. RSC Advances, 2016, 6, 10017-10023.	1.7	16
2347	Graphene nanoribbons: fabrication, properties and devices. Journal Physics D: Applied Physics, 2016, 49, 143001.	1.3	175
2348	Recent progress in fabrication techniques of graphene nanoribbons. Materials Horizons, 2016, 3, 186-207.	6.4	127
2349	Ferromagnetism in zigzag GaN nanoribbons with tunable half-metallic gap. Computational Materials Science, 2016, 117, 300-305.	1.4	13
2350	Adsorption isotherms of H2 on defected graphene: DFT and Monte Carlo studies. International Journal of Hydrogen Energy, 2016, 41, 5522-5530.	3.8	24
2351	Electronic Structure Evolution during the Growth of Graphene Nanoribbons on Au(110). Journal of Physical Chemistry C, 2016, 120, 7323-7331.	1.5	16
2352	Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214.	23.0	163
2353	Modulation the Band Structure and Physical Properties of the Graphene Materials with Electric Field and Semiconductor Substrate. Springer Proceedings in Physics, 2016, , 279-297.	0.1	1
2354	Review on graphene nanoribbon devices for logic applications. Microelectronics Journal, 2016, 48, 18-38.	1.1	111
2355	Giant tunnel magneto-resistance in graphene based molecular tunneling junction. Nanoscale, 2016, 8, 3432-3438.	2.8	30
2356	Realizing diverse electronic and magnetic properties in hybrid zigzag BNC nanoribbons via hydrogenation. Physical Chemistry Chemical Physics, 2016, 18, 1326-1340.	1.3	9
2357	Tuning Phosphorene Nanoribbon Electronic Structure through Edge Oxidization. Journal of Physical Chemistry C, 2016, 120, 2149-2158.	1.5	28
2358	Energetic and electronic structure of penta-graphene nanoribbons. Carbon, 2016, 100, 118-125.	5.4	97
2359	Spin-dependent transport properties of hetero-junction based on zigzag graphene nanoribbons with edge hydrogenation and oxidation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 730-738.	0.9	53

#	Article	IF	CITATIONS
2360	Spin filtering and rectifying effects in the zinc methyl phenalenyl molecule between graphene nanoribbon leads. Organic Electronics, 2016, 28, 244-251.	1.4	57
2361	Energy band gaps in periodic bent graphene. Solid State Communications, 2016, 225, 22-26.	0.9	4
2362	Quest for magnetism in graphene via Cr- and Mo-doping: A DFT approach. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 78, 35-40.	1.3	30
2363	Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corrosion Science, 2016, 103, 283-304.	3.0	647
2364	The electronic properties and nonlinear optical responses of the intermediate structures in rolling graphene to carbon nanotubes. Canadian Journal of Chemistry, 2016, 94, 50-59.	0.6	1
2365	Analysis of Molecular Single-Electron Transistors Using Silicene, Graphene and Germanene. Advances in Intelligent Systems and Computing, 2016, , 77-84.	0.5	4
2366	Unusual thermal conductivity behavior of serpentine graphene nanoribbons under tensile strain. Carbon, 2016, 96, 513-521.	5.4	20
2367	Magnetic properties of sulfur-doped graphene. Journal of Magnetism and Magnetic Materials, 2016, 401, 70-76.	1.0	25
2368	Interplay of Structure and Dynamics in Functional Macromolecular and Supramolecular Systems As Revealed by Magnetic Resonance Spectroscopy. Chemical Reviews, 2016, 116, 1272-1308.	23.0	99
2369	Electronic and magnetic properties of Cd-doped zigzag AlN nanoribbons from first principles. Rare Metals, 2016, 35, 771-778.	3.6	9
2370	A high sensitivity field effect transistor biosensor for methylene blue detection utilize graphene oxide nanoribbon. Biosensors and Bioelectronics, 2017, 89, 511-517.	5.3	27
2371	Ab initio direct dynamics of transition metal atom/dimers bombardments onto graphene: Evolution of magnetic alignment. Carbon, 2017, 115, 791-802.	5.4	2
2372	Tuning the electronic properties by magnetic fields in zigzag-edge graphyne nanoribbons with symmetric and asymmetric edge hydrogenations. Organic Electronics, 2017, 43, 175-181.	1.4	6
2373	Cutting monolayer graphene into flexible spin filters. Carbon, 2017, 115, 43-49.	5.4	5
2374	Theoretically designed metal-welded carbon nanotubes: Extraordinary electronic properties and promoted catalytic performance. Nano Energy, 2017, 32, 209-215.	8.2	17
2375	N-methyl-2-pyrrolidone-exfoliated graphene nanosheets as sensitive determination platform for amaranth at the nanomolar level. Ionics, 2017, 23, 241-246.	1.2	11
2376	Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons. Physical Chemistry Chemical Physics, 2017, 19, 4085-4092.	1.3	27
2377	Modeling of Quasi-One-Dimensional Carbon Nanostructures with Density Functional Theory. , 2017, , 1297-1337.		0

#	Article	IF	CITATIONS
2378	Modeling of Nanostructures., 2017, , 1459-1513.		0
2379	Self-Assembled Three-Dimensional Graphene-Based Polyhedrons Inducing Volumetric Light Confinement. Nano Letters, 2017, 17, 1987-1994.	4.5	45
2380	Enhanced Room Temperature Ferromagnetism in Fe-Doped Zinc Stannate Nanostructures Prepared by Facile Hydrothermal Method. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1883-1892.	0.8	5
2381	High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films. 2D Materials, 2017, 4, 025003.	2.0	36
2382	Graphene as a flexible template for controlling magnetic interactions between metal atoms. Journal of Physics Condensed Matter, 2017, 29, 085001.	0.7	1
2383	Spontaneous formation of graphene on diamond (111) driven by B-doping induced surface reconstruction. Carbon, 2017, 115, 388-393.	5.4	18
2384	Rylene Ribbons with Unusual Diradical Character. CheM, 2017, 2, 81-92.	5.8	116
2385	A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups. Journal of Chemical Physics, 2017, 146, 044705.	1.2	12
2386	Graphene: Nanostructure engineering and applications. Frontiers of Physics, 2017, 12, 1.	2.4	26
2387	Two-dimensional ferromagnetism and spin filtering in Cr and Mn-doped graphdiyne. Journal of Physics and Chemistry of Solids, 2017, 105, 61-65.	1.9	20
2388	Controlled formation of nanostructures on MoS2 layers by focused laser irradiation. Applied Physics Letters, 2017, 110, 083101.	1.5	19
2389	Position Sensitivity Study in Molecular Dynamics Simulations of Self-Organized Development of 3D Nanostructures. Materials Science Forum, 0, 885, 216-221.	0.3	O
2390	Quantum dot behavior in transition metal dichalcogenides nanostructures. Frontiers of Physics, 2017, 12, 1.	2.4	25
2391	Li-decorated porous graphene as a high-performance hydrogen storage material: A first-principles study. International Journal of Hydrogen Energy, 2017, 42, 10099-10108.	3.8	77
2392	The necessity of structural irregularities for the chemical applications of graphene. Materials Today Chemistry, 2017, 4, 1-16.	1.7	95
2393	Half-metallicity and spin-polarization transport properties in transition-metal atoms single-edge-terminated zigzag α-graphyne nanoribbons. Organic Electronics, 2017, 44, 168-175.	1.4	46
2394	Field Effect in Graphene-Based van der Waals Heterostructures: Stacking Sequence Matters. Nano Letters, 2017, 17, 2660-2666.	4.5	21
2395	Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nature Communications, 2017, 8, 14703.	5.8	119

#	Article	IF	Citations
2396	The effects of gap parameter and spin polarization on electronic Hartree and correlation energies of doped graphene nanoribbon. Superlattices and Microstructures, 2017, 104, 483-497.	1.4	1
2397	Impurity scattering and size quantization effects in a single graphene nanoflake. Physical Review B, 2017, 95, .	1.1	8
2398	Enhanced half-metallicity at reconstructed zigzag edge of silicene. Europhysics Letters, 2017, 117, 17002.	0.7	2
2399	Magnetic properties of a doped graphene-like bilayer. Physica B: Condensed Matter, 2017, 513, 21-28.	1.3	10
2400	Ab initio study of the electronic and transport properties of waved graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 89, 170-176.	1.3	12
2401	Large positive in-plane magnetoresistance induced by localized states at nanodomain boundaries in graphene. Nature Communications, 2017, 8, 14453.	5.8	27
2402	Energy gaps of graphene clusters: the first-principles calculations based on high-throughput screening. Molecular Simulation, 2017, 43, 558-562.	0.9	1
2403	Magnetism in a graphene- 4fâ^3d hybrid system. Physical Review B, 2017, 95, .	1.1	22
2404	Half-metallic quantum valley Hall effect in biased zigzag-edge bilayer graphene nanoribbons. Physical Review B, 2017, 95, .	1.1	4
2405	Perfect spin and valley polarized quantum transport in twisted SiC nanoribbons. 2D Materials, 2017, 4, 025013.	2.0	27
2406	Band gap opening of bilayer graphene by graphene oxide support doping. RSC Advances, 2017, 7, 9862-9871.	1.7	29
2407	Electrochemical Characteristics and Electrosensing of an Antiviral Drug, Entecavir via Synergic Effect of Graphene Oxide Nanoribbons and Ceria Nanorods. Electroanalysis, 2017, 29, 1301-1309.	1.5	9
2408	Half-metallicity in hole-doped nitrogenated honey graphene: A first-principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1097-1101.	0.9	8
2409	Covalent surface modification with electron-donating/accepting π-conjugated chains to effectively tune the electronic and magnetic properties of zigzag SiC nanoribbons. Journal of Materials Chemistry C, 2017, 5, 2022-2032.	2.7	7
2410	Chemically induced topological zero mode at graphene armchair edges. Physical Chemistry Chemical Physics, 2017, 19, 5145-5154.	1.3	12
2411	Atomistic mechanisms of van der <scp>Waals</scp> epitaxy and property optimization of layered materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1300.	6.2	14
2412	A magnetic phase-transition graphene transistor with tunable spin polarization. 2D Materials, 2017, 4, 024008.	2.0	5
2414	Theoretical perspective on structural, electronic and magnetic properties of 3d metal tetraoxide clusters embedded into single and di-vacancy graphene. Applied Surface Science, 2017, 408, 21-33.	3.1	37

#	Article	IF	CITATIONS
2415	Surface disordered rutile TiO ₂ –graphene quantum dot hybrids: a new multifunctional material with superior photocatalytic and biofilm eradication properties. New Journal of Chemistry, 2017, 41, 2642-2657.	1.4	19
2416	Semiconducting Selfâ€Assembled Nanofibers Prepared from Photostable Octafluorinated Bisanthene Derivatives. Chemistry - A European Journal, 2017, 23, 7000-7008.	1.7	15
2417	Spin filter properties of armchair graphene nanoribbons with substitutional Fe atoms. Molecular Physics, 2017, 115, 2231-2241.	0.8	10
2418	Precise Identification of Graphene's Crystal Structures by Removable Nanowire Epitaxy. Journal of Physical Chemistry Letters, 2017, 8, 1302-1309.	2.1	11
2419	Phenalenyl π-Dimer under the External Electric Field: Two-Electron/12-Center Bonding Breaking and Emergence of Electrostatic Interaction. Journal of Physical Chemistry C, 2017, 121, 3765-3770.	1.5	12
2420	Spin-polarized transport in graphene nanoribbons with Rashba spin–orbit interaction: the effects of spatial symmetry. Physical Chemistry Chemical Physics, 2017, 19, 6871-6877.	1.3	13
2421	Effects of edge on graphene plasmons as revealed by infrared nanoimaging. Light: Science and Applications, 2017, 6, e16204-e16204.	7.7	68
2422	Design of boron vacancy enhanced spin filtering graphene/BN zigzag nanoribbon heterojunctions. RSC Advances, 2017, 7, 7368-7374.	1.7	4
2423	Negative differential resistance and bias-modulated metal-to-insulator transition in zigzag C2N-h2D nanoribbon. Scientific Reports, 2017, 7, 43922.	1.6	6
2424	Electrochemically synthesized highly crystalline nitrogen doped graphene nanosheets with exceptional biocompatibility. Scientific Reports, 2017, 7, 537.	1.6	12
2425	Prospects of spintronics based on <scp>2D</scp> materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1313.	6.2	161
2426	Electronic and magnetic properties of pristine and hydrogenated borophene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 91, 106-112.	1.3	60
2427	Spin transport and tunneling magnetoresistance in Thue-Morse bilayer graphene superlattice with two ferromagnetic electrodes. Physica B: Condensed Matter, 2017, 516, 18-26.	1.3	6
2428	Photoluminescence suppression effect caused by histamine on amino-functionalized graphene quantum dots with the mediation of Fe 3+, Cu 2+, Eu 3+: Application in the analysis of spoiled tuna fish. Microchemical Journal, 2017, 133, 448-459.	2.3	21
2429	Tailoring magnetic insulator proximity effects in graphene: first-principles calculations. 2D Materials, 2017, 4, 025074.	2.0	121
2430	Designing and engineering electronic band gap of graphene nanosheet by P dopants. Solid State Communications, 2017, 258, 11-16.	0.9	24
2431	Magnetism in the p-type Monolayer II-VI semiconductors SrS and SrSe. Scientific Reports, 2017, 7, 45869.	1.6	17
2432	A Kinetic Pathway toward High-Density Ordered N Doping of Epitaxial Graphene on Cu(111) Using C ₅ NCl ₅ Precursors. Journal of the American Chemical Society, 2017, 139, 7196-7202.	6.6	16

#	Article	IF	Citations
2433	Tailoring Auxetic and Contractile Graphene to Achieve Interface Structures with Fully Mechanically Controllable Thermal Transports. Advanced Materials Interfaces, 2017, 4, 1700278.	1.9	12
2434	Metal-free spin and spin-gapless semiconducting heterobilayers: monolayer boron carbonitrides on hexagonal boron nitride. Physical Chemistry Chemical Physics, 2017, 19, 14801-14810.	1.3	6
2435	Synthesis of Dibenzo[<i>hi,st</i>]ovalene and Its Amplified Spontaneous Emission in a Polystyrene Matrix. Angewandte Chemie - International Edition, 2017, 56, 6753-6757.	7.2	72
2436	The magnetoresistance effect and spin-polarized photocurrent of zigzag graphene-graphyne nanoribbon heterojunctions. Computational Materials Science, 2017, 136, 1-11.	1.4	24
2437	Annealing tunes interlayer coupling and optoelectronic property of bilayer SnSe2/MoSe2 heterostructures. Applied Surface Science, 2017, 419, 460-464.	3.1	18
2438	Preparation of graphene by electrical explosion of graphite sticks. Nanoscale, 2017, 9, 10639-10646.	2.8	29
2439	Fabrication of MoSe2 nanoribbons via an unusual morphological phase transition. Nature Communications, 2017, 8, 15135.	5.8	70
2440	Lowâ€dimensional halfâ€metallic materials: theoretical simulations and design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1314.	6.2	47
2441	Landau quantization of Dirac fermions in graphene and its multilayers. Frontiers of Physics, 2017, 12, 1.	2.4	52
2442	Core-protective half-metallicity in trilayer graphene nanoribbons. Physica B: Condensed Matter, 2017, 516, 14-17.	1.3	0
2443	Graphene on cubic-SiC. Progress in Materials Science, 2017, 89, 1-30.	16.0	30
2444	Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265-269.	13.7	3,260
2445	Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures. Journal of Physics Condensed Matter, 2017, 29, 245301.	0.7	2
2446	Allâ€Silicon Switchable Magnetoelectric Effect through Interlayer Exchange Coupling. ChemPhysChem, 2017, 18, 1916-1920.	1.0	1
2447	Intrinsic half metallicity in lithium terminated zigzag graphene nanoribbons. Solid State Communications, 2017, 250, 112-118.	0.9	5
2448	A comparative and a systematic study on the effects of B, N doping and C-atom vacancies on the band gap in narrow zig-zag graphene nanoribbons via quantum transport calculations. Materials Research Bulletin, 2017, 87, 167-176.	2.7	25
2449	Anisotropic etching of graphene in inert and oxygen atmospheres. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600459.	0.8	9
2450	Current and future directions in electron transfer chemistry of graphene. Chemical Society Reviews, 2017, 46, 4530-4571.	18.7	125

#	Article	IF	Citations
2451	A Model Study of Substrate Effect on the Neutron-Scattering Spectra of Ferromagnetic Ordered Graphene. Journal of Superconductivity and Novel Magnetism, 2017, 30, 3503-3507.	0.8	1
2452	Tuning the IV characteristic of a cruciform diamine molecular device by connected position and B/N doping. Organic Electronics, 2017, 48, 1-6.	1.4	6
2453	Magnetic properties of silicene nanoribbons: A DFT study. AIP Advances, 2017, 7, .	0.6	5
2454	Ab-initio study of ReCN in the bulk and as a new two dimensional material. Scientific Reports, 2017, 7, 2799.	1.6	2
2455	Emergence of intrinsic half-metallicity in MoS2 nano-crystals : A first principles study. AIP Conference Proceedings, 2017, , .	0.3	0
2456	Competing Gap Opening Mechanisms of Monolayer Graphene and Graphene Nanoribbons on Strong Topological Insulators. Nano Letters, 2017, 17, 4013-4018.	4.5	41
2457	Edge control of graphene domains grown on hexagonal boron nitride. Nanoscale, 2017, 9, 11475-11479.	2.8	24
2458	Asymmetric passivation of edges: a route to make magnetic graphene nanoribbons. RSC Advances, 2017, 7, 27932-27937.	1.7	2
2459	The tight binding model study of the role of band filling on the charge gap in graphene-on-substrate in paramagnetic state. AIP Conference Proceedings, 2017 , , .	0.3	0
2460	Role of asymmetric magnetic electrodes in tuning spin selective rectification action of borazine [B3N3H6]. Chemical Physics, 2017, 491, 126-135.	0.9	3
2461	Tunable Magnetism and Transport Properties in Nitride MXenes. ACS Nano, 2017, 11, 7648-7655.	7.3	276
2462	Structural, electronic, and magnetic behaviors of 5d transition metal atom substituted divacancy graphene: A first-principles study. Chinese Physics B, 2017, 26, 056301.	0.7	6
2463	The diode characteristics and rectification effect of three nanodevice containing graphene and oxidized graphene nanoribbons: A density functional theory + non-equilibrium Green's function study. Computational Materials Science, 2017, 137, 125-133.	1.4	2
2464	Conductive metal adatoms adsorbed on graphene nanoribbons: a first-principles study of electronic structures, magnetization and transport properties. Journal of Materials Chemistry C, 2017, 5, 4053-4062.	2.7	12
2465	Remarkable Magnetic Coupling Interactions in Multi-Beryllium-Expanded Small Graphene-like Molecules with Well-Defined Polyradical Characters. Organometallics, 2017, 36, 1505-1514.	1.1	4
2466	Quantized edge modes in atomic-scale point contacts in graphene. Nature Nanotechnology, 2017, 12, 564-568.	15.6	18
2467	Band-unfolding approach to moir $\tilde{\mathbb{A}}$ \mathbb{Q} -induced band-gap opening and Fermi level velocity reduction in twisted bilayer graphene. Physical Review B, 2017, 95, .	1.1	34
2468	Effect of amino on spin-dependent transport through a junction of fused oligothiophenes between graphene electrodes. Chemical Physics, 2017, 488-489, 17-21.	0.9	3

#	Article	IF	CITATIONS
2469	Nanoscale Imaging of Current Density with a Single-Spin Magnetometer. Nano Letters, 2017, 17, 2367-2373.	4. 5	69
2470	Embedded silicene nanostructures in partly-dehydrogenated polysilane. Physical Chemistry Chemical Physics, 2017, 19, 10401-10405.	1.3	1
2471	Toward edges-rich MoS ₂ layers via chemical liquid exfoliation triggering distinctive magnetism. Materials Research Letters, 2017, 5, 267-275.	4.1	19
2472	Humidity effects on scanning polarization force microscopy imaging. Applied Surface Science, 2017, 412, 497-504.	3.1	7
2473	Oxygen vacancy effect on dielectric and hysteretic properties of zigzag ferroelectric iron dioxide nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 91, 113-118.	1.3	6
2474	Graphene-like nanoribbons periodically embedded with four- and eight-membered rings. Nature Communications, 2017, 8, 14924.	5. 8	139
2475	Nanostructured graphene for spintronics. Physical Review B, 2017, 95, .	1.1	21
2476	Electronic structure and magnetic properties of penta-graphene nanoribbons. Physical Chemistry Chemical Physics, 2017, 19, 9528-9536.	1.3	65
2477	Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons. Nature Communications, 2017, 8, 14815.	5.8	58
2478	Heptacene: Characterization in Solution, in the Solid State, and in Films. Journal of the American Chemical Society, 2017, 139, 4435-4442.	6.6	97
2479	Hexagonal graphene quantum dots. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1600226.	1.2	5
2480	Half-metallicity and magnetism of the full-Heusler compounds KYX 2 (Y=Ti, V, and Cr; X=C, N, and O). Solid State Communications, 2017, 251, 50-59.	0.9	9
2481	Energy gap of extended states in SiC-doped graphene nanoribbon: Ab initio calculations. Applied Surface Science, 2017, 400, 1-5.	3.1	5
2482	Modulation of the magnetic properties in zigzag-edge graphene nanoribbons by connection sites. Organic Electronics, 2017, 41, 376-383.	1.4	7
2483	Magneto-electronic and optical properties of zigzag silicene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 178-185.	1.3	8
2484	Contrasting Structural Reconstructions, Electronic Properties, and Magnetic Orderings along Different Edges of Zigzag Transition Metal Dichalcogenide Nanoribbons. Nano Letters, 2017, 17, 1097-1101.	4.5	75
2485	Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes. Journal of Physical Chemistry Letters, 2017, 8, 422-428.	2.1	165
2486	Edge-Modified Graphene Nanoribbons: Appearance of Robust Spiral Magnetism. Journal of Physical Chemistry C, 2017, 121, 1371-1376.	1.5	12

#	Article	IF	CITATIONS
2487	Diradical and Ionic Characters of Open-Shell Singlet Molecular Systems. Journal of Physical Chemistry A, 2017, 121, 861-873.	1.1	17
2488	Perfect spin filtering effect in ultrasmall helical zigzag graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 504-509.	0.9	2
2489	Interfacial Self-Assembly of Atomically Precise Graphene Nanoribbons into Uniform Thin Films for Electronics Applications. ACS Applied Materials & Interfaces, 2017, 9, 693-700.	4.0	22
2490	Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide. Nano Research, 2017, 10, 546-555.	5.8	135
2491	The structures, stabilities, electronic and magnetic properties of fully and partially hydrogenated germanene nanoribbons: A first-principles investigation. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 27-36.	1.3	14
2492	Hexaaminobenzene as a building block for a Family of 2D Coordination Polymers. Journal of the American Chemical Society, 2017, 139, 19-22.	6.6	229
2493	Adsorbing the 3d-transition metal atoms to effectively modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons. Physical Chemistry Chemical Physics, 2017, 19, 3694-3705.	1.3	9
2494	Thermoelectric properties of magnetic configurations of graphene-like nanoribbons in the presence of Rashba and spin–orbit interactions. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 220-227.	1.3	13
2495	Engineering the electronic structure of zigzag graphene nanoribbons with periodic line defect. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 307-313.	0.9	16
2496	Computational search for two-dimensional intrinsic half-metals in transition-metal dinitrides. Journal of Materials Chemistry C, 2017, 5, 727-732.	2.7	61
2497	Spin Caloritronic Transport of (2 \tilde{A} -1) Reconstructed Zigzag MoS 2 Nanoribbons. Chinese Physics Letters, 2017, 34, 107301.	1.3	6
2498	Effect of room temperature lattice vibration on the electron transport in graphene nanoribbons. Applied Physics Letters, 2017, 111, 133107.	1.5	53
2499	Electric field effect on the magnetic properties of zigzag MoS2 nanoribbons with different edge passivation. Physical Chemistry Chemical Physics, 2017, 19, 30814-30821.	1.3	4
2500	Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons. Physical Review B, 2017, 96, .	1.1	12
2501	Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing. Nature Communications, 2017, 8, 820.	5.8	113
2502	Understanding the spin-dependent electronic properties of symmetrically far-edge doped zigzag graphene nanoribbon from a first principles study. RSC Advances, 2017, 7, 46604-46614.	1.7	10
2503	Tunable bandgap in halogen doped 2D nitrogenated microporous materials. Journal of Applied Physics, 2017, 122, .	1.1	25
2504	Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nature Nanotechnology, 2017, 12, 1077-1082.	15.6	162

#	Article	IF	CITATIONS
2505	Interplay between the edge-state magnetism and long-range Coulomb interaction in zigzag graphene nanoribbons: Quantum Monte Carlo study. Physical Review B, 2017, 96, .	1.1	10
2506	Fluorescent Graphene Quantum Dots for Bioimaging. Frontiers in Nanobiomedical Research, 2017, , 97-113.	0.1	0
2507	Gap states and edge properties of rectangular graphene quantum dot in staggered potential. Journal of the Korean Physical Society, 2017, 71, 283-288.	0.3	1
2508	Molecular and electronic structures and magnetic properties of multilayer graphene nanoclusters and their changes under the influence of adsorbed molecules. Russian Chemical Bulletin, 2017, 66, 837-848.	0.4	9
2509	Magnetics and spintronics on two-dimensional composite materials of graphene/hexagonal boron nitride. Materials Today Physics, 2017, 3, 93-117.	2.9	56
2510	Breaking Bonds and Forming Nanographene Diradicals with Pressure. Angewandte Chemie, 2017, 129, 16430-16435.	1.6	11
2511	Breaking Bonds and Forming Nanographene Diradicals with Pressure. Angewandte Chemie - International Edition, 2017, 56, 16212-16217.	7.2	26
2512	Insights from first principles graphene/g-C2N bilayer: gap opening, enhanced visible light response and electrical field tuning band structure. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	18
2513	Theoretical Design of Robust Ferromagnetism and Bipolar Semiconductivity in Graphene-Based Nanoroads. Journal of Physical Chemistry C, 2017, 121, 24824-24830.	1.5	5
2514	Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons. Physical Chemistry Chemical Physics, 2017, 19, 29685-29692.	1.3	18
2515	First principle study of edge topological defect-modulated electronic and magnetic properties in zigzag graphene nanoribbons. Chinese Physics B, 2017, 26, 103103.	0.7	5
2516	Orientation dependent interlayer stacking structure in bilayer MoS ₂ domains. Nanoscale, 2017, 9, 13060-13068.	2.8	19
2517	Topological end states and Zak phase of rectangular armchair ribbon. Annals of Physics, 2017, 385, 688-694.	1.0	6
2518	Semiconducting properties of perchlorate-doped graphene using an electrochemical method. RSC Advances, 2017, 7, 16823-16825.	1.7	4
2519	Structural, electronic, and magnetic properties of non-planar doping of BeO in graphene: a DFT study. New Journal of Chemistry, 2017, 41, 10780-10789.	1.4	7
2520	Optical Investigation of Onâ€Surface Synthesized Armchair Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2017, 254, 1700223.	0.7	14
2521	Creation of half-metallic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi></mml:math> -orbital Dirac fermion with superlight elements in orbital-designed molecular lattice. Physical Review B, 2017, 96, .	1.1	10
2522	Electronic structures of hybrid graphane/boron nitride nanoribbons with hydrogen vacancies. AIP Advances, 2017, 7, .	0.6	1

#	Article	IF	CITATIONS
2523	Spin-dependent transport properties of zigzag phosphorene nanoribbons with oxygen-saturated edges. Physical Chemistry Chemical Physics, 2017, 19, 25319-25323.	1.3	18
2524	Edge-controlled half-metallic ferromagnetism and direct-gap semiconductivity in ZrS ₂ nanoribbons. RSC Advances, 2017, 7, 33408-33412.	1.7	7
2525	Magneto-electronic properties and carrier mobility in phagraphene nanoribbons: A theoretical prediction. Carbon, 2017, 124, 228-237.	5.4	28
2526	Stability, magnetic and electronic properties of SiC sheet doped with B, N, Al and P. Bulletin of Materials Science, 2017, 40, 1081-1086.	0.8	11
2527	Intrinsic magnetism and electronic structure of graphene-like Be ₃ C ₂ nanoribbons and their Si, Ge analogues: a computational study. Journal of Materials Chemistry C, 2017, 5, 10728-10736.	2.7	11
2528	The influence of an adsorbate and edge covalent bonds on topological zero modes in few-layer nanographenes. Physical Chemistry Chemical Physics, 2017, 19, 26957-26968.	1.3	6
2529	Electronic structure tuning and band gap opening of nitrogen and boron doped holey graphene flake: The role of single/dual doping. Materials Chemistry and Physics, 2017, 202, 258-265.	2.0	43
2530	Cobalt Porphyrin–Thiazyl Radical Coordination Polymers: Toward Metal–Organic Electronics. Journal of the American Chemical Society, 2017, 139, 14620-14637.	6.6	21
2531	Magnetic properties of bilayer graphene quantum dots in the presence of uniaxial strain. Physical Review B, 2017, 96, .	1,1	14
2532	Inhomogeneous strain-induced half-metallicity in bent zigzag graphene nanoribbons. Npj Computational Materials, 2017, 3, .	3.5	33
2533	Fano Resonance Effect in CO-Adsorbed Zigzag Graphene Nanoribbons. Chinese Physics Letters, 2017, 34, 097303.	1.3	3
2534	Scanning tunneling microscopy and spectroscopy of finite-size twisted bilayer graphene. Physical Review B, 2017, 96, .	1.1	11
2535	Selectivity of a Graphene Nanoribbon-Based Trinitrotoluene Detector: A Computational Assessment. Journal of Physical Chemistry C, 2017, 121, 21546-21552.	1.5	6
2536	Band gap opening of graphene by forming a graphene/PtSe ₂ van der Waals heterojunction. RSC Advances, 2017, 7, 45393-45399.	1.7	60
2537	Mechanical properties and electronic structure of edge-doped graphene nanoribbons with F, O, and Cl atoms. Physical Chemistry Chemical Physics, 2017, 19, 21474-21480.	1.3	2
2538	The effect of carbon defects on Cl anion diffusion in graphene based on first principles calculations. Materials Research Express, 2017, 4, 075604.	0.8	0
2539	Optical selection rules of zigzag graphene nanoribbons. Physical Review B, 2017, 95, .	1.1	44
2540	Theoretical study of the design dye-sensitivity for usage in the solar cell device. Results in Physics, 2017, 7, 4359-4363.	2.0	15

#	Article	IF	CITATIONS
2541	BN nanoflake quantum-dot arrays: structural stability, and electronic and half-metallic properties. Physical Chemistry Chemical Physics, 2017, 19, 20137-20146.	1.3	9
2542	Special photophysical properties of poly(2,11-diquinoxalinopyrene)s. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1097-1109.	2.0	4
2543	Bistability and relaxor ferrimagnetism in off-stoichiometric NiCrO 3. Journal of Magnetism and Magnetic Materials, 2017, 443, 293-299.	1.0	3
2544	Tunable Magnetism and Extraordinary Sunlight Absorbance in Indium Triphosphide Monolayer. Journal of the American Chemical Society, 2017, 139, 11125-11131.	6.6	265
2545	Formation of Stone–Wales edge: Multistep reconstruction and growth mechanisms of zigzag nanographene. Journal of Computational Chemistry, 2017, 38, 2241-2247.	1.5	5
2546	Temperature-dependent conduction mechanism of vertically aligned graphene nanoflakes incorporated with nitrogenin situ. Materials Research Express, 2017, 4, 075011.	0.8	0
2547	Controlling magnetic transition of monovacancy graphene by shear distortion. Scientific Reports, 2017, 7, 1792.	1.6	12
2548	Strain-tuning of edge magnetism in zigzag graphene nanoribbons. Journal of Physics Condensed Matter, 2017, 29, 365601.	0.7	11
2549	One- and two-dimensional carbon nanostructures based on unfolded buckyballs: An <i>ab initio</i> investigation of their electronic properties. Physical Review B, 2017, 95, .	1,1	13
2550	Magnetism induced by cationic defect in monolayer ReSe 2 controlled by strain engineering. Applied Surface Science, 2017, 425, 696-701.	3.1	18
2551	Two-Dimensional Intrinsic Half-Metals With Large Spin Gaps. Nano Letters, 2017, 17, 5251-5257.	4.5	172
2552	Spin splitting and electric field modulated electron-hole pockets in antimonene nanoribbons. Npj Quantum Materials, 2017, 2, .	1.8	14
2553	Electronic structure changes during the on-surface synthesis of nitrogen-doped chevron-shaped graphene nanoribbons. Physical Review B, 2017, 96, .	1.1	19
2554	Electronic components embedded in a single graphene nanoribbon. Nature Communications, 2017, 8, 119.	5.8	96
2555	Anisotropic etching of graphite and graphene in a remote hydrogen plasma. Npj 2D Materials and Applications, 2017, 1 , .	3.9	16
2556	Machine learning and genetic algorithm prediction of energy differences between electronic calculations of graphene nanoflakes. Nanotechnology, 2017, 28, 38LT03.	1.3	19
2557	Observation of magnetism in La _{0.7} Sr _{0.3} MnO ₃ â€"graphene nanoribbons complex: a probable magnetoelectronic material study. Materials Research Express, 2017, 4, 075050.	0.8	3
2558	Electronic and magnetic properties of zigzag C2N-h2D nanoribbons: Edge and width effects. Chemical Physics Letters, 2017, 685, 363-370.	1.2	11

#	Article	IF	CITATIONS
2559	Sub-10-nm Graphene Nanoribbons with Tunable Surface Functionalities for Lithium-ion Batteries. Electrochimica Acta, 2017, 249, 404-412.	2.6	9
2560	Edge magnetism modulation of graphene nanoribbons via planar tetrahedral coordinated atoms embedding. Journal of Materials Science, 2017, 52, 12307-12313.	1.7	3
2561	Dimensional Confinement in Carbonâ€based Structures – From 3D to 1D. Annalen Der Physik, 2017, 529, 1700051.	0.9	6
2562	The creation of racks and nanopores creation in various allotropes of boron due to the mechanical loads. Superlattices and Microstructures, 2017, 111, 1145-1161.	1.4	15
2563	Doped carbon nanotubes as a model system of biased graphene. Physical Review B, 2017, 96, .	1.1	11
2564	Strain Effects on the Interaction Between NO2 and the Mo-Edge of the MoS2 Zigzag Nanoribbon. IEEE Nanotechnology Magazine, 2017, 16, 982-990.	1.1	7
2565	Nonacene Generated by On-Surface Dehydrogenation. ACS Nano, 2017, 11, 9321-9329.	7.3	107
2566	Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains. Physical Review Letters, 2017, 119, 076401.	2.9	235
2567	Spatially-resolved studies on the role of defects and boundaries in electronic behavior of 2D materials. Progress in Surface Science, 2017, 92, 176-201.	3.8	40
2568	Spin-filtering and giant magnetoresistance effects in polyacetylene-based molecular devices. Journal of Applied Physics, 2017, 122, 035103.	1.1	3
2569	Stability of edge magnetism in functionalized zigzag graphene nanoribbons. Carbon, 2017, 124, 123-132.	5.4	21
2570	Engineering the magnetic properties of zigzag graphene nanoribbon by epoxy chains. Materials Research Express, 2017, 4, 085008.	0.8	3
2571	Electrically controllable spin filtering based on superconducting helical states. Physical Review B, 2017, 96, .	1.1	13
2572	Electronic Transport Properties of Diblock Co-Oligomer Molecule Devices Sandwiched between Nitrogen Doping Armchair Graphene Nanoribbon Electrodes *. Chinese Physics Letters, 2017, 34, 117101.	1.3	3
2573	Computational methods for 2D materials: discovery, property characterization, and application design. Journal of Physics Condensed Matter, 2017, 29, 473001.	0.7	55
2574	Chiral magnetic interactions in graphene nanoribbons on topological insulator substrates. Physical Review B, 2017, 96, .	1.1	6
2575	Surface magnetism of gallium arsenide nanofilms. Physical Review B, 2017, 96, .	1.1	1
2576	Existence of multi-radical and closed-shell semiconducting states in post-graphene organic Dirac materials. Nature Communications, 2017, 8, 1957.	5.8	45

#	Article	IF	Citations
2577	Hydrogen Adsorption on Nearly Zigzag-Edged Nanoribbons: A Density Functional Theory Study. Scientific Reports, 2017, 7, 15727.	1.6	26
2578	Systematic study on stanene bulk states and the edge states of its zigzag nanoribbon. New Journal of Physics, 2017, 19, 103040.	1.2	14
2579	Nanographenes and Graphene Nanoribbons with Zigzag-Edged Structures. Advances in Polymer Science, 2017, , 1-32.	0.4	11
2580	Dense monolayer films of atomically precise graphene nanoribbons on metallic substrates enabled by direct contact transfer of molecular precursors. Nanoscale, 2017, 9, 18835-18844.	2.8	21
2581	Tunable electronic and magnetic properties of arsenene nanoribbons. RSC Advances, 2017, 7, 51935-51943.	1.7	8
2582	Fano Factor in Strained Graphene Nanoribbon Nanodevices. Chinese Physics Letters, 2017, 34, 118503.	1.3	1
2583	Nanoribbons. Springer Handbooks, 2017, , 303-333.	0.3	1
2584	Inserting Porphyrin Quantum Dots in Bottomâ€Up Synthesized Graphene Nanoribbons. Chemistry - A European Journal, 2017, 23, 17687-17691.	1.7	21
2585	Effective Zeeman splitting in bent lateral heterojunctions of graphene and hexagonal boron nitride: A new mechanism towards half-metallicity. Physical Review B, 2017, 96, .	1.1	14
2586	Nanoscale Control over the Mixing Behavior of Surface-Confined Bicomponent Supramolecular Networks Using an Oriented External Electric Field. ACS Nano, 2017, 11, 10903-10913.	7.3	64
2587	Design of half-metal and spin gapless semiconductor for spintronics application via cation substitution in methylammonium lead iodide. Applied Physics Express, 2017, 10, 123002.	1.1	8
2588	Quasiparticle energies, exciton level structures and optical absorption spectra of ultra-narrow ZSiCNRs. RSC Advances, 2017, 7, 52053-52064.	1.7	5
2589	Graphene: Fundamental research and potential applications. FlatChem, 2017, 4, 20-32.	2.8	120
2590	Alkali-created rich properties in grapheme nanoribbons: Chemical bondings. Scientific Reports, 2017, 7, 1722.	1.6	3
2591	Topological confinement effect of edge potentials in zigzag-edge graphene nanoribbons under a staggered bulk potential. Current Applied Physics, 2017, 17, 1244-1248.	1.1	8
2592	Synthesis of Dibenzo[<i>hi,st</i>]ovalene and Its Amplified Spontaneous Emission in a Polystyrene Matrix. Angewandte Chemie, 2017, 129, 6857-6861.	1.6	18
2593	Spatial structure of correlations around a quantum impurity at the edge of a two-dimensional topological insulator. Physical Review B, 2017, 96, .	1.1	15
2594	Strain effect on SnS2 nanoribbons: Robust direct bandgap of zigzag-edge and sensitive indirect semiconductor with armchair-edge states. Superlattices and Microstructures, 2017, 111, 480-486.	1.4	5

#	Article	IF	CITATIONS
2595	Topological state engineering by in-plane electric field in graphene nanoribbon. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2841-2844.	0.9	4
2596	Conductance modulation in Weyl semimetals with tilted energy dispersion without a band gap. Journal of Applied Physics, 2017, 121, 244303.	1.1	15
2597	Magnetic and electronic crossovers in graphene nanoflakes. Physical Review B, 2017, 95, .	1.1	24
2598	Spin-polarized electron transport in hybrid graphene-BN nanoribbons. Journal of Physics: Conference Series, 2017, 827, 012012.	0.3	0
2599	Multiple thermal spin transport performances of graphene nanoribbon heterojuction co-doped with Nitrogen and Boron. Scientific Reports, 2017, 7, 3955.	1.6	8
2600	Structural Asymmetry-Facilitated Tunability of Spin Distribution in the (10, 0) Carbon Nanotube Induced by Charging. Journal of Electronic Materials, 2017, 46, 3857-3861.	1.0	2
2601	Microscopic theory of substrate-induced gap effect on real AFM susceptibility in graphene. Pramana - Journal of Physics, 2017, 89, 1.	0.9	0
2602	Ferromagnetism and Halfâ€Metallicity in Atomically Thin Holey Nitrogenated Graphene Based Systems. ChemPhysChem, 2017, 18, 2336-2346.	1.0	12
2603	From Half-Metal to Semiconductor: Electron-Correlation Effects in Zigzag SiC Nanoribbons From First Principles. Physical Review Applied, 2017, 7, .	1.5	18
2604	Inducing half-metallicity with enhanced stability in zigzag graphene nanoribbons via fluorine passivation. Applied Surface Science, 2017, 396, 471-479.	3.1	31
2605	Freestanding Silicene. Lecture Notes in Physics, 2017, , 13-39.	0.3	3
2606	Graphene-based spin switch device via modulated Rashba field and strain. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 85, 264-270.	1.3	9
2607	Homochiral polymerization-driven selective growth of graphene nanoribbons. Nature Chemistry, 2017, 9, 57-63.	6.6	121
2608	Defect production in Ar irradiated graphene membranes under different initial applied strains. Nuclear Instruments & Methods in Physics Research B, 2017, 393, 44-48.	0.6	1
2609	Influence of oxygen impurities on the electronic properties of graphene nanoflakes. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 88, 1-5.	1.3	39
2610	Half-metallicity and high spin-filtering effect of magnetic atoms embedded zigzag 6, 6, 12-graphyne nanoribbon. Carbon, 2017, 113, 170-175.	5.4	24
2611	Spatial manipulating spin-polarization and tunneling patterns in graphene spirals via periphery structural modification. Carbon, 2017, 113, 325-333.	5 . 4	12
2612	Integration of ammonia-plasma-functionalized graphene nanodiscs as charge trapping centers for nonvolatile memory applications. Carbon, 2017, 113, 318-324.	5.4	22

#	Article	IF	CITATIONS
2613	Controllable Synthesis of 2D and 1D MoS ₂ Nanostructures on Au Surface. Advanced Functional Materials, 2017, 27, 1603887.	7.8	15
2614	An investigation of electronic and optical properties of InN nanosheet by first principle study. Optics Communications, 2017, 395, 293-300.	1.0	21
2615	Gate tunable graphene break junction spin filter. , 2017, , .		0
2616	Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning. Physical Review B, 2017, 96, .	1.1	6
2617	Bias induced ferromagnetism and half-metallicity in graphene nano-ribbons. Scientific Reports, 2017, 7, 17094.	1.6	1
2618	Ab-Initio Calculation of the Magnetic Properties of Metal-Doped Boron-Nitrogen Nanoribbon. Journal of Physics: Conference Series, 2017, 903, 012027.	0.3	O
2619	Mining single-electron spectra of the interface states from a supercell band structure of silicene on an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">Ag</mml:mi><mml:mo>(</mml:mo><mml:mn>111</mml:mn><mml:mo>)<td>nml:mrow</td><td>> </td></mml:mo></mml:mrow></mml:math>	nml:mrow	>
2620	Calculation of electronic and transport properties of phosphorene nanoribbons using DFT and semi empirical models., 2017,,.		2
2621	Efficient spin-filtering, magnetoresistance and negative differential resistance effects of a one-dimensional single-molecule magnet Mn(dmit)2-based device with graphene nanoribbon electrodes. AIP Advances, 2017, 7, .	0.6	2
2622	The politics of research-Or why you can't trust anything you read, including this article!. Psychotherapy and Politics International, 2017, 15, e1425.	0.1	1
2623	7. Solution Synthesis of Atomically Precise Graphene Nanoribbons. , 2017, , .		3
2624	Preparation and characterisation of graphene oxide nanofluid and its electrical conductivity. International Journal of Nano and Biomaterials, 2017, 7, 102.	0.1	1
2625	Edge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials. Frontiers in Physics, 2017, 5, .	1.0	5
2626	Molecular Dynamics Study on the Resonance Properties of a Nano Resonator Based on a Graphene Sheet with Two Types of Vacancy Defects. Applied Sciences (Switzerland), 2017, 7, 79.	1.3	5
2627	Tunable SnO ₂ Nanoribbon by Electric Fields and Hydrogen Passivation. Journal of Nanomaterials, 2017, 2017, 1-12.	1.5	0
2628	Solution Synthesis of Atomically Precise Graphene Nanoribbons. ChemistrySelect, 2017, 2, .	0.7	3
2629	Studies on As-synthesized Graphene Oxide Flakes. Current Nanomaterials, 2017, 1, 164-170.	0.2	2
2630	Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect. Nanotechnology, 2018, 29, 205708.	1.3	15

#	ARTICLE	IF	CITATIONS
2631	Interfacial engineering in graphene bandgap. Chemical Society Reviews, 2018, 47, 3059-3099.	18.7	153
2632	Asymmetrical edges induced strong current-polarization in embedded graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 1167-1170.	0.9	5
2633	Tunable electronic properties of partially edge-hydrogenated armchair boron–nitrogen–carbon nanoribbons. Physical Chemistry Chemical Physics, 2018, 20, 10345-10358.	1.3	5
2634	Edge defect switched dual spin filter in zigzag hexagonal boron nitride nanoribbons. Physical Chemistry Chemical Physics, 2018, 20, 9241-9247.	1.3	11
2635	Supramolecular Nanostructures of Structurally Defined Graphene Nanoribbons in the Aqueous Phase. Angewandte Chemie, 2018, 130, 3424-3429.	1.6	12
2636	Quantum Interference Assisted Spin Filtering in Graphene Nanoflakes. Nano Letters, 2018, 18, 2158-2164.	4.5	38
2637	Synthesis of armchair graphene nanoribbons from the $10,10\hat{a}\in^2$ -dibromo- $9,9\hat{a}\in^2$ -bianthracene molecules on Ag(111): the role of organometallic intermediates. Scientific Reports, 2018, 8, 3506.	1.6	39
2638	Tuning the electronic and optical properties of hexagonal boron-nitride nanosheet by inserting graphene quantum dots. Modern Physics Letters B, 2018, 32, 1850084.	1.0	4
2639	Tailoring the Electronic and Magnetic Properties of Peculiar Triplet Ground State Polybenzoid "Triangulene― ChemistrySelect, 2018, 3, 2390-2397.	0.7	20
2640	Half-metallic ferromagnetism prediction in MoS ₂ -based two-dimensional superlattice from first-principles. Modern Physics Letters B, 2018, 32, 1850098.	1.0	4
2641	Topological confinement effects of electron-electron interactions in biased zigzag-edge bilayer graphene nanoribbons. Physical Review B, 2018, 97, .	1.1	8
2642	Spontaneous antiferromagnetic order and strain effect on electronic properties of $\hat{l}\pm$ -graphyne. Carbon, 2018, 131, 223-228.	5.4	19
2643	Frontâ€Endâ€ofâ€Line Integration of Graphene Oxide for Grapheneâ€Based Electrical Platforms. Advanced Materials Technologies, 2018, 3, 1700318.	3.0	16
2644	Adsorbing the magnetic superhalogen MnCl ₃ to realize intriguing half-metallic and spin-gapless-semiconducting behavior in zigzag or armchair SiC nanoribbon. RSC Advances, 2018, 8, 13167-13177.	1.7	6
2645	Structural and magneto-electronic properties of transition metal doped phosphorus nanotubes. Physical Chemistry Chemical Physics, 2018, 20, 13574-13579.	1.3	14
2646	Inner edge magnetisms in carbon honeycombs. Journal of Applied Physics, 2018, 123, 144301.	1.1	1
2647	Optically Unraveling the Edge Chiralityâ€Dependent Band Structure and Plasmon Damping in Graphene Edges. Advanced Materials, 2018, 30, e1800367.	11.1	16
2648	Electronic structures and optical properties of ZrS2 monolayer by n- and p-type doping. Journal of Alloys and Compounds, 2018, 748, 798-803.	2.8	22

#	Article	IF	CITATIONS
2649	Low-energy 3D sp ² carbons with versatile properties beyond graphite and graphene. Dalton Transactions, 2018, 47, 6233-6239.	1.6	7
2650	Modulation of electronic and magnetic properties of edge hydrogenated armchair phosphorene nanoribbons by transition metal adsorption. Physical Chemistry Chemical Physics, 2018, 20, 12916-12922.	1.3	10
2651	Impact of interface types on spin transport in heterostructures of graphene/hexagonal boron-nitride nanoribbons. Organic Electronics, 2018, 58, 63-68.	1.4	6
2652	Temperature-tuned ferromagnetism in hydrogenated multilayer graphene. RSC Advances, 2018, 8, 13148-13153.	1.7	11
2653	Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 776-780.	0.9	12
2654	Transition Metal-Doped Tin Monoxide Monolayer: A First-Principles Study. Journal of Physical Chemistry C, 2018, 122, 4651-4661.	1.5	33
2655	2D Intrinsic Ferromagnets from van der Waals Antiferromagnets. Journal of the American Chemical Society, 2018, 140, 2417-2420.	6.6	312
2656	Half metal phase in the zigzag phosphorene nanoribbon. Scientific Reports, 2018, 8, 2932.	1.6	31
2657	Modulating the properties of multi-functional molecular devices consisting of zigzag gallium nitride nanoribbons by different magnetic orderings: a first-principles study. Physical Chemistry Chemical Physics, 2018, 20, 5726-5733.	1.3	42
2658	Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chemical Reviews, 2018, 118, 6236-6296.	23.0	410
2659	Spin-Orbit Effects on the Dynamical Properties of Polarons in Graphene Nanoribbons. Scientific Reports, 2018, 8, 1914.	1.6	8
2660	Impact of Doping Concentration on Electronic Properties of Transition Metal-Doped Monolayer Molybdenum Disulfide. IEEE Transactions on Electron Devices, 2018, 65, 733-738.	1.6	17
2661	Supramolecular Nanostructures of Structurally Defined Graphene Nanoribbons in the Aqueous Phase. Angewandte Chemie - International Edition, 2018, 57, 3366-3371.	7.2	52
2663	Carbon chain-based spintronic devices: Tunable single-spin Seebeck effect, negative differential resistance and giant rectification effects. Organic Electronics, 2018, 55, 170-176.	1.4	9
2664	Electrochemistry of ZnO@reduced graphene oxides. Carbon, 2018, 130, 480-486.	5.4	58
2665	A novel class of one-dimensional Ta4TMTe4 (TM = Cr, Fe, Co and Ni) compounds with strain-switched magnetic states. Physical Chemistry Chemical Physics, 2018, 20, 6990-6995.	1.3	4
2666	Electronic and magnetic properties of MoSe 2 armchair nanoribbons controlled by the different edge structures. Superlattices and Microstructures, 2018, 115, 30-39.	1.4	11
2667	Donor–acceptor conjugated ladder polymer <i>via</i> aromatization-driven thermodynamic annulation. Polymer Chemistry, 2018, 9, 1603-1609.	1.9	36

#	ARTICLE	lF	CITATIONS
2668	Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 2018, 47, 1822-1873.	18.7	1,274
2669	Structure and Properties of Graphene. , 2018, , 1-12.		41
2670	Fundamental Properties of Graphene. , 2018, , 73-102.		8
2671	Asymmetric Coulomb oscillation and giant anisotropic magnetoresistance in doped graphene nanojunctions. Applied Surface Science, 2018, 449, 384-388.	3.1	3
2672	Density functional study on covalent functionalization of zigzag graphene nanoribbon through l-Phenylalanine and boron doping: Effective nanocarriers in drug delivery applications. Applied Surface Science, 2018, 449, 815-822.	3.1	22
2673	Monolayer Boron Nitride Substrate Interactions with Graphene Under In-Plane and Perpendicular Strains: A First-Principles Study. Journal of Electronic Materials, 2018, 47, 2209-2214.	1.0	3
2674	Recovery of edge states of graphene nanoislands on an iridium substrate by silicon intercalation. Nano Research, $2018,11,3722-3729.$	5.8	10
2675	First-Principles Study of the Interactions between Graphene Oxide and Amine-Functionalized Carbon Nanotube. Journal of Physical Chemistry C, 2018, 122, 1288-1298.	1.5	17
2676	Spin-selectable, region-tunable negative differential resistance in graphene double ferromagnetic barriers. Physical Chemistry Chemical Physics, 2018, 20, 1560-1567.	1.3	12
2677	Monodisperse Nâ€Doped Graphene Nanoribbons Reaching 7.7 Nanometers in Length. Angewandte Chemie, 2018, 130, 711-716.	1.6	44
2678	Invalidity of the Fermi liquid theory and magnetic phase transition in quasi-1D dopant-induced armchair-edged graphene nanoribbons. Journal of Magnetism and Magnetic Materials, 2018, 452, 157-163.	1.0	4
2679	Designing molecular rectifiers and spin valves using metallocene-functionalized undecanethiolates: one transition metal atom matters. Journal of Materials Chemistry C, 2018, 6, 2105-2112.	2.7	36
2680	Designing half-metallic ferromagnetism by a new strategy: an example of superhalogen modified graphitic C ₃ N ₄ . Journal of Materials Chemistry C, 2018, 6, 1709-1714.	2.7	21
2681	Electronic, Magnetic, and Transport Properties of Polyacrylonitrile-Based Carbon Nanofibers of Various Widths: Density-Functional Theory Calculations. Physical Review Applied, 2018, 9, .	1.5	8
2682	Magnetic Behaviors of 3d Transition Metal-Doped Silicane: a First-Principle Study. Journal of Superconductivity and Novel Magnetism, 2018, 31, 2789-2795.	0.8	81
2683	Tunable magnetism and spin-polarized electronic transport in graphene mediated by molecular functionalization of extended defects. Physical Review B, 2018, 97, .	1.1	9
2684	Strained zigzag graphene nanoribbon devices with vacancies as perfect spin filters. Journal of Molecular Modeling, 2018, 24, 35.	0.8	7
2685	The anisotropic tunneling behavior of spin transport in graphene-based magnetic tunneling junction. Journal of Magnetism and Magnetic Materials, 2018, 453, 101-106.	1.0	7

#	ARTICLE	IF	CITATIONS
2686	Photoinduced pure spin-current in triangulene-based nano-devices. Carbon, 2018, 137, 1-5.	5.4	37
2687	Half-metallicity in a honeycomb–kagome-lattice Mg ₃ C ₂ monolayer with carrier doping. Physical Chemistry Chemical Physics, 2018, 20, 14166-14173.	1.3	19
2688	Spin-dependent transport properties of AA-stacked bilayer graphene nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 102, 117-122.	1.3	6
2689	Half-metallicity and enhanced ferromagnetism in Li-adsorbed ultrathin chromium triiodide. Journal of Materials Chemistry C, 2018, 6, 5716-5720.	2.7	71
2690	Zigzag graphene nanoribbons separated by hydrogenation. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 102, 95-100.	1.3	7
2691	Theoretical Insight into M ₁ TPyP–M ₂ (M ₁ , M ₂ = Fe, Co) MOFs: Correlation between Electronic Structure and Catalytic Activity Extending to Potentiality in Capturing Flue Gases. Journal of Physical Chemistry C, 2018, 122, 9899-9908.	1.5	11
2692	Aspects of electron transport in zigzag graphene nanoribbons. International Journal of Modern Physics B, 2018, 32, 1850148.	1.0	5
2693	Effect of edge defects on band structure of zigzag graphene nanoribbons. Journal of Applied Physics, 2018, 123, .	1.1	7
2694	Magnetism on a Boron-doped Si(111)- \$\$sqrt 3 imes sqrt 3 \$\$ 3 $\tilde{A}-$ 3 Surface. Journal of the Korean Physical Society, 2018, 72, 577-581.	0.3	0
2695	Revisiting the Mechanism of Oxidative Unzipping of Multiwall Carbon Nanotubes to Graphene Nanoribbons. ACS Nano, 2018, 12, 3985-3993.	7.3	88
2696	Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chemical Society Reviews, 2018, 47, 3899-3990.	18.7	161
2697	Adsorption of $3 < i > d < /i >$, $4 < i > d < /i >$, and $5 < i > d < /i >$ transition-metal atoms on single-layer boron nitride. Journal of Applied Physics, 2018, 123, .	1.1	15
2698	Computational design and property predictions for two-dimensional nanostructures. Materials Today, 2018, 21, 391-418.	8.3	78
2699	Superatom Compounds under Oriented External Electric Fields: Simultaneously Enhanced Bond Energies and Nonlinear Optical Responses. Journal of Physical Chemistry C, 2018, 122, 7867-7876.	1.5	27
2700	Sequential BN-doping induced tuning of electronic properties in zigzag-edged graphene nanoribbons: a computational approach. RSC Advances, 2018, 8, 10964-10974.	1.7	3
2701	Chevron-based graphene nanoribbon heterojunctions: Localized effects of lateral extension and structural defects on electronic properties. Carbon, 2018, 134, 310-315.	5.4	31
2702	Reversible Valence Photoisomerization between Closed-Shell Quinoidal and Open-Shell Biradical Forms. Journal of Physical Chemistry Letters, 2018, 9, 1833-1837.	2.1	10
2703	Tuning magnetism by strain and external electric field in zigzag Janus MoSSe nanoribbons. Computational Materials Science, 2018, 146, 240-247.	1.4	40

#	Article	IF	Citations
2704	Dynamical and Static Spin Susceptibilities of Doped Gapped Graphene Nanoribbon Due to Local Electronic Interaction. Plasmonics, 2018, 13, 845-856.	1.8	2
2705	On linear waveguides of zigzag honeycomb lattice. Waves in Random and Complex Media, 2018, 28, 96-138.	1.6	10
2706	Electronic, magnetic and transport properties of transition metal-doped holely C 2 N- h 2D nanoribbons. Physica B: Condensed Matter, 2018, 528, 1-8.	1.3	7
2707	Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron. Journal of Magnetism and Magnetic Materials, 2018, 449, 522-529.	1.0	11
2708	Spin-filtering, negative differential resistance, and giant magnetoresistance in (2Â×Â1) reconstructed zigzag MoS 2 nanoribbons. Physica B: Condensed Matter, 2018, 528, 9-13.	1.3	5
2709	Graphene based superconducting junctions as spin sources for spintronics. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 96, 23-29.	1.3	4
2710	Controlling the electronic properties of the graphene nanoflakes by BN impurities. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 95, 86-93.	1.3	17
2711	Ferromagnetism and Halfâ€Metallicity in a Highâ€Bandâ€Gap Hexagonal Boron Nitride System. ChemPhysChem, 2018, 19, 153-161.	1.0	10
2712	Stone-Wales defected molecular-based AFellFellI(C2O4)3 nanoribbons: Thermal and magnetic properties. Journal of Magnetism and Magnetic Materials, 2018, 449, 328-336.	1.0	13
2713	1D ferromagnetic edge contacts to 2D graphene/h-BN heterostructures. 2D Materials, 2018, 5, 014001.	2.0	26
2714	Negative differential resistance and magnetoresistance in zigzag borophene nanoribbons. International Journal of Modern Physics B, 2018, 32, 1850033.	1.0	7
2715	Structural stability, magneto-electronics and spin transport properties of triangular graphene nanoflake chains with edge oxidation. Carbon, 2018, 126, 93-104.	5.4	18
2716	Tight-Binding Model Study of Tunneling Spectra of Monolayer Graphene-on-Substrate. International Journal of Nanoscience, 2018, 17, 1760027.	0.4	1
2717	Asymmetric hydrogenation-induced ferromagnetism in stanene nanoribbons considering electric field and strain effects. Journal of Materials Science, 2018, 53, 657-666.	1.7	3
2718	Quantum effects on a graphene-like material with four-sublattice. Physica A: Statistical Mechanics and Its Applications, 2018, 490, 1138-1149.	1.2	4
2719	Magnetic phase separation and unusual scenario of its temperature evolution in porous carbon-based nanomaterials doped with Au and Co. Journal of Magnetism and Magnetic Materials, 2018, 445, 84-94.	1.0	1
2720	Development of averaged solid–fluid potential energies for layers and solids of various geometries and dimensionality. Adsorption, 2018, 24, 1-9.	1.4	19
2721	A computational study of photonic materials based on Ni bis(dithiolene) fused with benzene, possessing gigantic second hyperpolarizabilities. Journal of Materials Chemistry C, 2018, 6, 91-110.	2.7	14

#	Article	IF	CITATIONS
2722	Monodisperse Nâ€Doped Graphene Nanoribbons Reaching 7.7 Nanometers in Length. Angewandte Chemie - International Edition, 2018, 57, 703-708.	7.2	87
2723	Quantum Wires and Waveguides Formed in Graphene by Strain. Nano Letters, 2018, 18, 64-69.	4.5	37
2724	Room-temperature ferromagnetism from an array of asymmetric zigzag-edge nanoribbons in a graphene junction. Carbon, 2018, 127, 57-63.	5.4	4
2725	Electronic, magnetic, half-metallic and mechanical properties of a new quaternary Heusler compound ZrRhTiTl: Insights from first-principles studies. Solid State Communications, 2018, 269, 125-130.	0.9	14
2726	Electronic and magnetic properties of zigzag GaN nanoribbons with hydrogenation and fluorination. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 144-150.	1.3	11
2727	Enhancement of the Metallic Behavior of Graphene due to Coulomb Interaction in the Paramagnetic Limit: A Tight-Binding Study. International Journal of Nanoscience, 2018, 17, 1760031.	0.4	0
2728	Magnetic Susceptibility and Neutron Scattering of Graphene in Antiferromagnetic State: a Tight-Binding Approach. Journal of Superconductivity and Novel Magnetism, 2018, 31, 1857-1866.	0.8	1
2729	Edge-Dependent Electronic and Magnetic Characteristics of Freestanding \hat{l}^2 12-Borophene Nanoribbons. Nano-Micro Letters, 2018, 10, 14.	14.4	28
2730	Borophene sheets with in-plane chain-like boundaries; a reactive molecular dynamics study. Computational Materials Science, 2018, 143, 1-14.	1.4	18
2731	The giant Stark effect in armchair-edge phosphorene nanoribbons under a transverse electric field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 193-198.	0.9	18
2732	Spin-charge transport properties for graphene/graphyne zigzag-edged nanoribbon heterojunctions: A first-principles study. Carbon, 2018, 127, 519-526.	5.4	41
2733	Formation of localized magnetic states in graphene in hollow-site adsorbed adatoms. Superlattices and Microstructures, 2018, 113, 291-300.	1.4	7
2734	Seebeck coefficient and thermal conductivity of doped armchair graphene nanoribbon in the presence of magnetic field. Materials Research Bulletin, 2018, 99, 18-22.	2.7	2
2735	<i>h</i> -BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator. Nanoscale, 2018, 10, 174-183.	2.8	49
2736	A comparative study of electrical, EMI shielding and thermal properties of graphene and multiwalled carbon nanotube filled polystyrene nanocomposites. Polymer Composites, 2018, 39, E1041.	2.3	41
2737	Reaching for [6] < sub > n < / sub > SiCâ€eyclacenes and [6] < sub > n < / sub > SiCâ€ecenes: A DFT approach. Journal of Physical Organic Chemistry, 2018, 31, e3754.	0.9	9
2738	Molecular Dynamics Simulations of Si ion Substituted Graphene by Bombardment. IOP Conference Series: Materials Science and Engineering, 0, 394, 022020.	0.3	2
2739	Bottom-Up Synthesis and Electronic Structure of Graphene Nanoribbons on Surfaces., 2018,, 210-225.		2

#	Article	IF	CITATIONS
2740	Spin density distributions on graphene clusters and ribbons with carbene-like active sites. Physical Chemistry Chemical Physics, 2018, 20, 26968-26978.	1.3	7
2741	Strain and screening effects on field emission properties of armchair graphene nanoribbon arrays: a first-principles study. RSC Advances, 2018, 8, 22625-22634.	1.7	3
2742	Mechanical exfoliation and electrical characterization of a one-dimensional Nb ₂ Se ₉ atomic crystal. RSC Advances, 2018, 8, 37724-37728.	1.7	23
2743	Facile synthesis of graphene nanoribbons from zeolite-templated ultra-small carbon nanotubes for lithium ion storage. Journal of Materials Chemistry A, 2018, 6, 21327-21334.	5.2	6
2744	Bipolar magnetism in a two-dimensional NbS ₂ semiconductor with high Curie temperature. Journal of Materials Chemistry C, 2018, 6, 11401-11406.	2.7	35
2745	Modeling of Carbon Chain Device Employing Quantum Mechanical Method: A Hybrid Diode. , 2018, , .		0
2746	Reduced graphene oxide produced by chemical and hydrothermal methods. Materials Today: Proceedings, 2018, 5, 16306-16312.	0.9	23
2747	Exciton Peierls mechanism and universal many-body gaps in carbon nanotubes. Physical Review B, 2018, 98, .	1.1	7
2748	Screening Magnetic Two-Dimensional Atomic Crystals with Nontrivial Electronic Topology. Journal of Physical Chemistry Letters, 2018, 9, 6709-6715.	2.1	53
2749	Impact of \hat{I}^3 -ray irradiation on graphene nano-disc non-volatile memory. Applied Physics Letters, 2018, 113,	1.5	8
2750	From graphene to borophene the fascinating 2D materials. Chemical Modelling, 0, , 217-254.	0.2	0
2751	Unravelling the Role of Topological Defects on Catalytic Unzipping of Single-Walled Carbon Nanotubes by Single Transition Metal Atom. Journal of Physical Chemistry Letters, 2018, 9, 6801-6807.	2.1	7
2752	Probing one-dimensional systems via noise magnetometry with single spin qubits. Physical Review B, 2018, 98, .	1.1	17
2753	Electronic structure of graphene nanoribbons on hexagonal boron nitride. Physical Review B, 2018, 98, .	1.1	11
2754	Screening of long-range Coulomb interaction in graphene nanoribbons: Armchair versus zigzag edges. Physical Review B, 2018, 98, .	1.1	12
2755	Electronic and optical properties of V doped AlN nanosheet: DFT calculations. Chinese Journal of Physics, 2018, 56, 2698-2709.	2.0	22
2756	Long range intrinsic ferromagnetism in two dimensional materials and dissipationless future technologies. Applied Physics Reviews, 2018, 5, .	5.5	119
2757	Excited-State Properties of Thin Silicon Nanowires. , 2018, , 1-18.		1

#	Article	IF	CITATIONS
2758	Modifying spin current filtering and magnetoresistance in a molecular spintronic device. RSC Advances, 2018, 8, 41587-41593.	1.7	4
2759	Tunable edge bands and optical properties in black phosphorus nanoribbons under electric field. Chinese Physics B, 2018, 27, 127301.	0.7	2
2760	Correlated electrons in a zig-zag chain with the spin-orbit interaction: Exact solution. Low Temperature Physics, 2018, 44, 1237-1244.	0.2	1
2761	Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies. ACS Omega, 2018, 3, 17789-17796.	1.6	58
2762	Discovering the forbidden Raman modes at the edges of layered materials. Science Advances, 2018, 4, eaau6252.	4.7	33
2763	Visualizing topological edge states of single and double bilayer Bi supported on multibilayer ${\rm Bi}(111)$ films. Physical Review B, 2018, 98, .	1.1	40
2764	High-performance spin rectification in gallium nitride-based molecular junctions with asymmetric edge passivation. Journal of Applied Physics, 2018, 124, .	1.1	6
2765	Free-radical gases on two-dimensional transition-metal disulfides (XS ₂ , X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors. Beilstein Journal of Nanotechnology, 2018, 9, 1641-1646.	1.5	8
2766	Molecular tunneling in large tubes of 3D nitrogenated micropore materials. Journal of Applied Physics, 2018, 124, 194303.	1.1	22
2767	Effect of Edge passivation on the Electronic Properties of Zigzag Phosphorene Nanoribbons (ZPNRs) Antidots., 2018,,.		0
2768	Charge and spin transport anisotropy in nanopatterned graphene. JPhys Materials, 2018, 1, 015005.	1.8	10
2769	Edge-insensitive magnetism and half metallicity in graphene nanoribbons. Journal of Physics Condensed Matter, 2018, 30, 48LT01.	0.7	3
2770	Modeling Disordered and Nanostructured Graphene. , 2018, , 1-20.		0
2771	Small transition metal cluster adsorbed on graphene and graphene nanoribbons: A density functional based tight binding molecular dynamics study. Organic Electronics, 2018, 63, 355-361.	1.4	30
2772	Spin gapless semiconductor and half-metal properties in magnetic penta-hexa-graphene nanotubes. Organic Electronics, 2018, 63, 310-317.	1.4	28
2773	Graphene Nanoribbon Spin-Photodetector. Physical Review Applied, 2018, 10, .	1.5	35
2774	Superoctazethrene: An Open-Shell Graphene-like Molecule Possessing Large Diradical Character but Still with Reasonable Stability. Journal of the American Chemical Society, 2018, 140, 14054-14058.	6.6	65
2775	Exfoliation and Characterization of V2Se9 Atomic Crystals. Nanomaterials, 2018, 8, 737.	1.9	26

#	Article	IF	CITATIONS
2776	Electric Control of the Edge Magnetization in Zigzag Stanene Nanoribbons from First Principles. Physical Review Applied, 2018, 10, .	1.5	14
2777	Mechanical and electromechanical properties of functionalized hexagonal boron nitride nanosheet: A density functional theory study. Journal of Chemical Physics, 2018, 149, 114701.	1.2	23
2778	Design of phosphorene/graphene heterojunctions for high and tunable interfacial thermal conductance. Nanoscale, 2018, 10, 19854-19862.	2.8	38
2779	Vibrational Signatures of Carboxylated Graphene: A First-Principles Study. Journal of Physical Chemistry C, 2018, 122, 24996-25006.	1.5	5
2780	Topological Phases in Cove-Edged and Chevron Graphene Nanoribbons: Geometric Structures, Z ₂ Invariants, and Junction States. Nano Letters, 2018, 18, 7247-7253.	4.5	55
2781	Photogalvanic effect induced fully spin polarized current and pure spin current in zigzag SiC nanoribbons. Physical Chemistry Chemical Physics, 2018, 20, 26744-26751.	1.3	42
2782	Functionalizing Two-Dimensional Materials for Energy Applications. , 2018, , 1-37.		0
2783	Robust ferromagnetism in hydrogenated graphene mediated by spin-polarized pseudospin. Scientific Reports, 2018, 8, 13940.	1.6	5
2784	Graphene Etching: How Could It Be Etched?. Current Graphene Science, 2018, 2, 15-20.	0.5	6
2785	Fabrication of Three-Dimensional Graphene-Based Polyhedrons via Origami-Like Self-Folding. Journal of Visualized Experiments, 2018, , .	0.2	0
2786	Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictions. Nanoscale, 2018, 10, 19220-19223.	2.8	12
2787	Ballistic tracks in graphene nanoribbons. Nature Communications, 2018, 9, 4426.	5.8	45
2788	Spin-valley half-metal in systems with Fermi surface nesting. Physical Review B, 2018, 98, .	1.1	13
2789	Epitaxial growth of ultraflat stanene with topological band inversion. Nature Materials, 2018, 17, 1081-1086.	13.3	267
2790	Quantum Chaotic Behavior in Zigzag Graphene Nanoribbon: Effect of Impurity and Electric Field. Journal of the Physical Society of Japan, 2018, 87, 114602.	0.7	8
2791	Conductance through the armchair graphene nanoribbons 9-AGNR: Strong dependence on contact to leads. Physical Review B, 2018, 98, .	1.1	7
2792	Optically Forged Diffraction-Unlimited Ripples in Graphene. Journal of Physical Chemistry Letters, 2018, 9, 6179-6184.	2.1	10
2793	Observation of Room-Temperature Photoluminescence Blinking in Armchair-Edge Graphene Nanoribbons. Nano Letters, 2018, 18, 7038-7044.	4.5	8

#	Article	IF	CITATIONS
2794	The adsorption state and the evolution of field emission properties of graphene edges at different temperatures. RSC Advances, 2018, 8, 31830-31834.	1.7	4
2795	Effects of random atomic disorder on the magnetic stability of graphene nanoribbons with zigzag edges. Physical Review B, 2018, 98, .	1.1	7
2796	Phagraphene nanoribbons: half-metallicity and magnetic phase transition by functional groups and electric field. Journal of Physics Condensed Matter, 2018, 30, 445802.	0.7	4
2797	Spin signatures in the electrical response of graphene nanogaps. Nanoscale, 2018, 10, 18169-18177.	2.8	10
2798	Adsorptions of metal adatoms on graphene-like BC ₃ and their rich electronic properties: A first-principles study. Chinese Physics B, 2018, 27, 097311.	0.7	3
2799	An efficient and novel FDTD method based performance investigation in high-speed current-mode signaling SWCNT bundle interconnect. Sadhana - Academy Proceedings in Engineering Sciences, 2018, 43, 1.	0.8	8
2800	Electronic properties of armchair graphene nanoribbons under uniaxial strain and electric field. International Journal of Modern Physics B, 2018, 32, 1850263.	1.0	1
2801	The study of dynamical quasiparticle properties of undoped graphene nanoribbon. Solid State Communications, 2018, 284-286, 45-55.	0.9	O
2802	A Review of Current Development of Graphene Mechanics. Crystals, 2018, 8, 357.	1.0	68
2803	The effect of geometric arrangement on the thermoelectric properties of Phenanthrene coupled to the graphene nanoribbons electrodes. Chinese Journal of Physics, 2018, 56, 2580-2588.	2.0	1
2804	Polyaniline ($<$ i>>C $<$ /i>>3 $<$ i>N $<$ /i>) nanoribbons: Magnetic metal, semiconductor, and half-metal. Journal of Applied Physics, 2018, 124, .	1.1	26
2805	Surface activation of graphene nanoribbons for oxygen reduction reaction by nitrogen doping and defect engineering: An ab initio study. Carbon, 2018, 137, 349-357.	5.4	16
2806	Transverse electric field-induced quantum valley Hall effects in zigzag-edge graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2137-2143.	0.9	8
2807	Room temperature p-orbital magnetism in carbon chains and the role of group IV, V, VI, and VII dopants. Nanoscale, 2018, 10, 11186-11195.	2.8	13
2808	Achieving half-metallicity in zigzag MoS ₂ nanoribbon with a sulfur vacancy by edge passivation. Journal Physics D: Applied Physics, 2018, 51, 265005.	1.3	5
2809	The Electronic Structure of Beryllium Chains. Journal of Physical Chemistry A, 2018, 122, 5321-5332.	1.1	4
2810	Electrical spin manipulation in graphene nanostructures. Physical Review B, 2018, 97, .	1.1	21
2811	Highly tunable charge and spin transport in silicene junctions: phase transitions and half-metallic states. Nanotechnology, 2018, 29, 325203.	1.3	20

#	Article	IF	CITATIONS
2812	Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges. Physical Review Letters, 2018, 120, 216601.	2.9	28
2813	Moir $ ilde{A}$ © edge states in twisted graphene nanoribbons. Physical Review B, 2018, 97, .	1.1	17
2814	Symmetrized density matrix renormalization group algorithm for low-lying excited states of conjugated carbon systems: Application to 1,12-benzoperylene and polychrysene. Physical Review B, 2018, 97, .	1,1	7
2815	Screening effects on the field enhancement factor of zigzag graphene nanoribbon arrays: a first-principles study. Physical Chemistry Chemical Physics, 2018, 20, 14627-14634.	1.3	6
2816	Electronic properties and carrier mobility for penta-graphene nanoribbons with nonmetallic-atom -terminations. Organic Electronics, 2018, 59, 306-313.	1.4	22
2817	Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature, 2018, 557, 691-695.	13.7	232
2818	Concentration Dependence of Dopant Electronic Structure in Bottom-up Graphene Nanoribbons. Nano Letters, 2018, 18, 3550-3556.	4.5	31
2819	Armchair graphene nanoribbons with giant spin thermoelectric efficiency. Physical Chemistry Chemical Physics, 2018, 20, 16853-16860.	1.3	18
2820	Fate of the open-shell singlet ground state in the experimentally accessible acenes: A quantum Monte Carlo study. Journal of Chemical Physics, 2018, 148, 134112.	1.2	24
2821	Theoretical studies of optoelectronic, magnetization and heat transport properties of conductive metal adatoms adsorbed on edge chlorinated nanographenes. RSC Advances, 2018, 8, 17723-17731.	1.7	1
2822	Influence of edge passivation on electronic properties of triangular germanene nano flake. AIP Conference Proceedings, 2018, , .	0.3	3
2823	Edge magnetism in triangular silicene quantum dots. Journal of Magnetism and Magnetic Materials, 2018, 466, 301-305.	1.0	9
2824	Spin transport in oxygen adsorbed graphene nanoribbon. AIP Conference Proceedings, 2018, , .	0.3	0
2825	A Periâ€ŧetracene Diradicaloid: Synthesis and Properties. Angewandte Chemie - International Edition, 2018, 57, 9697-9701.	7.2	92
2826	Spin-Negative Differential Resistance in Zigzag Graphene Nanoribbons with Side-Attached Porphine Molecule. Journal of Physical Chemistry C, 2018, 122, 15911-15921.	1.5	14
2827	Poly(methyl methacrylate-co-methacrylic amide)-polyethylene glycol/polycarbonate and graphene nanoribbon-based nanocomposite membrane for gas separation. International Journal of Polymer Analysis and Characterization, 2018, 23, 450-462.	0.9	11
2828	A Periâ€ŧetracene Diradicaloid: Synthesis and Properties. Angewandte Chemie, 2018, 130, 9845-9849.	1.6	40
2829	Mechanical and electronic properties of graphene nanomesh heterojunctions. Computational Materials Science, 2018, 153, 64-72.	1.4	19

#	ARTICLE Three-dimensional hexagonal boron nitride foam containing both <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
2830	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mi>s</mml:mi><mml:msup><mml:mi>p</mml:mi><mml:mn>2</mml:mn>< and <mml:math altimg="si2.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>s</mml:mi><mml:msup><mml:mi>p</mml:mi><mml:mi>p</mml:mi><mml:mi></mml:mi></mml:msup></mml:mrow></mml:math></mml:msup></mml:mrow>	2.0	J
2831	hybridized bonds. Materials Chemistry and Physics, 2018, 217, 5-10. First-principles predictions of the geometries and electronic structures of tungsten ditelluride nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2754-2758.	0.9	6
2832	First-principles study of the stability and edge stress of nitrogen-decorated graphene nanoribbons. Physical Review B, 2018, 97, .	1.1	4
2833	Oxidation of carbon by gaseous metal oxide: A multi-path mechanism study. Carbon, 2018, 139, 258-270.	5.4	0
2834	Effect of carrier doping and external electric field on the optical properties of graphene quantum dots. IOP Conference Series: Materials Science and Engineering, 2018, 310, 012014.	0.3	2
2835	Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS Nano, 2018, 12, 7445-7481.	7.3	225
2836	Understanding the non-covalent interaction mediated modulations on the electronic structure of quasi-zero-dimensional graphene nanoflakes. Physical Chemistry Chemical Physics, 2018, 20, 18718-18728.	1.3	2
2837	Optimizing edges and defects of supported MoS ₂ catalysts for hydrogen evolution <i>via</i>) an external electric field. Physical Chemistry Chemical Physics, 2018, 20, 26083-26090.	1.3	25
2838	Edge States Caused by Shift of Dirac Points at the Armchair Edge of Distorted Nanographene. Journal of the Physical Society of Japan, 2018, 87, 084706.	0.7	2
2839	Spinning on the edge of graphene. Nature, 2018, 557, 645-647.	13.7	8
2840	Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides. Coordination Chemistry Reviews, 2018, 376, 1-19.	9.5	49
2841	Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores. ACS Nano, 2018, 12, 8662-8669.	7.3	49
2842	Realizing fully spin polarized transport in graphene nanoribbons with design of van der Waals vertical heterostructure leads. Journal Physics D: Applied Physics, 2018, 51, 385301.	1.3	3
2843	Hybridization induced metallic and magnetic edge states in noble transition-metal-dichalcogenides of $PtX < sub > 2 < sub > (X = S, Se)$ nanoribbons. Physical Chemistry Chemical Physics, 2018, 20, 21441-21446.	1.3	13
2844	Multireference Approaches for Excited States of Molecules. Chemical Reviews, 2018, 118, 7293-7361.	23.0	287
2845	Tunable direct-indirect band gaps of ZrSe2 nanoribbons. Journal of Applied Physics, 2018, 124, .	1.1	7
2846	First-principle investigations for electronic transport in nitrogen-doped disconnected zigzag graphene nanoribbons. Microelectronic Engineering, 2018, 199, 96-100.	1.1	6
2847	Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8511-8516.	3.3	163

#	Article	IF	CITATIONS
2848	Competing edge structures of Sb and Bi bilayers generated by trivial and nontrivial band topologies. Physical Review B, 2018, 98, .	1.1	5
2849	Carbon-Based Materials for Thermoelectrics. Advances in Condensed Matter Physics, 2018, 2018, 1-29.	0.4	35
2850	Chromiteen: A New 2D Oxide Magnetic Material from Natural Ore. Advanced Materials Interfaces, 2018, 5, 1800549.	1.9	36
2851	Confined Growth of Carbon Nanotubes in Nanocutting Channel on Highly Oriented Pyrolytic Graphite. Nano, 2018, 13, 1850071.	0.5	2
2852	Microscopic Electrode Processes in the Four-Electron Oxygen Reduction on Highly Active Carbon-Based Electrocatalysts. ACS Catalysis, 2018, 8, 8162-8176.	5.5	54
2853	Electronic band structure of carbon honeycombs. Materials Today Physics, 2018, 5, 72-77.	2.9	5
2854	Enhanced light–matter interaction of aligned armchair graphene nanoribbons using arrays of plasmonic nanoantennas. 2D Materials, 2018, 5, 045006.	2.0	10
2855	Tunable electronic structures and magnetic properties of zigzag C ₃ N nanoribbons. Journal Physics D: Applied Physics, 2018, 51, 345301.	1.3	9
2856	Two-dimensional Au-1,3,5 triethynylbenzene organometallic lattice: Structure, half-metallicity, and gas sensing. Journal of Chemical Physics, 2018, 149, 024702.	1.2	5
2857	Hydrogenated black phosphorus single layer. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 333-339.	1.3	5
2858	Study on the electronic structures and transport properties of the polyporphyrin nanoribbons with different edge configurations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2769-2775.	0.9	11
2859	Tailored Synthesis of the Narrowest Zigzag Graphene Nanoribbon Structure by Compressing the Lithium Acetylide under High Temperature. Journal of Physical Chemistry C, 2018, 122, 20506-20512.	1.5	10
2860	Energy gap in graphene and silicene nanoribbons: A semiclassical approach. AIP Conference Proceedings, 2018, , .	0.3	4
2861	Pyreneâ€Containing Twistarene: Twelve Benzene Rings Fused in a Row. Angewandte Chemie - International Edition, 2018, 57, 13555-13559.	7.2	76
2863	Competition of electron-phonon mediated superconductivity and Stoner magnetism on a flat band. Physical Review B, 2018, 98, .	1.1	37
2864	Highly Stable Persistent Photoconductivity with Suspended Graphene Nanoribbons. Scientific Reports, 2018, 8, 11819.	1.6	16
2865	Pyreneâ€Containing Twistarene: Twelve Benzene Rings Fused in a Row. Angewandte Chemie, 2018, 130, 13743-13747.	1.6	27
2866	Magnetic and electronic properties of zigzag boron nitride nanoribbons with nonmetallic atom terminations from first-principles. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 297-301.	1.3	3

#	Article	IF	CITATIONS
2867	Strain-induced effects in zigzag-edged blue phosphorene nanoribbons with edge sulfur passivation. Journal of Physics Condensed Matter, 2018, 30, 395303.	0.7	7
2868	Fully spin-polarized current in gated bilayer silicene. Physical Review B, 2018, 98, .	1.1	18
2869	Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chemical Reviews, 2018, 118, 7363-7408.	23.0	182
2870	Edge State Engineering of Graphene Nanoribbons. Nano Letters, 2018, 18, 5744-5751.	4.5	49
2871	Nanoserpents: Graphene Nanoribbon Motion on Two-Dimensional Hexagonal Materials. Nano Letters, 2018, 18, 6009-6016.	4.5	104
2872	Field-effect-driven half-metallic multilayer graphene. Physical Review B, 2018, 98, .	1.1	10
2873	First-principles prediction of ferromagnetism in transition-metal doped monolayer AlN. Superlattices and Microstructures, 2018, 122, 171-180.	1.4	18
2874	Length–dependence of conductance in benzothiadiazole molecular wires between graphene nanoribbon electrodes: Effect of conformational changes. Journal of Molecular Liquids, 2018, 269, 639-649.	2.3	4
2875	Origin of spin polarization in an edge boron doped zigzag graphene nanoribbon: a potential spin filter. Nanotechnology, 2018, 29, 345203.	1.3	7
2876	Ferromagnetism in RaBi with Zinc-Blende and Wurtzite Structures: <i>Ab-initio</i> Prediction. Spin, 2018, 08, 1850008.	0.6	12
2877	Helically Locked Tethered Twistacenes. Journal of the American Chemical Society, 2018, 140, 8086-8090.	6.6	64
2878	Hole-doping-induced half-metallic ferromagnetism in a highly-air-stable PdSe ₂ monolayer under uniaxial stress. Journal of Materials Chemistry C, 2018, 6, 6792-6798.	2.7	38
2879	A first principle study of the pristine InBi honeycomb film functionalized with fluorine atoms. Journal of Fluorine Chemistry, 2018, 212, 171-179.	0.9	12
2880	A first-principles study of the electrically tunable band gap in few-layer penta-graphene. Physical Chemistry Chemical Physics, 2018, 20, 18110-18116.	1.3	14
2881	Tuning the electronic and magnetic properties of graphene/ <i>h</i> -BN hetero nanoribbon: A first-principles investigation. AIP Advances, 2018, 8, .	0.6	7
2882	Multifunctional structural supercapacitor based on graphene and magnesium phosphate cement. Journal of Composite Materials, 2019, 53, 719-730.	1.2	23
2883	Electronic and transport properties and physical field coupling effects for net-Y nanoribbons. Nanotechnology, 2019, 30, 485703.	1.3	10
2884	Spin Filtering and Rectification in Lateral Heterostructures of Zigzag-Edge BC3 and Graphene Nanoribbons: Implications for Switching and Memory Devices. ACS Applied Nano Materials, 2019, 2, 5365-5372.	2.4	5

#	Article	IF	CITATIONS
2885	Renormalization effects in spin-polarized metallic wires proximitized by a superconductor: A scattering approach. Physical Review B, 2019, 99, .	1.1	2
2886	Microwave Energy Drives "On–Off–On―Spinâ€Switch Behavior in Nitrogenâ€Doped Graphene. Advanced Materials, 2019, 31, e1902587.	i 11.1	15
2887	Controllable spin-dependent transport in the pristine graphene nanoribbons. Journal of Physics: Conference Series, 2019, 1176, 052080.	0.3	0
2888	Soliton fractional charge of disordered graphene nanoribbon. Journal of Physics Condensed Matter, 2019, 31, 265601.	0.7	8
2889	Tunable spin transport and quantum phase transitions in silicene materials and superlattices. Journal of Materials Science, 2019, 54, 14483-14494.	1.7	13
2890	Vibration assisted electron tunneling through nano-gaps in graphene nano-ribbons for amino-acid and peptide bond recognition. Nanoscale Advances, 2019, 1, 3547-3554.	2.2	6
2891	Manipulating the anomalous Josephson effect by interface valley-polarized mixing. Europhysics Letters, 2019, 126, 67002.	0.7	3
2892	Electronic structures of ultra-thin tellurium nanoribbons. Nanoscale, 2019, 11, 14134-14140.	2.8	12
2893	Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons., 2019,, 99-117.		1
2894	Naphthylenes: 1D and 2D carbon allotropes based on naphthyl units. Carbon, 2019, 153, 792-803.	5.4	23
2895	Tweaking the properties of aluminum oxide shielded graphene-based transistors. Applied Surface Science, 2019, 491, 742-749.	3.1	0
2896	Ferromagnetic nodal-line metal in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi></mml:math> -InC. Physical Review B, 2019, 100, .	1.1	14
2897	Electronic and magnetic properties of CrI ₃ nanoribbons and nanotubes*. Chinese Physics B, 2019, 28, 077301.	0.7	8
2898	Synthesis, Properties, and Applications of Graphene. , 2019, , 25-90.		10
2899	Graphene/h-BN In-Plane Heterostructures: Stability and Electronic and Transport Properties. Journal of Physical Chemistry C, 2019, 123, 18600-18608.	1.5	5
2900	Electron Transport in Multidimensional Fuzzy Graphene Nanostructures. Nano Letters, 2019, 19, 5335-5339.	4.5	15
2901	Tunable Superstructures of Dendronized Graphene Nanoribbons in Liquid Phase. Journal of the American Chemical Society, 2019, 141, 10972-10977.	6.6	36
2902	High spin polarization in formamidinium transition metal iodides: first principles prediction of novel half-metals and spin gapless semiconductors. Physical Chemistry Chemical Physics, 2019, 21, 16213-16222.	1.3	15

#	Article	IF	CITATIONS
2903	Reversed even-odd oscillation of spin-polarized equilibrium conductance in an all-carbon junction. Journal of Applied Physics, 2019, 125 , .	1.1	3
2904	Direct Observation of Band Gap Renormalization in Layered Indium Selenide. ACS Nano, 2019, 13, 13486-13491.	7.3	13
2905	Ferromagnetic hysteresis and structural recrystallization in turbostratic graphite. Materials Research Express, 2019, 6, 105612.	0.8	5
2906	Exploiting the Novel Electronic and Magnetic Structure of C ₃ N via Functionalization and Conformation. Advanced Electronic Materials, 2019, 5, 1900459.	2.6	40
2907	Enhanced stability and stacking dependent magnetic/electronic properties of 2D monolayer FeTiO ₃ on a Ti ₂ CO ₂ substrate. Journal of Materials Chemistry C, 2019, 7, 15308-15314.	2.7	5
2908	Spin filter effect in the zigzag graphene nanoribbons. IOP Conference Series: Materials Science and Engineering, 2019, 490, 022046.	0.3	0
2909	Total ionizing dose effects on graphene-based charge-trapping memory. Science China Information Sciences, $2019, 62, 1.$	2.7	3
2910	Dinitrogen Activation on Graphene Anchored Single Atom Catalysts: Local Site Activity or Surface Phenomena. Journal of Physical Chemistry C, 2019, 123, 27492-27500.	1.5	13
2912	Structural and electronic properties of armchair graphene nanoribbons functionalized with fluorine. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125949.	0.9	17
2913	Anisotropic Failure of sp2-Hybrid Bonds in Graphene Sheets. Journal of Physical Chemistry C, 2019, 123, 28469-28476.	1.5	3
2914	Engineered electronic states in atomically precise artificial lattices and graphene nanoribbons. Advances in Physics: X, 2019, 4, 1651672.	1.5	33
2915	Half-metallicity modulation of zigzag BC2N nanoribbons by transverse electric fields: A first principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125984.	0.9	1
2916	Electronic States at the Zigzag Edges of Graphene Terraces. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900513.	1.2	0
2917	Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Science of the Total Environment, 2019, 694, 133427.	3.9	113
2918	Intrinsic Controllable Magnetism of Graphene Grown on Fe. Journal of Physical Chemistry C, 2019, 123, 26870-26876.	1.5	10
2919	Tuning the Electronic and Magnetic Properties of In-Planar Graphene/Boron Nitride Heterostructure by Doping 3d Transition Metal Atom. Journal of Physical Chemistry C, 2019, 123, 22403-22412.	1.5	5
2920	Hexagonal Nanopits with the Zigzag Edge State on Graphite Surfaces Synthesized by Hydrogen-Plasma Etching. Journal of Physical Chemistry C, 2019, 123, 22665-22673.	1.5	7
2921	Formation of defects during fullerene bombardment and repair of vacancy defects in graphene. Journal of Materials Science, 2019, 54, 14431-14439.	1.7	6

#	Article	IF	CITATIONS
2922	Research on the characteristics of driver visual behavior in highway extra-long tunnel. IOP Conference Series: Earth and Environmental Science, 2019, 295, 042139.	0.2	3
2923	First-principles study for I-V characteristics of halogen functionalized zigzag graphene nanoribbons. AIP Conference Proceedings, 2019, , .	0.3	1
2924	Proximity magnetoresistance in graphene induced by magnetic insulators. Physical Review B, 2019, 100, .	1.1	15
2925	Edge phonons in layered orthorhombic GeS and GeSe monochalcogenides. Physical Review B, 2019, 100,	1.1	22
2926	Functionalization of zigzag graphene nanoribbon with DNA nucleobases-A DFT study. Applied Surface Science, 2019, 496, 143667.	3.1	7
2927	Topologically Unique Molecular Nanocarbons. Accounts of Chemical Research, 2019, 52, 2760-2767.	7.6	102
2928	Recent Advances in Graphene-like 2D Materials for Spintronics Applications. Chemistry of Materials, 2019, 31, 8260-8285.	3.2	119
2929	Transport properties of Ag decorated zigzag graphene nanoribbons as a function of temperature: a density functional based tight binding molecular dynamics study. Adsorption, 2019, 25, 1655-1662.	1.4	15
2930	Intrinsic superstructure near atomically clean armchair step edges of graphite. Physical Review B, 2019, 100, .	1.1	3
2931	Dibenzo[<i>hi</i> , <i>st</i>]ovalene as Highly Luminescent Nanographene: Efficient Synthesis via Photochemical Cyclodehydroiodination, Optoelectronic Properties, and Single-Molecule Spectroscopy. Journal of the American Chemical Society, 2019, 141, 16439-16449.	6.6	39
2932	Manipulating the Electronic and Magnetic Properties of Monolayer Electride Ca ₂ N by Hydrogenation. Journal of Physical Chemistry C, 2019, 123, 24698-24704.	1.5	29
2933	Atomicâ€Scale Structural Modification of 2D Materials. Advanced Science, 2019, 6, 1801501.	5.6	39
2934	Multistate magnetoresistance in zigzag-edge trigonal graphene magnetic junctions. Journal of Materials Science, 2019, 54, 5551-5560.	1.7	5
2935	Graphene-based chiral liquid crystal materials for optical applications. Journal of Materials Chemistry C, 2019, 7, 2146-2171.	2.7	54
2936	Theoretical characterization of hexagonal 2D Be ₃ N ₂ monolayers. New Journal of Chemistry, 2019, 43, 2933-2941.	1.4	20
2937	Energy gaps and half-metallicity in \hat{l}^2 -graphyne nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 1498-1501.	0.9	13
2938	Transformation of lignosulfonate into graphene-like 2D nanosheets: Self-assembly mechanism and their potential in biomedical and electrical applications. International Journal of Biological Macromolecules, 2019, 128, 621-628.	3.6	18
2939	Evaluation of spin-flip scattering in chirality-induced spin selectivity using the Riccati equation. Physical Chemistry Chemical Physics, 2019, 21, 3761-3770.	1.3	22

#	Article	IF	CITATIONS
2940	Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes. Carbon, 2019, 146, 36-43.	5.4	70
2941	Extrinsic and Dynamic Edge States of Two-Dimensional Lead Halide Perovskites. ACS Nano, 2019, 13, 1635-1644.	7.3	79
2942	Strain-tunable magnetic and electronic properties of monolayer Crl ₃ . Physical Chemistry Chemical Physics, 2019, 21, 7750-7755.	1.3	143
2943	Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors. Chemical Science, 2019, 10, 964-975.	3.7	104
2944	Half-metal state of a Ti ₂ C monolayer by asymmetric surface decoration. Physical Chemistry Chemical Physics, 2019, 21, 3318-3326.	1.3	22
2946	Electric field induced enhancement of photovoltaic effects in graphene nanoribbons. Physical Review B, 2019, 99, .	1.1	9
2947	The electronic and transport properties of Li-doped graphene nanoribbons: An ab-initio approach. Pramana - Journal of Physics, 2019, 93, 1.	0.9	3
2948	Singular Nonmagnetic Semiconductor ScH ₃ Molecular Nanowire: A New Type of Room-Temperature Spintronic Material. Journal of Physical Chemistry C, 2019, 123, 16994-17001.	1.5	7
2949	Tri-layered van der Waals heterostructures based on graphene, gallium selenide and molybdenum selenide. Journal of Applied Physics, 2019, 125, .	1.1	13
2950	Tuning the Electronic and Magnetic Properties of Graphene Flake Embedded in Boron Nitride Nanoribbons with Transverse Electric Fields: First-Principles Calculations. ACS Omega, 2019, 4, 10293-10301.	1.6	16
2951	Ferromagnetic topological crystalline insulating phase in the \$\$pi\$\$-stacked graphene nanobelts under a small pressure. SN Applied Sciences, 2019, 1, 1.	1.5	0
2952	Polycyclic aromatic hydrocarbons in the graphene era. Science China Chemistry, 2019, 62, 1099-1144.	4.2	142
2954	Exchange interactions from a nonorthogonal basis set: From bulk ferromagnets to the magnetism in low-dimensional graphene systems. Physical Review B, 2019, 99, .	1.1	7
2955	Onâ€Surface Synthesis and Spectroscopic Characterization of Laterally Extended Chevron Graphene Nanoribbons. ChemPhysChem, 2019, 20, 2281-2285.	1.0	22
2956	Computational Study on the Adsorption of Sodium and Calcium on Edge-Functionalized Graphene Nanoribbons. Journal of Physical Chemistry C, 2019, 123, 14895-14908.	1.5	23
2957	Excited States and Optical Properties of Hydrogen-Passivated Rectangular Graphenes: A Computational Study. Scientific Reports, 2019, 9, 7958.	1.6	2
2958	Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons. Chinese Physics Letters, 2019, 36, 067503.	1.3	0
2959	Gap Prediction in Hybrid Graphene-Hexagonal Boron Nitride Nanoflakes Using Artificial Neural Networks. Journal of Nanomaterials, 2019, 2019, 1-8.	1.5	6

#	Article	IF	CITATIONS
2960	Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers. Frontiers of Physics, 2019, 14, 1.	2.4	14
2961	Ferroelectricity with Asymmetric Hysteresis in Metallic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>LiOsO</mml:mi></mml:mrow><mml:mrow><multrathin 122.="" 2019.="" 227601.<="" films.="" letters.="" physical="" review="" td=""><td>.29 ml:mn>3<</td><td>:/<mark>34</mark>ml:mn></td></multrathin></mml:mrow></mml:msub></mml:mrow></mml:math>	.29 ml:mn>3<	:/ <mark>34</mark> ml:mn>
2962	Unraveling the intrinsic magnetic property of triangular zigzag edge bilayer graphene nanoflakes: A first-principles theoretical study. Chemical Physics Letters, 2019, 730, 326-331.	1.2	14
2963	Graphene-Based Metal-Free Catalysis. NATO Science for Peace and Security Series A: Chemistry and Biology, 2019, , 173-200.	0.5	O
2964	Graphene–boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 15173-15180.	5.2	107
2965	Tunable magnetic spin ordering in MoN2 monolayer by structural deformation. Applied Surface Science, 2019, 487, 519-525.	3.1	7
2966	The enhanced ferromagnetism of single-layer $CrX < sub > 3 < sub > (X = Br and I) < i > via < i > van der Waals engineering. Physical Chemistry Chemical Physics, 2019, 21, 11949-11955.$	1.3	26
2967	Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Applied Materials Today, 2019, 16, 1-20.	2.3	82
2968	Characterization of hydrogen plasma defined graphene edges. Carbon, 2019, 150, 417-424.	5.4	7
2969	Etching Techniques in 2D Materials. Advanced Materials Technologies, 2019, 4, 1900064.	3.0	50
2970	Thermal Spin Transport Properties of F/Cl Edge-Modified Zigzag Graphene Nanoribbons. Journal of Electronic Materials, 2019, 48, 3958-3962.	1.0	1
2971	A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism. Nature Communications, 2019, 10, 2207.	5.8	67
2972	C ₃ N Monolayer: Exploring the Emerging of Novel Electronic and Magnetic Properties with Adatom Adsorption, Functionalizations, Electric Field, Charging, and Strain. Journal of Physical Chemistry C, 2019, 123, 12485-12499.	1.5	78
2973	Charge transport and transfer phenomena involving conjugated acenes and heteroacenes. Bulletin of Materials Science, 2019, 42, 1.	0.8	3
2974	Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor. Analytica Chimica Acta, 2019, 1072, 25-34.	2.6	70
2975	Ab initio study of electronic properties of armchair graphene nanoribbons passivated with heavy metal elements. Solid State Communications, 2019, 296, 8-11.	0.9	9
2976	Generating pure spin current with spin-dependent Seebeck effect in ferromagnetic zigzag graphene nanoribbons. Journal of Physics Condensed Matter, 2019, 31, 315301.	0.7	10
2977	Electronic transport on graphene armchair-edge nanoribbons with Fermi velocity and potential barriers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2416-2423.	0.9	13

#	Article	IF	CITATIONS
2978	Nonvolatile Electrical Control and Heterointerfaceâ€Induced Halfâ€Metallicity of 2D Ferromagnets. Advanced Functional Materials, 2019, 29, 1901420.	7.8	109
2979	Room-temperature magnetism and tunable energy gaps in edge-passivated zigzag graphene quantum dots. Npj 2D Materials and Applications, 2019, 3, .	3.9	25
2980	Theoretical studies on the structures and properties of doped graphenes with and without an external electrical field. RSC Advances, 2019, 9, 11939-11950.	1.7	9
2981	Numerical Simulation and Parametric Study of Carbon Deposition During Graphene Growth in PECVD System. IEEE Nanotechnology Magazine, 2019, 18, 401-411.	1.1	3
2982	Preparation of Few-Layer Graphene by Pulsed Discharge in Graphite Micro-Flake Suspension. Crystals, 2019, 9, 150.	1.0	7
2983	Probing the origin of photoluminescence brightening in graphene nanoribbons. 2D Materials, 2019, 6, 035009.	2.0	11
2984	Investigating the electrical characteristics of a single electron transistor utilizing graphene nanoribbon as the island. Journal of Materials Science: Materials in Electronics, 2019, 30, 8007-8013.	1.1	10
2985	High Curie temperature and intrinsic ferromagnetic half-metallicity in two-dimensional $Cr < sub > 3 < /sub > X < sub > 4 < /sub > (X = S, Se, Te) nanosheets. Nanoscale Horizons, 2019, 4, 859-866.$	4.1	84
2986	Advance in Closeâ€Edged Graphene Nanoribbon: Property Investigation and Structure Fabrication. Small, 2019, 15, e1804473.	5.2	20
2987	The diverse electronic properties of C/BN heteronanotubes with polar discontinuity. Journal Physics D: Applied Physics, 2019, 52, 215302.	1.3	2
2988	2D Atomic Crystals: A Promising Solution for Nextâ€Generation Data Storage. Advanced Electronic Materials, 2019, 5, 1800944.	2.6	28
2989	Interface effects in hybrid hBN-graphene nanoribbons. Scientific Reports, 2019, 9, 3508.	1.6	16
2990	Hybrid superlattices of graphene and hexagonal boron nitride: A ferromagnetic semiconductor at room temperature. Physical Review B, 2019, 99, .	1.1	7
2991	Structurally Constrained Boron-, Nitrogen-, Silicon-, and Phosphorus-Centered Polycyclic Ï€-Conjugated Systems. Chemical Reviews, 2019, 119, 8291-8331.	23.0	446
2992	Effects of intercalated atoms on electronic structure of graphene nanoribbon/hexagonal boron nitride stacked layer. Scientific Reports, 2019, 9, 3623.	1.6	2
2993	Correlated Electronic Properties of a Graphene Nanoflake: Coronene. Molecules, 2019, 24, 730.	1.7	6
2994	Light-Induced Tunable n-Doping of Ag-Embedded GO/RGO Sheets in Polymer Matrix. Journal of Physical Chemistry C, 2019, 123, 10557-10563.	1.5	5
2995	Recent Advances in Graphene Homogeneous p–n Junction for Optoelectronics. Advanced Materials Technologies, 2019, 4, 1900007.	3.0	20

#	Article	IF	Citations
2996	Electronic structures of two-dimensional hydrogenated bilayer diamond films with Si dopant and Si-V center. Results in Physics, 2019, 13, 102240.	2.0	14
2997	Optical absorption in Thue-Morse and Fibonacci planar graphene superlattices: Theoretical report. Physica B: Condensed Matter, 2019, 564, 10-16.	1.3	6
2998	Spin-photovoltaic effects induced by the edge magnetism in a graphene nanoribbon junction. Journal Physics D: Applied Physics, 2019, 52, 235502.	1.3	4
2999	Electronic structure evolution at DBBA/Au(111) interface W/O Bismuth insertion layer. Synthetic Metals, 2019, 251, 24-29.	2.1	10
3000	Chemical modification, field effect transistors and voltage-driven spin logic gates of tailored monolayer MoS2 nanoflakes. Applied Surface Science, 2019, 481, 910-918.	3.1	11
3001	Intriguing electric field effect on magnetic spin couplings in dielectron clathrate hydrates. International Journal of Quantum Chemistry, 2019, 119, e25916.	1.0	4
3002	Electric and thermoelectric properties of graphene bilayers with extrinsic impurities under applied electric field. Physica B: Condensed Matter, 2019, 561, 9-15.	1.3	4
3003	Nanometre electron beam sculpting of suspended graphene and hexagonal boron nitride heterostructures. 2D Materials, 2019, 6, 025032.	2.0	10
3004	Critical and compensation behaviors of a mixed spin $(5/2,2)$ Ising system on a graphene layer. Chinese Journal of Physics, 2019, 58, 98-108.	2.0	23
3005	Spin polarization in graphene nanoribbons functionalized with nitroxide. Journal of Molecular Modeling, 2019, 25, 58.	0.8	10
3006	Spin-dependent transport in all-carbon multifunctional spintronic device. European Physical Journal B, 2019, 92, 1.	0.6	4
3007	The effect of structural defects on the electron transport of MoS2 nanoribbons based on density functional theory. Journal of Theoretical and Applied Physics, 2019, 13, 55-62.	1.4	5
3008	Engineering Dirac states in graphene: Coexisting type-I and type-II Floquet-Dirac fermions. Physical Review B, 2019, 99, .	1.1	12
3009	<i>Ab initio</i> study of the structural, electronic, magnetic, and optical properties of silicene nanoribbons. Physical Review B, 2019, 99, .	1.1	15
3010	Graphene on Groupâ€IV Elementary Semiconductors: The Direct Growth Approach and Its Applications. Advanced Materials, 2019, 31, e1803469.	11.1	21
3011	Magnetic switches via electric field in BN nanoribbons. Applied Surface Science, 2019, 480, 300-307.	3.1	141
3012	Regioselective Bromination and Functionalization of Dibenzo[<i>hi</i> , <i>st</i>]ovalene as Highly Luminescent Nanographene with Zigzag Edges. Chemistry - an Asian Journal, 2019, 14, 1703-1707.	1.7	23
3013	Fundamentals of Fascinating Graphene Nanosheets: A Comprehensive Study. Nano, 2019, 14, 1930003.	0.5	13

#	ARTICLE	IF	Citations
3014	Tetrapyrroles-decorated graphene nanoribbons: Toward to the half-metal and ferromagnetic semiconductor. Applied Physics Letters, 2019, 114 , .	1.5	10
3015	Oxidation of h-BN on strongly and weakly interacting metal surfaces. Nanotechnology, 2019, 30, 234004.	1.3	5
3016	Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363, .	6.0	1,039
3017	Quantum magnetism of topologically-designed graphene nanoribbons. Journal of Physics Condensed Matter, 2019, 31, 505601.	0.7	3
3018	High-Efficiency Production of Large-Size Few-Layer Graphene Platelets via Pulsed Discharge of Graphite Strips. Nanomaterials, 2019, 9, 1785.	1.9	8
3019	Magnetic Behavior in TiS3 Nanoribbon. Materials, 2019, 12, 3501.	1.3	3
3020	Predictive design of intrinsic half-metallicity in zigzag tungsten dichalcogenide nanoribbons. Physical Review B, 2019, 100, .	1,1	9
3021	Effect of strain on the structural and electronic properties of graphene-like GaN: A DFT study. International Journal of Modern Physics B, 2019, 33, 1950281.	1.0	1
3022	Molecular Simulation of Interaction between Graphene Doped with Iron and Coenzyme A. MRS Advances, 2019, 4, 3523-3536.	0.5	1
3023	Indirect-To-Direct Band Gap Transition of One-Dimensional V ₂ Se ₉ : Theoretical Study with Dispersion Energy Correction. ACS Omega, 2019, 4, 18392-18397.	1.6	27
3024	Aromatic inorganic acid radical. Science China Chemistry, 2019, 62, 1656-1665.	4.2	20
3025	Influence of impurities on structural, electronic and optical properties of graphene-like nano-layers MoSe ₂ . Materials Research Express, 2019, 6, 125093.	0.8	3
3026	Effective Mass of Quasiparticles in Armchair Graphene Nanoribbons. Scientific Reports, 2019, 9, 17990.	1.6	5
3027	Edge-State-Induced Stacking of Zigzag Graphene Nanoribbons. ACS Omega, 2019, 4, 22035-22040.	1.6	4
3028	Tunable Photoresponse by Gate Modulation in Bilayer Graphene Nanoribbon Devices. Journal of Physical Chemistry Letters, 2019, 10, 7719-7724.	2.1	13
3029	Tunable room-temperature ferromagnetism in the SiC monolayer. Journal of Magnetism and Magnetic Materials, 2019, 469, 306-314.	1.0	13
3030	Energy bandgap engineering of graphene nanoribbon by doping phosphorous impurities to create nano-heterostructures: A DFT study. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 105, 105-115.	1.3	15
3031	Edge modification induced giant rectification effect in armchair C2N-h2D nanoribbons. Solid State Communications, 2019, 289, 61-66.	0.9	2

#	Article	IF	Citations
3032	Structure stability of few-layer graphene under high electric field. Carbon, 2019, 144, 202-205.	5.4	7
3033	Classic Carbon Nanostructures. , 2019, , 35-109.		1
3034	Linear magneto-electron-light interaction in ultranarrow armchair graphene and boronitrene nanoribbons. Diamond and Related Materials, 2019, 92, 86-91.	1.8	7
3035	Structural and Electrical Properties of Nb ₃ 1 ₈ Layered Crystal. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800448.	1.2	18
3036	Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nature Nanotechnology, 2019, 14, 35-39.	15.6	381
3037	1D metallic edge states of oxygen-terminated zigzag graphene edges. 2D Materials, 2019, 6, 025038.	2.0	7
3038	Electric and optical properties modulations of armchair silicene nanoribbons by transverse electric fields. Current Applied Physics, 2019, 19, 31-36.	1.1	10
3039	Zero-, one- and two-dimensional bis(dithiolato)metal complexes with unique physical and chemical properties. Coordination Chemistry Reviews, 2019, 380, 419-439.	9.5	49
3040	Tunable magnetoresistance in spin-orbit coupled graphene junctions. Journal of Magnetism and Magnetic Materials, 2019, 474, 111-117.	1.0	5
3041	Characteristics of electronic and spin-independent linear conductance in conjugated aromatic polymer based molecular device. Organic Electronics, 2019, 65, 49-55.	1.4	11
3042	Interaction-Driven Surface Chern Insulator in Nodal Line Semimetals. Physical Review Letters, 2019, 122, 016803.	2.9	21
3043	Transport properties of doped zigzag graphene nanoribbons. Chinese Journal of Physics, 2019, 57, 47-52.	2.0	7
3044	Investigation of interfacial thermal resistance of hybrid graphene/hexagonal boron nitride. International Journal of Mechanics and Materials in Design, 2019, 15, 727-737.	1.7	9
3045	Andreev reflection in a patterned graphene nanoribbon superconducting heterojunction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 1174-1181.	0.9	1
3046	Modulating electronic and magnetic properties of zigzag MoSe2 nanoribbons with different edge structures. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 109, 93-100.	1.3	9
3047	Single spin localization and manipulation in graphene open-shell nanostructures. Nature Communications, 2019, 10, 200.	5.8	134
3048	Defect driven spin state transition and the existence of half-metallicity in CoO. Journal of Physics Condensed Matter, 2019, 31, 115602.	0.7	7
3049	Exploring the effect of halogens on semiconducting nature of boron doped molecular precursor graphene nanoribbons at molecular and bulk level. Optik, 2019, 179, 526-534.	1.4	15

#	ARTICLE	IF	CITATIONS
3050	Spinâ€Crossover Assisted Spinâ€Switching and Rectification Action in Halfâ€Metallic Graphitic Carbon Nitride(gâ€C 4 N 3). ChemPhysChem, 2019, 20, 436-442.	1.0	5
3051	Zero-energy-state-oriented tunability of spin polarization in zigzag-edged bowtie-shaped graphene nanoflakes under an electric field. Nanotechnology, 2019, 30, 085201.	1.3	2
3052	Platinum nanoparticles decorated graphene nanoribbon with eco-friendly unzipping process for electrochemical sensors. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 566-574.	2.7	18
3053	Tunable mechanical, electronic and magnetic properties of monolayer C3N nanoribbons by external fields. Carbon, 2019, 143, 14-20.	5.4	29
3054	Realizing robust half-metallic transport with chemically modified graphene nanoribbons. Carbon, 2019, 141, 676-684.	5.4	17
3055	Controlling the conductance of single-molecule junctions with high spin filtering efficiency by intramolecular proton transfer. Organic Electronics, 2019, 64, 7-14.	1.4	12
3056	Spin filtering in silicene by edges and chemically or electrically induced interfaces. Journal of Physics and Chemistry of Solids, 2019, 128, 316-324.	1.9	1
3057	Phase transitions and compensation behavior of graphene-based Janus materials. Journal of Magnetism and Magnetic Materials, 2020, 493, 165711.	1.0	8
3058	Thermal gradient driven spin current in BN co-doped ferromagnetic zigzag graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115, 113684.	1.3	6
3059	Preserving the half-metallicity at the quaternary Heusler CoFeCrAl (001)-oriented thin films: A first-principles study. Materials Chemistry and Physics, 2020, 240, 122262.	2.0	12
3060	Topological and transport properties of graphene-based nanojunctions subjected to a magnetic field. Nanotechnology, 2020, 31, 025701.	1.3	8
3061	A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2N nanosheet. Carbon, 2020, 157, 371-384.	5.4	114
3062	Novel room-temperature ferromagnetism in Gd-doped 2-dimensional Ti3C2Tx MXene semiconductor for spintronics. Journal of Magnetism and Magnetic Materials, 2020, 497, 165954.	1.0	45
3063	Field-modulated electronic specific heat of armchair graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115, 113660, intriguing p-orbital magnetic semiconductors and carrier induced half-metallicity in surface	1.3	1
3064	oxygen-functionalized two-dimensional <mml:math altimg="si27.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>nl:mn>2<td>nml:mn></td></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nl:mn>2 <td>nml:mn></td>	nml:mn>

169

#	Article	IF	CITATIONS
3068	Unveiling multiferroic proximity effect in graphene. 2D Materials, 2020, 7, 015020.	2.0	7
3069	NG2 glia are required for maintaining microglia homeostatic state. Glia, 2020, 68, 345-355.	2.5	52
3070	Firstâ€Principles Study of Metal Atoms Adsorption on 2D Dumbbell C ₄ N. Physica Status Solidi (B): Basic Research, 2020, 257, 1900205.	0.7	9
3071	Spatially separated spin carriers in three-ports graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126058.	0.9	1
3072	Tuning the Electronic Properties of Atomically Precise Graphene Nanoribbons by Bottomâ€Up Fabrication. ChemNanoMat, 2020, 6, 493-515.	1.5	10
3074	Magnetic properties of armchair graphene nanoribbons: A Monte Carlo study. Chinese Journal of Physics, 2020, 64, 1-8.	2.0	24
3075	Introduction to Carbon-Based Nanostructures. , 2020, , 1-10.		0
3076	The New Family of Two-Dimensional Materials and van der Waals Heterostructures. , 2020, , 70-91.		0
3077	Quantum Transport: General Concepts. , 2020, , 92-119.		0
3078	Klein Tunneling and Ballistic Transport in Graphene and Related Materials. , 2020, , 120-144.		0
3079	Quantum Transport in Disordered Graphene-Based Materials. , 2020, , 145-209.		0
3082	Electronic Properties of Carbon-Based Nanostructures. , 2020, , 11-69.		0
3083	Quantum Hall Effects in Graphene. , 2020, , 210-236.		0
3084	Spin-Related Phenomena. , 2020, , 237-277.		0
3085	Ab Initio and Multiscale Quantum Transport in Graphene-Based Materials., 2020,, 293-353.		0
3089	Tuning electronic and optical properties of free-standing Sn2Bi monolayer stabilized by hydrogenation. Journal of Applied Physics, 2020, 127, .	1.1	27
3090	The effects of strain and electric field on the half-metallicity of pristine and O–H/C–N-decorated zigzag graphene nanoribbons. Journal of Physics Condensed Matter, 2020, 32, 175302.	0.7	7
3091	Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism. Nature Communications, 2020, 11, 66.	5.8	49

#	Article	IF	CITATIONS
3092	Graphene/WSeTe van der Waals heterostructure: Controllable electronic properties and Schottky barrier via interlayer coupling and electric field. Applied Surface Science, 2020, 507, 145036.	3.1	133
3093	First-principles study of defects in blue phosphorene. Materials Research Express, 2020, 7, 015005.	0.8	6
3094	Bis(iminothiolato)-Based One-Dimensional Metal–Organic Framework: Robust Bipolar Magnetic Semiconductor with Reversal of Spin Polarization. Journal of Physical Chemistry C, 2020, 124, 37-43.	1.5	14
3095	Designing carbon conductive filament memristor devices for memory and electronic synapse applications. Materials Horizons, 2020, 7, 1106-1114.	6.4	57
3096	Magnetic Spin Susceptibility of Graphene in Ferromagnetic State: A Tight-Binding Model Study. Spin, 2020, 10, 2050004.	0.6	0
3097	Ultrascaled Resonant Tunneling Diodes Based on BN Decorated Zigzag Graphene Nanoribbon Lateral Heterostructures. IEEE Transactions on Electron Devices, 2020, 67, 725-729.	1.6	11
3098	Graphene Diamagnetism: Levitation, transport, rotation, and orientation alignment of graphene flakes in a magnetic field. IEEE Nanotechnology Magazine, 2020, 14, 14-22.	0.9	14
3099	High performance flexible transparent conductive electrode based on ZnO/AgOx/ZnO multilayer. Thin Solid Films, 2020, 696, 137759.	0.8	16
3100	Spin multiple functional devices in zigzag-edged graphyne nanoribbons based molecular nanojunctions. Journal of Magnetism and Magnetic Materials, 2020, 498, 166223.	1.0	9
3101	A highly-flexible bistable switch based on a suspended monolayer Z-shaped graphene nanoribbon nanoresonator. Carbon, 2020, 157, 724-730.	5.4	17
3102	A Quest for Structurally Uniform Graphene Nanoribbons: Synthesis, Properties, and Applications. Journal of Organic Chemistry, 2020, 85, 4-33.	1.7	101
3103	Spin transport properties of single molecule magnet Mn(dmit)2 devices with phosphorene electrodes. Journal of Magnetism and Magnetic Materials, 2020, 498, 166145.	1.0	4
3104	Oxidation-driven formation of precisely ordered antimonene nanoribbons. Journal of Physics Condensed Matter, 2020, 32, 165302.	0.7	1
3105	The scaling laws of edge vs. bulk interlayer conduction in mesoscale twisted graphitic interfaces. Nature Communications, 2020, 11, 4746.	5.8	8
3106	Theoretical prediction of delivery and adsorption of various anticancer drugs into pristine and metal-doped graphene nanosheet. Chinese Journal of Physics, 2020, 68, 578-595.	2.0	24
3107	Hypothetical P63/mmc-Type CsCrCl3 Ferromagnet: Half-Metallic Property and Nodal Surface State. Frontiers in Materials, 2020, 7, .	1.2	0
3108	Excitons and plasmons of graphene nanoribbons in infrared frequencies in an effective-mass approximation. Physical Review B, 2020, 102, .	1.1	0
3109	Electronic Current Mapping of Transport through Defective Zigzag Graphene Nanoribbons. Journal of Physical Chemistry C, 2020, 124, 23479-23489.	1.5	14

#	Article	IF	CITATIONS
3110	Ferromagnetic correlation in hydrogen doped highly oriented pyrolytic graphite. Diamond and Related Materials, 2020, 109, 108030.	1.8	3
3111	How Do the Coadsorbates Affect the Oxygen Reduction Reaction Activity of Undoped and N-Doped Graphene Nanoribbon Edges? A Density Functional Theory Study. Journal of Physical Chemistry C, 2020, 124, 23177-23189.	1.5	6
3112	DFT investigation of H2S adsorption on graphenenanosheets and nanoribbons: Comparative study. Superlattices and Microstructures, 2020, 146, 106650.	1.4	30
3113	Spin photocurrents in zigzag phosphorene nanoribbons: From infrared to ultraviolet. Journal of Applied Physics, 2020, 128, 013103.	1.1	3
3114	Dioxygen at Biomimetic Single Metal-Atom Sites: Stabilization or Activation? The Case of CoTPyP/Au(111). Topics in Catalysis, 2020, 63, 1585-1595.	1.3	4
3115	Edge Defect-Free Anisotropic Two-Dimensional Sheets with Nearly Direct Band Gaps from a True One-Dimensional Van der Waals Nb ₂ Se ₉ Material. ACS Omega, 2020, 5, 10800-10807.	1.6	14
3116	Electrically precise control of the spin polarization of electronic transport at the single-molecule level. Physical Chemistry Chemical Physics, 2020, 22, 17229-17235.	1.3	11
3117	Half-metallicity and enhanced Curie temperature of Ti-embedded Crl3 monolayer. Materials Today Communications, 2020, 25, 101438.	0.9	5
3118	Molecular Modelling and Synthesis of Nanomaterials. Springer Series in Materials Science, 2020, , .	0.4	5
3119	Two-Dimensional Sheets. Springer Series in Materials Science, 2020, , 285-362.	0.4	0
3120	Density functional study on hybrid h-BN/graphene atomic chains. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114316.	1.3	12
3121	Spin-polarized electron transmission through B-doped graphene nanoribbons with Fe functionalization: a first-principles study. New Journal of Physics, 2020, 22, 063022.	1.2	2
3122	cAACâ€Stabilized 9,10â€diboraanthracenes—Acenes with Openâ€Shell Singlet Biradical Ground States. Angewandte Chemie - International Edition, 2020, 59, 19338-19343.	7.2	54
3124	Penta-Hexa-Graphene Nanoribbons: Intrinsic Magnetism and Edge Effect Induce Spin-Gapless Semiconducting and Half-Metallic Properties. ACS Applied Materials & (2020, 12, 53088-53095.	4.0	9
3126	The New Etching Technologies of Graphene Surfaces. , 2020, , .		2
3127	On-Surface Synthesis of Chlorinated Narrow Graphene Nanoribbon Organometallic Hybrids. Journal of Physical Chemistry Letters, 2020, 11, 10290-10297.	2.1	14
3128	Strain-Controllable High Curie Temperature, Large Valley Polarization, and Magnetic Crystal Anisotropy in a 2D Ferromagnetic Janus VSeTe Monolayer. ACS Applied Materials & Samp; Interfaces, 2020, 12, 53067-53075.	4.0	59
3129	Designer spin order in diradical nanographenes. Nature Communications, 2020, 11, 6076.	5.8	47

#	Article	IF	Citations
3130	Bottom-up synthesis of nitrogen-containing graphene nanoribbons from the tetrabenzopentacene molecular motif. Carbon, 2020, 170, 677-684.	5.4	12
3131	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub><mml:mrow><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow></mml:mrow>3</mml:msub> <mml:mrow> mathvariant="normal">B</mml:mrow> . Physical Review Applied.	> ^{1.5} mml:mr	ow> <mm< td=""></mm<>
3132	2020. 14 An Origin of Dzyaloshinskii–Moriya Interaction at Graphene-Ferromagnet Interfaces Due to the Intralayer RKKY/BR Interaction. Chinese Physics Letters, 2020, 37, 087501.	1.3	5
3133	Spin-caloritronic transport in hexagonal graphene nanoflakes. Physical Review B, 2020, 102, .	1.1	12
3134	Thermal transport and spin-dependent Seebeck effect in parallel step-like zigzag graphene nanoribbon junctions. Physical Chemistry Chemical Physics, 2020, 22, 19100-19107.	1.3	5
3135	Crossed graphene nanoribbons as beam splitters and mirrors for electron quantum optics. Physical Review B, 2020, 102, .	1.1	10
3136	Topological edge states of a graphene zigzag nanoribbon with spontaneous edge magnetism. Physical Review B, 2020, 102, .	1.1	13
3137	Engineering of Thermoplastic Elastomer with Graphene and Other Anisotropic Nanofillers. Engineering Materials, 2020, , .	0.3	6
3138	Tunable phase transitions and high photovoltaic performance of two-dimensional In ₂ Ge ₂ Te ₆ semiconductors. Nanoscale Horizons, 2020, 5, 1566-1573.	4.1	17
3139	Electrical control of spin polarization of transmission in pure-carbon systems of helical graphene nanoribbons. Journal of Applied Physics, 2020, 128, .	1.1	11
3140	Structural, electronic, and transport properties of Co-, Cr-, and Fe-doped functionalized armchair MoS2 nanoribbons. AIP Advances, 2020, 10, 095029.	0.6	1
3141	Probing local moments in nanographenes with electron tunneling spectroscopy. Progress in Surface Science, 2020, 95, 100595.	3.8	16
3142	Modulation of the electronic band structure of silicene by polar two-dimensional substrates. Physical Chemistry Chemical Physics, 2020, 22, 21412-21420.	1.3	7
3143	Band bending and zero-conductance resonances controlled by edge electric fields in zigzag silicene nanoribbons. Physical Review B, 2020, 102, .	1.1	12
3144	Magnetoelasticity in CrXTe $<$ sub $>$ 3 $<$ /sub $>$ (X = C, Si) van der Waals Heterobilayers. ACS Applied Electronic Materials, 2020, 2, 3171-3177.	2.0	1
3145	Electronic and photocatalytic properties of two-dimensional boron phosphide/SiC van der Waals heterostructure with direct type-II band alignment: a first principles study. RSC Advances, 2020, 10, 32027-32033.	1.7	18
3146	Controlled giant magnetoresistance and spin–valley transport in an asymmetrical MoS2 tunnel junction. Applied Physics Letters, 2020, 117, .	1.5	19
3147	Graphene Nanoribbons: On‧urface Synthesis and Integration into Electronic Devices. Advanced Materials, 2020, 32, e2001893.	11.1	156

#	Article	IF	CITATIONS
3148	cAACâ€stabilisierte 9,10â€Diboraanthracene – offenschalige Singulettbiradikale. Angewandte Chemie, 2020, 132, 19502-19507.	1.6	17
3149	Pure spin current generation via photogalvanic effect with spatial inversion symmetry. Physical Review B, 2020, 102, .	1.1	43
3150	One-Dimensional Magnetic Order Stabilized in Edge-Reconstructed MoS ₂ Nanoribbon via Bias Voltage. Journal of Physical Chemistry Letters, 2020, 11, 7531-7535.	2.1	13
3151	Sub-Maxwellian Source Injection and Negative Differential Transconductance in Decorated Graphene Nanoribbons. Physical Review Applied, 2020, 14, .	1.5	2
3152	Nitrogen Enables the Intensity Modulation of Charge Transfer and Spin Paramagnetism in Graphdiyne. Chemistry of Materials, 2020, 32, 9001-9007.	3.2	18
3153	Rotational self-alignment of graphene seeds for nanoribbon synthesis on Ge(001) via chemical vapor deposition. APL Materials, 2020, 8, .	2.2	5
3154	2 < i > N < /i > - rule: Searching topological phases and robust edge modes in carbon nanotubes. Applied Physics Letters, 2020, 117, .	1.5	3
3155	On the Impact of Substrate Uniform Mechanical Tension on the Graphene Electronic Structure. Materials, 2020, 13, 4683.	1.3	5
3156	Orientation and edge passivation modulated magnetism in phosphorene nanoribbons. Europhysics Letters, 2020, 130, 17002.	0.7	1
3157	First-principles study of the electronic properties of graphene nanostructures for high current density cathodes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	0.6	3
3158	Thermal conductivity of graphene under biaxial strain: an analysis of spectral phonon properties. Nanotechnology, 2020, 31, 345703.	1.3	4
3159	Enormous enhancement of p-orbital magnetism and band gap in the lightly doped carbyne. Physical Chemistry Chemical Physics, 2020, 22, 12996-13001.	1.3	1
3161	Tuning spin filtering and spin rectifying behaviors of zigzag silicon carbon nanoribbons by edge dual-hydrogenation. Organic Electronics, 2020, 84, 105808.	1.4	19
3162	The electronic structure of ideal graphene. , 2020, , 1-23.		0
3163	Topological junction states and their crystalline network in systems with chiral symmetry: Application to graphene nanoribbons. Physical Review B, 2020, 101, .	1.1	7
3164	Characterization of magnetic states of graphene quantum dots of different shapes by application of electric field. Materials Today: Proceedings, 2020, 26, 2069-2072.	0.9	4
3167	Electron states in a magnetic field. , 2020, , 24-62.		1
3168	Quantum transport via evanescent waves. , 2020, , 63-76.		0

#	Article	IF	CITATIONS
3169	The Klein paradox and chiral tunneling. , 2020, , 77-107.		0
3170	Edges, nanoribbons, and quantum dots. , 2020, , 108-140.		O
3171	Point defects. , 2020, , 141-167.		0
3172	Optics and response functions. , 2020, , 168-192.		O
3173	The Coulomb problem. , 2020, , 193-212.		0
3174	Crystal lattice dynamics, structure, and thermodynamics. , 2020, , 213-256.		0
3175	Gauge fields and strain engineering. , 2020, , 257-278.		0
3176	Scattering mechanisms and transport properties. , 2020, , 279-325.		0
3177	Spin effects and magnetism. , 2020, , 326-350.		0
3178	Graphene on hexagonal boron nitride. , 2020, , 351-378.		0
3179	Twisted bilayer graphene. , 2020, , 379-388.		0
3180	Many-body effects in graphene. , 2020, , 389-400.		O
3183	Direct electrodeposition of cationic pillar[6] arene-modified graphene oxide composite films and their host–guest inclusions for enhanced electrochemical performance. RSC Advances, 2020, 10, 21954-21962.	1.7	6
3184	Transitions in electrical behavior of Molecular Devices based on 1-D and 2-D graphene-phagraphene-graphene hybrid heterojunctions. Materials Chemistry and Physics, 2020, 253, 123420.	2.0	5
3185	From spin-labelled fused polyaromatic compounds to magnetically active graphene nanostructures. Russian Chemical Reviews, 2020, 89, 693-712.	2.5	15
3186	Tailoring the opto-electronic response of graphene nanoflakes by size and shape optimization. Physical Chemistry Chemical Physics, 2020, 22, 8212-8218.	1.3	5
3187	Controllable inversion symmetry breaking in single layer graphene induced by sub-lattice contrasted charge polarization. Carbon, 2020, 163, 63-69.	5.4	2
3188	Dirac equation and energy levels of electrons in one-dimensional wells: Plane wave expansion method. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114298.	1.3	0

#	Article	IF	Citations
3189	Bosonic Charge Carriers in Necklace-like Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2020, 11, 5538-5543.	2.1	1
3190	B5N5 monolayer: a room-temperature light element antiferromagnetic insulator. Nanoscale Advances, 2020, 2, 4421-4426.	2.2	3
3191	Highly spin-polarized electronic structure and magnetic properties of Mn _{2.25} Co _{0.75} Al _{1â^'x} Ge _x Heusler alloys: first-principles calculations. RSC Advances, 2020, 10, 22556-22569.	1.7	2
3192	Probing the origin of photoluminescence blinking in graphene nanoribbons: Influence of plasmonic field enhancement. 2D Materials, 2020, 7, 045009.	2.0	O
3193	A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron–Nuclear Dynamics and Pump–Probe Spectroscopy Simulations. Journal of Chemical Theory and Computation, 2020, 16, 4454-4469.	2.3	36
3194	Electrically focus-tuneable ultrathin lens for high-resolution square subpixels. Light: Science and Applications, 2020, 9, 98.	7.7	29
3195	Facile One-Step Electrodeposition Preparation of Cationic Pillar[6] arene-Modified Graphene Films on Glassy Carbon Electrodes for Enhanced Electrochemical Performance. Frontiers in Chemistry, 2020, 8, 430.	1.8	5
3196	Holey graphene layers as promising drug delivery systems. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114303.	1.3	8
3197	First-Principles Study of 3d Transition-Metal-Atom Adsorption onto Graphene Embedded with the Extended Line Defect. ACS Omega, 2020, 5, 5900-5910.	1.6	18
3198	Piezotronic spin and valley transistors based on monolayer MoS2. Nano Energy, 2020, 72, 104678.	8.2	16
3199	Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020, 113, 100665.	16.0	61
3200	Electro-absorption spectra of magnetic states of diamond shaped graphene quantum dots. Materials Today: Proceedings, 2020, 26, 2058-2061.	0.9	5
3201	Unconventional deformation potential and half-metallicity in zigzag nanoribbons of 2D-Xenes. Physical Chemistry Chemical Physics, 2020, 22, 7294-7299.	1.3	4
3202	Onâ€Surface Synthesis of NBNâ€Doped Zigzagâ€Edged Graphene Nanoribbons. Angewandte Chemie, 2020, 132, 8958-8964.	1.6	20
3203	Polymorphism of low dimensional boron nanomaterials driven by electrostatic gating: a computational discovery. Nanoscale, 2020, 12, 10543-10549.	2.8	5
3204	Quantum valley Hall effect in wide-gap semiconductor SiC monolayer. Scientific Reports, 2020, 10, 5044.	1.6	6
3205	Graphene-based hybrid photocatalysts: a promising route toward high-efficiency photocatalytic water remediation., 2020,, 325-359.		0
3206	Magnetic States of the Zigzag Edge of a Graphene Nanoribbon. Physics of the Solid State, 2020, 62, 223-229.	0.2	2

#	ARTICLE	IF	CITATIONS
3207	Twofold π-Extension of Polyarenes via Double and Triple Radical Alkyne <i>peri</i> Annulations: Radical Cascades Converging on the Same Aromatic Core. Journal of the American Chemical Society, 2020, 142, 8352-8366.	6.6	28
3208	Prospects and Opportunities of 2D van der Waals Magnetic Systems. Annalen Der Physik, 2020, 532, 1900452.	0.9	76
3209	Experimental observation of low-dimensional magnetism in graphene nanostructures. , 2020, , 163-189.		0
3210	Onâ€Surface Synthesis of NBNâ€Doped Zigzagâ€Edged Graphene Nanoribbons. Angewandte Chemie - International Edition, 2020, 59, 8873-8879.	7.2	61
3211	Interface Magnetism in Topological Armchair/Cove-Edged Graphene Nanoribbons. Journal of Physical Chemistry C, 2020, 124, 15448-15453.	1.5	9
3212	Calix[n]arene/Pillar[n]arene-Functionalized Graphene Nanocomposites and Their Applications. Frontiers in Chemistry, 2020, 8, 504.	1.8	9
3213	Direct oxidation of methane to methanol on Co embedded N-doped graphene: Comparing the role of N2O and O2 as oxidants. Applied Catalysis A: General, 2020, 602, 117716.	2.2	11
3214	Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons. Communications Materials, 2020, 1 , .	2.9	40
3216	Formation of Spin ollinear Domain Walls at Graphene Nanoflake Edges. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000230.	1.2	1
3217	Effect of nitrogen doping on the electronic properties of graphene nanoribbon. AIP Conference Proceedings, 2020, , .	0.3	0
3218	Atomically Precise PdSe2 Pentagonal Nanoribbons. ACS Nano, 2020, 14, 1951-1957.	7.3	21
3219	Imaging Beamâ€Sensitive Materials by Electron Microscopy. Advanced Materials, 2020, 32, e1907619.	11.1	104
3220	Switchable metal-to-half-metal transition at the semi-hydrogenated graphene/ferroelectric interface. Nanoscale, 2020, 12, 5067-5074.	2.8	6
3221	Magnetism and spintronics in graphene. , 2020, , 103-150.		0
3222	Electronic and magnetic properties of pentagonal nanoribbons. Carbon, 2020, 162, 209-219.	5.4	15
3223	Modulating Electronic Structures of Armchair GaN Nanoribbons by Chemical Functionalization under an Electric Field Effect. ACS Omega, 2020, 5, 1261-1269.	1.6	6
3224	Co-doped graphene edge for enhanced N2-to-NH3 conversion. Journal of Energy Chemistry, 2020, 48, 322-327.	7.1	40
3225	Interlayer vacancy effects on the phonon modes in AB stacked bilayer graphene nanoribbon. Current Applied Physics, 2020, 20, 572-581.	1.1	9

#	Article	IF	CITATIONS
3226	Magnetic properties of graphene. , 2020, , 137-161.		11
3227	Introduction: carbon and carbon nanomaterials. , 2020, , 23-45.		2
3228	Intrinsic electronic and transport properties of graphene nanoribbons with different widths. Physical Chemistry Chemical Physics, 2020, 22, 3584-3591.	1.3	14
3229	Quantum Transport beyond DC., 2020,, 278-292.		0
3231	Theoretical Investigation of Piezoelectric Properties of Graphene/Hexagonal Boron Nitride Hybrid Structures. Physica Status Solidi (B): Basic Research, 2020, 257, 1900733.	0.7	4
3232	Rashba spin splitting and perpendicular magnetic anisotropy of Gd-adsorbed zigzag graphene nanoribbon modulated by edge states under external electric fields. Physical Review B, 2020, 101, .	1.1	11
3233	Electronic properties and spintronic applications of carbon phosphide nanoribbons. Physical Review B, 2020, 101 , .	1.1	12
3234	Investigating electrical properties of controllable graphene nanoribbon field effect transistors. Physica B: Condensed Matter, 2020, 583, 412022.	1.3	4
3235	A Giant Bulkâ€Type Dresselhaus Splitting with 3D Chiral Spin Texture in IrBiSe. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900684.	1.2	7
3236	Strain induced spin-splitting and half-metallicity in antiferromagnetic bilayer silicene under bending. Physical Chemistry Chemical Physics, 2020, 22, 11567-11571.	1.3	6
3237	Constructing graphene nanostructures with zigzag edge terminations by controllable STM tearing and folding. Carbon, 2020, 165, 169-174.	5.4	18
3238	Gap Size Dependence of Atomistic-Resolved Peptide Bond Signals by Tunneling Current Across Nano-Gaps of Graphene Nano-Ribbons. Computation, 2020, 8, 29.	1.0	3
3239	Symmetry-controlled edge states in the type-II phase of Dirac photonic lattices. Nature Communications, 2020, 11, 2074.	5.8	13
3240	Electric-controlled half-metallicity in magnetic van der Waals heterobilayer. Journal of Materials Chemistry C, 2020, 8, 7034-7040.	2.7	29
3241	A first-principles study of fluoride saturation effect on the electronic transport properties of boron-doping armchair graphene nanoribbons. Diamond and Related Materials, 2020, 106, 107824.	1.8	12
3242	High electron mobility, controllable magnetism and anomalous light absorption in a monolayered tin mononitride semiconductor. Journal of Materials Chemistry C, 2020, 8, 6396-6402.	2.7	6
3243	Realization of "single-atom ferromagnetism―in graphene by Cu–N4 moieties anchoring. Applied Physics Letters, 2020, 116, .	1.5	9
3244	Engineering of Magnetic Coupling in Nanographene. Physical Review Letters, 2020, 124, 147206.	2.9	47

#	Article	IF	CITATIONS
3245	Magnetization of Epitaxial Graphene Induced by Magnetic Metallic Substrate. Physics of the Solid State, 2020, 62, 378-383.	0.2	1
3246	Spin-dependent band-gap driven by nitrogen and oxygen functional groups in zigzag graphene nanoribbons. Applied Surface Science, 2020, 521, 146435.	3.1	13
3247	Highly spin polarized transport in <mml:math altimg="si21.svg" display="inline" id="d1e617" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi></mml:math> -zigzag graphyne nanoribbon junctions. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 120, 114057.	1.3	3
3248	Spin-valley polarized quantum anomalous Hall effect and a valley-controlled half-metal in bilayer graphene. Physical Review B, 2020, 101, .	1.1	21
3249	Graphene Nanoribbons from Electrostatic-Force-Controlled Electric Unzipping of Single- and Multi-Walled Carbon Nanotubes. ACS Applied Nano Materials, 2020, 3, 4708-4716.	2.4	12
3250	Thermal magnetoresistance and spin thermopower in C60 dimers. Journal of Physics Condensed Matter, 2020, 32, 285302.	0.7	1
3251	Spintronics in Two-Dimensional Materials. Nano-Micro Letters, 2020, 12, 93.	14.4	78
3252	In-Plane Dual-Gated Spin-Valve Device Based on the Zigzag Graphene Nanoribbon. Physical Review Applied, 2020, 13, .	1.5	22
3253	Spiers Memorial Lecture : Carbon nanostructures by macromolecular design – from branched polyphenylenes to nanographenes and graphene nanoribbons. Faraday Discussions, 2021, 227, 8-45.	1.6	9
3254	A Stable [4,3]Periâ€acene Diradicaloid: Synthesis, Structure, and Electronic Properties. Angewandte Chemie - International Edition, 2021, 60, 4464-4469.	7.2	45
3255	Understanding the atomistic origin of the magnetic phases in Cobalt-TM (V, Nb, Ta, Zr, Hf, W) pair co-doped boron nitride monolayer and the hydrogenation effect. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 125, 114359.	1.3	7
3256	Realization of an Antiferromagnetic Superatomic Graphene: Dirac Mott Insulator and Circular Dichroism Hall Effect. Nano Letters, 2021, 21, 230-235.	4.5	16
3257	Computational study of elastic, structural stability and dynamics properties of penta-graphene membrane. Chemical Physics, 2021, 542, 111052.	0.9	16
3258	Gate controllable optical spin current generation in zigzag graphene nanoribbon. Carbon, 2021, 173, 565-571.	5.4	17
3259	Silicene Nanoribbons on an Insulating Thin Film. Advanced Functional Materials, 2021, 31, 2007013.	7.8	21
3260	Open-Shell Graphene Fragments. CheM, 2021, 7, 358-386.	5.8	136
3261	On-surface synthesis of singly and doubly porphyrin-capped graphene nanoribbon segments. Chemical Science, 2021, 12, 247-252.	3.7	27
3262	A Stable [4,3]Periâ€acene Diradicaloid: Synthesis, Structure, and Electronic Properties. Angewandte Chemie, 2021, 133, 4514-4519.	1.6	12

#	Article	IF	CITATIONS
3263	Spin susceptibilities of doped bilayer graphene in the presence of magnetic ordering. Solid State Communications, 2021, 323, 114074.	0.9	1
3264	Two-dimensional magnetic materials: structures, properties and external controls. Nanoscale, 2021, 13, 1398-1424.	2.8	74
3265	Ultrastrong Regulation Effect of the Electric Field on the Allâ€Carboatomic Ring Cyclo[18]Carbon**. ChemPhysChem, 2021, 22, 386-395.	1.0	62
3266	The effect of edge passivation with different atoms on ZrSe2 nanoribbons. Sensors and Actuators A: Physical, 2021, 317, 112471.	2.0	4
3267	Concentrationâ€Dependent Photoluminescence Properties of Graphene Oxide. Advanced Photonics Research, 2021, 2, 2000045.	1.7	5
3268	Spin-resolved transport properties of atomic carbon chain between sawtooth zigzag-edge graphene nanoribbons electrodes. Molecular Physics, 2021, 119, e1857448.	0.8	2
3269	Synthesis and derivatization of hetera-buckybowls. Organic and Biomolecular Chemistry, 2021, 19, 101-122.	1.5	22
3270	Damage mechanism of graphene nanoribbons field effect transistors during focused ion beam etching. Materials Today Communications, 2021, 26, 101778.	0.9	O
3271	Electric field-induced band modulation of predicted ternary 2D MXC3 [M:XÂ= As:Ge, Sb:Sn and Bi:Pb] with strong stability and optical properties. Carbon, 2021, 172, 791-803.	5.4	21
3272	Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nature Materials, 2021, 20, 202-207.	13.3	80
3273	Electronic Properties of SiB Nanoribbons in Density Functional Theory. Silicon, 2022, 14, 1431-1438.	1.8	0
3274	Excited states engineering enables efficient near-infrared lasing in nanographenes. Materials Horizons, 2022, 9, 393-402.	6.4	12
3275	Self-passivation leads to semiconducting edges of black phosphorene. Nanoscale Horizons, 2021, 6, 148-155.	4.1	14
3276	Generation of pure spin current in graphene nanoribbons with continous antidots. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 198503.	0.2	1
3277	Imprinting Tunable π-Magnetism in Graphene Nanoribbons via Edge Extensions. Journal of Physical Chemistry Letters, 2021, 12, 1214-1219.	2.1	14
3278	The unique carrier mobility of monolayer Janus MoSSe nanoribbons: a first-principles study. Dalton Transactions, 2021, 50, 10252-10260.	1.6	8
3279	A first-principles study of phthalocyanine-based multifunctional spintronic molecular devices. Physical Chemistry Chemical Physics, 2021, 23, 18760-18769.	1.3	14
3280	Van der Waals heterostructure of graphene and germanane: tuning the ohmic contact by electrostatic gating and mechanical strain. Physical Chemistry Chemical Physics, 2021, 23, 21196-21206.	1.3	21

#	Article	IF	Citations
3281	Synthesis of Carbon Allotropes in Nanoscale Regime. Advances in Sustainability Science and Technology, 2021, , 9-46.	0.4	2
3282	On-surface synthesis of graphene nanostructures with π-magnetism. Chemical Society Reviews, 2021, 50, 3238-3262.	18.7	102
3283	First-principles study of Ir-doped armchair graphene Nanoribbon: For potential nanodevice applications. Materials Today: Proceedings, 2021, 45, 5410-5414.	0.9	1
3284	Effects of Monovacancy on Thermal Properties of Bilayer Graphene Nanoribbons by Molecular Dynamics Simulations. Journal of Thermal Science, 2021, 30, 1917.	0.9	5
3285	Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 053101.	0.2	2
3286	Ruthenium-based half Heusler alloys RuTiX (X = Si, Ge, Sn): An FP-LAPW-based analytical study of structural, electronic, elastic, mechanical and transport properties. International Journal of Modern Physics B, 2021, 35, 2150046.	1.0	2
3287	Electronic properties of N-rich graphene nano-chevrons. Physical Chemistry Chemical Physics, 2021, 23, 13204-13215.	1.3	6
3288	External electric field modulated second-order nonlinear optical response and visible transparency in hexalithiobenzene. Journal of Molecular Modeling, 2021, 27, 19.	0.8	3
3289	Excitonic and charge transfer interactions in tetracene stacked and T-shaped dimers. Journal of Chemical Physics, 2021, 154, 044306.	1.2	11
3290	First-principles investigation of zigzag graphene nanoribbons based nanosensor for heavy metal detector. Materials Today: Proceedings, 2021, 47, 2227-2231.	0.9	4
3291	Applications of Carbon Nanomaterials as Electrical Interconnects and Thermal Interface Materials., 2021, , 31-60.		0
3292	Scanning tunneling microscopy (STM) of graphene. , 2021, , 345-379.		1
3293	Bilayer graphene can become a fractional metal. Physical Review B, 2021, 103, .	1.1	6
3294	On-Surface Synthesis and Molecular Engineering of Carbon-Based Nanoarchitectures. ACS Nano, 2021, 15, 3578-3585.	7.3	15
3295	Optoelectronic and solar cell applications of ZnO nanostructures. Results in Surfaces and Interfaces, 2021, 2, 100003.	1.0	15
3296	Vacancy ordering induced topological electronic transition in bulk Eu ₂ ZnSb ₂ . Science Advances, 2021, 7, .	4.7	21
3297	Half-metallic ferromagnetism in layered CdOHCl induced by hole doping. 2D Materials, 2021, 8, 025027.	2.0	10
3298	Two-dimensional centrosymmetrical antiferromagnets for spin photogalvanic devices. Npj Quantum Information, 2021, 7, .	2.8	18

#	Article	IF	CITATIONS
3299	Large lattice-relaxation-induced intrinsic shallow p-type characteristics in monolayer black phosphorus and black arsenic. Applied Physics Letters, 2021, 118, .	1.5	6
3300	Rectifying and spin filtering behavior of aluminum doped silicon carbide nanoribbons: the first principles study. Journal Physics D: Applied Physics, 2021, 54, 165304.	1.3	3
3301	Nanostructured Graphene on \hat{i}^2 -SiC/Si(001): Atomic and Electronic Structures, Magnetic and Transport Properties (Brief Review). JETP Letters, 2021, 113, 176-193.	0.4	3
3302	Pure spin current generation with photogalvanic effect in graphene interconnect junctions. Nanophotonics, 2021, 10, 1701-1709.	2.9	18
3303	Influence of electric and magnetic fields and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>if</mml:mi></mml:math> -edge bands on the electronic and optical spectra of graphene nanoribbons. Physical Review B, 2021, 103, .	1.1	8
3304	Ultrahigh-temperature ferromagnetism in MoS2 Moiré superlattice/graphene hybrid heterostructures. Nano Research, 2021, 14, 4182.	5.8	7
3305	Lateral Interfaces between Monolayer MoS2 Edges and Armchair Graphene Nanoribbons on Au(111). ACS Nano, 2021, 15, 6699-6708.	7.3	4
3306	Unusual Width Dependence of Lattice Thermal Conductivity in Ultranarrow Armchair Graphene Nanoribbons with Unpassivated Edges. Journal of Physical Chemistry C, 2021, 125, 6034-6042.	1.5	3
3307	Structure of one-dimensional monolayer Si nanoribbons on Ag(111). Physical Review Materials, 2021, 5 , .	0.9	1
3308	Occurrence of nonohmic trend in the ballistic transport mode of a modelled low dimensional device capable of performing electronic functions. Superlattices and Microstructures, 2021, 151, 106808.	1.4	3
3309	Spin caloritronics in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Crl</mml:mi><mml:n .<="" 103,="" 2021,="" b,="" der="" heterostructures.="" physical="" review="" td="" van="" waals=""><td>nnኔ.3<td>າໄ:ໝາ></td></td></mml:n></mml:msub></mml:mrow></mml:math>	nn ኔ.3 <td>າໄ:ໝາ></td>	າໄ:ໝ າ >
3310	Materials Science Challenges to Graphene Nanoribbon Electronics. ACS Nano, 2021, 15, 3674-3708.	7.3	108
3311	1D chain structure in 1T′-phase 2D transition metal dichalcogenides and their anisotropic electronic structures. Applied Physics Reviews, 2021, 8, .	5 . 5	9
3312	Diversified Phenomena in Metal- and Transition-Metal-Adsorbed Graphene Nanoribbons. Nanomaterials, 2021, 11, 630.	1.9	5
3313	Unzipping chemical bonds of non-layered bulk structures to form ultrathin nanocrystals. Matter, 2021, 4, 955-968.	5.0	10
3314	Electronic structure evolution of the transition metals substituted tetragonal graphene: a first-principles investigations. Journal of Physics Condensed Matter, 2021, 33, 205502.	0.7	2
3315	Room-temperature ferromagnetism in oxidized-graphenic nanoplatelets induced by topographic defects. Journal of Magnetism and Magnetic Materials, 2021, 524, 167664.	1.0	5
3316	First-principle investigations of zigzag III-V nitride nanoribbons as CS2 scavengers. Applied Surface Science, 2021, 545, 148969.	3.1	5

#	Article	IF	CITATIONS
3317	Realizing stable half-metallicity in zigzag silicene nanoribbons with edge dihydrogenation and chemical doping. Journal of Physics Condensed Matter, 2021, 33, 195702.	0.7	2
3318	Doping-induced large spin-filter behavior and rectification behavior in zigzag graphene nano-ribbon junction. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114542.	1.3	22
3319	Flourishing an Electrochemical Synthetic Route toward Carbon Black-Intercalated Graphene As a Neoteric Hybrid Nanofiller for Multifunctional Polymer Nanocomposites. Industrial & Engineering Chemistry Research, 2021, 60, 5758-5769.	1.8	8
3320	Characteristics and Electrochemical Performances of Nitrogen-doped Graphene Prepared using different carbon and nitrogen sources as Anode for Lithium Ion Batteries. International Journal of Electrochemical Science, 2021, 16, 210459.	0.5	5
3321	Graphene nanoribbons with mixed cove-cape-zigzag edge structure. Carbon, 2021, 175, 50-59.	5.4	20
3322	Electronic and transport properties of chemically functionalised zig-zag graphene nanoribbons: First principle study. Pramana - Journal of Physics, 2021, 95, 1.	0.9	0
3323	Zhang–Zhang Polynomials of Multiple Zigzag Chains Revisited: A Connection with the John–Sachs Theorem. Molecules, 2021, 26, 2524.	1.7	3
3324	Topological Surface State in Epitaxial Zigzag Graphene Nanoribbons. Nano Letters, 2021, 21, 2876-2882.	4.5	10
3325	Characterizing armchaired and zigzagged phases: Antimony on oxide layer of Cu(110). Vacuum, 2021, 186, 110036.	1.6	3
3326	Strain effect on electronic structure and transport properties of zigzag \hat{l}_{\pm} -T 3 nanoribbons: a mean-field theoretical study. Journal of Physics Condensed Matter, 2021, 33, 215301.	0.7	5
3327	Electron transport of carbon atoms sequence in two-band model. European Physical Journal Plus, 2021, 136, 1.	1.2	3
3328	Computational design of twoâ€dimensional magnetic materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1545.	6.2	12
3329	Persistent <i>peri</i> àêHeptacene: Synthesis and In Situ Characterization. Angewandte Chemie, 2021, 133, 13972-13977.	1.6	11
3330	Persistent <i>peri</i> i>â€Heptacene: Synthesis and In Situ Characterization. Angewandte Chemie - International Edition, 2021, 60, 13853-13858.	7.2	27
3331	High-Temperature p-Orbital Half-Metallicity and Out-of-Plane Piezoelectricity in a GaN Monolayer Induced by Superhalogens. Journal of Physical Chemistry C, 2021, 125, 10027-10033.	1.5	9
3332	Electronic-structure methods for materials design. Nature Materials, 2021, 20, 736-749.	13.3	96
3333	Effect of Well Width and Barrier Width on I–V Characteristics of Armchair Graphene Nanoribbon based Resonant Tunneling Diode Structure. , 2021, , .		4
3334	Impossibility of increasing Néel temperature in zigzag graphene nanoribbon by electric field and carrier doping. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 129, 114641.	1.3	4

#	Article	IF	Citations
3335	Edge Disorder in Bottom-Up Zigzag Graphene Nanoribbons: Implications for Magnetism and Quantum Electronic Transport. Journal of Physical Chemistry Letters, 2021, 12, 4692-4696.	2.1	22
3336	Electronic and Transport Properties of Graphene Nanoribbons Based on Super-Heptazethrene Molecular Blocks. Journal of Physical Chemistry C, 2021, 125, 11235-11248.	1.5	7
3337	Theoretical study of small aromatic molecules adsorbed in pristine and functionalised graphene. Journal of Molecular Modeling, 2021, 27, 193.	0.8	8
3338	Investigation of edge states in artificial graphene nano-flakes. Journal of Physics Condensed Matter, 2021, 33, 225003.	0.7	5
3339	Correlation hard gap in antidot graphene. Physical Review B, 2021, 103, .	1.1	1
3340	Rectification with controllable directions in sulfur-doped armchair graphene nanoribbon heterojunctions. Chemical Physics, 2021, 546, 111140.	0.9	1
3341	Bistability of zigzag edge magnetism in graphene nanoribbons induced by electric field. Journal Physics D: Applied Physics, 2021, 54, 325003.	1.3	4
3342	Development of Highly Sensitive Strain Sensor Using Area-Arrayed Graphene Nanoribbons. Nanomaterials, 2021, 11, 1701.	1.9	12
3343	Polaron transport in porous graphene nanoribbons. Computational Materials Science, 2021, 194, 110423.	1.4	2
3344	Electronic Structure and Transport in Graphene Nanoribbon Heterojunctions under Uniaxial Strain: Implications for Flexible Electronics. ACS Applied Nano Materials, 2021, 4, 5816-5824.	2.4	6
3345	Atomic-scale insights into the origin of rectangular lattice in nanographene probed by scanning tunneling microscopy. Physical Review B, 2021, 103, .	1.1	5
3346	Monolayer Iridium Sulfide Halides with High Mobility Transport Anisotropy and Highly Efficient Light Harvesting. Journal of Physical Chemistry Letters, 2021, 12, 6007-6013.	2.1	9
3347	A DFT study on the electronic structure of in-plane heterojunctions of graphene and hexagonal boron nitride nanoribbons. Electronic Structure, 2021, 3, 024005.	1.0	2
3348	Theoretical design of all-carbon networks with intrinsic magnetism. Carbon, 2021, 177, 11-18.	5.4	8
3349	Spin polarized thermoelectric feature of graphitic carbon nitride nanoribbon: An in-silico study. Journal of Physics and Chemistry of Solids, 2021, 153, 110009.	1.9	5
3350	Magnetoelectric torque and edge currents in spin-orbit coupled graphene nanoribbons. Physical Review Research, 2021, 3, .	1.3	9
3351	A Qualitative Measure of Diradical Character Based on Radical–Radical Coupling Reaction. Chemistry Letters, 2021, 50, 1423-1427.	0.7	9
3352	<i>Ab-initio</i> and Monte Carlo study of Fe-based two-dimensional magnets at borophene supported by Ag(111) surface. Physical Review Materials, 2021, 5, .	0.9	O

#	Article	IF	CITATIONS
3353	Electrochemical Control of Charge Current Flow in Nanoporous Graphene. Advanced Functional Materials, 2021, 31, 2104031.	7.8	6
3354	Large Polycyclic Aromatic Hydrocarbons as Graphene Quantum Dots: from Synthesis to Spectroscopy and Photonics. Advanced Optical Materials, 2021, 9, 2100508.	3.6	18
3355	Magnetism in graphene flakes with edge disorder. Physical Review B, 2021, 104, .	1.1	7
3356	Dynamic Spin–Spin Interaction Observed as Interconversion of Chemical Bonds in Stepwise Two-Photon Induced Photochromic Reaction. Journal of the American Chemical Society, 2021, 143, 13917-13928.	6.6	13
3357	Third-order nonlinear optical properties of graphene composites: A review*. Chinese Physics B, 2021, 30, 080703.	0.7	2
3358	Inducing high- Tc ferromagnetism in the van der Waals crystal Mn(ReO4)2 via charge doping: A first-principles study. Physical Review B, 2021, 104, .	1.1	2
3359	Polarization Field on Edge States of Single-layered MoS2. Journal of Physics: Conference Series, 2021, 2002, 012053.	0.3	0
3360	Pseudo Landau levels, negative strain resistivity, and enhanced thermopower in twisted graphene nanoribbons. Physical Review Research, 2021, 3, .	1.3	4
3361	Spin current distribution in antiferromagnetic zigzag graphene nanoribbons under transverse electric fields. Scientific Reports, 2021, 11, 17088.	1.6	3
3362	G–C4N3–graphene-g-C4N3: A useful spin thermoelectric material. Journal of Physics and Chemistry of Solids, 2021, 156, 110186.	1.9	4
3363	Universal Zigzag Edge Reconstruction of an α-Phase Puckered Monolayer and Its Resulting Robust Spatial Charge Separation. Nano Letters, 2021, 21, 8095-8102.	4.5	5
3364	Graphene nanoribbons for quantum electronics. Nature Reviews Physics, 2021, 3, 791-802.	11.9	141
3365	Prediction of a Kinetic Pathway for Fabricating the Narrowest Zigzag Graphene Nanoribbons on Cu(111). Journal of Physical Chemistry C, 2021, 125, 21933-21942.	1.5	1
3366	Nanographene growth from benzene on Pt(111). Surface Science, 2021, 711, 121874.	0.8	5
3367	Energy Gaps in BN/GNRs Planar Heterostructure. Materials, 2021, 14, 5079.	1.3	1
3368	Ab Initio Study of Electronic Properties of Zigzag Graphene Nanoribbon Doped with B, N, and P. ECS Journal of Solid State Science and Technology, 2021, 10, 091007.	0.9	1
3369	Microplasma-Engineered Ag/GONR-Based Nanocomposites for Selective and Label-Free SERS-Sensitive Detection of Dopamine. ACS Applied Nano Materials, 2021, 4, 10360-10369.	2.4	7
3370	Density functional study on hybrid graphene/h-BN 2D sheets. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 133, 114812.	1.3	11

#	Article	IF	Citations
3371	Fabrication of GNR Electrode for ECG Signal Acquisition. , 2021, 5, 1-4.		7
3372	Electrocatalytic methanol oxidation using Ni–Co–graphene composite electrodes. International Journal of Hydrogen Energy, 2021, 46, 33272-33286.	3.8	16
3373	Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Applied Physics Reviews, 2021, 8, .	5.5	202
3374	One edge magnetic configurations in graphene, stanene and phosphorene zigzag nanoribbons. Journal of Magnetism and Magnetic Materials, 2021, 534, 168036.	1.0	7
3375	Half-metallic ferromagnetism and thermoelectric properties of vanadium doped $Hf1\hat{a}^*xVxO2$ (x = 0, 0.25,) Tj ETQ State Physics, 2021, 411, 127559.	q0 0 0 rgB 0.9	T /Overlock 9
3376	Silicene-Based Spin Filter With High Spin-Polarization. IEEE Transactions on Electron Devices, 2021, 68, 5095-5100.	1.6	2
3377	A deep learning interatomic potential developed for atomistic simulation of carbon materials. Carbon, 2022, 186, 1-8.	5.4	25
3378	Orbital magnetoelectric effect in zigzag nanoribbons of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -band systems. Physical Review B, 2021, 104, .	1.1	13
3379	Induced magnetization in armchair and Zig-zag CNTs on adsorbing transition metals. Journal of Magnetism and Magnetic Materials, 2021, 538, 168287.	1.0	1
3380	Electronic and transport properties of nitrogen and boron doped zigzag silicon carbide nanoribbons: First principle study. Solid State Communications, 2021, 338, 114476.	0.9	5
3381	Interfacing 2D VS2 with Janus MoSSe: Antiferromagnetic electric polarization and charge transfer driven Half-metallicity. Applied Surface Science, 2021, 570, 151129.	3.1	4
3382	Different types of magnetic edge configurations in selected graphene-like nanoribbons. Journal of Magnetism and Magnetic Materials, 2021, 540, 168439.	1.0	1
3383	Optical properties of arsenene nanoribbons: A first principle study. Materials Science in Semiconductor Processing, 2021, 136, 106139.	1.9	3
3384	First-principles study on the electronic properties and enhanced ferromagnetism of alkali metals adsorbed monolayer Crl3. Vacuum, 2021, 194, 110561.	1.6	10
3385	Magnetism in graphene oxide nanoplatelets: The role of hydroxyl and epoxy bridges. Journal of Magnetism and Magnetic Materials, 2022, 541, 168506.	1.0	7
3386	Electronic properties of boron-rich graphene nanowiggles. Computational Materials Science, 2022, 201, 110907.	1.4	1
3387	Phonon dynamics modeling using wave packet., 2021,, 55-66.		0
3388	Edge State Induced Spintronic Properties of Graphene Nanoribbons: A Theoretical Perspective. Advances in Sustainability Science and Technology, 2021, , 165-198.	0.4	0

#	Article	IF	Citations
3389	Nonvolatile electrical control of 2D Cr ₂ Ge ₂ Te ₆ and intrinsic half metallicity in multiferroic hetero-structures. Nanoscale, 2021, 13, 1069-1076.	2.8	13
3390	Antiferromagnetic spin ordering in two-dimensional honeycomb lattice of SiP ₃ . Nanoscale Advances, 2021, 3, 2217-2221.	2.2	6
3391	Electronic Properties of Doped Graphene Nanoribbon and the Electron Distribution Contours: A DFT Study. Russian Journal of Physical Chemistry B, 2021, 15, 46-52.	0.2	6
3392	Switching characteristics of anthraquinone molecular devices based on graphene electrodes. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 038501.	0.2	2
3393	The spin-dependent transport properties of defected zigzag graphene nanoribbons with graphene nanobubbles. Physical Chemistry Chemical Physics, 2021, 23, 2753-2761.	1.3	5
3394	Electrically controlled spin reversal and spin polarization of electronic transport in nanoporous graphene nanoribbons. Physical Chemistry Chemical Physics, 2021, 23, 20702-20708.	1.3	7
3397	Progress in the Understanding and Applications of the Intrinsic Reactivity of Grapheneâ€Based Materials. Small Science, 2021, 1, 2000026.	5.8	40
3398	Atomic-Scale Contrast Formation in AFM Images on Molecular Systems. Nanoscience and Technology, 2015, , 173-194.	1.5	3
3399	Modeling Disordered and Nanostructured Graphene. , 2020, , 53-72.		1
3400	Functionalizing Two-Dimensional Materials for Energy Applications. , 2020, , 567-603.		2
3401	The electronic band structure of graphene. , 2018, , 674-682.		1
3403	First-Principles Study of the Electronic and Magnetic Properties of Defects in Carbon Nanostructures. Carbon Materials, 2013, , 41-76.	0.2	1
3404	Origin of nonlinear current-voltage curves for suspended zigzag edge graphene nanoribbons. Carbon, 2020, 165, 476-483.	5.4	11
3405	First-principles study of the electronic structure and transport properties of armchair graphene nanoribbons with adsorbed super-halogen LiF2 and super-alkali Li3 clusters. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126569.	0.9	3
3408	Triggering Amino Acid Detection by Atomistic Resolved Tunneling Current Signals in Graphene Nanoribbon Devices for Peptide Sequencing. ACS Applied Nano Materials, 2021, 4, 363-371.	2.4	8
3409	Edge phonons in black phosphorus. Nature Communications, 2016, 7, 12191.	5.8	70
3410	Predicting synthesizable multi-functional edge reconstructions in two-dimensional transition metal dichalcogenides. Npj Computational Materials, 2020, 6, .	3.5	23
3411	Quantum-confinement and Structural Anisotropy result in Electrically-Tunable Dirac Cone in Few-layer Black Phosphorous. Scientific Reports, 2015, 5, 11699.	1.6	87

#	Article	IF	CITATIONS
3412	Fabrication Techniques of Graphene Nanostructures. RSC Nanoscience and Nanotechnology, 2014, , 1-30.	0.2	17
3413	Bandgap opening and magnetic anisotropy switching by uniaxial strain in graphene/Crl ₃ heterojunction. Journal Physics D: Applied Physics, 2020, 53, 385002.	1.3	9
3414	Generating pure spin current in zigzag graphene nanoribbons by a thermal gradient: the effect of edge doping with BN pairs. Journal Physics D: Applied Physics, 2020, 53, 485304.	1.3	4
3415	Probing divacancy defects in a zigzag graphene nanoribbon through an RKKY exchange interaction. Journal Physics D: Applied Physics, 2021, 54, 095302.	1.3	1
3416	Tuning a zigzag SiC nanoribbon as a thermal spin current generator. 2D Materials, 2017, 4, 035001.	2.0	29
3417	Charged topological solitons in zigzag graphene nanoribbons. 2D Materials, 2018, 5, 015026.	2.0	7
3418	The magnetic, optical and electronic properties of Mn–X(XÂ=ÂO, Se, Te, Po) co-doped MoS ₂ monolayers via first principle calculation. Materials Research Express, 2020, 7, 116301.	0.8	11
3419	Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study. Physical Review B, 2019, 100, .	1.1	21
3420	Ferroelectric control of electron half-metallicity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>A</mml:mi></mml:math> -type antiferromagnets and its application to nonvolatile memory devices. Physical Review B, 2020, 102, .	1.1	23
3421	Chemical modulation of electronic structure at the excited state. Physical Review B, 2017, 96, .	1.1	1
3422	Prediction of a new class of half-metallic ferromagnets from first principles. Physical Review Materials, 2017, 1 , .	0.9	13
3423	External-strain-induced semimetallic and metallic phase of chlorographene. Physical Review Materials, 2018, 2, .	0.9	4
3424	Phase-field model of insulator-to-metal transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>VO</mml:mi><mml:mn>2<td>ากอ<i>ง</i>mml:</td><td>m\$2b></td></mml:mn></mml:msub></mml:math>	ากอ <i>ง</i> mml:	m \$ 2b>
3425	Magnetism in amorphous carbon. Physical Review Materials, 2018, 2, .	0.9	10
3426	Tunable half-metallicity and edge magnetism of H-saturated InSe nanoribbons. Physical Review Materials, $2018,2,.$	0.9	11
3427	Electronic properties of tetragraphene nanoribbons. Physical Review Materials, 2019, 3, .	0.9	14
3428	Wave-Packet Dynamics Study of the Transport Characteristics of Perforated Bilayer Graphene Nanoribbons. JETP Letters, 2020, 112, 305-309.	0.4	7
3429	Review—Silicene: From Material to Device Applications. ECS Journal of Solid State Science and Technology, 2020, 9, 115031.	0.9	65

#	Article	IF	CITATIONS
3430	Nanolaser with a Single-Graphene-Nanoribbon in a Microcavity. Journal of Nanoelectronics and Optoelectronics, 2011 , 6 , $138-143$.	0.1	8
3432	Electron Transport and Quantum-Dot Energy Levels in Z-Shaped Graphene Nanoconstriction with Zigzag Edges. Acta Physica Polonica A, 2010, 118, 238-243.	0.2	5
3433	Relaxation Process of Transient Current Through Nanoscale Systems; Density Matrix Calculations. E-Journal of Surface Science and Nanotechnology, 2008, 6, 213-221.	0.1	12
3434	Graphene Epitaxially Grown on Vicinal 4H-SiC(0001) Substrates. E-Journal of Surface Science and Nanotechnology, 2009, 7, 29-34.	0.1	3
3435	Transient Current Behavior through Molecular Bridge Systems; Effects of Intra-Molecule Current on Quantum Relaxation and Oscillation. E-Journal of Surface Science and Nanotechnology, 2009, 7, 606-616.	0.1	13
3436	Modified participation ratio approach: application to edge-localized states in carbon nanoclusters. Functional Materials, 2016, 23, 599-611.	0.4	3
3437	Electronic Properties of Functionalized Graphene Nanoribbons. Ukrainian Journal of Physics, 2013, 58, 389-397.	0.1	6
3438	Formation of Majorana fermions in finite-size graphene strips. SciPost Physics, 2017, 3, .	1.5	14
3440	Magnetoresistance in Metal/graphene/metal Junctions. Journal of the Magnetics Society of Japan, 2010, 34, 34-38.	0.5	5
3441	Band Gap Opening of Graphene by Noncovalent π-π Interaction with Porphyrins. Graphene, 2013, 02, 102-108.	0.3	18
3442	Electronic Properties of Nanopore Edges of Ferromagnetic Graphene Nanomeshes at High Carrier Densities under Ionic-Liquid Gating. Materials Sciences and Applications, 2014, 05, 1-9.	0.3	4
3443	Unusual Non-magnetic Metallic State in Narrow Silicon Carbon Nanoribbons by Electron or Hole Doping. Bulletin of the Korean Chemical Society, 2012, 33, 763-769.	1.0	4
3444	Theoretical Investigation of Edge-modified Zigzag Graphene Nanoribbons by Scandium Metal with Pyridine-like Defects: A Potential Hydrogen Storage Material. Bulletin of the Korean Chemical Society, 2014, 35, 253-256.	1.0	24
3445	Control of size and physical properties of graphene oxide by changing the oxidation temperature. Carbon Letters, 2012, 13, 39-43.	3.3	54
3446	Band structures of zigzag graphene nanoribbons. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 047102.	0.2	12
3447	Influence of edge reconstruction on the electron transport in zigzag graphene nanoribbon. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 117102.	0.2	3
3448	Fabrication of zigzag-edged graphene antidot lattice and its transport properties. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 216103.	0.2	1
3449	Rectifying performances of oligo phenylene ethynylene molecular devices based on graphene electrodes. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 118501.	0.2	4

#	Article	IF	CITATIONS
3450	Electrically controlled quantum spin Hall in narrow zigzag graphene nanoribbon. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 117301.	0.2	1
3451	Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 168102.	0.2	2
3452	Growth of Two-Dimensional Carbon Nanostructures and Their Electrical Transport Properties at Low Tempertaure. Japanese Journal of Applied Physics, 2011, 50, 01AF02.	0.8	4
3453	Proposal of Graphene Bandgap Control by Hexagonal Network Formation. Japanese Journal of Applied Physics, 2011, 50, 06GE14.	0.8	2
3454	Nature of Graphene Edges: A Review. Japanese Journal of Applied Physics, 2011, 50, 070101.	0.8	113
3455	Theoretical Study on Magnetoelectric and Thermoelectric Properties for Graphene Devices. Japanese Journal of Applied Physics, 2011, 50, 070115.	0.8	9
3456	Impact of Site-Potential Asymmetry on Electron Transport in Graphene. Japanese Journal of Applied Physics, 2011, 50, 090205.	0.8	1
3457	Hole Defects on Two-Dimensional Materials Formed by Electron Beam Irradiation: Toward Nanopore Devices. Applied Microscopy, 2015, 45, 107-114.	0.8	34
3458	Novel electrical properties and applications in kaleidoscopic graphene nanoribbons. RSC Advances, 2021, 11, 33675-33691.	1.7	13
3459	A DFT Investigation on the Electronic Structures and Au Adatom Assisted Hydrogenation of Graphene Nanoflake Array. Chemical Research in Chinese Universities, 2021, 37, 1110-1115.	1.3	2
3460	Manipulation of Dirac Fermions in Nanochain-Structured Graphene. Chinese Physics Letters, 2021, 38, 097101.	1.3	4
3461	Emerging Singleâ€Photon Detectors Based on Lowâ€Dimensional Materials. Small, 2022, 18, e2103963.	5.2	23
3462	Possible high-spin states in hydrogenated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mn>60</mml:mn></mml:msub></mml:math> molecules. Physical Review B, 2021, 104, .	1.1	1
3463	STM/STS observations of zigzag and armchair edges of graphite. Tanso, 2007, 2007, 166-173.	0.1	1
3464	Graphene-on-Silicon Technology. Journal of the Vacuum Society of Japan, 2010, 53, 80-84.	0.3	0
3465	Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Wuli Xuebao/Acta Physica Sinica, 2010, 59, 6443.	0.2	5
3466	Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 097103.	0.2	12
3467	Magnetic properties and excited states of thegraphene quantum dots. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 047105.	0.2	2

#	Article	IF	CITATIONS
3468	Fabrication of graphene nanoribbons through mechanical cleavage and their electronic transport properties at low temperature. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 107302.	0.2	3
3469	Electronic structure of zigzag graphene nanoribbin terminated by hydroxyl. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 097301.	0.2	1
3470	Electronic and optical properties of zigzag graphene nanoribbon with Stone-Wales defect. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 017102.	0.2	7
3471	Density functional study on hydrogenation and non-hydrogenation graphene nanoribbon. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 103103.	0.2	3
3472	Thermal transport in L-shaped graphene nano-junctions. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 028103.	0.2	4
3473	Magnetism of fullerenes and graphene. , 2011, , 265-281.		0
3475	Nano-Engineering of Graphene and Related Materials. , 0, , .		0
3476	Delocalization Effects in Pristine and Oxidized Graphene Substrates. Progress in Theoretical Chemistry and Physics, 2012, , 553-569.	0.2	0
3477	Geometrical Deformation and Electronic Structures of One Hexagonal Graphene under External Electric Field. Journal of Nanomaterials & Molecular Nanotechnology, 2012, 01, .	0.1	1
3478	Modification of zigzag graphene nanoribbons by patterning vacancies. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 137101.	0.2	1
3479	Tunable Magnetic Properties of Rhombohedral Graphite Thin Films: Effects of Insulating Substrate on Magnetic Properties. Japanese Journal of Applied Physics, 2012, 51, 02BN04.	0.8	0
3480	Graphene. , 2012, , 579-595.		0
3481	Effect of Edge Passivated by Hydrogenon the Transport Properties of Finite-Size Metallic Carbon Nanotube-Based Molecular Devices. , 2012, , .		0
3482	Electronic state of zigzag graphene nanoribbons. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 067301.	0.2	4
3483	Electronic properties of graphene nanoribbons with periodical nanoholes passivated by oxygen. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 236102.	0.2	2
3484	Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 036103.	0.2	4
3486	Intrinsic Magnetism in Single-Walled Carbon Nanotubes of Finite Length. , 2014, , 167-186.		0
3488	Graphene Nanostructures and Quantum Dots. Nanoscience and Technology, 2014, , 29-38.	1.5	1

#	Article	IF	Citations
3489	Diradical Character View of (Non)Linear Optical Properties. Springer Briefs in Molecular Science, 2014, , 43-77.	0.1	0
3490	The valley degree of freedom of an electron. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 187301.	0.2	3
3491	Atomic and electronic structures of silicene and germanene on GaAs(111). Wuli Xuebao/Acta Physica Sinica, 2015, 64, 186101.	0.2	5
3492	Modeling of Quasi-One-Dimensional Carbon Nanostructures with Density Functional Theory. , 2015, , 1-41.		0
3493	Modeling of Nanostructures. , 2015, , 1-55.		1
3494	Conduction and Spin Transport via Edge States in Randomly Hydrogenated Graphene Nano-Ribbon. , 2015, , .		0
3495	Properties of Hexagon-Shaped Carbon Nanoclusters. Himia, Fizika Ta Tehnologia Poverhni, 2015, 4, 123-131.	0.2	2
3496	Electromagnetic properties of zigzag graphene nanoribbons with single-row line defect. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 016101.	0.2	3
3497	Anisotropic etching of bilayer graphene controlled by gate voltage. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 196101.	0.2	1
3498	Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 068503.	0.2	1
3499	Peculiarities of «host–guest» complexation between double-walled carbon nanotubes and bis(cyclopentadienyl)nickel. Himia, Fizika Ta Tehnologia Poverhni, 2016, 7, 330-336.	0.2	0
3500	Host-guest complexing of double-walled carbon nanotube with metallocenes. Himia, Fizika Ta Tehnologia Poverhni, 2016, 7, 373-378.	0.2	0
3501	Fabrication of graphene nanostructure and bandgap tuning. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 217301.	0.2	2
3502	Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 198503.	0.2	1
3503	Density Functional Theory (DFT) Study of Novel 2D and 3D Materials. Advanced Structured Materials, 2017, , 269-284.	0.3	0
3504	Preparation and characterisation of graphene oxide nanofluid and its electrical conductivity. International Journal of Nano and Biomaterials, 2017, 7, 102.	0.1	0
3505	Magneto-electronic and magnetic transport properties of triangular graphene quantum-dot arrays. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 138501.	0.2	2
3506	Fabrication and electrical engineering of graphene nanoribbons. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 218103.	0.2	5

#	Article	IF	CITATIONS
3507	Structure and band structure of epitaxial graphene on hexagonal silicon carbide., 2018,, 689-715.		0
3508	First-principles study of graphene nanoflakes with large spin property. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 187102.	0.2	1
3509	First-principles study of magnetic order in graphene nanoflakes as spin logic devices. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 217101.	0.2	1
3510	Excited-State Properties of Thin Silicon Nanowires. , 2019, , 1-18.		0
3511	Stability of edge magnetism against disorder in zigzag MoS2 nanoribbons. Physical Review Materials, 2019, 3, .	0.9	4
3513	Excited-State Properties of Thin Silicon Nanowires. , 2020, , 617-633.		O
3514	Three-terminal spin/charge current router. Journal of Physics Condensed Matter, 2020, 32, 325301.	0.7	2
3515	Electrically Induced Dirac Fermions in Graphene Nanoribbons. Nano Letters, 2021, 21, 9332-9338.	4.5	10
3516	Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52892-52900.	4.0	10
3517	Fractionalized spin excitations in the ferromagnetic edge state of graphene: Signature of the ferromagnetic Luttinger liquid. Physical Review B, 2020, 102, .	1.1	5
3518	Tuning the electronic properties of highly anisotropic 2D dangling-bond-free sheets from 1D V ₂ Se ₉ chain structures. Nanotechnology, 2021, 32, 095203.	1.3	6
3519	New Half-Metallic States in Systems with Spin and Charge Density Waves (Brief Review). JETP Letters, 2020, 112, 725-733.	0.4	2
3520	The spin-polarized edge states of blue phosphorene nanoribbons induced by electric field and electron doping. Journal of Physics Condensed Matter, 2021, 33, 105302.	0.7	2
3521	Rapid electrochemical recognition of trimethoprim in human urine samples using new modified electrodes (CPE/Ag/Au NPs) analysing tunable electrode properties: experimental and theoretical studies. Analyst, The, 2021, 146, 7653-7669.	1.7	6
3522	Extended anisotropic phonon dispersion and optical properties of two-dimensional ternary SnSSe. Inorganic Chemistry Frontiers, 2022, 9, 294-301.	3.0	5
3523	Graphene. Springer Handbooks, 2020, , 1171-1198.	0.3	2
3524	Anisotropic Nanofillers in TPE. Engineering Materials, 2020, , 17-99.	0.3	0
3525	Light-emitting materials generated at the liquid–liquid interface. , 2020, , 131-159.		0

#	Article	IF	CITATIONS
3526	Theoretical study on Schottky regulation of WSe ₂ /graphene heterostructure doped with nonmetallic elements. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 117101.	0.2	4
3527	Electronic properties of 2D and 1D carbon allotropes based on a triphenylene structural unit. Physical Chemistry Chemical Physics, 2021, 23, 25114-25125.	1.3	7
3528	From graphene to graphene ribbons: atomically precise cutting via hydrogenation pseudo-crack. Nanotechnology, 2020, 31, 415705.	1.3	1
3529	Two-dimensional hexagonal manganese carbide monolayer with intrinsic ferromagnetism and half-metallicity. New Journal of Physics, 2020, 22, 103049.	1.2	19
3530	Structural stability, magneto-electronic properties, and tuning effects for transition metal-doped net-Y nanoribbons. Journal Physics D: Applied Physics, 2020, 53, 485001.	1.3	1
3531	Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance*. Chinese Physics B, 2020, 29, 106801.	0.7	5
3532	Far-infrared photodetection in graphene nanoribbon heterostructures with black-phosphorus base layers. Optical Engineering, 2020, 60, .	0.5	1
3533	Gap opening in graphene nanoribbons by application of simple shear strain and in-plane electric field. Journal of Physics Condensed Matter, 2021, 33, 065503.	0.7	4
3534	Quantum transport: general concepts. , 0, , 91-117.		1
3536	Effects of Field-Effect and Schottky Heterostructure on p-Type Graphene-Based Gas Sensor Modified by n-Type In2O3 and Phenylenediamine. Applied Surface Science, 2022, 578, 152025.	3.1	18
3537	Critical Temperature in Zigzag Graphene Nanoribbon: a First-principles Study. Journal of Physics: Conference Series, 2021, 2019, 012072.	0.3	0
3538	Intrinsic half-metallic properties of MnHm (M: Fe, V, Co, and Cr) in various space groups: A first-principles study. Journal of Magnetism and Magnetic Materials, 2022, 547, 168758.	1.0	6
3539	Exotic Spintronic Properties of Transitionâ∈Metal Monolayers on Graphyne. Advanced Theory and Simulations, 2022, 5, 2100287.	1.3	1
3540	Tuning of the electronic structures and spin-dependent transport properties of phosphorene nanoribbons by vanadium substitutional doping. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138, 115067.	1.3	6
3541	Intrinsically Honeycombâ€Patterned Hydrogenated Graphene. Small, 2022, 18, e2102687.	5.2	3
3542	Revisiting the Link between Magnetic Properties and Chemisorption at Graphene Nanoribbon Zigzag Edge. Journal of Chemical Physics, 2022, 156, 044706.	1.2	1
3543	Nanoscale self-assembly: concepts, applications and challenges. Nanotechnology, 2022, 33, 132001.	1.3	32
3544	Structural damage in graphene oxide coatings onto Nb substrates upon laser irradiation. Surface and Coatings Technology, 2022, 431, 128013.	2.2	3

#	Article	IF	Citations
3545	C3Al: A tunable bandgap semiconductor with high electron mobility and negative Poisson's ratio. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138, 115082.	1.3	6
3547	The Sensitive Energy Band Structure and the Spiral Current in Helical Graphenes. SSRN Electronic Journal, 0, , .	0.4	0
3548	Electronic properties of graphene oxide: nanoroads towards novel applications. Nanoscale, 2022, 14, 4131-4144.	2.8	3
3549	Unconventional Metallicity in Graphene Nanoribbons with Armchair Edges. Advanced Theory and Simulations, 0, , 2100392.	1.3	1
3550	Magnetism and perfect spin filtering in pristine MgCl ₂ nanoribbons modulated by edge modification. Physical Chemistry Chemical Physics, 2022, 24, 3370-3378.	1.3	3
3551	Computational design of double transition metal MXenes with intrinsic magnetic properties. Nanoscale Horizons, 2022, 7, 276-287.	4.1	29
3552	Significant Increase of Electron Thermal Conductivity in Dirac Semimetal Beryllonitrene by Doping Beyond Van Hove Singularity. Advanced Functional Materials, 0, , 2111556.	7.8	14
3553	Spin Current Sensing for Selective Detection of Explosive Molecules. ACS Applied Materials & Amp; Interfaces, 2022, 14, 4469-4478.	4.0	1
3554	Dual spin filtering and negative differential resistance effects in vanadium doped zigzag phosphorene nanoribbons with different edge passivations. AIP Advances, 2022, 12, .	0.6	6
3555	Gate-induced half metals in Bernal-stacked graphene multilayers. Physical Review B, 2022, 105, .	1.1	3
3556	Controlling Chemical Reactivity with Optimally Oriented Electric Fields: A Generalization of the Newton Trajectory Method. Journal of Chemical Theory and Computation, 2022, 18, 935-952.	2.3	6
3557	Electronic, optical, and catalytic properties of finite antimonene nanoribbons: first principles study. Physica Scripta, 2022, 97, 035802.	1.2	6
3558	Experimental and theoretical research on CdS nanoparticles embedded in layered WS2 to construct type II heterostructure and improve the performance of photocatalytic degradation of pollutants. Journal of Alloys and Compounds, 2022, 904, 164093.	2.8	12
3559	All-carbon multifunctional molecular spintronic device: A first-principles study. Chemical Physics Letters, 2022, 790, 139356.	1.2	2
3560	Electric field tunable spin polarization in functionalized silicene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 429, 127952.	0.9	2
3561	Dual-Atom Metal and Nonmetal Site Catalyst on a Single Nickel Atom Supported on a Hybridized BCN Nanosheet for Electrochemical CO ₂ Reduction to Methane: Combining High Activity and Selectivity. ACS Applied Materials & Selectivity. Selectivity. ACS Applied Materials & Selectivity. Selectivity. Selectivity. ACS Applied Materials & Selectivity. Selectivity	4.0	34
3562	Quantum interference and domain–wall-like magnetic correlations in hexagonal graphene nanodisks. Journal of Physics Condensed Matter, 2022, 34, 225804.	0.7	0
3563	Electronic and thermodynamic properties of zigzag MoS2/ MoSe2 and MoS2/ WSe2 hybrid nanoribbons: Impacts of electric and exchange fields. Results in Physics, 2022, 34, 105253.	2.0	14

#	ARTICLE	IF	CITATIONS
3564	Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature, 2021, 600, 647-652.	13.7	91
3565	Performance enhancement of armchair graphene nanoribbon resonant tunneling diode using V-shaped potential well. Physica Scripta, 2021, 96, 124076.	1.2	4
3566	Non-Isothermal Crystallization Kinetics of Graphene/PA10T Composites. SSRN Electronic Journal, 0, , .	0.4	0
3567	An intrinsic room-temperature half-metallic ferromagnet in a metal-free PN ₂ monolayer. Physical Chemistry Chemical Physics, 2022, 24, 7077-7083.	1.3	4
3568	Strain engineering of electronic structure and mechanical switch device for edge modified Net-Y nanoribbons. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 046102.	0.2	3
3569	Thermoelectric properties of doped graphene nanoribbons: density functional theory calculations and electrical transport. RSC Advances, 2022, 12, 6174-6180.	1.7	6
3570	Sustainable and safer nanoclay composites for multifaceted applications. Green Chemistry, 2022, 24, 3081-3114.	4.6	28
3571	Ground-state properties of the narrowest zigzag graphene nanoribbon from quantum Monte Carlo and comparison with density functional theory. Journal of Chemical Physics, 2022, 156, 084112.	1.2	4
3572	Hidden breathing kagome topology in hexagonal transition metal dichalcogenides. Physical Review B, 2022, 105, .	1.1	12
3573	Hydrogen Atoms on Zigzag Graphene Nanoribbons: Chemistry and Magnetism Meet at the Edge. Nano Letters, 2022, 22, 1922-1928.	4.5	13
3574	Isolated and hybrid bilayer graphene quantum rings. Physical Review B, 2022, 105, .	1.1	5
3575	Strong suppression of graphene growth by sulfur superstructure on a nickel substrate. Physical Review Materials, 2022, 6, .	0.9	0
3576	Edge State Quantum Interference in Twisted Graphitic Interfaces. Advanced Science, 2022, , 2102261.	5.6	2
3577	Zigzag dice lattice ribbons: Distinct edge morphologies and structure-spectrum correspondences. Physical Review Materials, 2022, 6, .	0.9	2
3578	Spin Properties and Metal-Semiconductor Transition of Nitrogen-Containing Zigzag Graphyne Nanoribbon Caused by Magnetic Atom Doping. Frontiers in Materials, 2022, 9, .	1.2	1
3579	 <i>ië</i> -magnetism and spin-dependent transport in boron pair doped armchair graphene nanoribbons. Applied Physics Letters, 2022, 120, .	1.5	10
3580	Tuning the Electronic Structure of Zigzag Boron Nitride Nanoribbons via sp\$\$^{2}\$\$/sp\$\$^{3}\$\$ Edge Functionalization. Journal of Electronic Materials, 2022, 51, 3299-3307.	1.0	3
3581	Topological band transition between hexagonal and triangular lattices with (px, py) orbitals. Journal of Physics Condensed Matter, 2022, , .	0.7	5

#	Article	IF	CITATIONS
3582	The sensitive energy band structure and the spiral current in helical graphenes. Results in Physics, 2022, 35, 105351.	2.0	4
3583	Spintronic phase transition of graphene/BN/graphene van de Waals heterostructures. Results in Physics, 2022, 35, 105344.	2.0	4
3584	Enhanced current rectification in graphene nanoribbons: effects of geometries and orientations of nanopores. Nanotechnology, 2022, 33, 255704.	1.3	5
3585	Magnetic proximity effect at the interface of two-dimensional materials and magnetic oxide insulators. Journal of Alloys and Compounds, 2022, 911, 164830.	2.8	6
3586	Role of d-orbital electrons in tuning multifunctional spintronic action in pi-stacked Cn-C6H6-Fe-C6H6-C13-n. Chemical Physics, 2022, 558, 111507.	0.9	0
3587	Edge Doping Engineering of High-Performance Graphene Nanoribbon Molecular Spintronic Devices. Nanomaterials, 2022, 12, 56.	1.9	7
3589	Edge Effect in Electronic and Transport Properties of 1D Fluorinated Graphene Materials. Nanomaterials, 2022, 12, 125.	1.9	4
3590	Effect of vacancy defects on electronic and magnetic properties of zigzag silicon nanoribbons. , 2021, , .		0
3591	Clever substitutions reveal magnetism in zigzag graphene nanoribbons. Nature, 2021, 600, 613-614.	13.7	4
3592	Regio- and Steric Effects on Single Molecule Conductance of Phenanthrenes. Nano Letters, 2021, 21, 10333-10340.	4.5	6
3593	Properties of magnesium phosphate cement as electrolyte for structural supercapacitor. Functional Materials, 2021, 28, .	0.4	1
3594	Controllable spin filtering and half-metallicity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>\hat{l}^2</mml:mi><mml:mn>12<td>n1.4/mml:r</td><td>msub></td></mml:mn></mml:msub></mml:math>	n 1 .4/mml:r	m s ub>
3595	Transition Metal-Free Half-Metallicity in Two-Dimensional Gallium Nitride with a Quasi-Flat Band. Journal of Physical Chemistry Letters, 2021, 12, 12150-12156.	2.1	3
3596	Helical phase in two-dimensional magnets due to four-spin interactions. Journal of Physics: Conference Series, 2021, 2086, 012165.	0.3	0
3597	Zigzag nanoribbon of gated bilayer hexagonal crystals with spontaneous edge magnetism. Physical Review B, 2021, 104, .	1.1	2
3598	First-principles study of the impact of chemical doping and functional groups on the absorption spectra of graphene. Semiconductor Science and Technology, 2022, 37, 025013.	1.0	4
3599	A review of bipolar magnetic semiconductors from theoretical aspects. Fundamental Research, 2022, 2, 511-521.	1.6	19
3600	Symmetry Engineering Induced Inâ€Plane Polarization in MoS ₂ through Van der Waals Interlayer Coupling. Advanced Functional Materials, 2022, 32, .	7.8	31

#	Article	IF	Citations
3601	Biogenic plant mediated synthesis of monometallic zinc and bimetallic Copper/Zinc nanoparticles and their dye adsorption and antioxidant studies. Inorganic Chemistry Communication, 2022, 140, 109449.	1.8	22
3602	Klein tunneling and ballistic transport in graphene and related materials. , 0, , 118-142.		0
3603	Quantum transport in disordered graphene-based materials., 0,, 143-218.		0
3604	Ab initio and multiscale quantum transport in graphene-based materials. , 0, , 232-299.		0
3605	Electronic structure calculations: the density functional theory (DFT)., 0,, 314-331.		0
3606	Electronic structure calculations: the many-body perturbation theory (MBPT)., 0,, 332-337.		0
3607	Green's functions and ab initio quantum transport in the Landauer–Büttiker formalism. , 0, , 338-357.		0
3610	Influence of the Radicaloid Character of Polyaromatic Hydrocarbon Couplers on Magnetic Exchange Interactions. Physical Chemistry Chemical Physics, 2022, , .	1.3	1
3612	A first principle study on spin-dependent transport properties of graphite nanostructures. AIP Conference Proceedings, 2022, , .	0.3	0
3613	Bipolar semiconductor in two-dimensional covalent organic frameworks. Physical Review B, 2022, 105,	1.1	5
3614	Magnetism engineering of nanographene: An enrichment strategy by co-depositing diverse precursors on Au(111). Chinese Chemical Letters, 2023, 34, 107450.	4.8	4
3615	Magnetization in CNT induced by nitrogen doping and enhanced by transversal electric field application. Journal of Materials Science, 2022, 57, 9277-9298.	1.7	4
3616	Phenalenyl Radical: Smallest Polycyclic Odd Alternant Hydrocarbon Present in the Graphene Sheet. Chemical Reviews, 2022, 122, 11369-11431.	23.0	41
3617	Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates. Advanced Materials, 2022, 34, e2200956.	11.1	12
3618	Recent research advances in two-dimensional magnetic materials. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 127504.	0.2	10
3619	Giant Magnetoresistance and Rectification Behavior in Fluorinated Zigzag Boron Nitride Nanoribbon for Spintronic Nanodevices. IEEE Nanotechnology Magazine, 2022, 21, 244-250.	1.1	8
3620	Optimal model of semi-infinite graphene for ab initio calculations of reactions at graphene edges by the example of zigzag edge reconstruction. Computational and Theoretical Chemistry, 2022, 1214, 113755.	1,1	3
3621	Effects of zigzag edge states on the thermoelectric properties of finite graphene nanoribbons. Japanese Journal of Applied Physics, 2022, 61, 075001.	0.8	3

#	Article	IF	CITATIONS
3622	Half-metallic transition for ZGNRs adsorbing porphine molecules under an in-plane external electric field. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115316.	1.3	4
3623	Valley-resolved quantum anomalous Hall effect in ferromagnetically proximitized monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoTe</mml:mi><mml:mn>2<td>111 mii><td>ıl:msub></td></td></mml:mn></mml:msub></mml:math 	111 mii> <td>ıl:msub></td>	ıl:msub>
3624	A Series of Soluble Thieno-Fused Coronene Nanoribbons of Precise Lengths. Journal of the American Chemical Society, 2022, 144, 9883-9892.	6.6	23
3625	Scanning probe microscopy study of functionalized nanographene. , 2022, 1, 79-88.		O
3626	Tuning the Carrier Mobility and Electronic Structure of Graphene Nanoribbons Using Stone-Wales Defects. SSRN Electronic Journal, 0, , .	0.4	0
3627	Edge magnetism in transition metal dichalcogenide nanoribbons: Mean field theory and determinant quantum Monte Carlo. Physical Review B, 2022, 105, .	1.1	6
3628	Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. Journal of the American Chemical Society, 2022, 144, 11499-11524.	6.6	88
3629	Calibration of Fermi Velocity to Explore the Plasmonic Character of Graphene Nanoribbon Arrays by a Semi-Analytical Model. Nanomaterials, 2022, 12, 2028.	1.9	9
3630	TPV radical-based multifunctional molecular spintronic device: A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 143, 115345.	1.3	1
3631	Electronic properties of carbon sheets and nanoribbons based on acepentalene-like building blocks. Computational Materials Science, 2022, 211, 111520.	1.4	O
3632	Multifunctional molecular spintronic device based on zigzag-edged trigonal graphene: A first-principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 445, 128244.	0.9	0
3633	Investigating arrangements of doping B atoms affecting electrical structures of graphene nanoribbons from DFTB simulations. Materials Science in Semiconductor Processing, 2022, 149, 106899.	1.9	3
3634	Emergent Phenomena in Magnetic Two-Dimensional Materials and van der Waals Heterostructures. ACS Applied Electronic Materials, 2022, 4, 3278-3302.	2.0	26
3635	Electronic and magnetic properties of tripentaphene nanoribbons. Physical Review Materials, 2022, 6, .	0.9	2
3636	Carrier Doping Modulates 2D Intrinsic Ferromagnetic Mn ₂ Ge ₂ Te ₆ Monolayer, High Curie Temperature, Large Magnetic Crystal Anisotropy. Journal of Physical Chemistry C, 2022, 126, 11330-11340.	1.5	9
3637	Anomalous Bloch oscillation and electrical switching of edge magnetization in a bilayer graphene nanoribbon. Physical Review B, 2022, 106, .	1.1	1
3638	Density functional theory and abâ€initio molecular dynamics calculations on the optoâ€electronic, spintronic, and energies of pure and <scp>TiO</scp> <i> </i> doped monatomic γâ€graphyne. International Journal of Energy Research, 2022, 46, 17654-17667.	2.2	1
3639	Electronic, transport, magnetic, and optical properties of graphene nanoribbons and their optical sensing applications: A comprehensive review. Luminescence, 2023, 38, 909-953.	1.5	9

#	Article	IF	CITATIONS
3640	Spin-Polarizing Electron Beam Splitter from Crossed Graphene Nanoribbons. Physical Review Letters, 2022, 129, .	2.9	11
3641	The effect of different dopants and their positions on the magnetic properties of an armchair antimonene nanoribbon: comprehensive theoretical investigation. Physica Scripta, 2022, 97, 085808.	1.2	O
3642	Ab Initio Properties of Hybrid Cove-Edged Graphene Nanoribbons as Metallic Electrodes for Peptide Sequencing via Transverse Tunneling Current. ACS Omega, 2022, 7, 25164-25170.	1.6	1
3644	Perfect spin filtering of T-shaped device based on the zigzag silicon carbide nanoribbons. Computational Materials Science, 2022, 213, 111588.	1.4	6
3645	Spin transport properties of carbon nanotubes by ferromagnetic zigzag triangular defects: A first-principles study. Materials Today Communications, 2022, 32, 104074.	0.9	2
3646	High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2). Frontiers of Physics, 2022, 17, .	2.4	8
3647	Realizing Pure Spin Current by Photogalvanic Effect in Armchair Graphene Nanoribbons with Nano-Constriction Engineering. SSRN Electronic Journal, 0, , .	0.4	0
3648	Anomalous magnetic and transport properties of laterally connected graphene quantum dots. Journal of Materials Science, 2022, 57, 14356-14370.	1.7	13
3649	Construction and properties analysis of Z-A-Z graphene nanoribbons transistors. Journal of Physics: Conference Series, 2022, 2313, 012015.	0.3	1
3650	Tailoring magnetism in silicon-doped zigzag graphene edges. Scientific Reports, 2022, 12, .	1.6	2
3651	Structural and spin-dependent electronic properties of triangular/zigzag boron nitride nanowires. IOP Conference Series: Materials Science and Engineering, 2022, 1248, 012072.	0.3	0
3652	Atomically Sharp, Closed Bilayer Phosphorene Edges by Self-Passivation. ACS Nano, 2022, 16, 12822-12830.	7.3	8
3653	Recent progress in the edge reconstruction of two-dimensional materials. Journal Physics D: Applied Physics, 2022, 55, 414003.	1.3	3
3654	Electric field tuning of magnetic states in single magnetic molecules. Physical Review B, 2022, 106, .	1.1	1
3655	Bottomâ€Up Growth of Graphene Nanospears and Nanoribbons. Advanced Functional Materials, 2022, 32,	7.8	2
3656	Programmable Fabrication of Monodisperse Graphene Nanoribbons via Deterministic Iterative Synthesis. Journal of the American Chemical Society, 2022, 144, 16012-16019.	6.6	15
3657	Non-isothermal crystallization kinetics of graphene/PA10T composites. Heliyon, 2022, 8, e10206.	1.4	9
3658	Anomalously large spin-dependent electron correlation in the nearly half-metallic ferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CoS</mml:mi><mml:mn>2<td>mn><td> :<mark></mark></td></td></mml:mn></mml:msub></mml:math 	mn> <td> :<mark></mark></td>	: <mark></mark>

#	Article	IF	Citations
3659	Carbon-based nanostructures as a versatile platform for tunable π-magnetism. Journal of Physics Condensed Matter, 2022, 34, 443001.	0.7	31
3660	Precision Synthesis of Boronâ€Doped Graphene Nanoribbons: Recent Progress and Perspectives. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	7
3661	Pentalene-based metallic and semiconducting nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2022, , 115472.	1.3	1
3662	Thermodynamic phase diagrams, thermoelectric, and half-metallic properties of KCaX2(X=N, O) and their [001] films. Indian Journal of Physics, 0, , .	0.9	0
3664	From Materials to Devices: Graphene toward Practical Applications. Small Methods, 2022, 6, .	4.6	16
3665	Quantum Interference Controlled Spin-Polarized Electron Transmission in Graphene Nanoribbons. Journal of Physical Chemistry C, 2022, 126, 14714-14726.	1.5	1
3666	Half-metallicity in strained phosphorene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 449, 128363.	0.9	2
3667	Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications. Renewable and Sustainable Energy Reviews, 2022, 168, 112836.	8.2	59
3668	Theoretical investigation of electron dynamics driven by laser pulses in graphene nanoribbons. Physical Review B, 2022, 106, .	1.1	0
3669	Graphene multilayers nanoribbons with chirality from molecular dynamics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 286, 115982.	1.7	3
3670	nanoribbon: A propitious one-dimensional metallic anode for sodium-ion rechargeable batteries.	ın %:1mml:ı	mrzow>
3671	Applied Surface Science, 2022, 606, 154825. Tuning the carrier mobility and electronic structure of graphene nanoribbons using Stone–Wales defects. Carbon, 2023, 201, 222-233.	5.4	6
3672	Anisotropy-induced phase transitions in an intrinsic half-Chern insulator Ni ₂ 1 ₂ . Nanoscale, 2022, 14, 13378-13388.	2.8	5
3673	Predicting magnetic edge behavior in graphene using neural networks. Physical Review B, 2022, 106, .	1.1	1
3674	Prediction and Characterization of Graphitic Structures at Diamond Grain Boundaries. Journal of Physical Chemistry C, 2022, 126, 15019-15029.	1.5	2
3675	Unzipping Multiwalled Carbon Nanotubes under Vortex Fluidic Continuous Flow. ACS Applied Nano Materials, 2022, 5, 12165-12173.	2.4	5
3676	The Anticancer Efficacy of Thiourea-Mediated Reduced Graphene Oxide Nanosheets against Human Colon Cancer Cells (HT-29). Journal of Functional Biomaterials, 2022, 13, 130.	1.8	4
3677	Electrochemical Detection of H2O2 on Graphene Nanoribbons/Cobalt Oxide Nanorods-Modified Electrode. Journal of Nanomaterials, 2022, 2022, 1-10.	1.5	8

#	ARTICLE	IF	Citations
3678	Ultraâ€Narrow Phosphorene Nanoribbons Produced by Facile Electrochemical Process. Advanced Science, 2022, 9, .	5.6	9
3679	Structural, Electronic, and Magnetic Characteristics of Graphitic Carbon Nitride Nanoribbons and Their Applications in Spintronics. Journal of Physical Chemistry C, 2022, 126, 16429-16436.	1.5	3
3680	Contact Effects on Thermoelectric Properties of Textured Graphene Nanoribbons. Nanomaterials, 2022, 12, 3357.	1.9	7
3681	Vacuum barrier induced large spin polarization, giant magnetoresistance, and pure spin photocurrent in ferromagnetic zigzag graphene nanoribbons. Journal Physics D: Applied Physics, 2022, 55, 455302.	1.3	6
3682	Electromagnetic Analog to Magic Angles in Twisted Bilayers of Two-Dimensional Media. Physical Review Applied, 2022, 18 , .	1.5	4
3683	Nucleobase-Bonded Graphene Nanoribbon Junctions: Electron Transport from First Principles. ACS Nano, 2022, 16, 16736-16743.	7.3	2
3684	Effect of Ferromagnetic Metal Stripe and Strained Barrier on Electron Transport Characteristics in a Graphene. Journal of Superconductivity and Novel Magnetism, 0, , .	0.8	0
3685	Electron-doping induced tunable magnetisms in 2D Janus TiXO (X = S, Se). Physica E: Low-Dimensional Systems and Nanostructures, 2023, 145, 115518.	1.3	3
3686	Electrically modulated reversible dual-spin filter in zigzag \hat{l}^2 -SiC ₇ nanoribbons. Physical Chemistry Chemical Physics, 2022, 24, 25656-25662.	1.3	10
3687	Novel nanostructures suspended in graphene vacancies, edges and holes. Science China Materials, 0, , .	3.5	3
3688	Ballistic guided electrons against disorder in graphene nanoribbons. Journal of Applied Physics, 2022, 132, 164305.	1.1	2
3689	Spin Transport Properties of zCrXY (X, Y = S,Se) Nanoribbons: Implications for Spintronics. Journal of Physical Chemistry C, 2022, 126, 18115-18127.	1.5	1
3690	Massless fermions on a half-space: the curious case of 2+1-dimensions. Journal of High Energy Physics, 2022, 2022, .	1.6	3
3691	Theoretical prediction of structural stability, electronic, elastic, and magnetic properties of the new half metallic half-Heusler XSrC ($X = Li$ and Na) alloys. Spin, O , , .	0.6	0
3692	Surface Oxygen Passivation-Driven Large Anomalous Hall Conductivity in Early Transition Metal-Based Nitride MXenes: Can AHC Be a Tool to Determine Functional Groups in 2D Ferro(i)magnets?. Journal of Physical Chemistry C, 2022, 126, 18404-18410.	1.5	0
3693	Vacancy clustering effect on the electronic and transport properties of bilayer graphene nanoribbons. Nanotechnology, 2023, 34, 055706.	1.3	1
3694	High performance piezotronic thermoelectric devices based on zigzag MoS2 nanoribbon. Nano Energy, 2022, 104, 107888.	8.2	6
3695	Electronic properties and magnetism of CrCl3 nanoribbons. Journal of Magnetism and Magnetic Materials, 2022, 564, 170105.	1.0	4

#	Article	IF	CITATIONS
3696	Recent progress in improving strategies of inorganic electron transport layers for perovskite solar cells. Nano Energy, 2022, 104, 107918.	8.2	26
3697	Half-metallicity and perfect spin-filtering effect based on vacancy interference in boron-phosphide nanoribbon: A first-principle study. Applied Surface Science, 2023, 610, 155475.	3.1	0
3698	Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon, 2023, 202, 495-527.	5.4	54
3699	Edge magnetism of triangular graphene nanoflakes embedded in hexagonal boron nitride. Carbon, 2023, 203, 59-67.	5.4	5
3700	Phase Transitions and Magnetic Properties of Zigzag Triangular Nanographenes: Monte Carlo Simulation. Journal of Superconductivity and Novel Magnetism, 2023, 36, 111-118.	0.8	1
3701	Realizing pure spin current by the photogalvanic effect in armchair graphene nanoribbons with nano-constriction engineering. Physical Chemistry Chemical Physics, 2023, 25, 2890-2896.	1.3	14
3702	Rich magnetic phase transitions and completely dual-spin polarization of zigzag PC3 nanoribbons under uniaxial strain. Physical Chemistry Chemical Physics, 0, , .	1.3	4
3703	xmins:mmi="http://www.w3.org/1998/Math/Math/ML" altimg="si11.svg" display="inline" id="d1e1323"> <mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup> /sp <mml:math <="" altimg="si12.svg" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.7</td><td>1</td></mml:math>	1.7	1
3704	Magnetic-atom and electric-field induced magnetic phase transitions in ABC-trilayer graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 147, 115588.	1.3	0
3705	Elemental excitations in Mol3 one-dimensional van der Waals nanowires. Applied Physics Letters, 2022, 121, .	1.5	16
3706	A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers. Nature Communications, 2022, 13, .	5.8	20
3707	Furanâ€Extended Helical Rylenes with Fjord Edge Topology and Tunable Optoelectronic Properties. Angewandte Chemie, 0, , .	1.6	1
3708	An epitaxial graphene platform for zero-energy edge state nanoelectronics. Nature Communications, 2022, 13, .	5.8	5
3709	Designing a functionalized 2D-TMD (MoX2, XÂ=ÂS, Se) hosting half-metallicity for selective gas-sensing applications: Atomic-scale study. Acta Materialia, 2023, 246, 118655.	3.8	14
3710	Breakdown of topological protection due to nonmagnetic edge disorder in two-dimensional materials in the quantum spin Hall phase. Physical Review B, 2022, 106, .	1.1	5
3711	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>A</mml:mi> -type antiferromagnetic bilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">LaBr</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review	1.1	15
3712	B, 2022, 106, . Topological and Spectral Properties of Wavy Zigzag Nanoribbons. Molecules, 2023, 28, 152.	1.7	5
3713	Solution-Synthesized Extended Graphene Nanoribbons Deposited by High-Vacuum Electrospray Deposition. ACS Nano, 2023, 17, 597-605.	7.3	2

#	Article	IF	CITATIONS
3714	Synergetic effects of combining TM single- and double-atom catalysts embedded in C ₂ N on inducing half-metallicity: DFT study. 2D Materials, 2023, 10, 015016.	2.0	0
3715	Enhancement the electronic and optical properties of the graphene nanoflakes in the present S impurities. Chemical Physics Impact, 2023, 6, 100154.	1.7	6
3716	Furanâ€Extended Helical Rylenes with Fjord Edge Topology and Tunable Optoelectronic Properties. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
3717	Regulating the charge densities of s-Block calcium single-atom site catalysts for efficient N2 activation and reduction. Chemical Engineering Journal, 2023, 457, 141187.	6.6	6
3718	Inducing half-metallicity in armchair BN nanoribbons with F adsorption. Materials Today: Proceedings, 2023, 78, 881-884.	0.9	0
3719	Design and Synthesis of KekulÃ" and Non-KekulÃ" Diradicaloids via the Radical Periannulation Strategy: The Power of Seven Clar's Sextets. Journal of the American Chemical Society, 2022, 144, 23448-23464.	6.6	11
3720	Spintronic action of Cn-C6H6-Fe-C6H6-C13-n; n = 6: How crucial are d electrons?. Journal of Molecular Structure, 2023, 1277, 134836.	1.8	0
3721	h-BN as a perfect spin splitter in ferromagnetic zigzag graphene nanoribbons. 2D Materials, 2023, 10, 015017.	2.0	5
3722	Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal. Chinese Physics B, O, , .	0.7	0
3723	Magnetic force microscopy study of induced magnetism in graphene nanoribbons influenced by magnetic nanoparticles. Journal of Applied Physics, 2023, 133, 023906.	1.1	0
3724	Calculation of exciton couplings based on density functional tight-binding coupled to state-interaction state-averaged ensemble-referenced Kohn–Sham approach. Journal of Chemical Physics, 2023, 158, .	1.2	2
3725	Edge reconstruction of 2D-Xene (X=Si, Ge, Sn) zigzag nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2023, , 115655.	1.3	0
3726	Unveiling and Manipulating Hidden Symmetries in Graphene Nanoribbons. Physical Review Letters, 2023, 130, .	2.9	6
3727	Anisotropic phonon dispersion and optoelectronic properties of few-layer HfS ₂ . Journal of Materials Chemistry C, 2023, 11, 2608-2618.	2.7	2
3728	Deciphering electronic and structural effects in Copper Corrole/Graphene Hybrids. Chemistry - A European Journal, 0, , .	1.7	0
3729	Electrical tuning of valley polarization in monolayer transition metal dichalcogenides. Physical Review B, 2023, 107, .	1.1	2
3730	Magnetic investigation on the two-dimensional metallated graphdiyne nanosheets. Journal of Alloys and Compounds, 2023, 940, 168693.	2.8	2
3731	Synthesis of N-Doped Few-Layer Graphene through Shock-Induced Carbon Fixation from CO2. Nanomaterials, 2023, 13, 109.	1.9	0

#	Article	IF	CITATIONS
3732	Density Functional Calculations of NMR Chemical Shifts in Carbon Nanotubes., 2011,, 279-306.		0
3733	Growth of Low-Defect Nitrogen-Doped Graphene Film Using Condensation-Assisted Chemical Vapor Deposition Method. Materials, 2023, 16, 1120.	1.3	1
3734	Cross-plane transport in cyclo[18]carbon-based molecular devices. Applied Physics Letters, 2023, 122, .	1.5	2
3735	Bipolar spin-filtering and giant magnetoresistance effect in spin-semiconducting zigzag graphene nanoribbons. Physical Chemistry Chemical Physics, 2023, 25, 6461-6466.	1.3	8
3736	GNR Electrode acquried EEG Signals analysis. , 2022, , .		0
3737	Investigation of structural and electronics properties of boron co-doped silicon carbide nanoribbons. Materials Today: Proceedings, 2023, , .	0.9	0
3738	Half-metal and other fractional metal phases in doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>A</mml:mi><mml:mi>B</mml:mi>bilayer graphene. Physical Review B, 2023, 107, .</mml:mrow></mml:math>		owi>
3739	Programmable graphene metasurface for terahertz propagation control based on electromagnetically induced transparency. Carbon, 2023, 208, 345-354.	5 . 4	9
3740	Linear indium atom chains at graphene edges. Npj 2D Materials and Applications, 2023, 7, .	3.9	1
3741	The Impact of Electron Phonon Scattering, Finite Size and Lateral Electric Field on Transport Properties of Topological Insulators: A First Principles Quantum Transport Study. Materials, 2023, 16, 1603.	1.3	3
3742	Computational insight into structural, electronic and thermal properties of novel two-dimensional NiXO (XÂ=ÂCl, Br) monolayers: Ab initio perspective. Materials Today: Proceedings, 2023, , .	0.9	1
3743	Stair-like narrow N-doped nanographene with unusual diradical character at the topological interface. CheM, 2023, 9, 1281-1294.	5.8	14
3744	One-dimensional magnetism and Rashba-like effects in zigzag bismuth nanoribbons. Physical Review Materials, 2023, 7, .	0.9	1
3745	Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states. Nature Communications, 2023, 14 , .	5.8	11
3746	Mapping topological states with compacted dimensions. Physical Review B, 2023, 107, .	1.1	1
3747	Band structure engineering and transport properties of graphene/BN van der Waals heterostructures. Results in Physics, 2023, 46, 106315.	2.0	1
3748	Full analytical solution of finite-length armchair/zigzag nanoribbons. Physical Review B, 2023, 107, .	1.1	3
3749	Graphene Nanoribbon Electrode for real time ECG signal analysis by machine learning methods. , 2022,		1

#	Article	IF	CITATIONS
3750	Van der Waals Stacked 2D-Layered Co ₂ Ge ₂ Te ₆ with High Curie Temperature and Large Magnetic Crystal Anisotropy. Journal of Physical Chemistry C, 2023, 127, 5991-6001.	1.5	0
3751	Variable strain in armchair and zigzag epitaxial graphene nanoribbons. Physical Review B, 2023, 107, .	1.1	2
3752	Tetragonal Mexican-hat dispersion and switchable half-metal state with multiple anisotropic Weyl fermions in penta-graphene. New Journal of Physics, 2023, 25, 033033.	1.2	0
3753	The Efficiency Study of Graphene Synthesis on Copper Substrate via Chemical Vapor Deposition Method with Methanol Precursor. Nanomaterials, 2023, 13, 1136.	1.9	2
3754	Natural orbitals renormalization group approach to a spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfrac> <mml:mn> 1 </mml:mn> <mml:mn> 2 <td>:mn1:4/mm</td><td>l:mfrac></td></mml:mn></mml:mfrac></mml:math>	:mn1:4/mm	l:mfrac>
3755	Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field. Chinese Physics B, 2023, 32, 087101.	0.7	3
3756	On using non-Kekul \tilde{A} $\mathbb C$ triangular graphene quantum dots for scavenging hazardous sulfur hexafluoride components. Heliyon, 2023, 9, e15388.	1.4	3
3757	Rational and key strategies toward enhancing the performance of graphene/silicon solar cells. Materials Advances, 2023, 4, 1876-1899.	2.6	1
3758	Electrically manipulating magnetization reversal via energy band engineering. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	1
3759	Structural stability, electronic properties, and physical modulation effects of armchair-edged C ₃ B nanoribbons. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 117101.	0.2	1
3760	Recent advances in magnetism of graphene from 0D to 2D. Chemical Communications, 2023, 59, 6286-6300.	2.2	3
3761	Grain Size Engineering of CVDâ€Grown Largeâ€Area Graphene Films. Small Methods, 2023, 7, .	4.6	2
3762	Role of symmetry in quantum blocking of Andreev reflection in graphene nanoribbons side-terminated by superconductors. Journal of Physics Condensed Matter, 0, , .	0.7	1
3763	Graphene, electronic properties and topological properties. , 2024, , 273-287.		0
3773	Hydrogen-adsorbed group-IV materials. , 2023, , 173-233.		0
3802	Ferromagnetism in sp2 carbon. Nano Research, 2023, 16, 12883-12900.	5.8	0
3833	Enriching 2D transition metal borides <i>via</i> MB XMenes (M = Fe, Co, Ir): Strong correlation and magnetism. Nanoscale Horizons, 0, , .	4.1	0
3847	Precise synthesis of graphene by chemical vapor deposition. Nanoscale, 2024, 16, 4407-4433.	2.8	O

#	Article	IF	CITATIONS
3848	Iron Oxide-Functionalized Graphene Nanocomposites for Supercapacitor Application. Nanostructure Science and Technology, 2024, , 77-117.	0.1	0